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ABSTRACT

Motivation: In high-dimensional phenotyping screens, a large

number of cellular features is observed after perturbing genes by

knockouts or RNA interference. Comprehensive analysis of pertur-

bation effects is one of the most powerful techniques for attributing

functions to genes, but not much work has been done so far to adapt

statistical and computational methodology to the specific needs of

large-scale and high-dimensional phenotyping screens.

Results: We introduce and compare probabilistic methods to

efficiently infer a genetic hierarchy from the nested structure of

observed perturbation effects. These hierarchies elucidate the

structures of signaling pathways and regulatory networks. Our

methods achieve two goals: (1) they reveal clusters of genes with

highly similar phenotypic profiles, and (2) they order (clusters of)

genes according to subset relationships between phenotypes. We

evaluate our algorithms in the controlled setting of simulation studies

and show their practical use in two experimental scenarios: (1) a data

set investigating the response to microbial challenge in Drosophila

melanogaster, and (2) a compendium of expression profiles of

Saccharomyces cerevisiae knockout strains. We show that our

methods identify biologically justified genetic hierarchies of pertur-

bation effects.

Availability: The software used in our analysis is freely available in

the R package ‘nem’ from www.bioconductor.org

Contact: ogt@cs.princeton.edu

1 INTRODUCTION

Functional genomics has a long tradition of inferring the inner

working of a cell through analysis of its response to various

perturbations. Observing cellular features after knocking out or

silencing a gene reveals which genes are essential for an

organism (Boutros et al., 2004) or for a particular pathway

(Gesellchen et al., 2005). In computational biology, the

importance of perturbations for network reconstruction has

been recognized in many different inference frameworks

(Markowetz and Spang, 2003; Pe’er et al., 2001; Sachs et al.,

2005; Van Driessche et al., 2005; Wagner, 2001; Werhli et al.,

2006; Yeang et al., 2004).
There are several perturbation techniques suitable for large-

scale analysis in different organisms, including RNA inter-

ference (Fire et al., 1998) and gene knockouts (Hughes et al.,

2000). Perturbation effects can be measured either by single

reporters like viability (Boutros et al., 2004) or by high-

dimensional readouts like gene expression profiles (Boutros et

al., 2002; Hughes et al., 2000; Van Driessche et al., 2005),

metabolite concentrations (Raamsdonk et al., 2001), sensitivity

to cytotoxic or cytostatic agents (Brown et al., 2006) or

morphological features of the cell (Ohya et al., 2005). High-

dimensional phenotypic profiles promise a comprehensive view

on the function of genes in a cell, but only limited work has

been done so far to adapt statistical and computational

methodologies to the specific needs of large-scale and high-

dimensional phenotyping screens.
A key obstacle to inferring genetic networks from high-

dimensional perturbation screens is that phenotypic profiles

generally offer only indirect information on how genes interact.

Cell morphology or sensitivity to stresses are global features of

the cell, which are hard to relate directly to the genes

contributing to them. Gene expression phenotypes also offer

an indirect view of pathway structure due to the high number

of post-transcriptional regulatory events like protein

modifications.
Previous work. Most previous work focused on clustering

phenotypic profiles to find groups of genes that show similar

effects when perturbed. The rationale is that genes with similar

perturbation effects are expected to be functionally related. The

most prominent method used is average linkage hierarchical

clustering (Ohya et al., 2005; Piano et al., 2002). A comple-

mentary approach is ranking genes according to similarity with

a query gene; e.g. the ‘phenoBlast’ algorithm (Gunsalus et al.,

2004) implements lexicographic sorting. In a supervised setting,

first steps have been taken to classify genes into functional

groups based on phenotypic profiles (Ohya et al., 2005).

Both the supervised and unsupervised methods discussed

above are based on a notion of similarity between phenotypic

profiles. We see two limitations in such similarity-based

approaches: in general, similarity measures weight observed

and unobserved effects in the same way. However, in large-scale

phenotyping experiments it may be more likely to miss an effect

because of compensatory efforts of the cell than to see a

spurious effect. So far, only phenoBlast takes this imbalance

into account.

