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Chapter 1
Introduction

Since the thesis that every gene acts as a single unit which transcription is solely reg-
ulated by promoter-binding transcription factors (TF) - irrespective of the surrounding
genomic landscape - has been rejected, transcriptional regulation of genes has become a
field of ever-growing complexity.
Factors like the “state” of chromatin and DNA positioning inside the nucleus have been
shown to have a major impact on the activation and repression of the transcription of
genes [1],[2],[3]. Furthermore it was discovered that the expression of individual adja-
cent genes in the genome is not independent, but genomic neighbours are co-expressed
more often than what would be expected by chance [4],[5]. These neighbours form clus-
ters of co-expressed genes that can be found all over the genome containing from two
to several adjacent entities. In this thesis a possible explanation of this observation
was investigated, namely the active alteration of chromatin state by possible interac-
tion of transcription factors or other genomic features. Sequence analysis methods were
used to search for possible DNA specific factors that could form “active chromatin hubs
(ACH)” [6] in the region of those co-expressed genes and therefore could lead to the re-
vealed correlated expression. The thesis is based on our earlier analysis of the expression
of genomic neighbours in mouse/human and proceeds these investigations [7].
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Evidence for Clusters of Co-expressed Genes Throughout
the Genome

The following pages present an overview of the previous studies analysing
the existence of clusters of co-expressed genes in the genomes of eukaryotic
and prokaryotic organisms, including the results from our group investigating
the level of correlated expression of genomic neighbours and their genomic
properties.

1.1 Finding Clusters of Correlated Genes

1.1.1 Clusters of Co-expressed Genes

Co-expression of genomic neighbours on a genomic scale was first discovered in yeast
for genes involved in the mitotic cell cycle [4]. In this analysis 25% of the genes that
were expressed in cell-cycle-dependent manner lay adjacent to each other. Another
analysis in the genome of Drosophila melanogaster reveals that testes genes were found
in clusters of at least four genes [5], which could also be extended using a looser definition
of clusters (allowing for intervening genes). In addition to those one-tissue-clusters,
other groups analysed genes that are expressed in a broader range of tissues and found
genes with high expression levels (housekeeping genes) to be clustered in the human
genome [8],[9]. However, our own analysis also postulated a high number of co-expressed
genes in the human and mouse genome that are expressed in a broader range of tissues
(from housekeeping pairs to pairs that are exclusively expressed in only one tissue).
Regarding the full genome expression analysis published so far and the increasing number
of finished genomic sequences, there is growing evidence for the existence of clusters of
co-expressed genes across all eukaryotic organisms.

1.1.2 Clusters of Co-functional Genes

It has been shown that genes encoding for proteins that are involved in the same
metabolic pathway have the tendency to cluster along the genome of several organisms
(including human, worm, fly, A. thaliana and yeast) [10]. Nevertheless, a relationship
between co-functionality and co-expression in higher vertebrates has not been shown sat-
isfactorily. Most of the well-studied clusters (e.g. Hox cluster, growth hormone cluster)
show high co-functionality but fail to show high co-expression or even deny it, because
of highly different expression patterns (e.g. resulting from different times of expres-
sion in development). An analysis of common GO categories for co-expressed genomic

2
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neighbours resulted in only a rare number of clusters [11]. This was also suggested by
our own analysis, even when the number of genomic neighbours, irrespective of their
co-expression, which share common GO categories, is significantly higher compared to
random pairing [7]. A very recent analysis investigating gene cluster in human and mouse
also support this non-correlation between co-functionality and co-expression, proposing
transcriptional leakage (e.g. driven by unspecific “opening” of a whole chromatin re-
gion) to be one of the major factors leading to coordinate expression of genomic neigh-
bours [12]. This model would suggest gene expression in tissues without any functional
need.

1.1.3 Spatial Organisation Versus Clustering

A higher order of gene arrangement in genomes must not solely mean the occurrence of
clusters. The possibility of a spatial distribution of co-expressed genes over the chro-
mosomes was primarily postulated by several groups performing analysis of microarray
experiments on yeast [13],[14]. In contrast to this other groups strongly deny such regu-
lar spacing [15]. They propose the existence of periodicity to be artifacts caused by the
printing of yeast chips in genomic order. Moreover, they postulate that there is currently
no statistically significant evidence that transcription factor binding sites in yeast tend
to be regularly spaced. Nevertheless, they found striking significance for co-expression
and transcription factor binding site sharing for genes of close proximity [15].

1.2 Our Previous Results in Investigating Highly Co-expressed
Genomic Neighbours

In our previous analysis [7] we focused on adjacent genes in the human and mouse
genome, using the FANTOM3 [16] Mouse and GNF Symatlas [17] Human
datasets to annotate these genes with expression data (13 tissues in FANTOM3 mouse
and 79 tissues in GNF Symatlas human). Using a measurement of the ratio of co-
expression over those tissues, we extracted genomic clusters which we called “highly
co-expressed”1. Those clusters mainly consists of pairs and triplets of genes and can be
located all over the genome. Analysing the amount of tissues the individual genes of
those clusters are expressed in, we found a wide range of clusters from one-tissue-clusters
to housekeeping-clusters. We showed these clusters to be limited in size (measured in nu-
cleotides) and individual highly co-expressed pairs to have a smaller intergenic distance
than overall genomic neighbours (median of 7,662bp versus 18,665 bp for all genomic
pairs in mouse; p-value of 3 ∗ 10−5 in Wilcoxon Rank Sum Test). Analysing genomic
orientations of pairs, we could not find a difference in their distributions between highly

1See section 2.1 for the full definition of “highly co-expressed” gene clusters

3
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co-expressed gene pairs and overall gene pairs. Further assessing the sharing of GO
terms, protein domains and TFBS we found that highly co-expressed gene pairs share
those features to a lesser extent than overall genomic neighbours (with the exception of
transcription factor binding sites that were shared to the same extent). All our findings
which were mainly based on mouse data, could be confirmed using the human data. Ad-
ditionally we found a high number of highly co-expressed pairs that are phylogenetically
conserved between these two species.
From our analysis we suggested that the high amount of highly co-expressed genomic
neighbours could be a result of large-scale chromatin alterations that lead to “open”
regions that allow the correlated expression of several genes, additionally regulated by
individual transcription factor binding sites (TFBS). The aim of this master thesis was
to find possible mediators of these opening events in the sequence of our postulated gene
pairs.

Levels of Eukaryotic Genome Regulation

The following pages present an overview of the eukaryotic gene expression as
a framework with three hierarchical “levels” [1] of genomic regulation, from
the level of individual gene regulation via regulation of chromatin regions to
the nuclear level.

1.3 The Sequence Level

The sequence level is the best-studied level of transcriptional control in eukaryotes. It
involves elements that lead to regulation of individual genes, so called trans-acting
and cis-acting elements.

• Trans-acting elements
Trans-acting elements include the RNA polymerase 2, which transcribes ge-
netic DNA into messenger RNA, as well as several co-factors. These are directed
to specific transcriptional start sites (TSS) by a huge amount of transcription
factors that governs tissue specific transcription of individual genes. Further-
more chromatin-remodelling systems that give access to transcribed regions play a
role in this basic transcriptional machinery (those will be further discussed in the
chromatin level).

• Cis-acting elements
Cis-acting elements are sequence elements that guide the specific transcriptional
machinery. They are normally sub-divided into promoters (which enable gene
transcription), enhancers (which increase transcriptional level) and silencers

4
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(which are bound by repressing transcription factors and therefore prevent genes
from being transcribed). Those cis-acting elements are not exclusively localised in
the nearer environment of a gene (e.g. near its TSS), but are also found several
kb apart of its controlled gene (e.g. 40-60kb apart in case of the β-globin gene
cluster)[6].

The regulation of gene transcription at sequence level is highly complex in itself and the
scheme presented here is therefore only a fragmentary overview.

1.4 The Chromatin Level

As all eukaryotic genomes are found to be packed in nucleosomes that are furthermore
condensed to finally reach a compression of 10,000-fold rendering it inaccessible to the
transcriptional machinery, the chromatin level is likely to play a role in transscriptional
regulation. The basic units of such nucleosomes is an octamer of the histone molecules
H2A, H2B, H3, and H4, the linker histone H1 and an appropriate DNA double-helix
which is tightly wound around the complex in 1.75 turns per nucleosome [18] (see figure
1.1). A good review of the up-to-date knowledge of chromatin modifications and their
transcriptional impact is given in [19].
A deeper understanding of the chromatin level is of high interest for our data analysis
because we expect the postulated existence of co-expressed genomic neighbours to be
mainly a result of higher order changes in chromatin states over large regions.
In terms of gene expression, chromatin structures that made genes accessible for tran-
scriptional assessment by transcription factors and RNA polymerase 2 transcriptional
initiation machinery are called “open chromatin” or “euchromatin”, whereas struc-
tures that prevent genes from being transcribed are called “condensed chromatin” or
“heterochromatin” [19]. At least three distinct types of nucleosomal alteration have
been proposed and proven to change transcription level of targeted genes: chromatin
remodeling, core histone replacement, and histone tail modifications.

1.4.1 ATP-dependent Chromatin Remodeling Complexes Increase the
Mobility and Fluidity of Nucleosomes

The same complex that forms chromatin structure in replication are found to be relevant
for sliding of the histone octamer. This is mediated by ATP hydrolysis to rearrange nu-
cleosomal arrays and free specific regions for later accession by the basic transcriptional
machinery [2],[21],[22].
Using ChIP-Chip experiments in yeast it was shown that there is a positive correlation
between the presence of those nucleosome-free regions (NRF) of approximately
150bp which are located in promoter regions and the rate of gene transcription [2],[22].
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Figure 1.1: Scheme of nuclear DNA packaging and 3D representation of a nu-
cleosome containing histone H2A, H2B, H3, and H4 and wrapped
DNA. [20]

Reports on an corresponding promoter NRF association in human are contradic-
tory [21],[23].

1.4.2 Replacement of Core Histones by Special Histone Variants

Replacement of histone particles by specialised variants have been shown to occur near
transcribed regions and could influence the transcriptional machinery.
Using ChIP-Chip experiments in yeast the histone variant H2A.Z was shown to replace
the core histone H2A preferentially near promoter regions [24],[25]. It is strongly sug-
gested that this variant flanks NRFs and blocks the spreading of activating histonemarks,
thereby preventing euchromatin formation [26],[27].
Histone H3 was also shown to be replaced by a variant called H3.3. This typically hap-
pens in genomic regions and marks actively transcribed genes, because H3.3 is gradually
enriched with every round of transcription [2],[22]. Furthermore, a slight enrichment of
H3.3 can be found upstream of the TSS and of NFRs [22].
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Figure 1.2: Selection of histone tail modifications and their positions at the
tails of histone H2A, H2B, H3, and H4. A spot above the tail indicates
postulated transcriptional activation or unknown function, a spot below the
tail indicates repression. [19]

1.4.3 Histone Tail Modifications

Studies investigating chromatin state alterations have so far mainly focused on on
post-translational histone tail modifications. These modifications can influence the
wrapping of DNA around the histone core and thereby lead to an altered transcriptional
accessibility. Known histone modifications are: acetylation [28], methylation [29],
phosphorylation [30], ubiquitiniation [31], sumoylation [32], ADP ribosylation [33],
glycosilation [34], biotinylation [35] and carbonylation [36]. The distributions of
these modifications along the histone tails and their influence on the transcriptional
machinery is called the histone code [37]. A graphical overview of some of these modi-
fications and their position and transcriptional function at the histone tails is presented
in figure 1.2. Acetylation and methylation are the best-known of these modifications:

• Acetylation
Acetylation marks are placed by a group of enzymes called histone acetyltrans-
ferases (HAT). The acetylation of the histone tail is widely proposed to lead to
an alteration in charge and lower the electrochemical coupling between the histone
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octamer and the wrapped DNA making the DNA more accessible for the tran-
scriptional machinery [38]. Correspondingly histone acetylation is tightly linked
to an increase in transcription (“euchromatic state”) [39].
Deacetylation on the other hand is associated with an decrease in transcriptional
level (“heterochromatic state”) . It is mediated by histone deactelyase (HDAC)
co-repressor complexes.
An overview of these two modifications and their influence on the condensation
state of chromatin is given in figure 1.3.

• Methylation
In contrast to acetylation methylation is not clearly correlated with transcriptional
activation. Moreover the position of the methylation at the histone tail seems to
be the major factor of its effect [19]. A methylation of the lysin at position 4 of
histone 3 (H3K4) was for example shown to be associated with chromatin struc-
tures that allows for transcriptional activation [21]. In contrast, methylation of K9

Figure 1.3: “States” of chromatin caused by histone acetyltransferases (HAT)
and histone deacetylases (HDAC). [3]
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at the same histone is thought to be linked to heterochromatin formation [40].
Furthermore the degree of methylation of H3K4 was shown to be dependent on
its position in the genomic region [2]. It decreases continuously from 5’ to 3’ with
trimethylation at 5’, dimethylation in the middle and monomethylation at the
3’ end.

In contrast to the two chromatin alterations mentioned above, these histone modifi-
cations do not only occur locally but can spread along the chromatin fibre, thereby
inducing a change in the functional state of whole chromatin domains containing one or
more genes. These regions, also called ”Active Chromatin Hubs” [6], could be a fun-
damental architecture of highly co-expressed gene clusters and are therefore discussed
further in section 1.8.

1.5 The Nuclear Level

The knowledge of the nuclear level of transcriptional regulation is so far very limited.
It includes location of chromosomal parts throughout the nucleus as well as 3D con-
vergence of very distant (or even chromosome spanning) gene regions. In yeast it was
shown that nuclear areas exist, that differentially influence transcriptional level - from
repressive to boosted transcription. For instance genes that are located near the yeast
cell periphery are silenced [1],[41]. A correlation has also been shown between the num-
ber of genes on eukaryotic chromosomes and their position in the nucleus, with gene-rich
chromosomes residing more frequently in the center and gene-poor chromosomes located
in the periphery [42]. Additionally, transcription factors like SATB1 have been shown
to form “networks” that specifically link targeted DNA sequences and therefore change
nuclear architecture [43].

1.6 Links Between the Three Hierarchical Levels

While the presented framework is only a model of different levels of transcriptional
regulation, the real procedures in the cell are much more linked. Several sequence spe-
cific transcription factors (e.g. REST [44], CBP [24]) are known to recruit the acti-
vating/repressing HAT/HDAC complexes and therefore initiate chromatin “opening” or
“closing” [45],[46]. A class of transcription factors which are called nuclear receptors
have recently been shown to be able to bind to histones and activate the remodelling
machinery [21].
This link between the hierarchical levels is also true for the nuclear level, as the already
mentioned transcription factor SATB1 does not solely form its own nuclear architecture
but also attracts both enhancing and repressing chromatin alteration enzymes [43].
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“Active Chromatin Hubs” Mediate Correlated
Gene Expression

The following pages present an overview of the concept of “Active Chromatin
Hubs” (ACH) - regions of “open” chromatin that could lead to a correlated
expression of genes in close genomic regions - and their proposed control ele-
ments. Furthermore several models that could explain correlated expression
of even more distant genes are discussed.

1.7 Known Gene Clusters Driven by Active Chromatin Hubs

Irrespective of their level of co-expression, several conserved gene clusters have been
identified that share a high level of regulated expression that is guided by chromatin
state ”switches”. The best characterized clusters so far are the β-globin [47], the
growth hormone [48] and the multiform Hox gene clusters [49].
The Hox gene family for example, which is responsible for controlling the genetic system
that specifies structures along animal body axes in mammals [50], is grouped into so
far four known genomic clusters: HoxA, HoxB, HoxC and HoxD. HoxB genes have been
shown to have a strict expressional order that depends on the developmental stage of the
organism and is guided by chromatin modifications [51]. Biochemical experiments using
embryonic stem cells showed transcription of HoxB1 at day 2-4 after treatment with
retinoic acid (which initiates cell differentiation) whereas HoxB9 was expressed at day
10, at which HoxB1 was no longer expressed. Consistent with the chromatin alteration
model of transcriptional activation/silencing, an acetylation of lysin 9 of histone 3 and
a methylation of lysin 4 also at histone 3 simultaneously at the HoxB locus at day 4.
These signals disappeared until day 10 (when the gene is silenced). Nevertheless, they
also found HoxB9 to be associated with the same modifications in chromatin, but already
at day 4 and continuously afterwards [49].

1.8 Proposed Genomic Elements of Active Chromatin Hubs

Clusters which result from chromatin alteration / active chromatin hubs are supposed to
consist of the following three classes of genomic elements: Cluster Control Elements,
Enhancer and Promoter, and Boundary Elements (Insulators).
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Figure 1.4: Genomic organization of the mouse β-globin cluster. β-globin cluster
genes are indicated as black rectangles, genes belonging to olfactory receptor
clusters in white. Rectangles above the line represent genes on the positive
strand, below the line at the negative strand. Arrows indicate known HS. [6]

1.8.1 Cluster Control Elements

The cluster control element is responsible for switching the genomic domain between
its active and inactive state. These elements might recruit histone-modifying enzymes
complexes containing HATs and HDACs. The initiated chromatin change could then
spread along the genomic region to “open” or “close” chromatin structure and make
associated genes accessible/unaccessible for transcription.

Candidates for these cluster control elements are:

• Locus Control Regions (LCR)
Locus control regions consist of a set of of cis-acting elements that have the com-
petence to fully activate a transgene2 (e.g. in a tissue-specific and copy-number-
dependent manner) at any location in the genome [52]. In normal LCRs, each
cis-acting element forms a DNAse I hypersensitive site (HS) and contains
several transcription factor binding sites [48] (see figure 1.4 for an example of dif-
ferent HS in the mouse β-globin cluster).
Several transcription factors have been annotated to have LCR binding properties

and can therefore initiate (e.g. tissue) specific gene regulation. One example is the
transcription factor REST (RE-1 silencing transcription factor) which was allready
mentioned in chapter 1.6. It is a zinc-finger gene-specific repressor element that re-
stricts the activity of genes in non-neural tissues due to recruitment of HDACs that
repress expression. Trough the recruitment of CoREST (associated co-repressor)
it expands its silencing influence to genes in the near genomic environment that
have no own REST response element [44]. Also SATB1 (already introduced in
chapter 1.5 to regulate gene expression at the nuclear level by inducing its own
“networks”) was shown to upregulate the transcription of its targeted and neigh-
bouring genes by binding to SBS-T4 which initiates hyperacetylation of adjacent
regions of chromatin [43]. Another known factor having LCR binding properties
is the CREB-binding protein (CBP). It binds the cAMP-response binding protein

2A transgene is a gene which has been transferred into genomic DNA from a different source.
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and recruits HATs [53].
Besides sequence specific transcription factors, nuclear receptors (NR) have
been reported to recruit chromatin modifying complexes. NRs were shown to acti-
vate target gene expression by recruiting co-activators (among others HATs) in a
ligand dependent manner. On the other hand the same receptor diminishes tran-
scription in the absence of a ligand by recruiting co-repressors (amongst others
HDACs) [21].

