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Abstract
Background: Translating a known metabolic network into a dynamic model requires
reasonable guesses of all enzyme parameters. In Bayesian parameter estimation, model
parameters are described by a posterior probability distribution, which scores the potential
parameter sets, showing how well each of them agrees with the data and with the prior
assumptions made.

Results: We compute posterior distributions of kinetic parameters within a Bayesian
framework, based on integration of kinetic, thermodynamic, metabolic, and proteomic data.
The structure of the metabolic system (i.e., stoichiometries and enzyme regulation) needs to
be known, and the reactions are modelled by convenience kinetics with thermodynamically
independent parameters. The parameter posterior is computed in two separate steps: a first
posterior summarises the available data on enzyme kinetic parameters; an improved second
posterior is obtained by integrating metabolic fluxes, concentrations, and enzyme
concentrations for one or more steady states. The data can be heterogenous, incomplete, and
uncertain, and the posterior is approximated by a multivariate log-normal distribution. We
apply the method to a model of the threonine synthesis pathway: the integration of metabolic
data has little effect on the marginal posterior distributions of individual model parameters.
Nevertheless, it leads to strong correlations between the parameters in the joint posterior
distribution, which greatly improve the model predictions by the following Monte-Carlo
simulations.

Conclusion: We present a standardised method to translate metabolic networks into
dynamic models. To determine the model parameters, evidence from various experimental
data is combined and weighted using Bayesian parameter estimation. The resulting posterior
parameter distribution describes a statistical ensemble of parameter sets; the parameter
variances and correlations can account for missing knowledge, measurement uncertainties, or
biological variability. The posterior distribution can be used to sample model instances and to
obtain probabilistic statements about the model's dynamic behaviour.
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Background
Dynamic simulation of metabolic systems
Local perturbations of biochemical systems, e.g. by differ-
ential gene expression or drug treatment, can lead to glo-
bal effects that are by no means self-evident. An intention
of systems biology is to predict them by computer simula-
tions, which requires mathematical models of the bio-
chemical networks. The structure of metabolic networks
has been characterised for many organisms [1-3], and
metabolic fluxes in large networks [4-6] are successfully
described by pathway- or constraint-based methods [7-
10]. However, such methods do not explain how the
fluxes are actually evoked by the activities of enzymes and
how they respond to moderate perturbations.

These questions can be answered by kinetic models,
which employ differential equations to describe the tem-
poral behaviour of the system. Kinetic models allow for
bifurcation and control analysis [11-13]; parameter distri-
butions [14-17] can be used to explore their variability
and potential behaviour. Unfortunately, there is a dispro-
portion between the high number of parameters con-
tained in kinetic models and the relatively incomplete
data available: kinetic laws are not known for most

enzymes, and kinetic and metabolic data are sparse,
uncertain, and dispersed over databases [18-20], models
[21,22], and the literature [23,24]. Therefore, parameter
estimation is an integral part of kinetic modelling, and
model fitting is currently receiving increasing attention
[25-29].

Interestingly, some dynamic properties are determined by
the network structure alone, for instance, the sums of met-
abolic control coefficients described in summation theo-
rems; other properties may be rather insensitive to the
choice of parameters. Parameter ensembles [15,30] can be
used to assess and distinguish the respective impact of
structure and kinetics. Given a metabolic network, it
would be desirable at least to know plausible ranges and
correlations for all model parameters, in agreement with
the known data. Here we suggest a way to achieve this by
collecting and integrating heterogenous data in an auto-
matic manner.