An even more important issue is that similarity-based

methods may miss important features of the data, which do

not relate to the similarity of profiles within a cluster, but to the

relationships of effects for different clusters. For example,

existing methods do not take into account subset relationships

in observed perturbation effects, which can be indicative of

specific cellular behaviors such as regulatory mechanisms.*To whom correspondence should be addressed.
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Clustering defines groups of genes with similar phenotypic

profiles, but may miss the hierarchy in the observed perturba-

tion effects, as is exemplified in Figure 1. Perturbing some genes

may have an influence on a global process, while perturbing

others affects subprocesses of it. Imagine, e.g. a signaling

pathway activating several transcription factors (TFs). Blocking

the entire pathway will affect all targets of the TFs, while

perturbing a single downstream TF will only affect its direct

targets, which are a subset of the phenotype obtained by

blocking the complete pathway. Boutros et al. (2002) show that

by this reasoning non-transcriptional features of signaling

pathways can be recovered from gene-expression profiles.

However, no previous computational method is applicable to

infer models from biological subset relations on data sets

screening whole pathways.
Nested effects models. We will call a model encoding the

(noisy) subset relations between the effects observed after

perturbing the target genes a Nested Effects Model (NEM).

It can be seen as a generalization of similarity-based clustering,

which orders (clusters of) genes according to subset relation-

ships between the sets of phenotypes. In this article, we develop

a Bayesian method to infer NEM from large-scale data sets.
Our method builds on preliminary work by Markowetz et al.,

(2005), which is specifically designed for inference from indirect

information and also takes the imbalance between spurious

and missed effects into account. Previously, this method was

limited to small-scale scenarios of up to six genes, where model

search can be done by exhaustive enumeration. Scaling upmodel

search to larger numbers of perturbed genes is a non-trivial

problem due to the constraints imposed on the model by

having only indirect information of the underlying genetic

network. Here, we approach the problem of inferring a hierarchy
on the set of all perturbed genes by constructing it from smaller

sub-models containing only pairs or triples of genes. Such ‘divide-
and-conquer’-like approaches are regularly used in high-

dimensional statistical inference, e.g. for estimating large

phylogenetic trees (Strimmer and von Haeseler, 1996) or
learning Gaussian graphical models for regulatory networks

(Wille et al., 2004). Our resulting method is the first one to make

inference of NEMs feasible on a pathway-wide scale.
The next section introduces our novel methodology in detail.

In Section 3, we demonstrate the applicability of our methods

in a controlled simulation study, and in Section 4 we describe

results for two experimental data sets. We show that the subset
relations retrieved actually reflect the regulatory functions of

the genes involved.

2 ALGORITHM

Data. We assume that data is given in the form of a binary
matrix D with columns corresponding to perturbation experi-

ments on one of n genes (replicates are possible) and rows to
one of m possible effects E1, . . . ,Em. A phenotypic profile Px of

gene x consists of a binary vector of length m with a PxðEiÞ ¼ 1

denoting that effect Ei occurred after perturbing gene x, and
PxðEiÞ ¼ 0 denoting that it did not.

Subset relations between phenotypic profiles. Instead of
similarity, we will consider subset relations between phenotypic

profiles. We say that gene x is upstream of gene y

(c) Nested Effects Model(a) Data (b) Clustering
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Fig. 1. An introduction to Nested Effects Models. Plot (a) shows a toy dataset consisting of phenotypic profiles for eight perturbed genes (A, . . . ,H).

Each profile is binary with black coding for an observed effect and white for an effect not observed. The eight profiles are hierarchically clustered,

showing that they fall into four pairs of genes with almost identical phenotypic profiles: (A,B), (C,D), (E,F) and (G,H), as shown in plot (b). An

important feature of the data missed by clustering is the subset structure visible between the profiles in the data set: the effects observed when

perturbing genes A or B are a superset to the effects observed for all other genes. The effects of perturbing G or H are a subset to all other genes’

effects. The pairs (C,D) and (E,F) have different but overlapping effect sets. The directed acyclic graph (DAG) shown in plot (c) represents these

subset relations, which are shown in plot (d). Compared to the clustering result in plot (b) the NEM additionally elucidates relationships between the

clusters and thus describes the dominant features of the data set better.
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(and write x! y) if the set of effects in Py is a subset of the set

of effects in Px:

x! y , fi : PyðEiÞ ¼ 1g � fi : PxðEiÞ ¼ 1g: ð1Þ

A subset relation is reflexive and transitive, and thus defines

a quasi-order on phenotypic profiles. We depict the quasi-order

in a directed graph in which nodes correspond to gene

perturbations and edges indicate subset relations according to

Equation (1). The reflexive self-loops at nodes are usually

omitted. Transitivity is the key feature of our model: whenever

there is a path from one node to another, we also have a

directed edge between these two nodes in the graph.