• Repetitive DNA Elements and RNAi
Repetitive DNA elements, so called interspersed sequence repeats, which com-
prises∼50% of the genome of mice and humans, have been suggested to function as
cluster control elements. Pairing among those repeats was proposed to introduced
secondary DNA structures that can act as nucleation sites for the establishment
of heterochromatin like configurations [54], [55].
Furthermore RNA interference (RNAi) was shown to mediate heterochromatin for-
mation in yeast [56], arabidopsis [57], drosophila [58] and chicken [59].
A connection between RNAi pathway and the assembly of silent chromatin on
(and spreading from) nearby long terminal repeats was proposed but couldn’t be
confirmed in human [60].
But repetitive elements are not exclusively associated with transcriptional silenc-
ing, as for example Alu repeats are found to contain many binding sites for
transcription factors that might mediate developmental processes [61]. Further-
more chromosomal regions that are transcriptionally very active were shown to
have a high SINE repeat density [9].

1.8.2 Enhancer and Promoter

Additionally to the superordinate chromatin alteration that changes the accessibility of
genomic regions containing several genes, individual expression is furthermore regulated
by gene specific enhancers and promoters (see section 1.3).

1.8.3 Boundary Elements (Insulators)

The existence of insulators, that separate gene clusters by limiting the control range of
long-distance regulatory elements, is controversial.
If affirmed, their location is proposed at the borders of ACHs to stop surrounding hete-
rochromatin marks from entering the active region [48], [62]. The best known mammalian
protein that has insulating activity is CTCF [63], which was also shown to mediates
long-range chromatin looping and local histone modification in the β-globin gene clus-
ter [64].
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Figure 1.5: Different models for enhancer activation of genes over a large dis-
tance. Blue rectangles represent an enhancer, the red ellipses its recruited
activation complex. The genes are represented as black rectangles and the
promoter-binding complex as blue ellipses. Linker proteins are indicated as
green circles. [67]

On the other hand examples of transgene-induced heterochromatin were reported to
fail to enter euchromatic regions without the necessary existence of any insulatory el-
ement [65], [66]. A possible explanation for the stopped re-repression would be the
accumulation of transcription factors and associated chromatin-modifying com-
plexes (containing e.g. HATs) resulting in hyperacetylation which is proposed to be
a mechanism that avoids heterochromatin silencing [48].

1.9 Different Models of Active Chromatin Hub Establishment

The fact that enhancer elements have the possibility to influence genomic regions that
are up to 800 kb apart has long been disputed [67]. Current models favoured are
the tracking model [68], the looping model [69], the linking model [70], and the
facilitated tracking model [71] (for an overview of all these models see figure 1.5).

• Tracking Model
The tracking model (or scanning model) proposes the tracking/scanning of an
transcription-activation complex that was initially recruited by an enhancer along
the DNA until it reaches a promoter, meanwhile opening the whole stretch of
chromatin between these element, but does not alter their proximity.

13



Master Thesis 1 Introduction Markus Schüler

• Looping Model
In the looping model the enhancer and promoter regions are directly brought to-
gether in the nucleus by binding of their associated complexes.

• Linking Model
In the linking model and enhancer binding protein is iteratively bound by facilita-
tor proteins until the protein chain reaches a promoter region where it enhances
transcriptional activity.

• Facilitated Tracking Model
In the facilitated tracking model both, the tracking model and the looping model,
are incorporated. It suggest that an enhancer-bound activation complex migrates
along the DNA until it reaches a promoter, meanwhile forming a loop which is
progressively enlarged during the process.

Because of its explanatory power to some aspects of gene cluster regulation, the loop-
ing model (and the related facilitated tracking model) have recently found higher sup-
port [67]. Studies investigating enhancer-promoter proximity of the β-globin cluster in
erythroid cells revealed that those are closely located in 3D [72]. This might indicate
the formation of chromatin loops which co-locates specific sequence sites. The looping
model also explains different expression levels of genes that belong to the same
gene cluster [6]. It is suggested that different HS are co-located by the established
loops and form a “knot”, which causes a high enrichment of transcription factors and
associated HATs. Genes that lay close to this knot can interact with these factors lead-
ing to an increased transcriptional level, while genes that lay in the outer part of the

Figure 1.6: An active chromatin hubs “knot” of active genes and hypersensi-
tive sites in the mouse beta-globin locus. HS (ellipses) and genes (rect-
angles) in red are activated, those in grey are not transcribed. Rectangles in
blue mark the surrounding olfactory receptor genes. [6]
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Figure 1.7: An explanation for expression of overlapping gene loci drawn by
ACHs. Presentation of two hypothetical, differentially regulated, gene loci
(red and blue) that overlap, with cis-regulatory sequences as ellipses and
genes as rectangles. Depending on transcription factor binding competition
the ‘blue’ ACH is formed in the ‘blue’ cells, which results in expression of
the ‘blue’ genes. A similar mechanism applies to the formation of ‘red’ ACH
in ‘red’ cells resulting in the expression of ‘red’ genes. [6]

loop remains untranscribed. The reverse is true if the knot includes silencing regions.
Figure 1.6 demonstrates such a possible knotting structure for the β-globin gene cluster.
During development this loop formation might be rearranged, now containing the new
targeted genes located near the knot while the old genes are silenced [73]. An explana-
tion for this rearrangement could be a change in chromatin flexibility, which in turn
depends on chromatin modifications (especially acetylation) [67]. The model predicts
the degree of acetylated chromatin to determine the size of the established loops and
has been used to explain the linear decrease in expression of the HoxD cluster genes and
the volatile expression in the human β-globin cluster.
As presented in figure 1.7 the looping model provides a possible explanation for the
coherence of ACHs and the expression of overlapping gene loci [6]. Several distinct
promoters in one loci might compete with each other, leading to distinct formations of
chromatin loops and therefore distinct expression patterns. The distance between the
promoter and the HS might affect the result of these competition, but presence of specific
transcription factors could also provide an important contribution.
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Chapter 2
Methods

The methods used in this thesis consist of four parts:
first, the Definition of Sequence Datasets part contains the constructions of sequence
datasets that represent the previously defined highly co-expressed and uncorrelated gene
pairs [7], respectively, in mouse together with an orthologous human dataset to verify
our results.
Furthermore, scripts for the Retrieval of Sequence Data and Features were imple-
mented to build a base for the following analysis.
The first analysis searches for overrepresented motifs in the sequence set of highly co-
expressed gene pairs which could point to possible transcription factors involved in co-
ordinated expression. This part is called Motif Finding & Processing.
The second set of analysis comprises the Investigation of Distribution of Certain
Genomic Features of the sequences as a whole and over individual regions.

For the exact chromosomal position and included Ensembl genes of each defined dataset
refer to Appendix A

For an overview of the used scripts, their description and interactions see Ap-
pendix B.
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Definition of Sequence Datasets

The following pages contain detailed information about the choice of genomic
regions that were used to search for regulatory elements to reveal the reg-
ulatory mechanisms that might lead to correlated co-expression of genomic
neighbours. The description of the initial selection of gene pairs to a set of
highly co-expressed/uncorrelated gene pairs is given, along with the different
setups that have been defined based on this selection.

2.1 Definition of Highly Co-expressed and Uncorrelated Gene
Pairs

In our previous work [7] we analysed the amount of co-expression of genomic neighbours
in two dataset: 1. the FANTOM3 [16] Mouse datasets, which consists of 39593
genes with expression values for 13 tissues and 2. the GNF Symatlas [17] Human
dataset, which consists of 19358 genes with expression values for 79 tissues.

Previously we grouped gene pairs (genomic neighbours) into categories called highly co-
expressed (HCP), uncorrelated (UCP), housekeeping, and silenced according
to the amount of contiguous expression relative to overall expression.
More precisely, we defined two coefficients A, which is the proportion of tissues from
all n tissues, in which both genes of a genomic pair are expressed together, and Ω, which
is is the proportion of tissues from all n tissues, in which either one or both genes of a
genomic pair are expressed. Both coefficient lay in the interval [0,1] and by definition
A ≤ Ω. We used the ratio A

Ω to access the degree of co-expression for each genomic
pair. This ratio is close to or equal 1, if the genes are expressed together in almost all
cases (irrespective of the total number of tissues they are expressed in) and is close to
or equal 0 if they are never or rarely expressed together.

Transcripts were assigned to the above categories following two thresholds θcoex and
θuncor:

1. A gene pair is defined as highly co-expressed if A
Ω ≥ θcoex and A < 1

2. A gene pair is defined as uncorrelated if A
Ω ≤ θuncor and Ω > 0

3. A gene pair is defined as housekeeping if A = 1 (both gene are expressed in all
n tissues)

4. A gene pair is defined as silenced if Ω = 0 (both genes are never expressed)
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Due to the difference in the distribution of expression over the total number of tissues,
the threshold θcoex and θuncor were set differently for the FANTOM3 and GNF Symatlas
dataset. The defined threshold values are reported in table 2.1.

Dataset θcoex θuncor

FANTOM3 Mouse 0.75 0.5
GNF Symatlas Human 0.5 0.33

Table 2.1: Thresholds for the group definition in FANTOM3 and GNF Symatlas.

After applying these group definitions to the two datasets, the amount of gene pairs that
belong to each group were obtained as shown in table 2.2.

Dataset
highly co-

expressed
uncorrelated housekeeping silenced

FANTOM3
Mouse

3,230 27,287 154 36

GNFSymatlas
Human

1,800 14,886 21 1,370

Table 2.2: Resulting amount of gene pairs for each dataset after group definition.

2.2 Extraction of Phylogenetically Conserved Pairs

We aimed to design a set of sequences that provide the possibility to analyse the proposed
mechanism of regulated co-expression of genomic neighbours. The datasets provided by
FANTOM3 and GNF Symatlas are large and noisy. To obtain gene pairs with stable
expression properties these datasets were reduced to those gene pairs existing in both
sets, and hence contain two human-mouse orthologs.

Data To define human/mouse gene homologs the current table of orthologous genes
(represented by Ensembl.Gene.IDs) was downloaded from Ensembl1 via its “BioMart”
tool. (Date: 05.06.06; Ensembl 39; Mouse: NCBI m36 Assembly (Dec 2005) mm8
Genebuild Ensembl (Jun 2006); Human: NCBI 36 (Oct 2005) hg18 Genebuild Ensembl
(Mar 2006)).
Furthermore, two tables that assign Mouse.Ensembl.Gene.IDs (for the FANTOM3 Mouse
dataset) and Human.Ensembl.Gene.IDs (for the GNF Symatlas Human dataset), respec-
tively, to the transcripts in the appropriate dataset were used. These tables are provided
with the Fantom3 and GNF Symatlas dataset. From all 39593 transcripts in the FAN-
TOM3 dataset 20837 have a Mouse.Ensembl.Gene.ID and for GNF Symatlas Human
it is 10795 out of 19358.

1http://www.ensembl.org
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Approach

1. Compute a one-to-one ortholog assignment table
Using both Ensembl orthologous gene tables, all Ensembl.Gene.IDs for
mouse/human, that refer to more than one Ensembl.Gene.ID in the opposed
species, were removed. Additionally, inconsistency among the two Ensembl tables
was verified. These procedure resulted in a one-to-one assignment table between
Mouse.Ensembl.Gene.IDs and Human.Ensembl.Gene.IDs (or vice versa).

2. Compute the orthologous Symatlas transcript(s) for every FANTOM3
transcript
The assigment of orthologous Symatlas transcripts to Fantom transcripts is
schematically outlined in Figure 2.1.

Figure 2.1: Scheme of the assignment of Fantom transcripts to homologous Symatlas
transcripts, and vice versa.

Afterwards, this assignment was revised for A) FANTOM3 transcripts that refer
to several Symatlas transcripts (due to duplicated Human.Ensembl.Gene.IDs for
different Symatlas transcripts) and B) Symatlas transcripts that refer to several
FANTOM3 transcripts (due to duplicated Mouse.Ensembl.Gene.IDs for different
FANTOM3 transcripts).

This procedure resulted in 8269 distinct FANTOM3 transcripts that could be
assigned to unique Symatlas transcripts (or vice versa).

3. Extract pairs of mouse genes with paired human homologs
To identify phylogenetically conserved pairs for all adjacent genomic neigh-
bours (pairs) it was determind that A) they consist of two transcripts assigned to
orthologous Symatlas transcripts and B) these orthologs are also adjacent (paired)
in the Symatlas human dataset. The specific order of the transcripts in the pair
was neglected to allow for evolutionary inversion.
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Result 1667 phylogenetically conserved (between mouse and human) FANTOM3 pairs
were identified. Those 1667 pairs were distributed among the defined co-expression
groups as listed in table 2.3.

Symatlas.HCP Symatlas.UCP Symatlas.Misc FANTOM Sum

FANTOM.HCP 168 278 90 536
FANTOM.UCP 39 453 41 533
FANTOM.Misc 109 416 73 598
Symatlas Sum 316 1147 204 1667

Table 2.3: Distribution of phylogenetically conserved genomic pairs among co-expression
groups in FANTOM3 (mouse) and Symatlas (human). “Misc” = gene pairs
not belonging to HCPs or UCPs.

2.3 Definition of Positive and Negative Dataset

2.3.1 Selection of Pairs for the Positive/Negative Groups

Definition To identify regulatory elements that lead to a high level of co-expression
a positive group was defined. Sequences contained in this group are proposed to
contain these elements. The negative group was defined as a set of genes with low
co-expression, as these are unlikely to contain these regulatory elements.
We categorised phylogenetically conserved pairs, that are highly co-expressed in
FANTOM3 AND in Symatlas (in total 168) into the positive group and those phy-
logenetically conserved pairs, that appear to be uncorrelated in FANTOM3 AND
in Symatlas (in total 453) into the negative group (compare to table 2.3).

As basis for all following computations and analysis the mouse sequence of the appropri-
ate pairs were used. Importantly, the results were verified using a human orthologous
dataset.

2.3.2 Further Preparation of Pairs of the Positive/Negative Group

Data For all FANTOM3 transcripts belonging to one of the two defined groups the
following features were extracted via “BioMart”: Mouse.Ensembl.Transcript.IDs (by
their assigned Mouse.Ensembl.Gene.IDs), their chromosome, genomic start/end position
and strand information using current annotations provided by Ensembl (Date: 20.05.06;
Ensembl 39; Mouse: NCBI m36 Assembly (Dec 2005) Genebuild Ensembl (Jun 2006)).
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Figure 2.2: Illustration of the included sequence for the 2K and next datasets.

Approach From the selected groups following pairs were removed:

1. FANTOM3 transcripts that have multiple
Mouse.Ensembl.Transcript.IDs
An assignment of multiple IDs can occur, as gene IDs may have several transcript IDs
(because a single gene can have multiple transcripts). By removing these a one-to-one
relation was obtained.

2. Ensembl transcripts overlapping other Ensembl transcript or with other
Ensembl transcripts included
The Fantom3 dataset does not inlcude all current Ensembl transcript IDs. To ensure
genomic adjacency, pairs that overlap or that have other transcripts laying in between
were excluded.

After removing all affected pairs, 93 pairs for the positive group and 226 pairs for the
negative group remained. These pairs provide the basis for the following definition of
specific datasets (see below).

2.3.3 Definition of the final mouse datasets “2K-2K” and “2K-next”

To ensure a real “clustering” of the pair the distance to the next left/right tran-
script was required to be at least 2kb (as annotated by Ensembl). Two datasets
differing in the amount of surrounding sequence were defined:

1. 2K-2K This dataset includes the sequence of all genes pairs of the posi-
tive/negative dataset which are at least 2,000bp distant to their next adjacent
transcript and includes 2,000 bp around the pair.

2. 2K-next This dataset includes the sequence of all genes pairs of the posi-
tive/negative dataset which are at least 2,000bp distant to their next adjacent
transcript and the total sequence that spans the distance to the next right/left
transcript. If regional overlaps occured, one of the overlapping pairs was skipped
to avoid duplicated sequences.
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The amount of sequence included in the datasets is illustrated in Figure 2.2.

Dataset 2K-2K comprises 185 sequences (51 positive and 134 negative). Dataset
2K-next comprises 181 sequences (51 positive and 130 negative). The difference in
numbers is a result of overlapping regions.2

2.3.4 Definition of Orthologous Human Datasets “H2K-2K” and
“H2K-next”

Based on the two datasets defined for mouse, two datasets of orthologous gene
pairs in human called “H2K-2K” and “H2K-next” were computed. The annotated
Ensembl human homologous pairs were extracted for all 185/181 gene pairs using the
Ensembl homology table described above. Again gene pairs where reviewed for their
distance to the left/right neighbour to assure at least 2kb distance. Furthermore pairs
were supervised for overlapping or intermediate Ensembl transcripts. The existance of
multiple transcripts for the orthologous genes remained uninspected. For H2K-2K a
distance of 2,000bp was added left/right around each pair while H2K-next includes the
full sequence up to the neighbouring transcripts (as annotated by Ensembl). Again, if
regional overlaps occured, one of the overlapping pairs was skipped to avoid duplicated
sequences.

Dataset H2K-2K comprises 130 sequences (35 positive and 96 negative). Dataset
H2K-next comprises 128 sequences (35 positive and 93 negative)2.

2For a full annotation of the datasets see Appendix A.
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Retrieve and Process of Sequence Data and Features

The following pages contain detailed information about the used procedures
to extract nucleotide sequence for the defined datasets and the extraction
of several features (e.g. repeats, phylogenetic conserved regions) that are
distributed over the regions of interest, as well as the combination of these
two procedures to generate masked sequences.