Outline of the paper
We aim at translating a metabolic network into a kinetic
model, using the convenience kinetics described in the
companion article [31]. For parameter estimation, we use

Data integration pipelineFigure 1
Data integration pipeline. A metabolic network (A) is translated into a kinetic model. The model parameters are described 
by statistical distributions. Experimental values of enzyme parameters (B) are used to obtain a first, kinetics-based distribution 
of enzyme parameters (D). A fit to metabolic data (C) such as metabolite and enzyme concentrations and metabolic fluxes 
leads to a second, metabolics-based, distribution of system parameters (thermodynamic and kinetic parameters) and state 
parameters (metabolite and enzyme concentrations) (E). The system parameters describe the enzymatic reactions in general 
and remain constant for a given cell; fluxes and concentrations can fluctuate and depend on specific states of the cell; however, 
integrating metabolic data from several experiments can also improve the fit of kinetic parameters.
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as many data as possible: besides thermodynamic and
kinetic parameters, we also integrate proteome data and
metabolic concentrations and fluxes (see Figure 1).

As the data are incomplete and unreliable, we do not
describe the model parameters by sharp values, but by a
joint posterior distribution [15]. Even if the data do not
suffice for an exact parameter fit, we will still obtain a
model; the uncertainty of the parameters and correlations
between them can be read directly from the posterior
parameter distribution. The posterior summarises all
information that has been put into the model and can be
used to provide parameter ranges for further modelling, to
sample model instances [30,32], or to predict confidence
intervals of steady state fluxes and concentrations or
responses to differential expression [15]. We illustrate the
approach by estimating parameters for the threonine
pathway in E. coli [33]. A list of symbols and a description
of the estimation algorithm is provided [See Additional
file 1].

Kinetic models with convenience kinetics
Let us first introduce some notation for kinetic modelling.
In the setting of deterministic differential equations, the
concentrations of substances in a biochemical system fol-
low the balance equations

The vectors c, v, and k contain the metabolite concentra-
tions, the reaction velocities, and (non-logarithmic) sys-
tem parameters, respectively. Some of the metabolites
may be considered external or buffered; in the model,
their concentrations are fixed values contained in the
parameter vector k. Concentrations are measured in mM,
time in seconds, energies in J/mol.

In a stationary state, all metabolite concentrations remain
constant over time: by solving 0 = Nv(c, k) for the concen-
tration vector c at given parameters k, we obtain the
steady-state state concentrations s(k). The corresponding
reaction velocities j(k) = v(s(k), k) are called stationary
fluxes. The response of steady state variables y(k) (which
may be concentrations s(k), fluxes j(k), or functions
thereof) to small parameter changes is described by the

response coefficients  = ∂yi/∂km. They can be com-

puted efficiently [13,34] if the steady state is known. The

relationships between logarithmic parameters θm = In km

and non-logarithmic variables yi are described by right-

normalised response coefficients or sensitivities  =

∂yi/∂θm = km ∂yi/∂km.

The dynamic behaviour of a model depends strongly on
the rate laws v(·) that are used in the system equations
(1). Here we use the convenience kinetics, a versatile and
relatively simple rate law described in the companion arti-
cle [31]. A metabolic model with convenience kinetics is
characterised by the following system parameters: (i) an

energy constant  (dimensionless) for each metabolite

i; (ii) a velocity constant  (1/s) for each reaction l; (iii)

a reactant constant  (mM) for each substrate or prod-

uct i of a reaction l; and (iv) an activation or inhibition

constant  or  (mM) for each metabolite i that regu-

lates a reaction l.

The mathematical form of the convenience rate law
depends on the reaction stoichiometry: for a chemical
reaction A + B → P + Q without activators and inhibitors
and with enzyme concentration E, it reads

where ã = a/ ; normalised concentrations for the other

reactants are defined accordingly. The turnover rates read

This parametrisation of the rate law ensures that any com-
bination of positive parameter values is thermodynami-
cally feasible.

Method
Parameter estimation
Bayesian parameter estimation [35] integrates two sources
of knowledge: (i) expectations about the model parame-
ters are quantified by a prior probability density p(θ). The
prior can describe typical parameter ranges or summarise
the results of earlier experiments; (ii) the support by
experimental data is quantified by the likelihood function
p(x*|θ). By combining both kinds of information, we can
obtain a posterior distribution, which describes how plau-
sible certain parameter sets appear, taking into account
both the prior information and the experimental data.
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In our case, the logarithmic values of all system parame-

ters are collected in a vector θkin. To model cells in specific
experimental situations, we specify additional state
parameters: a specific steady state m is characterised by

enzyme concentrations  and fixed concentrations

 for the external metabolites. Again, we collect all log-

arithmic values in a vector θmet, and we define the param-

eter vector θ = (θkin, θmet). Variable metabolites and
metabolic fluxes are not treated as state parameters, but
computed from the parameters via the steady-state equa-
tion.