2.1 Bayesian inference for NEM models

Posterior probability A Bayesian score to evaluate how well a

candidate NEM fits to the observed data can be obtained in

two steps (Markowetz et al., 2005). First, assume that it is

known which effect is specific for which perturbed gene. We call

this the complete model, and an example is given in Figure 2.

A complete model M0 ¼ ðM,�Þ consists of a transitively closed

graph, M, and parameters � ¼ f�1, . . . , �mg. The nodes of M

correspond to perturbed genes, and the parameters � describe

the allocation of specific effects to perturbed genes (i.e. the

dashed arrows in the left plot of Fig. 2). The complete model

defines which effects we expect to observe (see the middle plot

of Fig. 2). We can directly compute the complete likelihood of

the actually observed data D under the model ðM,�Þ by:

PðDjM,�Þ ¼
Ym

i¼1

Yl

k¼1

PðeikjM, �iÞ, ð2Þ

where, the first product is over all effects E1, . . . ,Em and the

second over all replicates of gene perturbation experiments. The

probability PðeikjM, �iÞ depends on two parameters: a FP rate

of seeing a spurious effect, � (type-I error rate), and a FN rate

of missing an effect, � (type-II error rate).
However, in real data, it is not known which effect is specific

for which intervention, i.e. � is unknown. Thus, in a second

step, we average over � to gain the likelihood of the data,

which is proportional to the posterior probability of the NEM

and can be written as:

PðDjMÞ /
Ym

i¼1

Xn

j¼1

Yl

k¼1

PðeikjM, �i ¼ jÞ, ð3Þ

where the two products are the same as in Equation (2), and the

sum is due to marginalization over �.
Size of model space. NEMs are defined in terms of quasi-

orders, i.e. transitively closed graphs. The number of quasi-

orders is known for up to 16 nodes (Sloane, 2007, seq. A000798).

For n¼ 7, we already have almost 107 possible quasi-orders and

for n¼ 8 the number is > 6 � 109. Thus, exhaustive enumeration

is infeasible even for medium-sized studies. For large-scale

screens, we need search heuristics to explore model space. Our

approach to this problem is to concentrate on small sub-models

involving only pairs or triples of nodes.

2.2 Inference of pairwise relations

The smallest possible sub-model consists of pairs of genes. We

infer pairwise relations by choosing between four models for

each gene pair (x, y): either x! y (‘‘upstream’’, effects of x are

a superset of the effects of y), or x y (‘‘downstream’’, effects

of x are a subset of the effects of y), or x$ y (the effects of x

and y are undistinguishable) or x � � y (x and y are unrelated).

For every pair (x, y), we compute the Bayesian score detailed

above and select the maximum aposteriori (MAP) model

Mxy 2 fx y, x! y, x$ y, x � � yg.

The greatest advantage of this procedure is the increase in

speed. The number of models we have to score for n genes is
n
2

� �
� 4, which grows quadratically in the number of perturbed

genes and remains feasible even for hundreds of genes.

Additionally, building up the final graph is easy, since it is

defined by the set of all pairwise MAP models.

These advantages come at a cost. The most serious problem

is that pairwise learning treats all edges independently of each

other. But in a transitive graph, there must be a shortcut x! y

whenever there exists a longer path from x to y. To see how

easily mistakes can be introduced in pairwise inference,

consider the example in Figure 2. In the observed data

(rightmost plot), the profiles of x and z seem non-overlapping

(because of the FNs at E5 and E6), so the edge x! z could be

missed. One can also think of scenarios, where noise in

the data induces spurious edges in pairwise inference. To

address these problems, we concentrate on triples of nodes in

the next section.

2.3 Inference of triple relations

Inference from triples of genes instead of pairs is a natural way

to extend our inference method beyond the independence

M′xyz:

X Y Z

Expected Observed

X X

E1 E2 E3 E4 E5 E6E1E1 E2E2 E3E3 E4E4 E5E5 E6E6

FN FN

FN

FPY Y
Z Z

Fig. 2. A complete model. The left part of the figure shows a complete model M0xyz consisting of a transitively closed graph between genes and

assignments of genes to specific effects (the dashed arrows). Given the complete model, we can formulate a prediction of what effects to expect:

perturbing x should cause all effects, while perturbing y should only cause E3–E6, and perturbing z only E5 and E6 (middle plot). In reality, our

observations will be noisy: there can be false positive (FP) and false negative (FN) effect observations (right plot).
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assumption between edges. To build a graph on n nodes, we
propose the following two steps:

(1) Scoring all triples: for each triple ðx, y, zÞ, we score all

29 possible quasi-orders and select the MAP model. The
number of models to be scored is n

3

� �
� 29, which grows as

Oðn3Þ and is still feasible even for dozens of genes.