2.4 Sequence Extraction

The script SequenceExtractor.pl extracts the genomic mouse or human sequence of a
specified region on a chromosome.

The current Mouse February 2006 (mm8) assembly from NCBI (Build 36) and the cur-
rent Human March 2006 (hg18) assembly from NCBI (Build 35) was downloaded from
the UCSC website3 and stored in fasta format with one file per chromosome.
The script extracts nucleotide sequences from all autosomes plus X and Y
chromosome. Sequence contained in the “ random” files and the “M(itochondrial)”
and “Un(mapped clone contigs)” files is not included.
To extract the appropriate sequence the following attributes are required by the script:
assembly (mm8 or hg18), the chromosome (e.g. 1, X), the inclusive start and end po-
sitions and strand annotation (+ or -). If strand is specified as ‘-’, the sequence will be
returned as its reverse complement. It is possible to format the sequence to upper or
lower case letters and to output it in fasta format (containing 50 chars per line).

2.5 Feature Extraction

The feature extraction procedure is accomplished by the script FeatureExtrac-
tor.pl3 which extracts annotations of transcripts, repeats, regulatory potential, and
other features for a specified region on a chromosome and returns these annotations as
a list and/or masking string.

3http://genome.ucsc.edu/
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2.5.1 Transcribed Regions and Transcriptional Start Sites

We assume it to be unlikely, that transcribed regions contain bindings sites for TFs
that could lead to the observed co-expression of genomic neighbours. Therefore these
were excluded (masked) from the motif finding process. However, TFs that bind to
transcribed regions (e.g. introns) are known. Nevertheless we suppose these to be of
minor impact to the regulatory mechanisms we wanted to examine.

Data
Transcriptional information (including chromosome, start/end and strand annotation)
was obtained for all transcripts (represented by Ensembl.Transcript.IDs) from Ensembl
(Ensembl 39; Mouse: NCBI m36 Assembly (Dec 2005) & Human: NCBI 36 Assembly
(Oct 2005); Genebuild Ensembl (Jun 2006)) via “BioMart”.
Transcript annotations were stored one file per chromosome and included the following
fields:

Field Example Description
genoName chr1 Genomic sequence name
genoStart 3000001 Start in genomic sequence
genoEnd 3000156 End in genomic sequence
strand -1 Relative orientation 1 or -1
id ENSMUST00000015346 Ensembl.Transcript.ID (mouse)

Approach The extraction process searches trough the whole data file of the specified
chromosome for transcripts that are localized in the region of interest. Every transcript
with the start and/or end position (genoStart and genoEnd) between the start and end
position of the specified region is extracted. If a transcript overlaps either the start or
the end of the region or both, its start/end positions are “cut” to that of the specified
region.
The TSS is annotated using the start/end position as annotated by Ensembl, depending
on the strand annotation of the transcript. It is possible to add a specified number of
n nucleotides to the left/right of the annotated TSS to obtain a TSS window.

2.5.2 Repeats

Repeats are repetitive sequence elements that can occur in multiple regions of the
genome. Some groups propose a masking of these interspersed elements prior to the
motif search to reduce the noise level in the sequence data [74]. Nevertheless,
the presence of certain repeats is likely to play a biological role in transcriptional
control [61],[75].
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Data The repeat information was extracted from UCSC RepeatMasker annotation
track (mm8/hg18). It was created using the Arian Smit’s RepeatMasker program4, which
screens DNA sequences for interspersed repeats and low complexity DNA sequences.
Repeats were classified into several subgroups and the masking function uses the “repeat
class” tag to annotate the repeats existing in our sequences. Furthermore the possibility
to exclude specific repeats from the masking process was added.
The downloaded annotation files (one per chromosome) contains repeat annotations in
the following format5:

Field Example Description
bin 607 Indexing field to speed chromosome range

queries.
swScore 687 Smith Waterman alignment score
milliDiv 174 Base mismatches in parts per thousand
milliDe l0 Bases deleted in parts per thousand
milliIns 0 Bases inserted in parts per thousand
genoName chr1 Genomic sequence name
genoStart 3000001 Start in genomic sequence
genoEnd 3000156 End in genomic sequence
genoLeft -194069806 Size left in genomic sequence
strand - Relative orientation + or -
repName L1 Mur2 Name of repeat
repClass LINE Class of repeat
repFamily L1 Family of repeat
repStart -4310 Start in repeat sequence
repEnd 1551 End in repeat sequence
repLeft 1397 Size left in repeat sequence
id 1 First digit of id field in RepeatMasker .out

file.

Approach Repeat positions were extracted in the same fashion as for transcribed re-
gions (see above).

2.5.3 Regions with Regulatory Potential

Including conservational information, also called phylogenetic footprinting, into the
search for regulatory elements is a widely recommended approach [76],[77],[74],[78],[79].
It is based on the assumption that regulatory elements (e.g. TFBS) are evolutionary
stable, while bulk DNA is free to mutate.

4http://www.repeatmasker.org
5Description taken from UCSC website
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Several approaches have been made to extract phylogenetically conserved sequence parts,
ranging from straightforward two-species alignment and percentage-conservation win-
dows [80],[81] to more complex approaches as the PhastCons score derived from a phy-
logenetic hidden Markov model [82].
To extract sequence stretches of potential regulatory function the Regulatory Poten-
tial (RP) Score [83] which was developed by members of the Comparative Genomics
and Bioinformatics Center at Penn State University was used. The RP score (to-
gether with the PhastCons score) has already been shown to successfully extract
cis-regulatory modules in the β-globin gene cluster[84].

RP scores are derived from the comparison of two hidden Markov models (HMMs)
which were trained using frequencies of short multiple alignment patterns in regions of
known regulatory elements and ancestral repeats. In this approach the ancestral
repeats act as a model of neutral DNA. The multiple alignments used to build the HMMs
were calculated using the following assemblies of 7 vertebrate species:

• human (Feb 2006, hg18)

• chimpanzee (Jan 2006, panTro2)

• macaque (Jan 2006, rheMac2)

• mouse (Feb 2006, mm8)

• rat (Nov 2004, rn4)

• dog (May 2005, canFam2)

• cow (Mar 2005, bosTau2)

Each resulting alignment column was represented using a collapsed alphabet (col-
lapsed means that two distinct alignment columns might share a certain alphabet sym-
bol) and hidden Markov models were trained on short k -mers of the resulting sequence.
The composition and frequency of these short k -mers is supposed to differ between
multiple-alignments of real regulatory sequence elements and neutral DNA. The RP
score is calculated from the log-ratio of the transition probabilities of the two
hidden Markov models.
The calibration study performed by King et al [84] suggested a threshold of >0 for
identifying potential regulatory elements.

Data RP scores are availible at the UCSC Genome Browser for all of the included
assemblies. For the analysis the mm8 RP score data was downloaded, which exist in a
very simple format, that displays increasing genomic positions and their appropriate RP
scores in one line. Before accomplishing further extractions every position in the DNA
that had a RP score of 0 was removed (to decrease running time).
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Approach The RP extraction function searches through the specific chromosome file
until a position is reached that is localised inside of or directly at the start of the region
of interest. Then, for every continuous stretch of position-score tuples, it stores the
inclusive start and end position, until a position is encountered that is localised beyond
the end of the region of interest.

2.5.4 CpG Island/Regions

CpG island are regions that comprise a high C+G content and a higher-than-
average number of the CpG dinucleotides (which is significantly underrepresented
in vertebrates genomes [85]). CpG islands are present in the promoter and exonic regions
of approximately 40-60% of the mammalian genes [86], and have been proposed
to play a role in processes such as housekeeping gene functionality [87]. As the definition
of a CpG island is somewhat arbitrary two different approaches were used. The first
is a strict approach called “CpG Islands” the second approach, “CpG Regions” uses
less constraints.

CpG Islands

Data To extract CpG islands the existing CpG island annotation available from UCSC
Genome Browser for mm8/hg18 was downloaded. It is derived from the CpG island
definition by Garden-Gardiner [87].
The downloaded annotation file contains CpG annotations in the following format6:

Field Example Description
chrom chr1 Reference sequence chromosome or scaf-

fold
chromStart 18598 Start position in chromosome
chromEnd 19673 End position in chromosome
name CpG: 116 Name of CpG island
length 1075 Island length
cpgNum 116 Number of CpGs in island
gcNum 787 Number of C and G in island
perCpg 21.6 Percentage of island that is CpG
perGc 73.2 Percentage of island that is C or G
obsExp 0.83 Ratio of observed(cpgNum) to ex-

pected(numC*numG/length) CpG in
island

6Description taken from UCSC website
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Approach CpG island positions were extracted in the same fashion as for transcribed
regions (see above).

CpG Regions

The second approach also follows the definition from Garden-Gardiner, but uses less
constraints for the existence of a CpG island (which is therefore called CpG region).
A sliding window of 100bp length was analysed over the whole (unmasked) sequence
derived by SequenceExtractor.pl(see above). A region was marked as “CpG regions” if
it fulfilled the following conditions:

• The GC content is greater than 50%
• The length of the region is at least 200 bp
• The ratio between the observed number of CG dinucleotides and the

expected number is greater or equal to 0.6

The ratio between observed and expected GC dinucleotides is computed using the for-
mula by Gardiner-Garden [87]:

Obs

Exp
CpG =

Number of CpG dinucleotides×N

Number of Cs×Number of Gs

where N is the length of the sliding window.
Following this definition, every CpG island is also (at least a subset of) a CpG region.

2.5.5 Specific Binding Sites

GC Boxes

The GC Box is the hexanucleotide sequence “GGGCGGG” (or it reverse comple-
ment “CCCGCCC”), which is also the consensus sequence for the transcription factor
SP1 [87]. Because this signal is much easier to locate in genomic sequences than the
appropriate transcription factor bindings site motif of SP1 (see below), it was located
in addition to the search for possible Sp1 binding sites as described below. The disad-
vantage of a search for this fixed nucleotide sequence instead of using a weigthed matrix
model is the larger number of probable false positive sites because of the shorter sequence
length (compared to the Sp1 binding site).
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Approach To extract GC Box positions in our regions of interest the sequence of the
region (as obtained from the script SequenceExtractor.pl) was scanned for the substring
“GGGCGGG” and “CCCGCCC” using regular expression matching and found sites
were recorded. A window of specified size can be added to each site of the found GC
Box position to amplify the signal.

CTCF Binding Sites

The protein CTCF - a 11-zinc finger protein - is a known insulator which re-
presses heterochromatin from entering euchromatic regions and is therefore supposed to
reside at the edges of open chromatin. It has also been shown to block the advance
of RNA polymerase II [88]. The main difficulty of locating CTCF binding sites in
DNA sequences using in-silico techniques is it’s affinity to bind different binding sites
engaging different subsets of zinc fingers [89]. Nevertheless a binding site for CTCF has
been derived by several groups. It consists of the consensus sequence “CCGCNNG-
GNGGCAG” (or its reverse complement “CTGCCNCCNNGCGG”) [90],[91].

Approach To extract possible binding sites of CTCF, the consensus sequence and its
reverse complement were located in the sequences. As proposed by the authors of [90]
every match with at least 13 matching positions (“N” is always a match) was stated
as a possible binding site. The search was performed using regular expression matching
for all sequences that could be derived from the consensus (and its reverse complement)
by changing one more nucleotide into “N”.

Specific TFBS Using TRANSFAC Matrices

In addition to the location of possible binding sites using consensus sequences, a search
for specific transcription factor bindings site motifs present in the TRANSFAC
database7 was implemented. The two binding sites investigated were V$SP1 Q6 01
(Figure 2.3) and V$TATA 01 (Figure 2.4) representing the transcription factor Sp1 and
the TATA box, a motif common in eukaryotic gene promoters.

Approach To search for the two presented motifs the motif search program MAST [92]
was used which will be presented in detail in section 2.9. Mast can find transcription
factor binding site motifs in nucleotide sequences. The appropriate motifs for SP1 and
the TATA box were extracted by hand and converted into a format that is readable by
MAST. The search was performed on the sequences without any masking. As MAST
uses pvalues and Evalues to secure credible matching a pvalue of 0.1 and an Evalue

7http://www.biobase.de/cgi-bin/biobase/transfac/start.cgi
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Figure 2.3: Sequence logo visualising the TRANSFAC matrix of the Sp1 protein
(V$SP1 Q6 01 ).
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Figure 2.4: Sequence logo visualising the TRANSFAC matrix of the TATA-Box
(V$TATA C ).

of 100 was used to allow the finding of possible binding sites even in the probably long
sequences.

2.5.6 Final Feature Extraction Output

Each potential annotation feature has an assigned symbol which is a single character
representation of that feature. The whole list of features and their appropriate
symbols can be found in table 2.4.

All feature extraction processes output a list with inclusive start/end annotation together
with the appropriate features. In concatenating and sorting all resulting lists by their
start annotation, a full feature list is produced, which represents all extracted features
of the region of interest. Due to the fact that a genomic region can be annotated by
several distinct features, this list can include overlaps between the annotated regions.
The full masking list is then used to build a feature string, which is a base by base
representation of the sequence features. In this feature string every base position is
assigned a single character that stands for its feature according to the regions specified
in the full feature list. Overlaps between feature annotations (causing a single base
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position to be annotated by several features) lead to the assignment of ‘∼’ as the specific
overlap symbol. Nucleotide positions that lack any feature are represented by a ‘-’.
Afterwards, this feature string is again retranslated into a non-overlapping feature
list, which now contains no overlapping annotations anymore, but inclusive start/end
positions for non-overlapping feature regions and overlap regions. Regions that lack any
features are not contained in this list.

All three output formats, the non-overlapping feature list, feature string, and full
(potentially overlapping) feature list, are returned for further analysis. In addition
some meta data is returned, providing the assembly, chromosome, inclusive start and
end positions of the region of interest and the features that have been extracted together
with the used parameters.

Transcript Features Repeats
Transcript # SINE B
TSS ! Simple-repeats D

LINE E
Phylogenetic Features LTR F

Regulatory Potential $ Low complexity H
DNA I

CpG Features Other J
CpG island § scRNA K
CpG Region ? tRNA L

snRNA M
Binding Site Features Unknown 0

GC Box ◦ rRNA P
Motif 1-9 1-9 Satellite Q

RNA R
Insulators srpRNA R

CTCF Binding Site ^
Overlap

No Feature Overlap ∼
No Feature -

Table 2.4: Full list of masked features and their assigned signs

2.6 Sequence Masking

The sequence masking procedure, merges the data from the “Sequence Extraction” and
“Feature Extraction” procedures into one masked sequence, using the script Sequence-
Masker.pl8.

8See Appendix B for a description of scripts
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After assuring that sequence data and masking data correspond (using the meta data
saved along with the computed results) the non-overlapping masking list is used to
successively mask regions annotated by a certain genomic feature to pretend these regions
from being included into the motif search.

Depending on the usage of regulatory potential information, the sequence masking pro-
cedure returns different output:

2.6.1 Without Regulatory Potential Information

In the case of missing regulatory potential information the function masks every region
that is assigned with a feature as transcript or a specific repeat class. All blocks not
assigned with such a feature contain the appropriate nucleotide sequences. The masked
parts are replaced according to the user-specified masking mode:

Masking Mode Cut-Out Replacement
1 The appropriate number (length of cut-out region) of repetitions

of the appropriate feature character
2 A single feature character for the whole region spanned by the

feature
3 The appropriate number (length of cut-out region) of repetitions

of an unspecific wildcards (assigned by the user or default to ‘N’)
4 A single unspecific wildcard (assigned by the user or default to

‘N’)

2.6.2 With Regulatory Potential Information

If regulatory potential information is present, the sequence masking procedure masks
all those parts, that are not assigned to have a regulatory potential. Because the non-
overlapping masking list is used, even parts that are conserved, but overlapped by other
features such as transcripts or repeats, are masked. The masked parts are replaced
according to the masking mode as described above.
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Retrieving and Processing Sequence Data and Features

The following pages contain detailed information about what motif finding
algorithms were used and how the resulting motifs were scored and compared
to gain a set of unique and overrepresented motifs for the positive dataset.
Furthermore a description of how the found motifs were compared to known
vertebrate transcription factor binding site matrices is given. The whole
searching procedure was performed on the two datasets 2K-2K and 2K-next
using different masking conditions.

2.7 Motif Finding Algorithms

As proposed by a motif finding tool competition and already performed by other groups
([76],[93]) several motif finding algorithms were integrated into the motif search to
increase the number of identified motifs. Motif finding algorithms that were based on
different finding strategies were used to overcome possible loss of motifs resulting
from specific characteristics of certain searching strategies. All used motif finding algo-
rithms are freely available for academical purpose and were downloaded and installed
as a local copy. All four programs use FASTA-formated files of the positive dataset
as input, which were generated using the masked/processed sequences of the different
datasets by the perl script PreMotifFinder.pl9.

2.7.1 MEME

MEME was developed by Bailey and Elkan [94] and is provided by the Department of
Computer Science and Engineering at the University of California at San Diego.

It uses a modified form of the expectation maximisation (EM) algorithm to fit a
two-component finite mixture model to a given set of (nucleotide) sequences. The two-
component finite mixture model [94] consists of one component that represents a motif
(multiple occurrences of a specific subsequence) of variable length and a second com-
ponent that models the background. For the second component an optionally Markov
background model of any order can be provided by the user (if not, a 0th-order back-
ground model will be estimated from the given sequences). MEME allows the specifi-
cation of a model for the distribution of the motifs to search for, which can either be
contained exactly one time in every sequence, one or zero times in every sequence
or a user-defined number of repetitions in every sequence. MEME also provides

9See Appendix B for a description of scripts
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the possibility to weight the input sequences. Furthermore, MEME is capable of find-
ing multiple motifs by applying its algorithm several times to the dataset starting from
different initial points in the search space.

MEME was used with the default parameters together with the “-dna” switch which
indicates the use of a DNA alphabet and the “-revcomp” switch which allows the motif
to occur on either + or - strand. The “zero or one occurrence per sequence” motif
distribution was selected. The maximum motif width was set to 25 and the number
of output motifs was set to 10. The default sequence-estimated 0th-order background
model was used and no weights have been specified for the input sequences.