The parameter estimation proceeds in two steps: in the
first step, only the system parameters are fitted to thermo-
dynamic and kinetic data, such as Gibbs free energies of
formation, reaction Gibbs free energies, equilibrium con-
stants, kM values, kI values, kA values, and turnover rates.
The logarithms of the experimental values are collected in
a large vector x*. With the convenience kinetics, the corre-
sponding vector x of model predictions is a linear func-
tion of θkin, which greatly simplifies the calculation [31].
In the second step, the parameter estimates are further
improved by a fit to metabolite concentrations, metabolic
fluxes, and protein concentrations from one or more
steady states; we shall summarize them here as "metabolic
data" and collect them in a vector y*. The posterior from
the first step is used as a prior in the second step: therefore,
no information from the first step will be lost.

The way from prior to posterior distribution is shown in
Figure 2. According to the Bayes formula [35], the poste-
rior probability density p(θ|x*, y*) of the model parame-
ters θ given the experimental data x* and y* can be
computed from the prior probability density p(θ) and
from the likelihood function p(x*|θ):

p(θ|x*, y*) ~ p(x*, y*|θ) p(θ)

= p(y*|θ) p(x*|θ) p(θ).  (4)

Prior and likelihood function
The posterior depends on the prior and the likelihood
function; for our metabolic networks, we specify them as
follows:

1. The prior distribution of θ is a multivariate Gaussian
distribution , that is,

θ = ( (0), C(0))  (5)

with probability density p(θ), mean vector (0), and a

diagonal covariance matrix C(0). Mean and variance of

each single parameter are chosen depending on the
parameter type (that is, different distributions for energy
constants, kM values, and so on). Prior distributions for
the different parameter types can be derived from empiri-
cal distributions of parameter values. The values found in
databases and the literature (see table 1) typically span
several orders of magnitude.

2. The likelihood functions p(y*|θ) and p(x*|θ) represent
a simple model of the measurement process: we assume
that the experimental values x* and y* equal the values
predicted by the model plus uncorrelated additive Gaus-
sian noise, hence

x* = (x(θ), Cx)  (6)

y* = (y(θ), Cy).  (7)

We assume diagonal covariance matrices Cx = diag(σx)2

and Cy = diag(σy)2, where the vectors σx and σy contain
noise levels for each single measurement.

To establish the likelihood functions (6) and (7), the
kinetic parameters x and the metabolic data y have to be
expressed as functions of the model parameters θ (see Fig-
ure 2, right). The logarithmic parameters in the conven-
ience rate law fulfil a linear relationship [31].

x(θ) = θ  (8)

with a sparse sensitivity matrix . A sensitivity matrix

 related only to the kinetic parameters θkin can be con-

structed easily from the metabolic network [31]. The full

 contains additional empty columns to account for the

state parameters, which do not play a role for the compu-
tation of x. The concentrations of proteins and fixed
metabolites follow trivially from the respective model

parameters in θ; the metabolic concentrations and fluxes

contained in y(θ) are computed numerically by solving
the steady state equations.

Computing the posterior distribution
Theoretically, we can obtain the posterior distribution
p(θ|x*, y*) by inserting the distributions (5), (6), and (7)
into (4). But how can we actually compute it? Standard
methods for sampling the posterior distribution, such as
Gibbs sampling [35], become unfeasible if the number of
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parameters is large. Therefore, we shall approximate the
posterior by a Gaussian distribution around a local maxi-
mum of the posterior, the so-called posterior mode.