(2) Edge-wise model averaging: to combine these models into

one final graph, we employ model averaging. Every edge
can be part of n� 2 different triple models. Counting how

often it actually is chosen assesses the models’ confidence
in edge existence. For each edge, we compute

f ðx! yÞ ¼
1

n� 2

X

z62fx, yg

1½ ‘‘x! y” 2Mxyz�, ð4Þ

where, 1½�� is an indicator function for the existence of an
edge x! y in a model Mxyz. The final graph is then

constructed from edges whose frequency f ðx! yÞ
exceeds a certain threshold (we chose 0.5 in our

applications).

Even though all triplet models are transitively closed, edge-

wise model averaging and thresholding are not guaranteed to
yield a transitively closed graph. However, in our experience the

results are closer to a quasi-order than with the pairwise
approach and empirically show an increase in precision. This

observation holds over a wide range of noise levels and data set
sizes, as we will show in Section 3.

2.4 Representation of inferred quasi-orders

The last two sections introduced two approaches to infer
large quasi-orders. This section describes our use of standard

graph algorithms to find clusters of undistinguishable profiles
and to distinguish direct from indirect relationships in

the graph.
Merge undistinguishable profiles into cluster. First, we identify

the strongly connected components (SCCs) in the quasi-order

(Cormen et al., 2002). SCCs are defined as subsets of nodes in

which all pairs of nodes are mutually reachable by paths in the
graph. In our setting—where edges encode subset relations—

this corresponds to pairs of genes with undistinguishable
profiles. We merge SCCs into single nodes and retrieve a

transitively closed DAG with clusters of undistinguishable
profiles as nodes.

Remove shortcuts. To distinguish direct from indirect
relationships, we use a method for transitive reduction

(Wagner, 2001) on the DAG to remove direct edges
(‘shortcuts’) between nodes that are also connected by a

longer path. The method iteratively compares the adjacency
list of nodes with the adjacency lists of the nodes’ children

to cut edges which appear in both. The final result is the
DAG with the smallest number of edges satisfying all subset

relations. An overview of this process is summarized in
Figure 3.

3 EVALUATION ON SIMULATED DATA

We performed simulations to assess the performance of NEM

inference for varying noise levels and data set sizes. The setup

and choice of parameters is inspired by the simulation

study conducted in Markowetz et al. (2005) to evaluate the

performance of exhaustive enumeration.

(1) We randomly generate a graph with n 2 f4, 8, 32g nodes.

The number of edges in the random graph are f4, 11, 55g,

which ensures that the transitively closed graph contains

in average half of all possible edges. The transitively

closed random graph constitutes the core model Mtrue.

We distribute 2n effect reporters randomly over the core

model to generate a complete model.

(2) From the complete model, we generate data assuming

error probabilities �data and �data. While �data is fixed to

0.05, �data is varied from 0.1 to 0.5. We sample 1–5 times

to gain data sets with increasing numbers of replicates.

(3) From each data set, we infer an NEM model MNEM by

the pairwise and triple approach (and by exhaustive

enumeration for n¼ 4) with parameters �score ¼ 0:1
and �score ¼ 0:3. Note that these (arbitrarily chosen)

values are different from ð�data,�dataÞ used for data

generation.

(4) We compute the positive predictive value of MNEM with

respect to Mtrue as the fraction of true positive edges out

of all edges in MNEM:

positive prediative value ðMNEMÞ ¼
TP

TPþ FP
, ð5Þ

where TP are the true positive edges, and FP are the

FP edges. The positive predictive value is 1 whenever all

edges of MNEM are also part of Mtrue. This measure

rewards models that retrieve only correct edges, without

regard to the accuracy of negative predictions, which are

less helpful in guiding laboratory experiments (Myers

et al., 2006).

