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ABSTRACT

Motivation: Theoretical efforts to understand the regulation of gene

expression are traditionally centered around the identification of

transcription factor binding sites at specific DNA positions. More

recently these efforts have been supplemented by experimental data

for relative binding affinities of proteins to longer intergenic sequences.

The question arises to what extent these two approaches converge.

In this paper, we adopt a physical binding model to predict the relative

binding affinity of a transcription factor for a given sequence.

Results:Wefind that a significant fractionof genome-widebindingdata

in yeast can be accounted for by simple count matrices and a physical

model with only two parameters. We demonstrate that our approach is

both conceptually and practically more powerful than traditional

methods, which require selection of a cutoff. Our analysis yields bio-

logically meaningful parameters, suitable for predicting relative binding

affinities in the absence of experimental binding data.

Availability: The C source code for our TRAP program is freely

available for non-commercial use at http://www.molgen.mpg.de/~

manke/papers/TFaffinities/

Contact: vingron@molgen.mpg.de

1 INTRODUCTION

Protein–DNA interactions play a fundamental role in transcriptional

gene regulation. For individual sequences, these interactions have

been studied for a long time using a variety of experimental

techniques, such as DNAse footprinting (Galas and Schmitz,

1978) and gel-shift assays (Fried and Crothers, 1981). Recently,

functional genomics technology has opened up the way towards

unraveling protein–DNA interactions on a global scale. In particular

the group of Rick Young has pioneered the genome-wide applica-

tion of chromatin-immuno precipitation for a comprehensive list of

transcription factors in Saccharomyces cerevisiae (Lee et al., 2002;

Harbison et al., 2004). In this technique the bound and unbound

sequence fragments are labeled with red and green dye respectively

and are then simultaneously hybridized onto an array (ChIP-chip).

The relative intensities from the two channels (R/G ratios) provide a

quantitative estimate for the binding affinities of a transcription

factor to all sequence regions of interest in vivo. Generally, the

measured affinities depend on the cellular condition in which the

binding of the transcription factor (TF) is tested. Such alterations

can be due to differences in protein concentrations and DNA

accessibility. Therefore a complementary approach of protein bind-

ing microarrays (PBMs) has been developed by Martha Bulyk and

her collaborators (Mukherjee et al., 2004). It allows to quantify the

relative affinities of a TF to accessible, double-stranded DNA

in vitro, again in terms of R/G ratios.

Where experimental data do not suffice yet to determine e.g.

whether a particular transcription factor binds a target gene, theo-

retical considerations have to fill the gap. The groundbreaking work

by von Hippel and Berg (1986) provided the rationale for converting

the biophysical problem of TF–DNA affinity into a pattern matching

and pattern discovery problem (Stormo 2000; D’haeseleer, 2006;

Djordjevic et al., 2003). Following these ideas, the preferential

binding of some TFs to certain DNA sequences can be expressed

in terms of a sequence motif or a position specific score matrix

(Wasserman and Sandelin, 2004), which is derived from a set of

known high-affinity binding sequences. For a stretch of DNA, such

a description assigns a score to every site in the sequence depending

on its similarity to the motif. Traditionally, statistical considerations

are then used to define a score threshold which needs to be exceeded

in order for a site to be reported as a hit (Rahmann et al., 2003). Such

hit-based methods cement the binary separation between binding

and non-binding, in contrast to the physical behavior of TFs. It has

therefore been difficult to rationalize the binding affinities measured

with the ChIP-chip and PBM technologies using the motif-matching

approach described above.

In this paper, we put forward a method for predicting the binding

affinity of a TF to a DNA sequence of interest. Our probabilistic

framework is closer in spirit to the original work by Berg and von

Hippel (1987) and circumvents the need for a threshold on both the

experimental data and our predictions. As a measure of relative

affinity we use the expected number of TFs bound to a DNA

sequence. Our TRanscription factor Affinity Prediction (TRAP)

tool which calculates this quantity takes as input a matrix descrip-

tion of a given TF and a set of DNA sequences to be annotated. It

requires the specification of only two parameters, l and R0. Here we

draw upon the large scale ChIP-chip and PBM datasets to calibrate

these two parameters. Strikingly, the relative binding affinities pre-

dicted by TRAP are rather insensitive even to sizeable variations in

the parameter values and reveal interesting information about the

driving forces in protein–DNA interactions. This enables us to

provide a general prescription for l and R0. Once tuned, this�To whom correspondence should be addressed.
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model allows the prediction of relative binding affinities also in the

absence of large-scale binding data.

Recent work by Tanay (2006) has also advocated an affinity-

based approach to TF binding. He and also Foat et al. (2006)

have developed methods, to derive optimal scoring matrices for

individual TFs given binding data from ChIP-chip. Our aim is

not to derive TF representations, which correlate optimally with

ChIP-chip data, but rather to optimize a generic physical model

which can rationalize the binding data for all TFs. This is also in

contrast to Granek and Clarke (2005), who utilize a physical model,

but do not provide a rationale for choosing the parameters.