We proceed in two steps, first using the kinetic informa-
tion and later adding the metabolic data. Instead of
p(θ|x*, y*) itself, let us consider the function

If F(θ) is a quadratic function, the posterior is a Gaussian
distribution. This is indeed the case as long as no meta-
bolic data y* are considered: as x(θ) is linear, the first two
terms are quadratic in θ and the corresponding posterior
is Gaussian. We shall call it the first, or kinetics-based,
posterior.

Kinetics-based posterior

In the first step, we consider only measured kinetic param-
eters x*. The third term in (9) is neglected, and the poste-

rior probability density reads p(θ|x*) ~ p(x*|θ) p(θ). The

distribution is multivariate Gaussian ( (1), C(1)) with

mean and covariance matrix (see [35])

These formulae can be obtained by equating the first two
terms of (9) to a single quadratic function

and solving for (1) and C(1).

Metabolics-based posterior

In the second step, we consider the metabolic data y* and

compute the full posterior (4). The term p(y*|θ) is hard to

compute because y(θ) depends nonlinearly on θ. There-

fore, we choose a fixed reference state  and expand

The matrix  contains the sensitivities  = ∂yi/∂θm.

The posterior for this linearised model is a multivariate

Gaussian distribution ( (2), C(2)) with mean and cov-

ariance matrix

The formula has a similar form as (10): in fact, we use the
first posterior as a new prior for the second step. We use
eqn. (13) to approximate the posterior of the nonlinear

model. For the expansion point , we choose the centre
of the posterior; therefore, we need to find a self-consist-
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Bayesian parameter estimationFigure 2
Bayesian parameter estimation. Left: a kinetic parameter θ (abscissa) determines an observed parameter x (ordinate). 
Adding Gaussian noise to the true value x yields the experimental value x*, which then gives rise to a likelihood function p(x*|θ) 
(red). Prior distribution p(θ) (light blue) and likelihood function lead to a posterior distribution p(θ|x*)(dark blue), which repre-
sents a refined estimate of the original parameter. Right: parameters and data determine the likelihood function for a metabolic 
network model. Each set of system parameters θkin and state parameters θmet (left) will lead to predictions x and y of the 
observable quantities (centre), which can be compared to the corresponding experimental values x* and y* (right).
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ent solution in which the expansion point and the poste-
rior mode match [See Additional file 1].

As an initial guess, we choose model parameters that are
guaranteed to yield a steady state: we set all kinetic param-
eters and all concentrations equal to one; in this state, all
reaction velocities vanish and we obtain a thermal equi-
librium. We then compute the posterior that results from
the linearised model, move our expansion point towards

the parameter set (2), and iterate the whole procedure

until convergence. The computational complexity of the
algorithm depends on the convergence of the iteration
scheme, which varies from model to model. We found
that the first estimation step is computationally cheap
compared to the repeated computation of steady states
that are necessary for the second posterior.

Test case
Threonine model
The threonine biosynthesis pathway converts aspartate
into threonine with the consumption of ATP and NADPH
(Figure 3). A detailed kinetic model of the pathway has
been presented by Chassagnole et al. [33]. To test our
method, we simulated the threonine pathway with a
(hypothetical) convenience kinetics and generated noisy
artificial data. We regard all cofactors and the end points
of the pathway as buffered and treat their concentrations
as fixed. The concentrations of the four intermediates
aspartyl-phosphate, aspartate semialdehyde, homoserine,
and P-homoserine are the dynamical variables. The
kinetic parameters were chosen such as to mimic the
model of Chassagnole et al. [33].

The model parameters were reestimated from the artificial
data, comprising noisy kinetic parameters, metabolite and
enzyme concentrations, and metabolic fluxes. As prior

distributions, we used log-normal distributions fitted to
the empirical parameter distributions shown in table 1.
Details of the model and the computation are described
[See Additional file 1].