2.7.2 BioProspector

BioProspector was developed by Liu, Liu, and Brutlag [95] and is provided by Stanford
Medical Informatics at the Stanford University.

BioProspector uses a Gibbs sampler algorithm to find overrepresented motifs of a
certain fixed size in a database of (nucleotide) sequences. Gibbs sampling10 strategies
in motif finding are a heuristic and probabilistic method to optimize local multiple
alignments in a dataset of sequences using a strategy that is very close to the Monte
Carlo Markov chain algorithm. BioProspector uses a 3rd-order Markov model
to model the background, which is generated by a user-specified database of sequences,
which can be equal to the input sequences. It overcomes the Gibbs sampling problem
of the proposed occurence of the motif in every single input sequence by using a “two
threshold strategy”. It separates sure and unsure subsequences from improbable ones
and is therefore also called a threshold sampler.
BioProspector can find multiple motifs by repeated runs from different start points in
the search space.

The BioProspector program was used with the default parameters. As background
sequences the whole negative sequence set was used, as provided in FASTA-format by
PreMotifFinder.pl (see above). Because the motif width was unknown but must
be specified for BioProspector three runs defining the motif width as 10, 15, and 20
nucleotides, respectively, were performed.

2.7.3 AlignACE

AlignACE was developed by Hughes et al. [96] and is provided by the Department of
Genetics at Harvard Medical School.

10The algorithm was firstly introduced 1984 by S. Geman and D. Geman for the use in pattern analysis
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AlignACE is another Gibbs sampler and works in a similar fashion as BioProspector,
but uses GC content to approximate the background. It needs no fixed motif width, but
can be started with a user-defined expectation. It only uses the 10 most informative
positions to sample a motif and lets the other positions in the motifs evolve unoptimised.
AlignACE is capable of finding multiple motifs by successive masking of most informative
sites for found motifs in the sequences and then iterate its search, pretending to use these
masked sites.

AlignACE was used with the default parameters. The background CG content was set
to the calculated GC content from the appropriate negative dataset. The “oversample”
parameter was set to 5, leading to an exhaustive search but increasing runtime.

2.7.4 Improbizer

Improbizer was written by Kent [97] and is provided by University of California Santa
Cruz.

The program is another expectation maximisation algorithm which determines
DNA motifs - represented by position specific weight matrices - that are overrepresented
in a given sequence database, compared to the background distribution which is specified
by a 2nd-order Markov model, estimated from a user-specified sequence database. In the
first step, an initial-motif is produced by using all subsequences of the first 10 sequences,
match these to the first 20 sequences and keep the most promising subsequences for
further improvement. In the next step it then iteratively collects the matches and near
matches for all motifs over all sequences and averages them together to create a new
motif. The algorithm stops after it converges.
The Improbizer program is capable of finding multiple motifs by starting from different
initial points in the search space.

Improbizer was used with the default parameters. The sequences of the whole negative
sequence set, as provided in FASTA-format by PreMotifFinder.pl (see above), were
assignes as negative dataset. The “ignoreLocation” and “rcToo” switches were set to
“on” to allow for motifs on both strand and in arbitrary locations in the sequence. The
number of ouput motifs was set to 5.
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2.8 Representation of Found Motifs

All motif finding algorithms output representations of their found motifs, but using
different formats. The script PostMotifFinder.pl11 contains functions to parse all
these motif finder output files into one common motif file format (called mot(if)
format), which was designed for an easy access of the found motifs for further processing.
It contains the number and three representations of every found motif:

1. Multiple alignment of sites
This representation is the output of the most motif finding algorithms used. It rep-
resents the motif as a multiple alignment of found sites in the input sequences
using a fixed width.

Example: CCCCCGCCCA
GCCCCGCCCC
CGCCCGCCGC
GCCCCGCCCC
GCCCCGCCCC
CCCCCGCCCG
...

If no multiple alignment of found sites was present in the motif finder output (as,
for example, in the case of Improbizer), a set of sequences that closely approximate
the presented motif was generated. The approximation bases on the fact that each
column of a position-dependent frequency matrix (see below) is independent of all
the others. For every column a defined-length set of nucleotides was generated
that follows the distribution of that column of the motif. Afterwards the shuffled
sets were concatenated into a multiple alignment.

2. Position-specific frequency matrix
A position-specific frequency matrix (PSFM) (also called position fre-
quency matrix (PFM)) shows the fraction of each of the nucleotides A, C,
G, and T at a specific position in the motif. Two different representations are
known, one shows the total count of the appropriate nucleotide, the other
its frequency. Each found motif in the mot files was stored using the second
representation.

Example:

Column A C G T
1 0.000000 0.283582 0.716418 0.000000
2 0.000000 0.701493 0.298507 0.000000
3 ...

11See Appendix B for a description of scripts
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3. Position-specific scoring matrix
The position-specific scoring matrix (PSSM) (also called position weight
matrix (PWM)) is calculated from a PSFM using logarithmic values instead of
probabilities. Two distinct forms exist, the first using log-likelihood values and
the second using log-odds scores, which additionally include the nucleotide
background distribution into the PSSM. Elements in such a log-odds PSSM
are calculated in the following way:

mij = log
(

pij

bi

)
where pij is the probability of observing nucleotide i at position j in the motif,
and bi is the background probability of nucleotide i.
This representation was used to store found motifs in the mot files. Because a
percentage of “0” would lead to log(0), each zero entry of the PSFM was assigned
the lowest possible value before calculating the PSSM.

Example:

Column A C G T
1 -1791 18 152 -1794
2 -1791 148 25 -1794
3 ...

2.9 Search Found Motifs in the Dataset using MAST

After a specific motif has been found by one of the motif finding algorithms, its local-
isation in the sequences of the whole dataset must be determined. Several tools exist
for these localisation process, ranging from very easy scoring using only the PSFM or
PSSM, to advanced motif localisers that additionally include statistical considerations
(see for example [92] and [96]).

In this analysis the program MAST written by Timothy L. Bailey and Michael Grib-
skov [92] was used which is provided by the San Diego Supercomputer Center.

MAST searches motifs represented by PSSM in a provided sequence database. Instead
of scoring a match solely based on the score derived from the match of the PSSM
against the sequence, it uses a Fisher “omnibus” procedure (see [92]) to provide
statistical pvalues for a motif occurrence in a sequence. These pvalues are calculated
from a random sequence model based on the average nucleotide frequencies of the
provided sequences. Using the -comp switch the letter frequencies are adjusted for
every sequence instead of the whole database. MAST provides three different types of
pvalues:
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1. Position pvalue = The probability that a randomly selected position in a ran-
domly generated sequence of the same length as the matching sequence has a
match score at least as large as the match score of the best matching position of
that sequence to the motif.

2. Sequence pvalue = The probability that a randomly generated sequence of the
same length as the input sequence would achieve a match score that is at least
as large as the match score of the best matching position of that sequence to the
motif.

3. Evalue = The Evalue is the expected number of sequences in a randomly generated
database of the same length that would match the motif as good as the sequence
does.

MAST output includes a list of all sequences that match a given motif with a posi-
tion/sequence pvalue and Evalue less than specified by the user. The name of each
sequence is provided along with the position of each match. For evaluation of reliable
matches of found motifs to the sequence database sequence pvalues ranging from 0.01
to 0.05 and Evalues ranging from 2 to 10 together with the -comp switch were used.

2.10 Score Found Motifs

The motif finding process was designed to identify potential TFBS that reveal the mecha-
nism of highly correlated co-expression of genomic neighbours. The positive and negative
datasets were build up of sequences that should include or lack these TFBS, respectively.
To score the significance of a found motif in respect to its distribution between the
positive and negative dataset, several distinct scores were used, which are presented in
the following. The script PostMotifFinder.pl (see above) calculates these scores for
every motif found by any of the used motif finding algorithms using the script Score-
Motifs.pl12. While only these scores were included into the final PDF output, the
matching sequences for each motif and the appropriate MAST output files were stored
as ancillary data files.

2.10.1 Group Count and Frequency

The Group Count of a found motif is the total number of sequences in a dataset
that contain at least one site that matches the motif as calculated by MAST. Multiple
occurrences of a single motif in one sequence are counted as single occurrences. In

12See Appendix B for a description of scripts
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our setup, each found motif is assigned such a group count for its occurrences in the
positive (“+”-count) and in the negative (“−”-count) dataset. The respective Group
Frequencys are calculated by

fpos =
“+”-count

# of sequences in positive dataset

and
fneg =

“-”-count
# of sequences in negative dataset

2.10.2 Ratio of Group Frequencies (+/− Ratio)

The Ratio of Group Frequencies (+/− Ratio) is the ratio between fpos and fneg

and is calculated by

R+/− =
fpos

fneg

The value measures the proportional difference (“fold”) of the group frequencies for a
found motif between the positive and negative dataset. The advantage of comparing
frequencies instead of total group counts is the unequal number of sequences in
the two distinct datasets. This score becomes “1” if the frequencies are equal and in-
creases/decreases if the motif is more frequent in the positive/negative dataset. Because
we are searching for motifs that are very specific for the positive dataset but are less
frequently present in the negative dataset, a candidate motif should have a +/− Ratio
greater 1.

2.10.3 Group Specificity Score

The Group Specificity Score (GSS) was introduced for motif finding by Hughes
et al. [96] and was used to score the significance of found motifs in several stud-
ies [76],[96],[98],[99]. Its usability in discriminating real binding sites from background
noise (or in our case uniformly distributed occurrences in the whole positive and negative
dataset) was shown for example in [100].

The Group Specificity Score measures the affiliation of a found motif to the sequences
it was computed from, in respect to all possible sequences. It is calculated using the
hypergeometric distribution:

Sgroup =
min(s1,s2)∑

i=x

(
s1

i

) (
N−s1

s2−i

)
(

N
s2

)
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where N is the total number of sequences in the whole (positive and negative) dataset,
s1 is the number of sequences used to find the motif (this is the number of sequences in
the positive dataset), s2 is the number of sequences in the whole dataset that have an
occurrence of the motif, and x is the number of sequences in the intersection of s1 and s2

(the number of sequences in the positive dataset that have an occurrence of the motif).
Each term of the sum calculates the probability of having obtained an intersection of i
sequences between the set of sequences containing the motif and those used to find it
assuming a random sampling of the two sets. The sum Sgroup is therefore the probability
of observing the actual intersection or a greater one. It ranges between 0 and 1.
Briefly, the Group Specificity Scores gives an impression how specific a found motif
is for the positive dataset, in terms of probability of observing this distribution
between positive and negative dataset. A candidate motif is expected to have a very low
Group Specificity Score, meaning it is very improbable to see these distribution leading
in the direction of the positive dataset by chance.

Some groups have used the Site Specificity Score instead of the GSS to score the
significance of their found motifs (see for example [101]). The Site Specificity Score is
calculated using the same distribution but with N standing for the total number of sites
in the dataset (total number of nucleotides), s1 for the number of nucleotides in the
sequences used to find the motif and s2 for the number of sites targeted by the found
motif. The Site Specificity Score accounts for multiple occurrences of a single found
motif in the input sequences and might become a better choice, if most of the sequences
in the negative and positive dataset have at least one occurrence of the found motif [76].
We decided to use Group Specificity Score instead of Site Specificity Score because we
did not a priori expect multiple occurrences of single TFBS in our positive dataset.

2.11 Comparison and Selection of Found Motifs

Using four different motif finding algorithms it is very probable that a specific motif will
be postulated more than one time in eventually slightly different form. Therefore it is
highly recommended to compare the found motifs and select the best scoring member
of every group of similar motifs and eliminate the poorer scoring redundant motifs.

To compare two found motifs the tool CompareACE was used which is also provided by
Hughes et al. [96] together with their motif finding algorithm AlignACE. It calculates
the Pearson correlation coefficient between the PSFM of two motifs using only the
6 most informative positions of the first motif. The script PostMotifFinder.pl (see
above) calculates this Pearson correlation coefficient for every possible pair of found
motifs and then uses Tree, which is provided along with CompareACE to hierarchically
cluster the found motifs. The cluster-cluster score is set to be the average of all pairwise
scores of motifs between the two clusters. A cut-off correlation coefficient must be set
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to determine final distance of clusters. For the clustering of found motifs a correlation
coefficient cut-off of 0.6 was used.

After clusters were calculated and stored in text files, the best scoring motif in every
cluster was extracted and the others were removed. GSS was used to select the best
motif (lowest score). For every selected motif, the script PostMotifFinder.pl (see
above) returns its number together with all calculated scores (Group Counts, Group
Frequencies, R+/−, and Sgroup).

2.12 Draw Sequence Logos for Found Motifs

After selecting the best scoring motifs and removing redundancy, a sequence logo is
drawn for every final motif. Sequence logos for multiple alignments have been developed
by Tom Schneider and Mike Stephens [102]. An exemplary sequence logo is shown in
Figure 2.5.

A sequence logo is a graphical representation of a multiple alignment and illustrate three
position-specific information:

1. Relative frequency of each nucleotide

2. Order of predominance of each nucleotide

3. Information content in bits

The relative nucleotide frequency at each position represented by the height of the four
letter “A”, “C”, “G”, and “T”, which is calculated

hij = pij ∗ Ij

where hij is the height of the nucleotide letter i at position j in the motif, pij is the
appropriate probability of observing these nucleotide at that position in the sequence
and Ij is the information content of the sequence at position j. The information content
is defined as

Ij = 2− Uj + e(n)

where 2 is the maximal possible uncertainty at a position based on 4 possible letters,
e(n) is a correction factor that is required if only a few samples alignment sequences are
present and Uj is the uncertainty at position j, which is evaluated using the formula

Uj = −
∑

i∈{A,C,G,T}

pij log2 pij
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Figure 2.5: Sequence logo visualizing the TRANSFAC matrix of the myogenic MADS
factor MEF-2 (V$MEF2 04 )

Letters are sorted to put the most frequent nucleotide letter at top.

Sequence logos for all found motifs were drawn using a local installation of the web-tool
WebLogo13[103]. The program was used with the standard parameters but adding
colours and axis labels.

2.13 Assign Known TFBS Matrices to Found Motifs

To compare the found motifs to already known TFBS current matrix data from TRANS-
FAC Professional 10.2 (BIOBASE Biological Databases, Germany) was downloaded.

To obtain a large set of known TFBS, all present TFBS matrices that were generated
from vertebrate data (indicated by the “V” designator in the matrix identifier - e.g.
V$AP1 Q1 ) were filtered. Even if TRANSFAC identifier include a quality code for their
provided TFBS matrices (in the example above “Q1” means quality 1 which is the
highest quality) all provided matrices were used in the comparison to the found motifs,
regardless of their quality. From a total of 811 present TFBS matrices 584 vertebrate
matrices were extracted and all of them were converted to the mot file format, which
is described above.

After these preprocessing steps, each final motif was compared to all vertebrate TFBS
matrices using the same strategy as used in the comparison of all motif finding algorithm
output motifs. A Pearson correlation coefficient of at least 0.6 was used to assign known
TFBS to the found motifs. If several TFBS match a certain motif, the one with the
highest correlation coefficient was included in the final PDF output together with
the total number of matching TFBS. Nevertheless, all TFBS matching with a correlation
coefficient of at least 0.6 were stored in the ancillary data files.

13http://weblogo.berkeley.edu/
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To manually compare the similarity of a found motif to its assigned TFBS matrix,
Sequence Logos for the appropriate TFBS matrix were drawn using the WebLogo tool
and included in the PDF output.

2.14 Search for TRANSFAC Matrices in the Datasets

In addition to searching for common motifs using several motif finding algorithms (as
described in section 2.7), the search for known TFBS from the TRANSFAC database was
implemented. This approach is somewhat opponsite to the motif search described
previously. In this case the search is directed from existing PSSM for known TFBS that
are searched for in the sequence datasets (instead of searching for overrepresented motifs
in the sequences and afterwards comparing these to known TFBS).

2.14.1 Search for All Vertebrate Matrices

A search for all existing vertebrate TRANSFAC (TRANSFAC Professional 10.2) PSSM
was performed using a similar strategy as described in the sections 2.9 to 2.13. The
TRANSFAC PSSM were used as input files for the script PostMotifFinder.pl (see
above).
Using MAST a search for all 584 previously extracted vertebrate matrices, both
(positive and negative) dataset, was performed. Sequence pvalues ranging from 0.01 to
0.05 and Evalues ranging from 2 to 10 together with the -comp switch were used for
the evaluation of reliable matches of vertebrate PSSM to the sequence database.
After computing all matches of a specific PSSM using MAST the same scores as described
in section 2.10 were computed and PSSMs were clustered with a correlation coefficient
cut-off of 0.7. For the best-ranking (due to Group Specificity Score) motif in each cluster
a sequence logos was drawn. Finally a PDF output file was created in the same fashion
as described previously.