Our approach of predicting binding affinities has a number of

advantages over traditional hit-based methods. Most notably, TRAP

provides a natural ranking of sequences with respect to a particular

TF of interest or conversly the ranking of several TFs with respect to

one sequence. Finally, we compare our results with traditional

approaches and find that it has higher predictive power over experi-

mental binding ratios than the hit-based methods.

2 METHODS

2.1 Protein–DNA binding data

In this work we utilize the genome-wide dataset on in vivo protein–DNA

interactions in S.cerevisae (Harbison et al., 2004). The authors provide a list

of binding ratios (R/G-ratios) for all intergenic regions in yeast, which we

obtained from their website. For comparison, we also retrieved binding data

for three TFs (Rap1, Mig1 and Abf1) from a complementary study by

Mukherjee et al. (2004), who use protein binding microarrays to determine

binding affinities in vitro. For each dataset the authors suggest a P-value

threshold of 0.001 to discriminate between binding and non-binding which

we utilize for parts of the analysis.

2.2 Binding site descriptions

As motif descriptions we use the set of 29 curated yeast matrices (for

25 factors) provided by the TRANSFAC database (Matys et al., 2003)

for which ChIP-chip data are available. We add a pseudo-count of p ¼ 1

to each element in the count matrices (Bucher, 1990). This modification can

be interpreted in statistical terms as setting the estimated number of unob-

served base pair occurrences, or physically, as setting a maximally allowed

contribution to the mismatch energy. For comparative purposes we also set

p ¼ 0.5, but our results are unaffected by such a change.

2.3 A simple model of protein–DNA interactions

Assuming that the complex formation of a transcription factor TF with a

sequence site S is at equilibrium, TF + S, TF · S, the fraction of bound sites

is given by Zumdahl (1998)

pðSÞ ¼ ½TF · S�
½S� þ ½TF · S� ¼

K · ½TF�
1 þ K · ½TF� : ð1Þ

Here the squared brackets denote the activities of TF and sequence and K ¼
K(S) is the site-specific equilibrium constant. In the following we measure all

equilibrium constants relative to the one for the site with the highest affinity,

S0, to which we conventionally assign the energy E ¼ 0

KðSÞ ¼ KðS0Þe�bEðSÞ‚ ð2Þ

where 1/b ¼ kBT denotes temperature times Boltzmann constant. Now

Equation (1) can be rewritten as

pðSÞ ¼ R0 e�bEðSÞ

1 þ R0 e�bEðSÞ : ð3Þ

This makes the two unknown dimensionless parameters R0 ¼ KðS0Þ · ½TF�
and bE(S) explicit. Berg and von Hippel showed that the mismatch energy,

E(S), can be written in terms of a TF-specific matrix, M ¼ (mi,a), which

summarizes the observed base pair counts of known TF binding sites Berg

and von Hippel (1987).

bEðSÞ ¼ 1

l

XW
i¼1

X
a¼A‚C‚G‚T

Sai log
mi‚ max

mi‚a
bi‚a

� �
: ð4Þ

Here the summation is over all W positions i in the count matrix ðmi‚aÞ and

Sai ¼ 1 only if the sequence has base pair a at position i, and zero otherwise.

For each position the matrix element with maximal count is denoted as

mi,max. This also defines the consensus sequence, for which every term in

the above sum vanishes, such that bE(S) ¼ 0. Finally, we include a

background-dependent term, bi‚a, which denotes the relative background

frequency of the observed nucleotide a with respect to the background

frequency of the most frequent nucleotide in the motif at the given position.

For a given TF, Equation (4) effectively replaces the large set of unknown

binding energies, bE(S), by a predefined motif matrix and a single parameter

l, which is introduced to scale the mismatch energies in units of thermal

energy. This parameter depends on the TF of interest and determines how

strongly variations in the target sequence will be penalized. This completes

the reduction of the large parameter space to only two sequence-independent

parameters (R0,l).

As a measure of relative affinity our TRAP program predicts for a given

TF matrix of length W and a given DNA sequence of length L the expected

number hNi of bound transcription factor molecules. This quantity is com-

puted as the sum of contributions from all possible sites l in the sequence of

interest

hNi ¼
XL�W

l¼1

pl ¼
XL�W

l¼1

R0 e�bElðlÞ

1 þ R0 e�bElðlÞ
: ð5Þ

To account for competitive binding of a given factor to the same site, but

different strands (Sl, �SSl), we used

pl ¼ pðSlÞ þ pð�SSlÞ! pðSlÞ þ pð�SSlÞ � pðSlÞ · pð�SSlÞ: ð6Þ

The correction term will be of importance only if both p(Sl) and pð�SSlÞ are

large, i.e. for palindromic motifs. In general one could invoke more elaborate

dynamic programming techniques, as used by Rajewsky et al. (2002), to

account for preclusion effects from competing factors and self-overlapping

binding sites. However, such effects will be small for our analysis, in which

we treat all TFs separately. They are likely to be more pronounced when

multiple TFs compete for the same sequence. We leave such a treatment to

future analysis (Chung et al., manuscript in preparation).