It has to be stressed that the size of data sets we use is very

small compared to the data set sizes in other simulation studies

(e.g. Basso et al., 2005; Hartemink, 2005), where performance

on networks of 20 genes is evaluated on hundreds or thousands

of measurements. Performing five replicate measurements for

each gene perturbation is the practical upper limit in almost all

real-world studies. Our evaluation focuses on an amount

Inferred
Quasi-order

SCCs
Merged

Transitive
Reduction

W

X Z

W

ZX Y

W

ZX Y

Y

Fig. 3. Summary of the proposed algorithm. The left plot shows

an example quasi-order inferred from data using either the pairs- or

triples-based approach. In a first step, the SCC consisting of nodes X

and Y is merged into a single node. In a second step, the shortcut

W! Z is removed. In big graphs, these two steps tremendously

improve readability of results.
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of data that can actually be achieved in real experimental

studies.
Simulation results. The mean results of 250 simulation runs

are shown in Figure 4. These plots show:

(1) Our methods are precise: the fraction of correct edges

reaches 90% and above for all noise levels and model

sizes.

(2) Our methods are robust: the fraction of correct edges

stays stable with increasing noise and only slowly

decreases with increasing model size.

Inference from triples always beats inference from pairs

and is close to exhaustive enumeration on the small data

sets. Inference from pairs is the quickest method, but

suffers from the independence assumption imposed on

edge existence. Inference from triples is slower than

inference from pairs, but proves to be more reliable and is

still feasible for graphs of the size of complete pathways.

Overall these results show that NEMs can be constructed

efficiently and accurately over a wide range of model sizes and

noise levels.

4 RESULTS ON EXPERIMENTAL DATA

We show the practical use of the methodology developed in

Section 2 in two experimental scenarios: (1) a data set
investigating the response to microbial challenge in

Drosophila melanogaster, and (2) a compendium of expression

profiles of Saccharomyces cerevisiae knockout strains. We show
that our method identifies biologically justified genetic hier-

archies of perturbation effects.

4.1 Immune response in Drosophila

As a first proof-of-principle example on real data, we apply our

method to data from an RNAi study on innate immune

response in Drosophila (Boutros et al., 2002). The experiment
probes how transcriptional response to lipopolysaccharides

(LPS) is regulated by signal transduction pathways in the cell.
Data. The data set consists of 16 Affymetrix microarrays:

four replicates of control experiments without LPS and without

RNAi (negative controls) four replicates of expression profiling

after stimulation with LPS but without RNAi (positive
controls) and two replicates each of expression profiling

after applying LPS and silencing one of the four candidate
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Fig. 4. Results of simulations. Rows correspond to the number of perturbed genes in the simulated data sets (4, 8, 32), while columns represent

different levels of noise (�data ¼ 0:1, . . . , 0:5). In each plot, the y-axis measures the positive predictive value (the number of correct edges in the

inferred graph), while the x-axis ranges over different numbers of replicates. The lines in the plot correspond to the different inference methods: ‘E’

for exhaustive enumeration, ‘P’ for pairwise inference and ‘T’ for inference from triples. Exhaustive enumeration is not possible for more than six

genes, thus the lower two rows only compare pairs with triples. The simulation results show that inference from triples beats pairwise inference. All

methods stay robust to changes in model size and levels of noise.
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genes tak, key, rel and mkk4/hep. Selectively removing one of

these signaling components blocks induction of all, or only

parts, of the transcriptional response to LPS. Boutros et al.

(2002) show that this observation can be explained by a fork in

a signaling pathway below tak, with a key and rel on the one

side and mkk4/hep on the other. This result clarified the

contributions of different pathways to immune response in

Drosophila (Royet et al., 2005).

Estimating effects. Data preprocessing and discretization

were performed as in (Markowetz et al., 2005): if by silencing a

gene in the LPS stimulated cell, the expression of an LPS-

inducible gene moved close to its expression in the negative

controls, this was counted as an effect of the intervention; if a

gene’s expression stayed close to its expression in the positive

controls, the gene was counted as being not affected by the

intervention. From the positive and negative controls, it is

possible to estimate the two error rates as �¼ 0.15 and

� ¼ 0:05.
Results and stability analysis. The small number of silenced

genes allows us to compare our novel pairs- and triples-based

methodologies to exhaustive enumeration. Figure 5 gives an

overview of the results. All three methods succeed in recovering

the true pathway structure. To show that our methods are

robust to changes in the model parameters, we varied � and �
from 0.05 to 0.95 and assessed the precision of our methods as

in the simulation studies. The results are shown in Figure 6 and

indicate a wide range of parameter combinations that succeed

to perfectly reconstruct the true pathway structure.
Experimental design. What makes the data set of Boutros