2.14.2 Searching Matrices of Nuclear Receptors

Nuclear receptors (NRs) have been shown to interact in a sequence specific manner
with histones and histone modifying proteins and therefore to influence expression of
targeted genes [21]. Because of the possible role of NRs in the establishment
of euchromatic regions an additional TFBS search for the subgroup of TRANSFAC
PSSM that represent NR TFBS (shown in Table 2.5) was performed with the same
settings used in the overall TFBS search.
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NR Symbol NR Name TRANSFAC Matrices

Esr1 estrogen receptor 1 alpha V$ER Q6, V$ER Q6 02
Esr2 estrogen receptor 2 beta V$ER Q6 02
Esrra estrogen related receptor, alpha V$ERR1 Q2
Hnf4a hepatic nuclear factor 4, alpha V$DR1 Q3,V$HNF4 DR1 Q3,

V$HNF4 Q6,V$HNF4 Q6 01,
V$HNF4 Q6 02,
V$HNF4 Q6 03,
V$HNF4ALPHA Q6

Hnf4g hepatocyte nuclear factor 4,
gamma

V$DR1 Q3,V$HNF4 DR1 Q3,
V$HNF4 Q6

Nr3c1 nuclear receptor subfamily 3,
group C, member 1

V$GR Q6,V$GR Q6 01,
V$GRE C,V$PR Q2, V$GR 01

Ppara peroxisome proliferator activated
receptor alpha

V$PPAR DR1 Q2,
V$PPARA 01, V$PPARA 02

Rora RAR-related orphan receptor al-
pha

V$RORA1 01, V$RORA2 01

RARA retinoic acid receptor, alpha V$DR4 Q2, V$T3R Q6
RARB retinoic acid receptor, beta V$T3R Q6,V$DR4 Q2,

V$T3R Q6
Rarg retinoic acid receptor, gamma V$DR4 Q2, V$T3R Q6
RXRA retinoid X receptor alpha V$DR4 Q2,V$PPARA 02,

V$T3R Q6, V$DR3 Q4
RXRB retinoid X receptor beta V$DR3 Q4,V$T3R Q6,

V$DR4 Q2
RXRG retinoid X receptor gamma V$T3R Q6
Thra thyroid hormone receptor alpha V$T3R Q6
Nr2f1 nuclear receptor subfamily 2,

group F, member 1
V$COUP 01,
V$COUP DR1 Q6,
V$COUPTF Q6,V$DR1 Q3,
V$DR4 Q2, V$HNF4 Q6

Nr2f2 nuclear receptor subfamily 2,
group F, member 2

V$ARP1 01,
V$COUP DR1 Q6,
V$COUPTF Q6,V$DR1 Q3,
V$DR4 Q2, V$HNF4 Q6

Nr1h3 nuclear receptor subfamily 1,
group H, member 3

V$DR4 Q2,V$LXR DR4 Q3,
V$LXR Q3, V$PXR Q2

Nr1h2 nuclear receptor subfamily 1,
group H, member 2

V$DR4 Q2, V$LXR Q3
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NR Symbol NR Name TRANSFAC Matrices

Mef2a* myocyte enhancer factor 2 alpha V$MEF2 01,V$MEF2 02,
V$MEF2 03,V$MEF2 04,
V$MEF2 Q6 01,
V$MMEF2 Q6,V$HMEF2 Q6,
V$MEF2 01,V$AMEF2 Q6,
V$RSRFC4 01,V$RSRFC4 Q

Mef2b* myocyte enhancer factor 2 beta V$MEF2 Q6 01
Mef2c* myocyte enhancer factor 2 gamma V$MEF2 Q6 01
gata4* GATA-box binding factor 4 V$GATA Q6, V$GATA4 Q3
srf* serum responsive factor; V$SRF 01,V$SRF C,

V$SRF Q5 02,V$SRF Q6,
V$SRF Q4, V$SRF Q5 01

nkx2.5* cardiac-specific homeobox protein V$NKX25 01,V$NKX25 02,
V$NKX25 Q5

Table 2.5: Table of nuclear receptors and additional TFs of special interest and their as-
sociated TRANSFAC matrices used in the search for nuclear receptor binding
sites. TF assigned with a “*” are no nuclear receptors.

Investigation of the Distributions of Certain Genomic Features

The following pages present the methods used to investigate the distribu-
tions of several genomic features (e.g. CpG islands, repeats) in the posi-
tive/negative dataset as well as their distribution over individual sequences.

2.15 Median, Mean and Density Computation

Certain genomic features as CpG island or specific TFBS are known to influence ex-
pression of specific genes and chromatin environment. Therefore analyses examining
the distributions of these features in the positive and negative datasets were imple-
mented. The annotation of the genomic regions with these features was computed using
the script FeatureExtractor.pl14 (see section 2.5 for further details of the feature ex-

14See Appendix B for a description of scripts
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traction process). The analysis was performed using the scripts FeatureStatistics.pl
and FeatureStatistics.R14.

The following list contains all analysed features:
• CpG island
• CpG region
• SP1 bindings site (TRANSFAC)
• GC Box
• CTCF binding site
• TATA Box (TRANSFAC)
• All repeat classes as annotated by UCSC genome browser

For each of these features the following properties were analysed for every sequence:
1. Absolute number of occurrences
2. The amount of nucleotides that is covered (in percentage of the total region)
3. Absolute number of occurrences in the regions Left15, Gene 1, Intergenic, Gene 2,

and Right15

4. The amount of nucleotides that is covered in the regions Left15, Gene 1, Intergenic,
Gene 2, and Right15(in percentage of the individual region)

After extracting these properties for each individual sequence, the mean, the median,
and the density (only points 2 and 4) for each feature is computed for the positive and
negative dataset. Additionally a Wilcoxon rank sum test is performed to analyse the
significance of differences in the feature distributions between the two datasets. The
nonparametric Wilcoxon test was used instead of the t test as the distributions of the
extracted features does not need to be Gaussian.

2.16 Representation of Feature Distributions Over Genomic
Regions

The analysis performed on distributions (see section 2.15) describes the presence of a
specific feature in the region of interest but does not account for its position in that
particular sequence. To detect a regional enrichment or depletion of a feature over the
positive/negative dataset a package called FeaturePlotter was implemented.

This tools comprises the following two submodules:
1. Adjustment/Mapping of Regions of Different Length

A maijor problem in investigating similarities in the distributions of certain features

15Left and Right are used for better understandability; the region itself has no orientation
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Figure 2.6: Illustration of adjustment and mapping of two arbitrary feature distributions
of different length. A: Adjustment to the left B: Adjustment to the middle
C: Adjustment to the right D: Mapping.

over multiple genomic regions is the different length of these regions. For example,
the intergenic distance ranges from -184bp to 116,174bp in the 2K-2K positive
dataset. Therefore, functions that adjust or map feature distributions over different
sized regions are contained in the FeaturePlotter package:
• Adjusting several feature distributions to a (longer) region of specified length

will insert zeros at positions that are not covered by the (shorter) region.
• In contrast the mapping process will not insert zeros but enlarge or reduce

the length of the mapped region while maintaining its feature distribution.

The different possibilities of adjusting/mapping two or more feature distributions of
different length is illustrated in Figure 2.6. After all regions and their appropriate
feature distributions are adjusted/mapped to a given length, the mean value of
every position in that region is computed. This mean reflects the probability of
finding the investigated feature in a specific proportion of all sequences contained
in the dataset.

2. Plot Feature Distributions over Several Region
After adjusting/mapping all selected regions to a given length and computing
the overall mean for each position, the sequence of this mean is used as input
for the plotting script. The number of regions and the number of (mean) feature
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distributions is not fixed to keep the FeaturePlotter flexible for multiple
settings. The resulting plot consist of one line per passed feature that represents
its distribution over all regions, together with a summary line which contains all
feature distributions in one graph. For each feature distribution, values for line
style, width and color can be specified to adapt the output for personal needs,
as well as y- and x -axis definitions. Furthermore, a graphical illustration of the
represented regions is drawn below each feature plot to enable the reader to
interpret the feature distribution in its context. The illustration consists of boxes
and lines that are defined and coloured by user-defined parameters. An example
for a FeaturePlotter plot is given in Figure 2.7.

The FeaturePlotter was used to represent the distribution of all the extracted fea-
tures after preprocessing the feature annotations with the script DistributionExtrac-
tor.pl16. Every individual region (Gene 1, Intergenic, etc.) from a single pair of the
dataset was therefore mapped to a specified size. The obtained region lengths are shown
in Table 2.6.

Left Gene 1 Intergenic Gene 2 Right
2K-2K 2,000 10,000 10,000 10,000 2,000
2K-next 10,000 10,000 10,000 10,000 10,000
H2K-2K 2,000 10,000 10,000 10,000 2,000
H2K-next 10,000 10,000 10,000 10,000 10,000

Table 2.6: Used mapping lengths of each region used in the FeaturePlotter plots ac-
cording to the selected dataset.

16See Appendix B for a description of scripts
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Figure 2.7: Exemplary illustration of a FeaturePlotter plot with 3 regions and 3 fea-
tures.
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Chapter 3
Results & Discussion

The following pages contain the results from all analysis performed in this master thesis.
The first and second part depict the results of the Motif search and the complemen-
tary TFBS search process together with a discussion of the results. Furthermore, the
distribution of genomic features is depicted together with an analysis of selected co-
occurences.

A collection of all Figures included in this chapter together with some additional Figures
that further illustrates the obtained results can be found in Appendix C.
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Figure 3.1: Boxplots of the intergenic distances for pairs of the positive and negative
datasets. A: Mouse Datasets B: Human Datasets

3.1 Sequence Datasets

The aim of our investigations was to examine regulatory elements that could lead to the
observed coordinated expression of adjacent genes. The basis of the analyses performed
are two mouse (mm8) sequence datasets, 2K-2K and 2K-next. Both are derived
from two groups of gene pairs that share a high amount of correlated expression (highly
co-expressed gene pairs - HCPs - postive dataset) and an uncorrelated expression
patterns (uncorrelated gene pairs - UCP - negative dataset), respectively. To
assure stable expression properties for each individual gene pair, only those pairs have
been extracted that belong to the appropriate co-expression group according to both
Fantom3 mouse and GNF Symatlas human dataset. Furthermore, these pairs
have been revised for intermediate Ensembl transcripts and a unique Fantom/Ensembl
transcript assignment. Finally, only gene pairs that are at least 2kb distant from
their sourrounding genes have been included into the dataset. In case of 2K-2K
2kb on either side of the pair was included whereas in case of 2K-next the entire
sequence up to the neighbouring left/right genes was added. The tables 3.1 and
3.2 show some statictisc of the two datasets defined.

Moreover, the two homologous human (hg18) sequence datasets H2K-2K and
H2K-next have been defined on the two datasets to verify the results. The appropriate
dataset statistics are presented in table 3.3 and 3.4.

For a full description of the co-expression groups and the dataset definition process refer
to sections 2.1 to 2.3. Appendix A contains individual definition of all pairs included
in the datasets.
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Dataset: 2K-2K
Organism: Mouse
Positive: 51 Negative: 134

Total number of bp in the positive dataset: 3,644,565
Total number of bp in the negative dataset: 8,287,500
Distribution of sequence lengths:

Min Avg Max
Positive dataset: 11,435 71,462 294,357
Negative dataset: 8,605 61,847 262,771
Distribution of GC content:

Min Avg Max
Positive dataset: 38.78% 44.13% 55.03%
Negative dataset: 37.90% 45.34% 55.84%
Specific nucleotide content:

A C G T
Positive dataset: 27.86% 22.07% 22.06% 28.01%
Negative dataset: 27.40% 22.71% 22.64% 27.25%

Table 3.1: Statistics for the 2K-2K dataset.

Dataset: 2K-next
Organism: Mouse
Positive: 51 Negative: 130

Total number of bp in the positive dataset: 6,882,780
Total number of bp in the negative dataset: 20,331,575
Distribution of sequence lengths:

Min Avg Max
Positive dataset: 16,657 134,956 404,800
Negative dataset: 11,534 156,396 1,278,380
Distribution of GC content:

Min Avg Max
Positive dataset: 39.77% 42.85% 55.62%
Negative dataset: 33.99% 42.70% 52.72%
Specific nucleotide content:

A C G T
Positive Dataset: 28.00% 21.91% 21.98% 28.11%
Negative Dataset: 28.10% 21.91% 21.90% 28.09%

Table 3.2: Statistics for the 2K-next dataset.
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Dataset: H2K-2K
Organism: Human
Positive: 35 Negative: 96

Total number of bp in the positive dataset: 3,058,003
Total number of bp in the negative dataset: 6,965,054
Distribution of sequence lengths:

Min Avg Max
Positive dataset: 11,593 87,371 295,498
Negative dataset: 12,678 72,552 249,948
Distribution of GC content:

Min Avg Max
Positive dataset: 38.42% 43.59% 63.45%
Negative dataset: 35.09% 44.19% 60.73%
Specific nucleotide content:

A C G T
Positive dataset: 27.56% 21.67% 21.92% 28.85%
Negative dataset: 27.81% 22.07% 22.11% 28.01%

Table 3.3: Statistics for the H2K-next dataset.

Dataset: H2K-next
Organism: Human
Positive: 35 Negative: 93

Total number of bp in the positive dataset: 5,123,961
Total number of bp in the negative dataset: 18,771,424
Distribution of sequence lengths:

Min Avg Max
Positive dataset: 24,230 146,399 433,351
Negative dataset: 19,785 201,843 1,714,699
Distribution of GC content:

Min Avg Max
Positive dataset: 38.55% 43.24% 63.14%
Negative dataset: 35.39% 42.14% 59.43%
Specific nucleotide content:

A C G T
Positive dataset: 27.97% 21.58% 21.66% 28.79%
Negative dataset: 28.72% 21.03% 21.10% 29.15%

Table 3.4: Statistics for the H2K-next dataset.
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Figure 3.2: Chromosomal position (relative to total number of genes on each chromo-
some) of gene pairs belonging to the positive and negative dataset. A: Mouse
Datasets B: Human Datasets

In our previous analysis [7] we showed that HCPs are limited in size. Investigating
the intergenic distance between the pairs contained in the positive and negative datasets
reveals the proposed difference in length, as genes in the mouse positive dataset have
an intergenic distance median of 5,924bp (human: 8,727bp) compared to 9,593bp
(human: 12,896bp) in the negative dataset (pmouse = 0.08901 and phuman = 0.03819
in Wilcoxon rank sum test). At least for the mouse data, these median values are even
smaller than suggested from our previous analysis. However, this is true for both the
positive and negative dataset. Furthermore, the distance between the means of the two
defined group is smaller. This indicates that there may also be a certain mechanism that
effects clustering of (strongly) uncorrelated gene pairs. The distribution of intergenic
lengths is shown in Figure 3.1.

Mouse datasets
Dataset Convergent Divergent Unidirectional
Positive 33.33% 13.72% 52.95%
Negative 22.39% 17.91% 59.70%

Human datasets
Dataset Convergent Divergent Unidirectional
Positive 34.29% 11.43% 54.28%
Negative 20.83% 17.71% 61.46%

Table 3.5: Percentage of gene pairs that have a certain genomic orientation for the human
and mouse dataset.
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Figure 3.3: Amount of pairexpression of pairs belonging to the positive and negative
dataset. A: Mouse Datasets (13 tissues) B: Human Datasets (79 tissues)

The gene pairs tend to be randomly distributed over the chromosomes as indicated
in Figure 3.2. This finding agrees with our pervious results. Furthermore, the gene pairs
in the positive and negative dataset have a similar distribution in respect to the three
possible genomic orientations (see table 3.5).

We previously could show that HCPs are not solely the result of a clustering of house-
keeping pairs [7]. Accordingly the pairs in the defined positive datasets does not solely
comprises of housekeeping pairs (see Figure 3.3).

3.2 Bindings Site Analysis

3.2.1 Motif Search

To find motifs overrepresented in the positive mouse datasets (compared to the negative
dataset) several motif finding alggorithms were used. Motif finding programs search
for overrepresented short subsequences that could represent TFBS. In our case, we
included the regulatory potential information (as indicated by a regulatory poten-
tial score > 0) into the searching process to specifically reduce the initial sequences to
conserved and potentially regulatory subsequences. This methods is also called phylo-
genetic footprinting. Furthermore, other elements like specific repeats classes can be
masked from the sequences prior to the motif finding process. For all analysis transcribed
regions were excluded.
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Motif + − +/−
Ratio

Group
Specificity
Score

Motif Sequence Logo
Matching
TFBS
(≥0.6)

Best TFBS Best TFBS Sequence Logo

1 37 38 2.558308 5.529381e-08 9
Sp1
(V$SP1 Q6)
0.723513

2 32 38 2.212590 2.025750e-05 24
Sp1
(V$SP1 Q6)
0.979574

3 12 6 5.254902 3.074113e-04 0 / /

4 25 30 2.189542 4.965302e-04 14
CIZ
(V$CIZ 01)
0.703133

5 20 20 2.627451 5.279426e-04 8
AP-4
(V$AP4 Q6)
0.734285

6 22 26 2.223228 1.233805e-03 2
Hand1:E47
(V$HAND1E47 01)
0.663604

7 26 35 1.951821 1.376354e-03 21
KAISO
(V$KAISO 01)
0.762017

8 9 4 5.911765 1.435477e-03 7
E2F
(V$E2F Q2)
0.838049

9 19 22 2.269162 2.785642e-03 0 / /

10 16 17 2.472895 3.892884e-03 13
Ik-3
(V$IK3 01)
0.77656
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Table 3.6: The best-ranking motifs resulting from the motif search process us-
ing the 2K-2K dataset.
The + and - columns contain the absolute number of occurences in the ap-
propriate dataset. +/- Ratio and the Group Specificity Score are described
in section 2.10. The total number of matching TRANSFAC matrices that
match the motif with a correlation coefficient of at least 0.6 is given in column
Matching TFBS. The best-matching TRANSFAC matrix and the appropriate
correlation coefficient is presented in column Best TFBS. The WebLogo tool
(described in section 2.12) was used to draw the sequence logo of the found
motif and the best-matching TRANSFAC TFBS.
The following additional attributes were used in the search: Tree cluster
distance: 0.6, MAST Sequence pvalue: 0.05, MAST Evalue: 10

Performing the search on the two mouse datasets using regulatory potential information
and masking all repeat classes other than simple repeat and low complexity results in
the motif ranking presented in Table 3.6 and 3.7. The ranking was based on Group
Specificity Score (GSS) which is decribed in section 2.10.3 and only the best 10 motifs
are shown.

Significant overrepresentation of a GC-rich motif indicating SP1 binding
In both datasets the motif search detects a significantly overrepresented GC-rich motif
(compare Table 3.6 motif 1 and Table 3.7 motif 1), which is present in almost all se-
quences of the positive dataset (37 and 41 hits in a total of 51 sequences, respectively)
but underrepresented in the negative dataset (38 and 49 hits in a total of 134 and 130
sequences, respectively). This distribution leads to a more than doubled frequency
(as indicated by the +/- ratio of >2) and a very low GSS.

Motif 2 of Table 3.6 seems to be a shorter but very similar version of the first detected
motif. Both are highly similar to the TF binding matrix of SP1.