Parameter determination

To calibrate the parameters R0 and l for a given TF and cellular condition we

apply Equation (5) to all 6700 intergenic regions in yeast. This results in

6700 predicted occupancies hNi, which can be correlated with the measured

R/G ratios from ChIP-chip experiments. We use the Pearson correlation

coefficient, r, to quantify how well the model describes the experimental

binding affinity and to determine the optimal parameters. To assume a linear

correlation between the R/G ratios and hNi is plausible if the efficiency of the

pulldown reaction (ChIP) is small and not yet saturated. This is supported by

the absence of any apparent upper limit on the measured R/G ratios. We have

tested the range of parameter values l ¼ 0.05, 0.10, . . ., 2.00 and ln R0 ¼
�10, �8, . . ., 30 for all TFs and all tested conditions. We take those parame-

ters which yield the highest correlation coefficient as optimal, in the sense

that with this choice of R0 and l the model describes the actual binding data

best.

3 RESULTS

3.1 Screening the parameter space

As a measure of affinity, TRAP predicts for a given TF and a given

DNA sequence the expected number, hNi, of bound TF molecules.
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This calculation requires the setting of two parameters. The first

parameter, R0, involves the factor concentration and the equilibrium

constant of the binding reaction between the TF and its optimal

binding site. The second parameter, l, scales the mismatch energy

of a given site in the sequence with respect to the optimal binding

site. For any given combination of R0 and l the correlation between

hNi of every intergenic region and the corresponding experimental

R/G ratios can be determined.

First we analyze the generic features of the correlation coefficient

across the parameter space spanned by R0 and l. These features are

illustrated by the example shown in Figure 1. For large l (small

mismatch energy) as well as for large R0 almost every site in the

sequence is occupied and the number of expected TFs bound will

simply correlate with the length of the intergenic region. This typi-

cally results in a poor correlation with the observed R/G-ratios as

can be seen in the upper right part of Figure 1.

For small l (large mismatch energy) only the optimal sites, E¼ 0,

will have a non-vanishing binding affinity. However, most TFs can

accommodate certain variations in the binding site (Mossing and

Record, 1985), therefore in most cases we would not expect to

observe the best correlation with experimental data in a region

of the parameter space which does not permit a certain degree of

binding site flexibility. This is in line with our observation in

Figure 1, where the correlation coefficient decreases for l ! 0.

For small R0 the expected number of bound TFs depends linearly

on R0, as can be inferred from a Taylor expansion of Equation (5)

around R0 ¼ 0

hNi � R0

X
l

expð�bElÞ: ð7Þ

Therefore, changes of R0 in this regime only affect the absolute

number of hNi, but not the correlation of hNi with R/G ratios. In

Figure 1 this is reflected by a constant correlation coefficient for

ln R0 < 0 and a given l.

It is evident from Equation (5) that the affinity of a single binding

site can be kept constant for varying values of R0 and bE in such a

way that ln R0 � bE ¼ c. With bE / 1/l, we find the hyperbolic

relation l/1/(ln R0 � c). Interestingly the characteristic curves of

constant correlation coefficients seen in Figure 1, which can be well

described by a hyperbola, suggest that this generic behavior is

effectively reflected in the behavior of the correlation coefficients.

Optimal parameter choice derived from

experimental data

Binding data from PBM constitutes the ideal benchmark for TRAP.

We thus determined the optimal model parameters for Abf1, Mig1

and Rap1 whose binding affinities have been studied experimentally

using protein binding arrays (Mukherjee et al., 2004) and for which

we obtained matrix descriptions from TRANSFAC (Matys et al.,
2003). In all cases we can find optimal parameters which yield

highly significant correlation (r > 0.5), as shown in Table 1. This

indicates that TRAP can successfully account for much of the

observed in vitro binding affinities.

We proceed to a more comprehensive set of 25 TFs (29 matrices),

for which matrix descriptions exist (Matys et al., 2003) and R/G

ratios have been obtained from ChIP-chip for one or more cellular

conditions (Harbison et al., 2004). This in vivo data corresponds to a

more complicated situation, where we cannot always assume that

the TF is available for DNA binding and that the DNA is accessible

under the tested condition. Despite these caveats, we observe that

TRAP still predicts a large fraction of in vivo affinities for properly

chosen parameters. In Table 1 we present our results for a group of

15 matrices for which our affinity predictions show high correlation

(Pearson r > 0.3) with the experimentally observed R/G ratios. We

provide a complete list for all 25 factors and 13 conditions as

Supplementary table.