Estimation results

The resulting parameter distributions are shown in Figure
(4). As expected, integration of data improves the accuracy
of the predictions: the resulting probability densities, eval-

uated at the original parameter set θkin, increase in both

steps: p(θkin) <p(θkin|x*) <p(θkin|y*, x*). Figure 4, left,
shows the prior and the kinetics-based posterior for the
system parameters and for the equilibrium constants. The
first estimation step narrows down the marginal parame-
ter distributions compared to the prior distribution.
Incorporation of the metabolic data further improves the
accuracy, as shown in Figure 4, right. The marginal distri-
butions change only slightly, but the correlations between
the parameters become stronger. The eigenvalues of the
covariance matrices (Figure 5) show that in certain direc-
tions in parameter space, the joint distribution becomes
very narrow. In other directions, the distribution remains
broad: the six largest eigenvalues correspond to the linear

combinations of energy constants  that leave all equi-

librium constants unchanged. These combinations do not
affect the metabolic behaviour, so they are not identifia-
ble from metabolic data.

Model predictions
Do better parameter estimates also improve predictions
about the dynamical behaviour? As a test, we simulated
the threonine model with parameter sets sampled from
the prior, the first posterior, and the second posterior. To
assess how the time courses are distributed, we simulated

θ

ki
G

Table 1: Empirical parameter ranges

Parameter x σx ex # samples ref.

Turnover rate kcat 1.95 3.3 7.0 s-1 27.1 7559 [18]
Substrate constant kM -1.77 3.0 0.17 mM 20.1 44766 [18]
Inhibition constant kI -2.81 4.1 0.06 mM 60.3 4338 [18]
Energy constant kG -0.24 0.18 0.79 1.2 142 [23]
Equilibrium constant keq - 5.4 - 212 1309 [19]
Protein molecules/cell 7.82 1.56 2480 4.7 3868 [20]
Protein concentration El -10.23 1.56 3.6·10-5 mM 4.7 3868 [20]
Metab. concentration ci -1.97 1.94 0.14 mM 7.0 49 [24]

Typical ranges of system parameters (top) and state parameters (bottom). Different types of parameters show specific mean values and standard 
deviations. Energy constants were predicted from the molecule structures, all other data were obtained from experiments. Numbers of protein 
molecules were measured in the yeast S. cerevisiae. The symbols x and σx denote mean values and standard deviations of the natural logarithms, in 
data sets of different sizes ("# samples"). These values can be used to predefine a prior distribution for model parameters. The exponential values 
exp(x) and exp(σx) denote, respectively, the geometric mean and a typical uncertainty factor of the parameter type.
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Threonine biosynthesis pathwayFigure 3
Threonine biosynthesis pathway. The chemical reactions are catalysed by aspartate kinase (AK), aspartate semialdehyde 
dehydrogenase (ASD), homoserine dehydrogenase (HDH), homoserine kinase (HK), and threonine synthase (TSY). Metabo-
lites with fixed and variable concentrations are shown as grey and white boxes, respectively. Solid arrows denote production 
and consumption of metabolites, red dashed arrows denote enzyme inhibition.
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Joint distribution in the threonine modelFigure 5
Joint distribution in the threonine model. Left: eigenvalues of the covariance matrices C(0) (light blue - - for prior), C(1) 
(dark blue -.-, first posterior), C(2) (purple —, second posterior). The width of the parameter distribution decreases in both 
estimation steps. Some eigenvalues become very small in the second posterior; they represent well-defined parameter combi-
nations. Centre: eigenvectors for the first posterior. Each row of the matrix corresponds to an eigenvector (normalised to a 
maximal value of 1 for the elements). The corresponding eigenvalues are shown in the box on the left. The distribution of 
energy constants is well-defined in some directions (eigenvectors on top, with low eigenvalues) and uncertain in other direc-
tions (bottom, high eigenvalues). The kM and kI values are uncorrelated (described by individual eigenvectors). Right: the eigen-
vectors of the second posterior fall into three groups: (i) eigenvectors for well-defined directions, coupling all sorts of 
parameters (top), (ii) less well-defined combinations of kM and kI values (centre), and (iii) poorly defined combinations of energy 
constants (bottom).
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the system 100 times with random parameters drawn
from the respective distribution. Figure 6 shows the
spread of concentration time courses that resulted from
the sampled models. In the first half of the time series, the
steady-state concentrations of the original model were
used as initial conditions. After the first half, the aspartate
concentration was increased by a factor of 50.