SP1 (identified in the early 1980s) was the first transcription factor shown to bind
to GC Boxes (GGGGCGGGG) and GT/CACC boxes (GGTGTGGGG) via its three
Cys2His2 zinc-finger motifs [104]. These GC/GT boxes are commonly found in CpG-
rich methylation-free islands [105]. It is a member of a large family of Sp1-like/KLF
(Krüppel-like factor) genes that can either activate or repress their target genes. SP1
was shown to control the expression of housekeeping genes as well as tissue-specific
and viral genes. Sp1 binding has been reported in promoters, enhancers and locus
control regions. The family member EKLF for example has a functional target site
located in the main regulatory element of the β-globin locus. Wheter SP1 activates or
represses it’s target genes is suggested to be controled by interacting corepressors and
coactivators [104]. One example is the CREB-binding protein (CBP) homolog
p300 and the CBP/p300-associated factor (PCAF) that were shown to have acetyl-
transferase (HAT) activity [106].
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Motif + − +/−
Ratio

Group
Specificity
Score

Motif Sequence Logo
Matching
TFBS
(≥0.6)

Best TFBS Best TFBS Sequence Logo

1 41 49 2.132853 1.503406e-07 1
KROX
(V$KROX Q6)
0.714317

2 15 12 3.186275 1.086099e-03 1
TFII-I
(V$TFIII Q6)
0.676122

3 19 19 2.549020 1.094421e-03 3
AREB6
(V$AREB6 03)
0.629228

4 45 85 1.349481 1.233841e-03 10
FOXP1
(V$FOXP1 01)
0.686917

5 51 112 1.160714 1.805383e-03 0 / /

6 21 25 2.141176 2.589291e-03 0 / /

7 14 12 2.973856 2.592593e-03 0 / /

8 18 20 2.294118 3.683190e-03 2
Lyf-1
(V$LYF1 01)
0.704622

9 25 35 1.820728 4.252573e-03 21
MEF-2
(V$MMEF2 Q6)
0.81539

10 21 28 1.911765 7.267082e-03 2
NF-1
(V$NF1 Q6)
0.63069
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Table 3.7: The 10 best-ranking motifs resulting from the motif search process
using the 2K-next dataset.
The following additional attributes were used in the search: Tree cluster
distance: 0.6, MAST sequence pvalue: 0.05, MAST Evalue: 10

The first motif in Table 3.7 is the binding site of KROX. The binding sites of SP1
and KROX as annotated by TRANSFAC are highly similar and share a correlation
coefficient of 0.9261. Because of their very similar binding site, an interaction of this
factors has been suggested [107]. We therefore propose a SP1 dependent mechanism
for coexpression of genes.

Other found motifs
The motif search process reveals additional possible binding sites that could contribute
to the observed level of co-expression of genomic neighbours.
A large fraction of the found TFBS belong to TFs that have been associated to chro-
matin remoddeling. These TFs are AP-4, KAISO, E2F, MEF-2, and the transcrip-
tion factor Ikaros 3 (Ik-3)/Lyf-1 which belongs to the 10 top-ranking TFBS in both
datasets. Ikaros can participate in chromatin remoddeling by interaction with HATs
and nuclear receptor [108]. Similarly, the other mentioned TFs have been described to
contribute in HAT and HDAC recruitment [109],[110],[111],[112].
Furthermore, the TF NF-1 is a nuclear receptor. These proteins bind histones and
activate the remodelling machinery [21].
For the remaining TFs CIZ, AREB6, FOXP1, Hand1:E47 and TFII-I interactions
with HAT/HDAC has not been described in the literature.
Finally, 5 motifs are found that can not be associated to any known vertebrate TFBS.

All in all, the other found TFBS scored worse compared to the SP1 binding sites men-
tioned above. However, all used motif finding tools are developed for the search in
relatively short (promoter) sequences. Because the exact position of our proposed reg-
ulatory elements was unknown, we needed to include a large amount of sequence.
This might have increased the noise level and therefore led to missed motifs. To over-
come the noise problem, we included the conservational RP information. However, as
the position of regulatory elements might have shifted during evolution, the use
of conservational information could again have led to a loss of binding sites in the masked
sequences.

Investigation on the influence of masking conditions in the motif search
The above analysis was repeated with modified masking conditions (e.g. the exclu-
sion of regulatory potential information or modified repeat masking conditions). Addi-
tional masking of the low complexity and simple repeats leads to a diminished occupancy
of SP1 binding sites in the sequences of both datasets. Nevertheless, the results were
found to be robust in regard to the masking parameters.
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TFBS + − +/−
Ratio

Group
Specificity
Score

TFBS Sequence Logo

1 c-Ets-1(p54)
(V$CETS1P54 01)

12 2 15.764706 3.883440e-06

2 GCbox
(V$GC 01)

34 55 1.624242 1.509024e-03

3 Nrf-1
(V$NRF1 Q6)

9 6 3.941176 6.165381e-03

4 AP-2
(V$AP2 Q6)

6 3 5.254902 1.425194e-02

5 HIF-1
(V$HIF1 Q5)

4 0 / 2.095589e-02

6 WT1
(V$WT1 Q6)

10 11 2.388592 3.084261e-02

7 SMAD-4
(V$SMAD4 Q6)

8 9 2.335512 5.883073e-02

8 Cdc5
(V$CDC5 01)

3 1 7.882353 6.436312e-02

9 HEB
(V$HEB Q6)

5 4 3.284314 6.679776e-02

10 Oct-1
(V$OCT1 Q6)

5 4 3.284314 6.679776e-02
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Table 3.8: The 10 best-ranking TFBS resulting from the TFBS search process
using the 2K-2K dataset.
The + and - columns contain the absolute number of occurences in the ap-
propriate dataset. +/- Ratio and the Group Specificity Score are described in
section 2.10. The WebLogo tool (described in section 2.12) was used to draw
the sequence logo of the found TFBS.
The following additional attributes were used in the search: Tree cluster
distance: 1, MAST Sequence pvalue: 0.05, MAST Evalue: 10

3.2.2 Vertebrate Matrices Matching

In contrast to searching for overrepresented subsequences and comparing these to known
vertebrate TFBS we also directly matched all known vertebrate TFBS extracted
from TRANSFAC to our two mouse datasets. Again, several search conditions were sam-
pled including the use of regulatory potential information and the masking of repetetive
elements.

Search for overrepresented vertebrate TFBS
Using regulatory potential information and masking all repeat classes other than simple
repeat and low complexity in the search the rankings shown in table 3.8 and 3.9 were
obtained. Again, the ranking was based on GSS and only the best 10 motifs are shown.
All in all the search for known vertebrate matrices resulted in a much lower number of
hits and higher GSS.

Compared to the motif finding results, the SP1 binding site is the only TFBS that
is present in both rankings. In this case it is represented by the GC Box. All other
TFBS had low frequencies in the positive dataset. In no case a high-ranking TFBS
was found in more than a fifth of all sequences included in the positive sequence datasets
(with the exception of c-Ets-1 which is only slightly more frequent). In summary, the
TFBS search revealed no overrepresented known vertebrate TFBS other than SP1.

Investigation on the influence of masking conditions in the vertebrate TFBS search

As in the previous analysis we checked for the influence of masking conditions. In
contrast to the motif finding process, the masking conditions show a stronger
influence on the results. According to the used pre-processing of the sequences of
the positive and negative datasets the TFBS score differently, leading to shifts in the
ranking. Still, all best-ranking TFBS do not cover the positive dataset to a greater
extent than shown before. This might also be the reason for the observed shifting effect
as minor changes in the number of matching in sequences of the positive dataset influence
the (allready very similar) GSS strongly.
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TFBS + − +/−
Ratio

Group
Specificity
Score

TFBS Sequence Logo

1 Nrf-1
(V$NRF1 Q6)

9 2 11.470588 2.168464e-04

2 GCbox
(V$GC 01)

33 48 1.752451 6.435278e-04

3 Stra13
(V$STRA13 01)

6 2 7.647059 6.825753e-03

4 HIC1
(V$HIC1 02)

6 2 7.647059 6.825753e-03

5 C/EBPdelta
(V$CEBPDELTA Q6)

5 0 / 7.200213e-03

6 LUN-1
(V$LUN1 01)

9 7 3.277311 1.289559e-02

7 c-Ets-1(p54)
(V$CETS1P54 01)

5 2 6.372549 1.973023e-02

8 OCT-x
(V$OCT C)

9 8 2.867647 2.130718e-02

9 NF-kappaB(p65)
(V$NFKAPPAB65 01)

7 6 2.973856 3.946231e-02

10 Brachyury
(V$BRACH 01)

4 2 5.098039 5.385452e-02
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Table 3.9: The 10 best-ranking TFBS resulting from the TFBS search process
using the 2K-next dataset.
The following additional attributes were used in the search: Tree cluster
distance: 1, MAST sequence pvalue: 0.05, MAST Evalue: 10

The binding site of SP1 stayed among the highest-scoring TFBS irrespective of the used
masking conditions.

When masking all repeats but neglecting regulatory potential information, the TFBS
Aire was significantly overrepresented. The autoimmune regulator (Aire) is a tran-
scription factor that controls the self-reactivity of the T cell repertoire. The TFBS was
present 13 times in the positive dataset compared to 2 times in the negative dataset,
which resulted in a +/- ratio of >17 and a GSS of 1.018x106.
Aire was proposed to have clustered target genes [113] though frequently interspersed
with genes that are independent of Aire regulation [114]. The presence of Aire bind-
ing sites in our group of highly co-expressed gene pairs substanciate the proposition of
clustered target genes.

NR TFBS + − +/−
Ratio

Group
Specificity
Score

NR TFBS Sequence Logo

1 NKX25
(V$NKX25 Q5)

7 9 2.043573 1.129541e-01

2 MEF-2
(V$MEF2 Q6 01)

3 2 3.941176 1.294740e-01

3 RSRFC4
(V$RSRFC4 Q2)

3 2 3.941176 1.294740e-01

4 ERRalpha
(V$ERR1 Q2)

4 4 2.627451 1.475419e-01

5 MEF-2
(V$HMEF2 Q6)

2 1 5.254902 1.846189e-01

Table 3.10: The 5 best-ranking nuclear receptor TFBS resulting from the nu-
clear receptor TFBS search process using the 2K-2K dataset.
The following additional attributes were used in the search: Tree cluster
distance: 1, MAST sequence pvalue: 0.05, MAST Evalue: 10
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NR TFBS + − +/−
Ratio

Group
Specificity
Score

NR TFBS Sequence Logo

1 RORalpha2
(V$RORA2 01)

5 6 2.124183 1.651820e-01

2 MEF-2
(V$MEF2 Q6 01)

5 6 2.124183 1.651820e-01

3 RSRFC4
(V$RSRFC4 Q2)

3 3 2.549020 2.197365e-01

4 aMEF-2
(V$AMEF2 Q6)

4 5 2.039216 2.251930e-01

5 SRF
(V$SRF Q5 02)

4 5 2.039216 2.251930e-01

Table 3.11: The 5 best-ranking nuclear receptor TFBS resulting from the nu-
clear receptor TFBS search process using the 2K-next dataset.
The following additional attributes were used in the search: Tree cluster
distance: 1, MAST sequence pvalue: 0.05, MAST Evalue: 10

Search for nuclear receptor binding sites
The analysis was repeated using only binding sites that belong to NRs and some addi-
tional TFBS of specific interest. Those were annotated to guide chromatine remod-
elling and could be associated to several resulting TFBS of the motif search process.
The 5 best-ranking TFBS (according to GSS) are shown in Table 3.10 and 3.11. In
accordance with the results for all known vertebrate TFBS the search does not reveal
a strong overrepresentation of a specific NR binding site in the sequences of
the positive datasets. These findings are somewhat contrary to the results of the motif
finding process. A possible explantion of this discrepancy could be bad quality of the
TRANSFAC matrices. Another possible reason could be the number of different pos-
sible binding sites of a single NR. The glucocorticoid receptor for example comprises
4 different binding sites in TRANSFAC. As our analysis only reveals the presence of
single DNA binding sites and does not account for the total number of different binding
sites of a specific factor present in the dataset, its real number of occurences might be
underestimated.

Just as the motif finding process, the TFBS search is affected by the large sequences
used and a potential influence of the used conservational information.
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3.3 Feature Distributions

Based on the results of the prior analyses we investigated the distribution of certain
genomic features over the sequences in the datasets. As SP1 binding sites are known to
reside inside CpG islands this features was included into the analysis as well as the SP1
binding site itself (as represented by a TRANSFAC matric and the GC Box motif).
Additionally, two further specific sequence motifs were included: the TATA Box and
the binding site for the insulator CTCF. Furthermore the different classes of repeats as
annotated by the RepeatMasker program by Arian Smith1 were analysed. The repeat
information was included, as a recent report suggests certain repetitive elements to
include TFBS for several TF that control specific expression [61].
The search for these genomic features was performed using the two mouse datasets as
well as the orthologous human datasets.

3.3.1 CpG Islands/Regions

CpG island are very GC-rich stretches of DNA that contain the CpG dinucleotide with
higher frequency than suggested by whole-genome sequence analyses. In our analysis we
used two definitions of a CpG island. The first was called CpG island while the other
was called CpG Region (both are described in section 2.5.4), the latter having lower
constraints.

Striking evidence for the presence of CpG islands in the positive dataset
Searching for CpG islands revealed a striking association of promoter-associated CpG is-
lands to genes included in the positive datasets. 70% of the sequences in the positive
mouse dataset 2K-2K and 86% of the positive human dataset H2K-2K contained at
least 2 CpG islands. On the contrary, only 22% of the sequences in the negative mouse
dataset 2K-2K and 47% of the negative human dataset H2K-2K contained 2 CpG is-
lands. A Wilcoxon rank sum test assigned the differences in median with a significance
level of 8.3x10−9 for the mouse dataset and 3.4x10−3 for the human dataset.
The distribution over the sums of all sequences in the positive and negative datasets in
mouse and human are shown in Figure 3.4 and 3.5. In this plots the sequences have been
sorted due to the orientation of their genes for better understandability. Looking in de-
tail on the regional distribution of all CpG island discloses that almost all of them reside
at the transcriptional start site (TSS). As these plots show the average CpG is-
land coverage for every position they reflect the enhanced number of TSS-associated
CpG island of the positive datasets in contrast to the negative datasets.

1http://www.repeatmasker.org
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Figure 3.4: Average distribution of CpG island over the positive (red) and negative (blue)
sequence in the mouse 2K-2K datasets. I: Unidirectional Pairs II: Conver-
gent Pairs III: Divergent Pairs

Impact of using the lower-constrained CpG region definition
Almost the same conclusions can be drawn when the less constrained CpG regions
are taken into account. As the presence of a CpG region is more probable than a
CpG island, these regions are found much more often. The mouse 2K-2K dataset has
a CpG region mean of 6.02 compared to 5.57 (p = 0.32 in Wilcoxon rank sum test).
The human H2K-2K has a mean of 14.47 to 11.48 (p = 0.023 in Wilcoxon rank sum
test). The loss of significance in the mouse dataset might be the result of one outlying
sequence in the negative dataset (which comprises 40 CpG regions). Furthermore, CpG
regions are not exclusively located at the TSS (data shown in Appendix C).

In respect to the results, the use of lowered constraints for the definition of CpG islands
increases the number of CpG islands and the noise level simultaneously.
Therefore it does not contribute to a better understanding of the differences in the used
datasets.
CpG island analysis was not perfomed on the 2K-next and H2K-next dataset, because
these sequences might include CpG islands referring to the promoters of the neighbouring
genes.
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Figure 3.5: Average distribution of CpG island over the positive (red) and negative (blue)
sequence in the human H2K-2K datasets. I: Unidirectional Pairs II: Con-
vergent Pairs III: Divergent Pairs

3.3.2 Specific Transcription Factor Binding Sites

The TRANSFAC SP1 bindings matrix is again highly overrepresented
Searching for the SP1 binding site in the mouse 2K-2K and 2K-next dataset again
revealed a higher number in the positive sequences (see Table 3.12 for mean and signifi-
cance values). 66% of the positive 2K-2K dataset contains at least one SP1 binding
site compared to 44.3% in the negative dataset. Furthermore, the found binding sites
do mainly reside near the TSS as indicated in Figure 3.6. In the positive mouse
2K-next dataset we found 55% of the sequences to contain at least one SP1 binding
site compared to 35% in the negative dataset. The loss of bindings sites in the longer
2K-next dataset is very likely to be the influence of the enlarged sequences. Because
MAST scores TFBF matches in respect to p- and Evalues, weak matches might drop
out if a sequence becomes longer as the probability of random matches increases.

Analysing the human H2K-2K and H2K-next datasets ended up in less significant re-
sults, although the distribution is still different.

Using the GC Box “GGGCGGG” and its reverse complement the search resulted in
higher number of sites per sequence. Mean values and significance level are shown in
Table 3.13.
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Figure 3.6: Distributions of predicted occurences of the SP1 binding site (represented
by the TRANSFAC matrix V$SP1 Q6 01 ) in the positive (red) and nega-
tive (blue) sequence in the mouse 2K-2K datasets. I: Unidirectional Pairs
II: Convergent Pairs III: Divergent Pairs

The use of the GC Box hexanucleotide did lead to higher pvalues, especially in the case
of the next datasets. This might reflect the fact that the GC Box pattern itself is very
unspecific and occurs at several random sites throughout the genome. Because the next
datasets are larger than the 2K datasets, the GC Box motif occurs more often and in a
more randomizes fashion, leading to the loss of significance.

Mean + Mean - pvalue
2K-2K 1.29 0.76 p = 8.1x10−3

2K-next 1.06 0.63 p = 6.72x10−3

H2K-2K 1.39 0.82 p = 0.15
H2K-next 1.19 0.49 p = 0.19

Table 3.12: Mean and significance level (Wilcoxon rank sum test) for the number of
predicted SP1 binding sites contained in the sequences of the datasets. “+”
stands for the positive set of sequences (HCPs) and “-” for the negative set
(UCPs).

69



Master Thesis 3 Results & Discussion Markus Schüler

Mean + Mean - pvalue
2K-2K 7.94 6.34 p = 0.0138
2K-next 12.92 11.56 p = 0.17
H2K-2K 10.97 9.23 p = 0.0344
H2K-next 15.22 16.2 p = 0.439

Table 3.13: Mean and significance level (Wilcoxon rank sum test) for the number of GC
Boxes contained in the sequences of the datasets.

The TATA box matrix as provided by TRANSFAC is not present in the datasets
We also performed a search for the TATA box represented by the TRANSFAC matrix
V$TATA C. However, we hardly find any occurences of this matrix in any sequence
irrespective of the dataset. This could be a consequence of the used binding site matrix
provided by TRANSFAC. Therefore an interpretation of the presence of TATA boxes in
respect to the genes contained in our sequence datasets is not possible.