Remarkably, the optimal parameters for all factors and conditions

correspond to maximal values of hNi (over all intergenic regions) in

the range of 0.5. . .5. This is biologically reasonable assuming that

each transcription factor should recognize some promoter region, at

least in one condition. hNimax falls outside of this range only in the

case of Hap1, where the ‘optimal’ R0 is small and poorly defined in

the sense explained below Equation (7), and Rap1, where several

sequences have large clusters of neighboring Rap1 binding sites

(Gilson et al., 1993).

Notice that the observed correlations are actually quite insensitive

to the precise value of the parameters and some of our modeling

assumptions. We also investigated the rank order of different inter-

genic regions with respect to their predicted affinities. While the

absolute value for hNi depends on the values of (ln R0, l), we find

that the ranking of intergenic regions remains largely unaffected

even under sizeable changes in these parameters. Comparing the

ranks of the TRAP results for optimal parameters with those

obtained from a 30% decrease in l, we find Spearman rank cor-

relation coefficients larger than 0.98. Similarly, an almost 100-fold

change in R0 gave a correlation coefficient above 0.99.

Parameter choice in the absence of experimental data

While it is possible to determine the optimal coefficients (R0, l) in

the presence of sufficient binding data, it is clearly desirable to

have some prescription which would allow the parameter deter-

mination on general grounds. Based on the results in Table 1

and the observed insensitivity to small changes in the parameters

Fig. 1. Correlation Analysis for Gal4. For each parameter combination (ln

R0,l) TRAP results for hNi show a certain correlation with the experimental

R/G ratios. We quantify this correlation by a Pearson coefficient, r, which is

color-coded as specified in the sidebar. The optimal choice of parameters,

with the highest correlation coefficient, is marked by a white cross and the

hyperbola highlights a line of parameter combinations with similarly high

correlation coefficient. We also indicate the boundary (white staggered lines)

for which the maximal value of hNi (over all intergenic regions) lies between

0.5 and 5.
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we decided to fix l to an average value of 0.7 for all TFs and all

conditions. This fixation reduces the parameter space to only R0. We

observe that the optimal values of R0(l¼ 0.7) can be well described

as a function of the motif width, W, with only small changes due to

condition dependent effects. This is shown in Figure 2 where we

perform a regression analysis of ln R0 against W. The regression line

allows us to determine R0 for any given W and provides the basis for

our subsequent analysis. R0 will also vary with the cellular condi-

tion, through changes in TF-concentration, but empirically we find

that this amounts to much smaller shifts compared to the overall

dependence on the motif length. This can be understood since R0

depends only linearly on the concentration, [TF], but exponentially

on the difference between the free energies of the best binding

complex and the unbound state. This difference increases with

the width of the binding site through an increasing number of

protein–DNA contacts and dominates the behavior of R0 as

shown in Figure 2.

It should be noted that matrices can contain unspecific positions

which then define an arbitrary consensus site with spuriously low

binding energy. This can lead to an overestimate of the ‘optimal’ R0

as observed in case of GCN4_01 (27 bp). For identical l, GCN4_01

gives a vastly larger estimate of R0 compared to GCN4_C (10 bp).

The problem could be addressed by restricting the motif to positions

with higher information content (e.g. �0.2 bits). For GCN4_01 this

would reduce the motif length to 11 bases and in turn improve the

results for this matrix (maximal r � 0.57 and rpredicted � 0:53

compared to the values in Table 1). Although the regression in

Figure 2 could be further improved by these corrections we find

that it is not very sensitive to such influences and in the following we

thus proceed by using only the unmodified TRANSFAC matrices.

Assuming the parameter prescription ½R0ðWÞ‚l ¼ 0:7�, we find

correlations with the R/G-ratios that are almost as high as the

optimal correlations (last column of Table 1) with exception of

GCN4_01. This choice of (R0, l) may be used to predict relative

binding affinities for TFs with known motifs in the absence of

genome-wide binding data.