We found that the accuracy of the predictions increased
considerably between the kinetics-based and the meta-

bolics-based posterior. Hence, the fit to metabolic data
adds important information to the parameter ensemble;
this information is contained in the parameter correla-
tions rather than in the marginal distributions.

Discussion
We proposed a method to construct kinetic models from
biochemical networks: all reactions are modelled by con-
venience kinetics, and the parameters are characterised by
a posterior distribution. We approximate the posterior by

Simulation results for threonine modelFigure 6
Simulation results for threonine model. The refined parameter distributions lead to better predictions of the dynamic 
behaviour. Top left: simulated time series for aspartyl-phosphate. The curve from the true model is shown by black squares. 
After five minutes, the substrate aspartate is shifted to a higher concentration, leading to an increase of aspartyl-phosphate. 
Each parameter ensemble creates a distribution of simulation results: areas represent the standard deviations, the colours rep-
resent prior (light blue), kinetics-based posterior (dark blue) and metabolics-based posterior (purple). Inset: other scaling to 
show the relative spread of prior and first posterior. Other diagrams: time series for the remaining metabolites aspartate sem-
ialdehyde (top right), homoserine (bottom left), and p-homoserine (bottom right).
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a multivariate log-normal distribution, or in other words,
by a Gaussian distribution for the logarithmic parameters.

The convenience kinetics is a simple and biologically sen-
sible choice when the reaction mechanisms are unknown.
Other kinetic laws can be used just as well if the kinetic
parameters can be expressed by thermodynamically inde-
pendent parameters that obey an equation of form (8).
This holds for many kinetic laws including mass-action
kinetics and laws of the Michaelis-Menten type. Parame-
ters such as activation and inhibition constants, which do
not affect the chemical equilibrium, can be chosen inde-
pendently. The posterior distribution represents a com-
promise between the typical ranges of model parameters
and a fit to specific experimental data. Data sources with
small error bars will have the greatest impact in the esti-
mation. If the model is fitted to sparse and unreliable
data, the parameters will be poorly determined, and the
remaining uncertainty can be read from the parameter dis-
tribution. If new data become available, the model
parameters can be easily reestimated, using the old poste-
rior distribution as a prior for the next parameter fit. For
simplicity, we assumed here that metabolic data are given
in absolute numbers. If only relative data are available,
appropriate scaling factors have to be estimated along
with the other model parameters. Instead of steady state
data, metabolic time series may also be used in the estima-
tion – in this case, the time-dependent protein concentra-
tions have to be interpolated, and time-dependent
response coefficients [36] are used in the calculation. It is
of course also possible to use the goal function (9) with
other parameter estimation algorithms.

The use of logarithmic parameters enabled us to describe
relations between the parameters by linear equations and
to use Gaussian distributions. As the parameter vector θ
contains logarithmic values, our Gaussian prior actually
represents a log-normal distribution of the kinetic param-
eters. The same holds for the likelihood given the kinetic
data x* in eqn. (6). In contrast to that, the metabolic data
y* in (7) are used in their non-logarithmic form. Why?
Metabolic fluxes can become negative, and then the log-
transformation is not possible. This problem can be
avoided by splitting the fluxes into forward and backward
components [15], and then our estimation method can
also be applied to metabolic data in logarithmic form.
After all, the choice between use of logarithmic and non-
logarithmic data reflects our assumption about the noise
term: with non-logarithmic data, it represents additive
Gaussian noise. If logarithmic data are used, the same
model represents multiplicative log-normal noise in the
original data. 

Our approach is limited by the two approximations made:
(i) the true reaction kinetics are replaced by convenience

kinetics; (ii) to compute the posterior, the model is line-
arised around a posterior mode. Nevertheless, automatic
parameter estimation can provide reasonable first guesses
and plausible ranges of model parameters. Kinetic param-
eters obtained from the integration of many literature val-
ues and incorporation of thermodynamic constraints are
probably more reliable than the single literature values.