CTCF binding sites are enriched at the borders of HCPs
Searching for occurences of CTCF insulator binding sites in our sequences lead to differ-
ent results in the mouse/human 2K-2K/H2K-2K and 2K-next/H2K-next datasets (see
Table 3.14 for mean values and significances as determined by Wilcoxon rank sum test).
While both the 2K-2K and H2K-2K datasets do not show a significant overrepresenta-
tion of CTCF binding sites, it is slightly overrepresented in the mouse 2K-next
dataset. This would fit with the thesis that the CTCF insulatory protein resides at
the edges of euchromatic regions. As the mouse 2K-next and human H2K-next
datasets includes more sequence around the gene pair, it would be more likely to con-
tain this border and therefore to contain CTCF binding sites. Figure 3.7 illustrates the
positions of the predicted CTCF sites and highlights a slight enrichment of binding sites
in the left/right genomic regions. However, the orthologous human H2K-next dataset
shows a counterdirected distribution of predicted binding sites (more bindings sites in
the negative sequences). Therefore it is hard to interprete these results in a definite
manner.

Mean + Mean - pvalue
2K-2K 0.92 0.66 p = 0.121
2K-next 1.71 1.47 p = 0.0841
H2K-2K 1.44 1.44 p = 0.401
H2K-next 2.14 2.85 p = 0.2261

Table 3.14: Mean and significance level (Wilcoxon rank sum test) for the number of
predicted CTCF binding sites contained in the sequences of the datasets.
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Figure 3.7: Distributions of predicted occurences of the CTCF binding site (represented
by the consensus sequence “CTGCCNCCNNGCGG”) in the positive (red)
and negative (blue) sequence in the mouse 2K-next datasets. I: Unidirec-
tional Pairs II: Convergent Pairs III: Divergent Pairs

3.3.3 Repeats

Repeats cover almost 50% of the human genome (as stated by the RepeatMasker web-
site). They consist of severel distinct classes2:

• Short interspersed nuclear elements (SINEs), which include ALUs
• Long interspersed nuclear elements (LINEs)
• Long terminal repeat elements (LTRs), which include retroposons
• DNA repeat elements (DNA)
• Simple repeats (micro-satellites)
• Low complexity repeats
• Satellite repeats
• RNA repeats
• Other repeats

2Description taken from the UCSC website
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Figure 3.8: Mean, median and density for the procentage coverage of SINE repeats.
A: Mouse 2K-2K dataset p = 2.3x10−3, B: Human H2K-2K dataset
p = 4.19x10−3

Enrichment of SINE repeats in positive sequences and stable LINE content
When investigating the distributions of these repetitive elements over our positive and
negative sequences an astonishing differences in the amount of sequence covered by
SINE repeats can be detected in all four datasets. The mean, median and density and
significance (as indicated by Wilcoxon rank sum test) of this distribution are given in
Figure 3.8. For the two datasets 2K-2K and H2K-2K a significant enrichment of this
repeat in sequences contained in the positive datasets is shown. The same is true for
the other two datasets 2K-next (p = 3.57x10−3) and H2K-next (p = 1.33x10−3) (data
shown in Appendix C).

This enrichment with SINE repeats is a very interesting fact as those SINE repeats
have been proposed to contain a variaty of TFBS [61]. The mean coverage of SINE
repeats in the negative sequences is very close to the overall genomic SINE content in
mouse (8.22%[115]) and human (13.64%[116]), respectively, while the mean coverage
in the positive dataset exceeds this value by far (17.35% in the mouse 2K-2K dataset
and 23.93% in the human H2K-2K dataset). This has been previously described for
very gene dense regions in the human genome [9]. In contrast, the same analysis showed
a simultaneously depletion of LINE repeats in the same regions. However, we can not
find this depletion in our own positive datasets compared to the negative dataset (as
shown by mean, median, density and significance level for 2K-2K and H2K-2K in Figure
3.9). Nevertheless, we find a decreased level of LINE repeats in all positive/negative
sequences compared to the average mouse (19.2%)[115] and human (20.99%)[116] LINE
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Figure 3.9: Mean, median and density for the procentage coverage of LINE repeats.
A: Mouse 2K-2K dataset p = 0.915, B: Human H2K-2K dataset
p = 0.165

content, respectively. This findings suggests that sequences close to existing genes might
be generally depleted of LINE repeats. Another possible explanation is the size of
LINE repeats, which have an average length of 900bp3 compared to 100-400bp for
SINE repeats3. As we limit our sequences around the pairs these might contain less
large repeats.

Depletion of simple repeats (micro-sattelites) in the positive datasets
In addition to the enrichment with SINE repeats, the analysis shows a depletion of
simple repeats in the positive dataset. The mean, median, density and significance of
their distribution is shown in Figure 3.10 for the mouse 2K-2K dataset. Simple repeats
(also called micro-satellites) consists of two, three or four nucleotides (di-, tri-, and
tetranucleotide repeats respectively), and are repeated 10 to 100 times. Today, it is
controversial, if these repeats have a biological meaning. It has been proposed that
they are associated with regulation of gene activity as well as metabolic DNA processes
(like replication and recombination) and chromatin organisation [117]. For our purpose
the possible association of micro-satellites to chromatin structure are of main interest.
Micro-satellites are thought to induce DNA secondary structures like loops and
hairpins that may have an influence on gene expression [117]. Triplet repeats that
are located in the UTRs or intron can induce heterochromatin-mediated-like gene
silencing [118]. Furthermore, satellite repeats are associated to heterochromatin
that forms centromeric chromosome structures [119].

All other repeats do not show a significant different distribution between the positive
and negative datasets (for all plots see Appendix C).

3Average number for human genome taken from [116]
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Figure 3.10: Mean, median and density for the procentage coverage of simple repeats
(micro-satellites). A: Mouse 2K-2K dataset p = 9.77x10−7, B: Human
H2K-2K dataset p = 4.27x10−4

3.3.4 Co-appearance of Genomic Features

In addition to the distribution of single features we also investigated in the co-occurence
of some of the features mentioned above.

Association of SP1 to CpG islands is stable in the positive and negative dataset
We examined if the association of SP1 to CpG islands is stronger in the positive datasets
than in the negative. We therefore computed the number of SP1-associated CpG islands
(CpG island with at least one SP1 binding site) and the number of CpG island-associated

2K-2K (pgreater = 0.191)
Dataset Total CpGI Associated % of total Non-associated % of total
positive 99 23 23.23 76 76.77
negative 151 27 17.88 124 82.12

H2K-2K (pgreater = 0.313)
Dataset Total CpGI Associated % of total Non-associated % of total
positive 84 14 16.67 70 83.33
negative 191 26 13.61 165 86.39

Table 3.15: Number of SP1-associated CpG islands (CpGI) for positive and negative se-
quences in the mouse 2K-2K and the human H2K-2K datasets and assigned
pvalues (exact Fisher test).
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2K-2K (pgreater = 0.111)
Dataset Total SP1 Associated % of total Non-associated % of total
positive 66 31 46.97 35 53.03
negative 102 37 36.27 65 63.73

H2K-2K (pgreater = 0.116)
Dataset Total SP1 Associated % of total Non-associated % of total
positive 50 29 58.00 21 42.00
negative 79 36 45.57 43 54.43

Table 3.16: Number of CpG island-associated SP1 for positive and negative sequences
in the two 2K datasets and assigned pvalues (exact Fisher test).

SP1 binding sites (SP1 binding sites that are located in CpG islands), respectively. This
analysis was performed on the mouse 2K-2K and the human H2K-2K datasets. The
results are shown in table 3.15 and 3.16.

Using an exact Fisher test to check for a nonrandom distribution, these results do
not indicate a stronger association of the SP1 binding site and CpG islands in the
positive dataset compared to the negative dataset. Indeed, the percentage of CpG islands
associated to SP1 binding sites is increased in the positive dataset, however, as both the
average number of SP1 bindings sites and CpG islands is higher in the positive dataset,
a higher cooccurrence was expected. The same is true for the CpG island-associated SP1
binding sites. Nevertheless, approximately 40-50% of the SP1 binding sites reside
in CpG islands in both the positive and negative dataset. This confirms the proposed
SP1-association to CpG islands. However, the reverse is not true as only 13% to 23%
of the found CpG islands include a SP1 binding site.

CTCF binding sites are randomly associated to CpG islands
We also questioned if there is a dependency in the distribution of CTCF binding sites
and the presence of CpG islands in the positive and negative dataset, respectively. We
therefore categorised each single sequence into one of the four categories “includes both
features”, “includes only CpG island(s)”, “includes only CTCF binding site(s)” and
“included none of these features”. The results for the postive and negative sequences in
all four datasets are shown in table 3.17.

Again, the exact Fisher test was used to check for a nonrandom distribution between
these two features. However, none of the datasets shows any significant positive
or negative association.
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2K-2K
Dataset Total both CpGI CTCF none pvalue
positive 51 30 1 20 0 ∼ 1
negative 134 51 14 51 18 0.551

2K-next
Dataset Total both CpGI CTCF none pvalue
positive 51 40 1 10 0 ∼ 1
negative 130 79 12 31 8 0.299

H2K-2K
Dataset Total both CpGI CTCF none pvalue
positive 35 24 0 11 0 ∼ 1
negative 96 57 8 25 6 0.37

H2K-next
Dataset Total both CpGI CTCF none pvalue
positive 35 27 0 7 0 ∼ 1
negative 93 76 7 7 3 0.0724

Table 3.17: Statistics for the association between CTCF binding sites and CpG islands
for the positive/negative sequences in all four dataset.
both = sequences including both features, CpGI = sequences including only
CpG island(s), CTCF = sequences including only CTCF binding site(s),
none = sequences including none of these features; pvalues are computed
with an exact Fisher test
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Chapter 4
Conclusion

The aim of this master thesis was to investigate regulatory sequence elements that could
lead to a high degree of co-expression of genomic neighbours. This co-expression was
stated previously by many groups [4],[5],[7] and it was shown that these pairs have a
reduced intergenic length.

The methods used in this thesis consists of sequence analysis techniques that searches for
overrepresented subsequences (motifs) in the sequences of these highly co-expressed
gene pairs (HCPs) and compare their occurences to sequences of uncorrelated gene
pairs (UCPs). These motifs may reflect bindings sites of TFs that might contribute to
the observed level of correlated expression. Additionally, a search for known vertebrate
TFBS (extracted from the TRANSFAC database) was performed. Furthermore, the
distribution of certain genomic features like CpG islands and repetetive elements have
been investigated over all sequences as well as specific regions.

All these analysis were performed on two mouse datasets and two orthologous
human datasets, that consists of positive (derived from HCPs) and negative (derived
from UCPs) sequences and differ in the amount of sequences included around the pair.
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Clues for the Existence of Active Chromatin Hubs

Based on our own analysis [7] as well as previous data (see e.g. [6],[120]), we
suggest that the cause of the observed clustering of HCPs are large open chromatin
regions (active chromatin hubs - ACHs). These regions, that include several
genes, are accessible for the basal transcriptional machinery as well as individual TFs.
The consequent “opening” of these regions in specific cell types would therefore lead
to the correlated expression of genes included in these ACHs. These genes may be
additionally regulated on a single-gene level by individual TFs.

Indeed, our results point in that direction. Both, the motif and the TFBS search,
resulted in a high overrepresentation of TFBS for the transcription factor SP1. SP1 is
a common TF that was shown to interact with the histone acetyltransferase (HAT)
p300 to induce hyperacetylated chromatin states [106]. Histone acetylation is highly
associated with an increased transcriptional activity [39]. The motif search revealed
additional overrepresented binding sites that are associated with other TFs that also
recruit or co-act with HATs and histone deacetylases (HDACs). However, SP1 was
the only factor that could be found in both the motif and the TFBS search.

As SP1 is known to reside in CpG islands [87] we also investigated the occurence of
these in our sequence datasets. We found CpG islands to reside at the promoters of
a large fraction of genes in HCPs, while they rarely occur in the promoters of genes
from UCPs. CpG islands have been annotated to 40-60% of all mammalian genes and
were found in almost all housekeeping gene promoters [87]. Histones in the region of
CpG islands were shown to be highly acetylated [121] and H3K4 methylated [122].
Investigating the association of SP1 binding sites to CpG island, we found a high number
of this bindings sites to reside in CpG islands. However, this association was equally
strong in the positive and negative datasets.

Furthermore, we found an enrichment of SINE repeats in the HCP sequences. These
SINE repeats were shown to contain TFBS of several transcription factors [61] that might
contribute to the co-expression of genomic pairs. This enrichment of SINE repeats as
well as a high GC content was previously shown for very gene dense regions known as
ridges [9]. About 30 domains in the human genome have been defined as ridges. These
contain highly expressed genes with short intron lengths. In addition to the enrichment of
SINE repeats a depletion of LINE repeats has been reported in these ridges. However,
we did not find a depletion of LINE repeats in our datasets. Furthermore, in
contrast to the reported 30 gene dense regions, we showed that our HCPs are equally
distributed over the mouse/human chromosomes.
However, the direct influence of increased coverage with SINE repeats on correlated
expression of gene pairs is presently a matter of speculation.

While investigating the distribution of SINE and LINE repeats we also found a reduced
number of simple repeats (also called micro-satellites) in the HCP sequences com-
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pared to UCP sequences. This finding is in accordance with to the theory of active
chromatin hubs, as satellite repeats are commonly associated with heterochromatinic
structures. Therefore these might be subject to negative selection in euchromatic re-
gions, such as the proposed ACHs.

Finally, we found an enrichment for binding sites of the transcription factor CTCF, a
protein that is known to have insulatory function [63]. It is proposed to reside at the
edges of euchromatinic regions to prevent heterochromatin from entering. Corresponding
to the hypothesis of ACHs we found an increased enrichment of CTCF binding sites at
the edges of our sequences. An investigation on the association of CTCF binding sites
and CpG island in the same sequences revealed no unusual distribution.

In summary, our results point in the direction of the proposed ACHs. As they could
be confirmed using an orthologous human dataset, they may hold true for mammals in
general. However, most findings stated by our analysis function at the level of individual
genes rather than gene clusters. As no specific regulatory element explaning the observed
co-expression could be identified, we suggest that co-expression is a highly complex
phenomenon. Our data propose the following theory.

The Shared Systems Strategy

The fact that genomic neighbours share common expression patterns has been shown
for many organisms. However, no satisfactory explanation for this observation has been
found so far. While single gene clusters as the growth hormone and Hox gene clusters
have been analysed in detail, the majority of co-expressed gene pairs in mammalian
genomes remains unexplored. For the first mentioned clusters, individual global and
locus control region (LCRs) and hypersensitive sites (HSs) were shown to regu-
late even distant genes [48],[123],[124]. However, LCRs or HSs have not been identified
in other clusters [125]. The theory of open chromatine regions has been proposed as
possible explanation for the remaining clusters and in fact open chromatin fibres
have been shown to correlate to gene dense regions. However, genes in these fibres were
not particularly highly expressed [126]. Based on the results of this master thesis, we
formulated a novel model for the explanation of gene clustering, termed shared system
strategy.

The gene CD74B is switched on because of its proximity to an actively transcribed
gene located in the growth hormon cluster [127]. This behaviour is called “bystander
effect”. We believe this effect to be present not only in pairs consisting of a low expressed
gene proximal to a high expressed gene but also between neighbouring genes of common
expression patterns. The proximity of these genes might lead to a lowered regulatory
and transcriptional “cost” as these genes could share regulatory (e.g. LCRs, HATs,
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HDACs) and transcriptional elements (e.g. specific TFBS). If a gene is located next
to another gene that is already active, due to the presence of factors like HATs and SP1,
the proximal gene does not need to recruit these factors on its own, but might “share” it
with its neighbour. This could decrease the amount of energy needed for recruitment
and would therefore be an evolutionary advantage for the two genes as well as the
cell. The same is true for the reverse case of two tissue-specific expressed genes as these
could benefit from the local enrichment of common TFs as well as suppressive factors.
Chromosomal looping that further reduces the distance between the gene promoters [6]
might contribute to this sharing as well as the enrichment of e.g. SINE repeats. An
extreme of this mechanism would be the use of bidirectional promoters which have
been characterised in mammalian genomes [128]. Nevertheless, the clustering of genes
should be a dynamic process whith an overall equilibrium.

The proposed model suggests a clustering not only for housekeeping but also for tissue-
specific and all correlated genes in general and is confirmed by the observed existence
of such clusters [8],[17],[129],[130]. Furthermore, this proposed the existance of open
chromatin regions to be the effect of this clustering process rather than its cause. The
open chromatin region present to one gene might be enlarged to include the proximal
gene instead of establishing two individual open chromatin regions. This would also
explain the existance of large open chromatin fibres in very gene dense regions. Factors
like repetetive elements, in particular the observed SINE repeats, might contribute to
the sustainment of these open chromatine region by additionally recruiting TFs.

So far, many investigations have been performed both on clusters of housekeeping and
on tissue-specific genes. According to our model, the existence of housekeeping and
tissue-specific gene clusters would be two sides of the same coin. We believe the sharing
of common regulatory and transcriptional elements with close genomic neighbours to
be a possible explanation for the observed clustering of co-expressed gene pairs as this
process could be evolutionary favoured.

In summary, individual genes and their regulatory elements should not be seen as isolated
entities but as a dynamic system in the context of neighbouring genes, and vice versa.
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Chapter 5
Outlook

Today, the influence of the chromatin environment on the expression of single genes or
gene clusters is still only partially understood. Transcription factors that influence the
chromatin environment directly or indirectly by recruiting other proteins are subject of
many investigations which will provide further insight into the mechanisms governing
chromatin structure. The impact of certain chromatin states on (correlated) gene expres-
sion as well as a clearer understanding on the real processes involved will be gained by
high resolution techniques like ”Chromatin Immunoprecipitation (ChIP)”-chip analysis.
Analysing those results with bioinformatic methods will be needed to enhance current
knowledge.

Investigation of the influence of repetetive elements (e.g. SINE) in the shown regulatory
mechanisms is of maijor interest, as these have long been thought to be solely parasitic.
Furthermore an in vitro/vivo analysis could confirm binding of TFs to SINE repeats.