Comparison of TRAP with hit-based methods

Traditionally, computational target predictions have focused on the

identification of individual binding sites with more or less specific

sequence patterns. This is usually done by scanning a score matrix

along the sequence and assigning a ‘hit’, whenever the score

exceeds some pre-defined threshold (Wasserman and Sandelin,

2004). Of course, traditional methods suffer from the arbitrariness

Table 1. Correlation analysis

Matrix Condition W l ln R0 hNi r rpred

ABF1_01 Rich medium 22 0.60 8.11 2.95 0.5672 0.5634

In vitro 22 0.65 6.91 2.52 0.5526 0.5452

ABF_C Rich medium 15 0.45 4.61 3.08 0.5863 0.5618

In vitro 15 0.50 3.51 2.37 0.5694 0.5426

CBF1_B Rich medium 10 0.75 0.00 1.23 0.4272 0.4269

AA depleted 10 0.45 3.51 2.90 0.6836 0.6736

GAL4_01 Rich medium 23 0.40 13.82 2.99 0.5593 0.5567

Galactose 23 0.25 25.33 3.00 0.3355 0.3263

Raffinose 23 1.45 2.30 1.67 0.6051 0.5897

GAL4_C Rich medium 22 0.65 8.11 3.33 0.5730 0.5721

Galactose 22 0.25 26.53 4.13 0.3395 0.3150

Raffinose 22 1.30 3.51 2.53 0.6240 0.6013

GCN4_01 AA depleted 27 0.50 15.02 2.31 0.3406 0.1496

Rapamycin 27 0.60 15.02 2.31 0.3123 0.1416

GCN4_C AA depleted 10 0.50 0.00 1.35 0.3519 0.3206

Rapamycin 10 0.50 0.00 1.35 0.3508 0.3125

HAP1_B Rich medium 14 0.75 �9.21 0.004 0.3503 0.3191

HSF_04 High H2O2 15 0.90 4.61 2.77 0.4881 0.4165

Low H2O2 15 0.80 4.61 2.66 0.4803 0.4380

LEU3_B AA depleted 14 1.20 0.00 0.68 0.3354 0.3104

MCM1_02 Rich medium 27 1.70 3.51 0.93 0.3155 0.3093

afactor 27 1.45 4.61 0.97 0.3684 0.3561

MIG1_01 In vitro 17 0.90 2.30 1.23 0.5958 0.5907

RAP1_C Rich medium 14 0.60 6.91 12.51 0.3818 0.3366

AA depleted 14 0.35 12.72 12.99 0.4403 0.3700

In vitro 14 0.15 13.82 5.23 0.4445 0.4321

RCS1_Q2 Low H2O2 13 0.05 21.93 1.01 0.3875 0.3205

REB1_B Rich medium 9 0.45 1.20 1.25 0.5153 0.5058

High H2O2 9 0.55 2.30 2.26 0.3245 0.3117

Low H2O2 9 0.50 1.20 1.37 0.5973 0.5957

The first column denotes the TRANSFAC matrix identifier of those TFs, for which our theoretical estimates have a high correlation (r > 0.3) with the genome-wide R/G-ratios from

ChIP-chip in at least one condition (second column). The width,W, of the matrix is given in the third column. In column 4 and 5 we give the optimal parametersl andR0 which result in the

maximal Pearson correlation coefficient (r) and some maximal value of hNimax over all intergenic regions. The last column denotes the correlation coefficient that is predicted from using

l ¼ 0.7 and R0 from the regression analysis of Figure 2. It is apparent that in most cases the differences are small.
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of that threshold. In contrast, our focus is on the determination of

relative binding strength and the expected number of bound TFs.

Therefore, it is difficult to compare our affinity-based method and

hit-based methods without adjusting one or the other.

Here we consider two commonly used hit-based methods and

compare them to TRAP [using the predefined parameters

R0(W), l ¼ 0.7] with respect to their capability of predicting

experimental binding ratios. The first traditional method, which

we call ‘balanced method’, invokes a score threshold which is

chosen such that the expected number of false positive hits is

balanced by the expected number of false negatives (Rahmann

et al., 2003). For each sequence this method calculates a number

of hits which can be compared to experimental binding ratios and

our predictions for the expected number of bound TFs. This com-

parison is illustrated for Leu3 in Figure 3, where it can be seen that

the TRAP approach leads to a better correlation with experimental

data. For a second comparison, we also consider a different thresh-

old prescription, called ‘5FP’, in which the expected false-positive

rate is arbitrarily set to 5%. In Table 2 we provide a complete

comparison of all the methods described above.

It can be seen that in �80% of cases TRAP results in better

correlations with experimental binding ratios than the hit-based

methods.

Alternatively, one may also impose a cutoff on the expected

counts hNi to (arbitrarily) discriminate between bound and unbound

sequences. Also experimental binding data are often interpreted

in such a binary way, where binding ratios are converted to

P-values and only sequences with e.g. P < 0.001 are considered

as bound (Harbison et al., 2004). For varying thresholds on hNi and

a given cutoff on R/G ratios we can then calculate different sensi-

tivities and specificities which are evaluated in a ROC-curve anal-

ysis. In Table 2 we use the area under the ROC-curve as a quality

measure. Most areas are much larger than 0.5, indicating a strong

predictive power of this method over experimental binding data in

yeast at the significance threshold of P < 0.001.