et al. (2002) especially well suited for our analysis are two main

features of the experimental setup: first, the study is targeted

towards a specific pathway. Stimulation by LPS turns the target

pathway on, and breaking the signal flow by gene silencing

allows conclusions about the pathway structure. Second,

the study contains two kinds of control measurements, which

makes it possible to compare the expression profiles after gene

silencing to expression profiles of both the unstimulated and the

stimulated cell. This experimental design allows us to estimate

informative effects of interventions, which is important since

NEMs crucially depend on a meaningful definition of inter-

vention effects. As more and more gene perturbation studies

focusing on a specific pathway of interest become available,

we believe that the typical application of NEMs will be to

pathway-wide data sets of around 50 genes.

4.2 Compendium of yeast knockouts

As a second experimental data set we chose a gene expression

compendium of yeast gene knockout mutants (Hughes et al.,

2000). The yeast compendium consists of 300 microarray

measurements taken after perturbing yeast cells by either single

gene knockouts, double gene knockouts or treatments with

drugs and small compounds. It is one of the most frequently

used data sets for computational studies in yeast functional

genomics (Pe’er et al., 2001; Rung et al., 2002; Wagner, 2002;

Yeang et al., 2004).
In contrast to the Drosophila data set discussed above, the

yeast compendium is not targeted towards a specific pathway

but gives a broad overview over a wide range of yeast

knockouts. The data set includes no replicate measurements
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and only one kind of wild-type measurements as controls.
Additionally, knockouts may provoke complex reactions in the
cell and result in intense compensatory efforts of the organism

to an even greater extent than RNAi knockdowns. This results
in a greater uncertainty in estimating specific effects of gene
perturbations. However, even in this challenging situation

we can show (1) that our general reasoning of building
NEM models also applies to knockout data, and (2) that
general features of the yeast transcriptional hierarchy can be

reconstructed with NEMs.
Estimating effects. For each knockout the data set contains an

expression profile of 6210 yeast genes, which shows the

transcriptional response to each gene perturbation. The expres-
sion profiles are given as log ratios comparing the knockout
strain to wild-type measurements. We applied a discretization

procedure especially tailored to decrease the number of FP
effects. For all knockouts, the log-ratio values show symmetric
distributions, strongly concentrated at 0 (which corresponds to

‘no change’). For each knockout, we count values more than
3 standard deviations from the mean as observing an effect and
values within 3 standard deviations from the mean as observing

no effect. This thresholding yields discretized phenotypic
profiles, which can be used in our method.
Choosing NEM parameters. We chose a FP rate of �¼ 0.01

(based on the fact that for a normal distribution the probability
to fall outside of 3 SDs around the mean is � 1%). We chose
the FN rate as �¼ 0.05, which makes it five times as likely to

miss an effect than to see a spurious one and thus accounts
for efforts of the cell to compensate for gene loss.
Comparing double and single knockouts. Our motivation for

using NEMs stems from the observation that perturbing
key regulators may have an influence on a global process,
while perturbing other genes may only affect more specific

subprocesses. Thus, the difference between affecting global or
specific processes should be visible as subset relations in the
expression patterns. To test this assumption, we used the

three gene pairs in the yeast compendium, for which we have
expression profiles of both the single mutants and the double
mutant: DIG1 and DIG2, FUS3 and KSS1, ISW1 and ISW2.

The Saccharomyces Genome Database (www.yeastgenome.org)
describes all three gene pairs as showing phenotypic enhance-
ment, which means that the double knockout was found to

show a more pronounced phenotype than any of the single
knockouts. We fit NEMs to each of the three gene pairs (with
one node corresponding to the double knockout and one node

for each of the single knockout mutants) excluding all effect
reporters that do not show an effect in any of the expression
profiles. In all three cases we came to concurrent conclusions:

the effects observed in the double knockout were found to be a
(noisy) superset of the effects for the single mutants. The results
are independent of the inference method we used and are robust

over a wide range of model parameters. This result encouraged
us to try our method on a larger scale and reconstruct global
features of the regulatory organization of yeast.