Conclusion
To simulate a biochemical system, the network structure,
the kinetic laws, and the kinetic parameters must be deter-
mined. Usually, this process involves literature studies
and several iteration cycles of experiments, parameter fit-
ting, and model selection. We have presented a method to
guess model parameters by integrating existing kinetic,
metabolic, and proteomic data. The parameters are
described by a posterior parameter distribution that sum-
marises the information extracted from the experimental
data. A model with the mean logarithmic parameters
matches the known experimental data as closely as possi-
ble and gives an impression of the dynamic behaviour.
The covariance matrix describes the remaining uncertain-
ties and the correlations between the parameters; by sam-
pling from the parameter distribution, we can simulate
more and more model instances and explore their behav-
iour. If the parameter distribution is narrow, then meta-
bolic concentrations and fluxes deviate little from the
typical behaviour, and their distribution can be approxi-
mated by analytical calculation [15].

The estimation procedure can be split into two separate
steps: first, the kinetic parameters in the model are fitted
to kinetic and thermodynamic data; second, the parame-
ters are improved by fitting them to metabolic steady
states. In our computational example, incorporating the
metabolic data increased the accuracy of prediction; the
improvement seems to be caused by the parameter corre-
lations rather than by narrower marginal distributions of
the individual parameters.

The use of thermodynamically independent parameters
ensures that all models respect the second law of thermo-
dynamics. We presented an algorithm to approximate the
posterior by a multivariate Gaussian distribution. The
result is a mathematical model with uncertain parameters;
it can be used to compute probabilities for the system
behaviour by sampling, simulation, and analysis of
model instances.  Model ensembles as presented here can
help to assess the dynamic effects of the model structure,
bridging the gap between pathway analysis, enzyme
kinetic databases, and kinetic modelling.
Page 10 of 12
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Methods
Empirical distributions of kinetic parameters
We obtained prior distributions for different types of
parameters from statistics over experimental data
[18][19,20,23,24]. The results are shown in table 1.

1. Experimental values for turnover rates, substrate, prod-
uct, and inhibition constants were taken from the Brenda
database [18]. The database contains multiple values for
some of the parameters; we counted them separately.

2. To obtain energy constants, we used Gibbs free energies
of formation predicted from the molecule structures,
using the group contribution method [23]: values for
CoA-complexes were neglected in the statistics, and the
values for the remaining compounds were -590 ± 447 J/
mol. We computed the values of the energy constants

 using the gas constant R ≈ 8.314 J/(mol K)

and a temperature of 300 K (approximately 25°C), thus

RT ≈ 2.490 kJ/mol.

3. Enzyme concentrations were roughly guessed from pro-
tein molecule numbers in the yeast S. cerevisiae, measured
in a GFP assay [20]. To convert molecule numbers into
concentrations, we assumed a spherical cell of radius 6
µm. The protein concentration reads c = Nmolecules/(NAV-

cell) M, with Avogadro's constant NA = 6.022 · 1023 and the
cell volume measured in litres.

4. The concentrations of 49 metabolites were taken from
a literature survey [24]. Concentrations measured in dif-
ferent species were averaged as described [37].

5. Equilibrium constants were taken from the NIST data
base [19]. The physical units mM, 1, and mM depend on
the reaction stoichiometry, but we describe all numerical
values by a single distribution. This is justified as long as
we are only interested in the reaction Gibbs free energies
that correspond to the equilibrium constants. To avoid
bias due to the arbitrary choice of the standard reaction
directions, we counted each reaction in both forward and
backward directions. Hence, the mean value has no mean-
ingful interpretation.

We found that the distributions of computed Gibbs free
energies of formation did not agree with the distribution
of equilibrium constants. Thus, for the energy constants ln

 = Gi/(RT) in the threonine model, we chose a different

prior, with a mean value of zero and a standard deviation

of In 200 ≈ 5.3.
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