To compare again with hit-based methods, we took, for each TF

and every intergenic region, the number of hits (for 5FP and bal-

anced cutoff) and performed the same ROC-curve analysis

based on different thresholds on this score. Again we find that

our method performs consistently better than hit-based approaches

(see Table 2). On the entire set of 29 matrices we find that TRAP

yields a ROC curve area of �0.7 for 22 matrices in at least one of the

experimentally tested condition as opposed to only 16 and 14 mat-

rices for the balanced and 5FP cutoff methods, respectively

(see Supplementary Table).

Prediction of TFs with high affinity

The above analysis shows that for a given TF we can successfully

rank sequences according to their expected affinity. Here we address

the complementary question: given a certain sequence, can TRAP

successfully rank TFs in accordance with ChIP-chip experiments

using our prescription R0(W),l ¼ 0.7. In general factors bound to a

given sequence in the ChIP experiment should have higher values

Fig. 2. Deriving a general prescription for R0. For each matrix we plot the

optimal value of ln R0 for fixed value of l¼ 0.7. In cases where we have R/G

ratios for more than one condition, we plot the average of the optimal ln R0.

Deviations from this value, due to condition-dependent (TF-concentration-

dependent) variation, are generally small (maximally lnR± 1). TheP-value of

the correlation is 1.2 · 10�7. The errors in the regression formula denote the

95% confidence interval on the regression parameters.

(a)

(b)

Fig. 3. Comparison of methods. As an example, we compare the results for

Leu3 (in amino acid starved condition) from TRAP (left figure) with the

results obtained from a balanced cutoff method (right figure). Sequences with

significant R/G ratios (P < 0.001) are indicated by a cross. It is apparent that in

this case TRAP improves the correlation with R/G ratios and the significant

ChIP-chip targets.
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of hNi predicted by TRAP than unbound factors. Since experimental

R/G ratios for different factors are not directly comparable, we

follow again the binding prescription as given in (Harbison

et al., 2004; Mukherjee et al., 2004) and distinguish binders

from non-binders according to the P-value threshold of P ¼ 0.001.

Figure 4 shows as an example the intergenic region between

GAL1 and GAL10 with its experimentally verified high affinity

sites for Gal4 and Mig1 (Selleck and Majors, 1987; Frolova

et al., 1999). This region was also significantly enriched in the

ChIP-chip pulldown experiment with GAL4 and in the PBM experi-

ment with MIG1. None of the other 23 factors in our set had been

predicted as a target by ChIP-chip or PBM. As can be seen, TRAP

predicts the highest affinities for Gal4 followed by Mig1, Adr1 and

Ste12. All other factors have only negligible affinities predicted in

good agreement with the ChIP-chip experiments. Interestingly inde-

pendent chromatin precipitation experiments have shown that Ste12

has weak but measurable affinity to the GAL1–GAL10 intergenic

region (Reeves and Hahn, 2005). The balanced cutoff method also

predicts these four factors as potential binders but in addition four

others (Ap1, Gcr1, Hsf1 and Rox1). If one ranks traditional anno-

tations according to the number of hits, then Gal4 is ranked highest

with seven annotated hits followed by Adr1 with two while Mig1

and Ste12 with one binding site each are assigned a tied rank with

Ap1, Gcr1, Hsf1 and Rox1.

This analysis was carried out on the entire set of 4451 intergenic

sequences which have a ChIP-chip P-value assigned for all our

25 factors. In total this sequence set yields 2388 significant

TF–DNA interactions with P < 0.001. To assess the quality of

different TF ranking schemes we count for each sequence the num-

ber of bound TFs ranked above all unbound TFs. For TRAP, TFs are

ranked according to hNi and for the hit-based methods according to

the number of annotated hits as described for the example above. In

those cases where several factors have the same number of hits

annotated but only a subset of the factors correspond to bound

factors, we determine, based on the average of 1000 random

samplings, how many times the unbound TFs will accidentially

be ranked above a given bound TF.

The analysis shows that 643 (27%) of the significant interactions

are correctly ranked on top according to TRAP as compared to

343 (14%) in case of the balanced cutoff and 551 (23%) in case

of the 5FP method. These results show that in a considerable num-

ber of cases the ranking of TFs according to TRAP is in accordance

with ChIP-chip data and overall better than traditional hit-based

methods.