Hierarchical structure of the yeast regulatory network. In a
recent study, Yu and Gerstein (2006) show that the regulatory
network of TFs in yeast can be organized as a four-layered

(generalized) hierarchy, with most TFs at the bottom levels
and only a few master TFs on top. This hierarchy is completely

built from TF-DNA binding data and does not incorporate
information from gene expression and knockout data, from
which we build NEM models. In the following, we use the

hierarchy of Yu and Gerstein (2006) as an independent test bed
for our general assumption that the subset pattern of observed
effects in expression profiles shows whether a TF has a global

or specific function.
For 37 TFs in the hierarchy of Yu and Gerstein (2006),

we also find expression profiles of knockout mutants in the

yeast compendium of Hughes et al. (2000). These TFs include
examples of three of the four levels in the hierarchy of Yu and
Gerstein (2006). In the expression profiles of the 37 TFs, we

exclude genes that are not affected in at least five knockout
experiments (our results are robust to changes in this number),
overall reducing the number of effect reporters to 100 . This

matches the original analysis in Hughes et al. (2000), where
only few significantly affected genes were found for most

knockouts.
From this data, we inferred NEMs using both the pairs

and triples approaches with the same parameters as above.

We removed shortcuts by computing the transitive reduction of
the NEM graphs. To be able to compare our results to those of
Yu and Gerstein (2006), we then performed the algorithm they

propose to organize the graph into several layers. For all pairs
of TFs (x, y), we assessed how well the relationship ‘x is on the
same or a higher level than y’ agrees between the hierarchy of

Yu and Gerstein (2006) and our hierarchies inferred from
knockout data. For the pairwise approach, we found 338 true
positives and 93 true negatives with 132 FNs and 103 FPs. For

the triple approach, we got slightly better numbers: 344 true
positives and 99 true negatives with 126 FNs and 97 FPs. A chi-
squared test for statistical independence between our hierar-

chies, and the one of Yu and Gerstein (2006) rejects the
null-hypothesis at P-values of 1:5 � 10�6 for the pairwise

approach and 3:8 � 10�9 for the triple approach. This shows
that our hierarchies built from expression profiles of TF knock-
out mutants, and the hierarchy built from TF-DNA binding

data by Yu and Gerstein (2006) correspond remarkably well.

5 DISCUSSION

We introduced a Bayesian method to approach two problems
central to the analysis of large-scale and high-dimensional
phenotyping screens: (1) that real effects are more likely to be

missed than spurious effects are to appear, and (2) to recover
features of the regulatory hierarchy of the cell. Our proposed

method, NEM, estimates a quasi-order on the set of perturbed
genes by combining probabilistic modeling with graph-based
algorithms. In a simulation study, we show that NEM can be

inferred accurately by building them from smaller sub-models.
On real data sets, we show that the results actually reflect the
functions of the genes involved. The methodology introduced in

this article significantly increases the applicability of NEM,
which were so far limited to small data sets containing <6
perturbed genes.

Key to our method is inferring a non-symmetric relation
between genes instead of symmetric gene relations as it is done
in similarity-based clustering. In this sense, our methodology

is related to asymmetric distance measures used in graph-

Nested effects models for high-dimensional phenotyping screens
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based clustering to identify protein complexes (Pipenbacher

et al., 2002).
We introduced methodology to build large models from

small building blocks and decided against alternative ways of

inference like local search methods as hill-climbing or simulated

annealing, which are e.g. used to learn Bayesian networks

(Acid and de Campos, 2003; Friedman et al., 1999). Applying

such approaches to our setting is complicated by the transitivity

requirement inherent in subset relations. Even a small change in

the model—like removing or adding an edge—can make many

more changes necessary to preserve transitivity. The scoring

function will be quite volatile and the score landscape will not

be smooth. Building a model from small submodels avoids this

problem and is robust to parameter changes and noise.

While clusters in the data can also be identified by a

similarity-based method, our approach is the first to unravel

the hierarchy of gene function based on global and specific

effects of gene perturbations. Our method is exploratory, and

we believe that it provides a good starting point for a more

detailed analysis. Ultimately, NEMs have to be combined with

other models and data sources in an integrated approach to

uncover details of gene regulation.
There are several potential extensions to our approach.

Currently, the method is only developed for binary effects and

treats effect reporters as independent random variables.

However, defining subset relations for quantitative data and

capturing dependencies between observed effects could help to

improve our method.

We believe that the analysis of large-scale and high-

dimensional phenotyping screens will be a powerful way to

infer regulatory hierarchies. NEM allow analysis of whole

pathways and reconstruction of the information flow from the

observed effects of interventions. The method we proposed here

is a first step into a relatively new area of research that can

profit from additional computational and statistical modeling.
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