Table 2. Comparsion of annotation methods

Pearson correlation coefficient ROC-curve area

Matrix Condition TRAP 5FP Bal TRAP 5FP Bal

ABF1_01 Rich medium 0.5634 0.5106 0.5006 0.9239 0.8683 0.8709

In vitro 0.5452 0.5062 0.4972 0.8939 0.8476 0.8510

ABF_C Rich medium 0.5618 0.5797 0.5576 0.9324 0.9207 0.9201

In vitro 0.5426 0.5435 0.5282 0.8962 0.8539 0.8691

CBF1_B Rich medium 0.4269 0.3026 0.2779 0.9942 0.9780 0.9750

AA depleted 0.6736 0.5237 0.4872 0.8864 0.8303 0.8325

GAL4_01 Rich medium 0.5567 0.2871 0.2697 0.6780 0.6337 0.6320

Galactose 0.3263 0.1912 0.1803 0.5840 0.6413 0.6393

Raffinose 0.5897 0.3319 0.3149 0.7160 0.6570 0.6550

GAL4_C Rich medium 0.5721 0.3267 0.3267 0.6773 0.6362 0.6362

Galactose 0.3150 0.2143 0.2143 0.5757 0.6605 0.6605

Raffinose 0.6013 0.3952 0.3952 0.7261 0.6767 0.6767

GCN4_01 AA depleted 0.1496 0.3806 0.3966 0.8006 0.7498 0.6907

Rapamycin 0.1416 0.3912 0.4084 0.8069 0.8016 0.7300

GCN4_C AA depleted 0.3206 0.2091 0.2476 0.7711 0.6486 0.7199

Rapamycin 0.3125 0.2138 0.2510 0.7837 0.6621 0.7640

HAP1_B Rich medium 0.3191 0.2514 0.2189 0.8084 0.6557 0.6866

HSF_04 High H2O2 0.4165 0.2598 0.2416 0.7526 0.6563 0.6620

Low H2O2 0.4380 0.2322 0.2185 0.7885 0.6949 0.7010

LEU3_B AA depleted 0.3104 0.2088 0.1945 0.6978 0.6486 0.6623

MCM1_02 Rich medium 0.3093 0.1090 0.1438 0.8066 0.7162 0.6344

afactor 0.3561 0.0997 0.1570 0.8614 0.7712 0.7007

MIG1_01 In vitro 0.5907 0.4625 0.4433 0.8793 0.6982 0.7043

RAP1_C Rich medium 0.3366 0.3513 0.3282 0.9085 0.7807 0.7767

AA depleted 0.3700 0.4022 0.3799 N/A N/A N/A

In vitro 0.4321 0.3647 0.3402 0.8862 0.6980 0.7155

RCS1_Q2 Low H2O2 0.3205 0.1578 0.1794 0.5470 0.4985 0.5043

REB1_B Rich medium 0.5058 0.4197 0.3115 0.9289 0.8967 0.8750

High H2O2 0.3117 0.3390 0.2836 0.8437 0.8534 0.8191

Low H2O2 0.5957 0.5156 0.4060 N/A N/A N/A

Here we present the results from our correlation analysis and the ROC-curve areas. For the latter we invoke a P-value threshold of 10�3. TRAP denotes results from our threshold-free

calculation of the expected count, which should be compared to several traditional methods (Bal¼ balanced cutoff, 5FP¼ 5% expected false positives). With N/A we denote those cases

for which the TF does not have any targets in the specified condition at P < 10�3.
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Contributions from low affinity sites to hNi
While our method predicts the overall affinity of a transcription

factor to a sequence region, it is still possible to ask which sites

contribute most significantly to this affinity. Here we study in more

detail the relative contribution of different sites to the total expected

count, hNi, and therefore to the correlation of hNi with the observed

binding ratios. To this end, we rank all sites in a given sequence

according to their probability of being bound, p(Sl), and approxi-

mate the expected number of bound TFs by the sum of its n top-

ranking sites, hNin ¼
Pn

l¼1 pðSlÞ. This analysis is illustrated in

Figure 5 for Leu3.

We find that for the majority of matrices a better correlation can be

obtained when all sites are taken into account rather than a single

strongest site. This suggests that the relative binding affinities for a

given intergenic region are well modeled by taking the total sum over

all sites in the region, and supports our claim that a mechanistic des-

cription of binding data is possible without imposing any threshold.

4 DISCUSSION

We have applied a physical model to predict the relative binding

affinities of TFs to regulatory regions of the DNA. In contrast to the

traditional search for binding sites, we do not impose any threshold,

but integrate the contributions from individual strong sites and weak

sites to calculate the expected number of bound TFs. The ranking of

sequence fragments according to this affinity measure is robust with

respect to sizable variations in the space of two parameters which

define the binding model. Using recent in vitro and in vivo data from

budding yeast, we find that l lies in the range of [0.4, 1.5] for most

factors. The other parameter R0 is largely determined by the width

of the binding site, and to a much lesser extent by the TF concen-

tration. We provide a simple parameterization of the Berg-von

Hippel model [l ¼ 0.7,R0 ¼ R0(W)] and show that a large fraction

of our affinity predictions are significantly correlated with experi-

mentally measured R/G ratios in one or more cellular conditions.

Our results indicate that TRAP can better predict relative binding

affinities than any of the hit-based approaches. This improvement is

due to our probabilistic approach to binding affinities, which avoids

assigning a discrete number of binding sites to a sequence. More-

over it takes into account contributions from weak sites and hence

can assign affinities for sequences where hit-based methods fail to

report any ‘match’. It also accounts for differences in the binding

strength of sites which are traditionally only reported as hits. This is

not only reflected in better correlation but also better and more

robust ranking of TFs as compared to hit-based methods.

Considering a comprehensive list of 25 factors and 13 conditions

(61 experimentally tested combinations), we find that our predic-

tions resulted in high correlations (r > 0.3) for 23 of these

combinations. In addition for 36 combinations TRAP yielded a

ROC curve area �0.7. It is encouraging to see that our predictions

also match what is known about the involvement of TFs in the

various conditions tested. For example, Hsf1, Rcs1 and Leu3 are

known to be involved in several aspects of stress response (Raitt

et al., 2000; Blaiseau et al., 2001; Zhou et al., 1987) and their

predicted affinities show high correlation with R/G ratios only in

conditions of oxidative stress (H2O2) and amino acid starvation, but

not in rich medium.

This also suggests why, for certain factors and cellular conditions,

the physical model cannot be expected to predict binding affinities

in vivo. Indeed, for nine factor-condition pairs with only small

correlation (r < 0.3) the TFs may not be expressed or available

for binding under the condition tested. These include Adr1,

Fig. 4. Affinities for the upstream region of GAL1 and GAL10. The histo-

gram shows the affinity scores as predicted by TRAP. Triangles indicate the

factors that have hits annotated according to the balanced cutoff method

(black: seven binding sites, dark grey: two binding sites, light grey: one

binding site). In the lower part the experimentally verified binding sites

are indicated. (Selleck and Majors, 1987; Frolova et al., 1999).

Fig. 5. Contribution of sites with lower affinity. When we arbitrarily con-

strain
Pn

l¼1 pðSlÞ to only the top n scoring terms then the expected counts,

hNi, are reduced, which in turn affects the correlation with the experimental

R/G ratio. The upper line shows the changes in the correlation coefficient, the

lower line the changes in hNi. The right-most circled dots denote the values

when all sites are taken into account. The increase in the correlation coeffi-

cient suggests that the inclusion is biologically meaningful until the correla-

tion coefficient saturates (r � 0.335) as more and more sites with vanishing

affinity are taken into account. This demonstrates that integrating the con-

tributions from all sites provides a more robust approach than limiting the

annotation to a few best sites which are determined by some arbitrary cutoff.
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Hac1, Mata1, Pdr3, Pho4, Xbp1, Yap1 and Zap1 in rich medium and

Mig1 in medium with galactose as carbon source. For example,

Mig1 is known to be located in the cytoplasm in the presence of

galactose, and hence it is not available for DNA-binding in the

nucleus (Vit et al., 1997). However, our predictions for Mig1 do

show a high correlation (r ¼ 0.60) with in vitro data. Likewise, the

binding ratios of Abf1 and Rap1 have also been determined in vitro
and show a high correlation with our predictions (r > 0.5) under this

condition. This is in accordance with our assumption that the TF is

available and that the DNA is accessible.

The TRAP approach appears to fail for other matrices and con-

ditions, even though we have no indication that the corresponding

factor is absent. We want to stress that our approach requires the

definition of matrix descriptions which can be used as good approxi-

mations for mismatch energies in the physical model. There are

several cases where we suspect that the matrix description may be

inappropriate. For example, for Hsf1 there are four matrices listed in

TRANSFAC, but only one of them (an alternating trimer motif

HSF1_04) yields good correlations with the experimental binding

ratios. Interestingly the trimer combination of this matrix has been

described as the site with highest affinity for Hsf1 (Sorger and

Pelham, 1987; Xiao et al., 1991). It is possible that better predictions

can be achieved by using improved matrices like in the case of

GCN4_01 or matrices derived from ChIP-chip data (Foat et al.,
2006; Tanay, 2006). The focus of this work, however, is to explain

ChIP-chip data in a biophysical framework rather than the

evaluation of matrices. Hence in the present study only publically

available matrices are used.

The key ingredient of the model by Berg and von Hippel is the

assumption that different basepairs contribute independently from

each other to the overall binding energy. This assumption also entails

that mismatch energies for large deviations from the consensus

sequence are not calculated differently from small deviations.

Since TF–DNA complexes can, presumably, compensate for the

relative increase in free energy from base pair mismatches through

other mechanisms, such as conformational changes the model may

underestimate the binding affinity of weak sites and thus hNi.
The fact that already now a significant fraction of yeast binding

data can be accounted for by matrix motifs is all but obvious given

the complicated binding mechanisms in eukaryotes and the rela-

tively simple energetic binding model. Prokaryotic binding data has

triggered motif based models more than 20 years ago. Our results

demonstrate that, despite the increased complexity of the eukaryotic

cell, such energetic binding models are also of predictive value for

yeast. It will be interesting to see to what extent the observations

made for yeast will carry over to multi-cellular organisms.
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