As discussed in the result part of this work, the used motif search programs are developed
for relatively short sequences. However, regulatory elements can reside in large distance
from their genes and their exact position might change between organisms. Techniques
that could overcome this problem (e.g. using conservational information in a more
direct and problem-oriented fashion) would highly contribute to in silico analyses of
such sequence elements.

Finally, these investigations could shed light on the model of shared system strategies
implicating that correlated gene pairs share regulatory elements to decrease the tran-
scriptional “costs”.
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Appendix A
Datasets

The following pages contain name, dataset membership, chromosome, start/end position
of the analysed regions and the Ensembl.Gene.IDs for the two genes contained in the
pairs. The annotations reflect the datasets 2K-2K (mouse), 2K-next (mouse), H2K-2K
(human), and H2-next (human) that were analysed in this master thesis. The dataset
definition is described in detail in sections 2.1 to 2.3.
Ensembl.Gene.IDs were extracted from Ensembl 39. The positions are based on the
NCBI m36 Assembly (Dec 2005) mm8 (mouse) and NCBI 36 (Oct 2005) hg18 (human).

A.1 Mouse Datasets (mm8)

A.1.1 2K-2K

Name Set Chr. Start End Ensembl.Gene.ID.1 Ensembl.Gene.ID.2

2K-2K+1 + 1 108549445 108625994 ENSMUSG00000009905 ENSMUSG00000009907
2K-2K+2 + 1 133692838 133762518 ENSMUSG00000026433 ENSMUSG00000026434
2K-2K+3 + 2 4796836 4858001 ENSMUSG00000026662 ENSMUSG00000026664
2K-2K+4 + 2 18588191 18606385 ENSMUSG00000051154 ENSMUSG00000026739
2K-2K+5 + 2 38828205 38889415 ENSMUSG00000026755 ENSMUSG00000026754
2K-2K+6 + 2 131928935 131946621 ENSMUSG00000027341 ENSMUSG00000027342
2K-2K+7 + 2 151983317 152026076 ENSMUSG00000027465 ENSMUSG00000027466
2K-2K+8 + 2 172641076 172679673 ENSMUSG00000027509 ENSMUSG00000027510
2K-2K+9 + 3 20247962 20346903 ENSMUSG00000002428 ENSMUSG00000019528
2K-2K+10 + 3 88663807 88734841 ENSMUSG00000041355 ENSMUSG00000028059
2K-2K+11 + 3 116478970 116543982 ENSMUSG00000000339 ENSMUSG00000000340
2K-2K+12 + 3 122235614 122279293 ENSMUSG00000028124 ENSMUSG00000039756
2K-2K+13 + 3 138378551 138428769 ENSMUSG00000028138 ENSMUSG00000005813

Definition of mouse 2K-2K dataset
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Name Set Chr. Start End Ensembl.Gene.ID.1 Ensembl.Gene.ID.2

2K-2K+14 + 4 140714760 140812322 ENSMUSG00000006215 ENSMUSG00000040761
2K-2K+15 + 5 117616335 117652063 ENSMUSG00000029364 ENSMUSG00000029363
2K-2K+16 + 5 135432317 135468456 ENSMUSG00000005374 ENSMUSG00000029681
2K-2K+17 + 5 145365783 145392524 ENSMUSG00000029622 ENSMUSG00000029623
2K-2K+18 + 6 17229310 17293324 ENSMUSG00000000058 ENSMUSG00000007655
2K-2K+19 + 6 21897647 22192003 ENSMUSG00000029670 ENSMUSG00000062980
2K-2K+20 + 6 54911680 55011078 ENSMUSG00000002797 ENSMUSG00000029777
2K-2K+21 + 6 86638803 86700988 ENSMUSG00000001158 ENSMUSG00000001157
2K-2K+22 + 6 108624406 108791494 ENSMUSG00000030103 ENSMUSG00000030105
2K-2K+23 + 7 84459344 84557575 ENSMUSG00000030630 ENSMUSG00000030629
2K-2K+24 + 7 114004740 114067641 ENSMUSG00000030754 ENSMUSG00000030751
2K-2K+25 + 8 86496298 86556894 ENSMUSG00000005483 ENSMUSG00000019433
2K-2K+26 + 8 88149235 88200175 ENSMUSG00000031696 ENSMUSG00000031697
2K-2K+27 + 8 97553780 97587371 ENSMUSG00000031776 ENSMUSG00000031775
2K-2K+28 + 8 108492410 108574051 ENSMUSG00000038604 ENSMUSG00000005698
2K-2K+29 + 8 127793494 127922282 ENSMUSG00000031987 ENSMUSG00000056820
2K-2K+30 + 9 53340917 53423096 ENSMUSG00000032047 ENSMUSG00000032030
2K-2K+31 + 9 123213638 123372215 ENSMUSG00000035202 ENSMUSG00000025239
2K-2K+32 + 10 82971771 83080463 ENSMUSG00000034560 ENSMUSG00000020263
2K-2K+33 + 10 126915927 126927384 ENSMUSG00000040280 ENSMUSG00000025403
2K-2K+34 + 11 51461196 51481319 ENSMUSG00000001056 ENSMUSG00000001054
2K-2K+35 + 11 53101239 53178745 ENSMUSG00000020361 ENSMUSG00000018239
2K-2K+36 + 11 76540797 76665191 ENSMUSG00000010392 ENSMUSG00000020841
2K-2K+37 + 12 31849443 31939471 ENSMUSG00000002900 ENSMUSG00000020664
2K-2K+38 + 12 70213335 70277771 ENSMUSG00000020978 ENSMUSG00000020982
2K-2K+39 + 13 24823420 24851611 ENSMUSG00000006717 ENSMUSG00000035958
2K-2K+40 + 13 55600765 55621576 ENSMUSG00000058569 ENSMUSG00000021504
2K-2K+41 + 14 53835600 53854324 ENSMUSG00000022194 ENSMUSG00000022198
2K-2K+42 + 15 34180615 34382376 ENSMUSG00000022257 ENSMUSG00000022324
2K-2K+43 + 15 76152720 76164154 ENSMUSG00000034259 ENSMUSG00000022561
2K-2K+44 + 15 79496136 79517074 ENSMUSG00000022427 ENSMUSG00000022426
2K-2K+45 + 15 80059375 80086794 ENSMUSG00000022412 ENSMUSG00000042406
2K-2K+46 + 16 87342207 87387053 ENSMUSG00000025616 ENSMUSG00000025613
2K-2K+47 + 17 25838917 25856211 ENSMUSG00000024180 ENSMUSG00000024181
2K-2K+48 + 18 10615794 10708694 ENSMUSG00000002477 ENSMUSG00000002475
2K-2K+49 + 18 64623034 64788369 ENSMUSG00000024587 ENSMUSG00000039529
2K-2K+50 + X 102174891 102227167 ENSMUSG00000031232 ENSMUSG00000031231
2K-2K+51 + X 135800977 135891549 ENSMUSG00000031432 ENSMUSG00000031431

2K-2K-1 - 1 127502539 127741760 ENSMUSG00000026343 ENSMUSG00000026344
2K-2K-2 - 1 130069727 130157849 ENSMUSG00000026353 ENSMUSG00000026354
2K-2K-3 - 1 137613850 137650362 ENSMUSG00000026418 ENSMUSG00000041782
2K-2K-4 - 2 28375831 28407255 ENSMUSG00000026818 ENSMUSG00000026816
2K-2K-5 - 2 30665290 30727306 ENSMUSG00000039476 ENSMUSG00000050737
2K-2K-6 - 2 62274551 62376362 ENSMUSG00000000394 ENSMUSG00000000392
2K-2K-7 - 2 62396289 62496948 ENSMUSG00000026896 ENSMUSG00000026893
2K-2K-8 - 2 73082711 73140646 ENSMUSG00000041777 ENSMUSG00000008226
2K-2K-9 - 2 74473926 74489855 ENSMUSG00000001823 ENSMUSG00000042499
2K-2K-10 - 2 84779300 84796725 ENSMUSG00000027073 ENSMUSG00000027072
2K-2K-11 - 2 93441303 93625384 ENSMUSG00000040310 ENSMUSG00000027198
2K-2K-12 - 2 113575206 113651495 ENSMUSG00000023236 ENSMUSG00000041219
2K-2K-13 - 2 142752501 142775154 ENSMUSG00000008333 ENSMUSG00000027416
2K-2K-14 - 2 162620982 162667966 ENSMUSG00000016921 ENSMUSG00000035576
2K-2K-15 - 2 164079097 164108653 ENSMUSG00000016995 ENSMUSG00000017007
2K-2K-16 - 2 180427384 180517698 ENSMUSG00000027568 ENSMUSG00000027569
2K-2K-17 - 2 181114712 181134196 ENSMUSG00000016344 ENSMUSG00000038751
2K-2K-18 - 3 14838253 14879513 ENSMUSG00000027559 ENSMUSG00000027562
2K-2K-19 - 3 87930938 87973507 ENSMUSG00000028071 ENSMUSG00000004895

Definition of mouse 2K-2K dataset
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Name Set Chr. Start End Ensembl.Gene.ID.1 Ensembl.Gene.ID.2

2K-2K-20 - 3 90693737 90702341 ENSMUSG00000001023 ENSMUSG00000001025
2K-2K-21 - 3 97712280 97760488 ENSMUSG00000028088 ENSMUSG00000038205
2K-2K-22 - 3 102861831 102913775 ENSMUSG00000027858 ENSMUSG00000027857
2K-2K-23 - 3 135148046 135243813 ENSMUSG00000045328 ENSMUSG00000028167
2K-2K-24 - 3 159428738 159562092 ENSMUSG00000028175 ENSMUSG00000028174
2K-2K-25 - 4 11629604 11747042 ENSMUSG00000028214 ENSMUSG00000028217
2K-2K-26 - 4 25288533 25374390 ENSMUSG00000028259 ENSMUSG00000040359
2K-2K-27 - 4 41219917 41288844 ENSMUSG00000028427 ENSMUSG00000028435
2K-2K-28 - 4 63211443 63349645 ENSMUSG00000050395 ENSMUSG00000028362
2K-2K-29 - 4 125527618 125559843 ENSMUSG00000028859 ENSMUSG00000028861
2K-2K-30 - 4 126811725 126834897 ENSMUSG00000050234 ENSMUSG00000042367
2K-2K-31 - 4 126851390 126862468 ENSMUSG00000046623 ENSMUSG00000042357
2K-2K-32 - 4 138020609 138056219 ENSMUSG00000028749 ENSMUSG00000041202
2K-2K-33 - 4 140015941 140084724 ENSMUSG00000025330 ENSMUSG00000025328
2K-2K-34 - 4 146827776 146847193 ENSMUSG00000029019 ENSMUSG00000041616
2K-2K-35 - 5 33528375 33593839 ENSMUSG00000037379 ENSMUSG00000037373
2K-2K-36 - 5 38021808 38114832 ENSMUSG00000062329 ENSMUSG00000048450
2K-2K-37 - 5 78277883 78359759 ENSMUSG00000053030 ENSMUSG00000029249
2K-2K-38 - 5 93299876 93355381 ENSMUSG00000029410 ENSMUSG00000029413
2K-2K-39 - 5 93421001 93442685 ENSMUSG00000034855 ENSMUSG00000060183
2K-2K-40 - 5 100893023 100961985 ENSMUSG00000029319 ENSMUSG00000035273
2K-2K-41 - 5 104409005 104456404 ENSMUSG00000053268 ENSMUSG00000029307
2K-2K-42 - 5 108626694 108676688 ENSMUSG00000029491 ENSMUSG00000050856
2K-2K-43 - 5 110512597 110579755 ENSMUSG00000029499 ENSMUSG00000007080
2K-2K-44 - 5 115725265 115746110 ENSMUSG00000029522 ENSMUSG00000029524
2K-2K-45 - 6 3910585 3949436 ENSMUSG00000029664 ENSMUSG00000029663
2K-2K-46 - 6 18796636 18831583 ENSMUSG00000044155 ENSMUSG00000029517
2K-2K-47 - 6 55264010 55320108 ENSMUSG00000004655 ENSMUSG00000004654
2K-2K-48 - 6 65518186 65638508 ENSMUSG00000044162 ENSMUSG00000049001
2K-2K-49 - 6 71301062 71371997 ENSMUSG00000053977 ENSMUSG00000002222
2K-2K-50 - 6 83674922 83726468 ENSMUSG00000034777 ENSMUSG00000006269
2K-2K-51 - 6 112423278 112457574 ENSMUSG00000062694 ENSMUSG00000049112
2K-2K-52 - 6 122477962 122531799 ENSMUSG00000030116 ENSMUSG00000040627
2K-2K-53 - 6 122784311 122823624 ENSMUSG00000003154 ENSMUSG00000040552
2K-2K-54 - 6 127036593 127077160 ENSMUSG00000000182 ENSMUSG00000038028
2K-2K-55 - 6 135029383 135084600 ENSMUSG00000046733 ENSMUSG00000030205
2K-2K-56 - 6 136810647 136842001 ENSMUSG00000030217 ENSMUSG00000030218
2K-2K-57 - 7 24169260 24215187 ENSMUSG00000046223 ENSMUSG00000054793
2K-2K-58 - 7 30309852 30336911 ENSMUSG00000006313 ENSMUSG00000036751
2K-2K-59 - 7 80929113 81045929 ENSMUSG00000038763 ENSMUSG00000025726
2K-2K-60 - 7 89739588 89818377 ENSMUSG00000039391 ENSMUSG00000062797
2K-2K-61 - 7 109516642 109545440 ENSMUSG00000035951 ENSMUSG00000031021
2K-2K-62 - 7 109587826 109753599 ENSMUSG00000007279 ENSMUSG00000035901
2K-2K-63 - 7 119891575 119938439 ENSMUSG00000030917 ENSMUSG00000030911
2K-2K-64 - 7 127192816 127215175 ENSMUSG00000045757 ENSMUSG00000045251
2K-2K-65 - 8 3629139 3661817 ENSMUSG00000004626 ENSMUSG00000012705
2K-2K-66 - 8 24087588 24120966 ENSMUSG00000031535 ENSMUSG00000031536
2K-2K-67 - 8 69606954 69637097 ENSMUSG00000044014 ENSMUSG00000036437
2K-2K-68 - 8 71964697 72044699 ENSMUSG00000036330 ENSMUSG00000006273
2K-2K-69 - 8 97632719 97673552 ENSMUSG00000031779 ENSMUSG00000031778
2K-2K-70 - 8 107501270 107522445 ENSMUSG00000031881 ENSMUSG00000031880
2K-2K-71 - 8 119979831 120093161 ENSMUSG00000031845 ENSMUSG00000052557
2K-2K-72 - 8 123981919 124006867 ENSMUSG00000031816 ENSMUSG00000046714
2K-2K-73 - 9 20518452 20578565 ENSMUSG00000004098 ENSMUSG00000053773
2K-2K-74 - 9 39940897 40044188 ENSMUSG00000025602 ENSMUSG00000049281
2K-2K-75 - 9 48649624 48718922 ENSMUSG00000032269 ENSMUSG00000008590
2K-2K-76 - 9 48805564 48869555 ENSMUSG00000032264 ENSMUSG00000032268
2K-2K-77 - 9 54807480 54848727 ENSMUSG00000032303 ENSMUSG00000035200

Definition of mouse 2K-2K dataset
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Name Set Chr. Start End Ensembl.Gene.ID.1 Ensembl.Gene.ID.2

2K-2K-78 - 9 83573418 83671100 ENSMUSG00000032262 ENSMUSG00000038379
2K-2K-79 - 9 107183804 107209784 ENSMUSG00000032579 ENSMUSG00000037977
2K-2K-80 - 9 119330109 119545058 ENSMUSG00000032511 ENSMUSG00000034533
2K-2K-81 - 10 61007366 61071522 ENSMUSG00000020090 ENSMUSG00000020089
2K-2K-82 - 10 79194845 79235619 ENSMUSG00000035863 ENSMUSG00000035852
2K-2K-83 - 10 79287464 79297783 ENSMUSG00000020125 ENSMUSG00000061780
2K-2K-84 - 10 92881228 92948542 ENSMUSG00000015889 ENSMUSG00000020017
2K-2K-85 - 10 127106196 127136716 ENSMUSG00000025401 ENSMUSG00000025400
2K-2K-86 - 10 127668946 127697798 ENSMUSG00000047631 ENSMUSG00000040033
2K-2K-87 - 11 5794639 5813027 ENSMUSG00000020469 ENSMUSG00000041798
2K-2K-88 - 11 7095782 7115909 ENSMUSG00000020429 ENSMUSG00000020427
2K-2K-89 - 11 53408826 53464067 ENSMUSG00000018395 ENSMUSG00000000869
2K-2K-90 - 11 53490993 53570526 ENSMUSG00000020380 ENSMUSG00000036117
2K-2K-91 - 11 71856697 71953973 ENSMUSG00000020808 ENSMUSG00000040543
2K-2K-92 - 11 87607776 87644310 ENSMUSG00000009350 ENSMUSG00000009356
2K-2K-93 - 11 87667445 87693726 ENSMUSG00000034121 ENSMUSG00000052234
2K-2K-94 - 11 98959048 99046412 ENSMUSG00000037944 ENSMUSG00000037935
2K-2K-95 - 11 99242493 99311214 ENSMUSG00000035775 ENSMUSG00000006777
2K-2K-96 - 11 99894947 99914276 ENSMUSG00000046095 ENSMUSG00000048013
2K-2K-97 - 11 99954900 100011336 ENSMUSG00000020911 ENSMUSG00000051617
2K-2K-98 - 11 100148497 100174218 ENSMUSG00000017165 ENSMUSG00000006930
2K-2K-99 - 11 100559701 100581021 ENSMUSG00000035355 ENSMUSG00000045471
2K-2K-100 - 11 101914262 101925442 ENSMUSG00000017316 ENSMUSG00000017311
2K-2K-101 - 11 106125431 106167480 ENSMUSG00000040592 ENSMUSG00000001027
2K-2K-102 - 12 29178925 29224193 ENSMUSG00000036655 ENSMUSG00000061477
2K-2K-103 - 12 36501173 36554755 ENSMUSG00000020581 ENSMUSG00000020577
2K-2K-104 - 13 56258820 56308173 ENSMUSG00000048904 ENSMUSG00000021508
2K-2K-105 - 13 96449413 96547471 ENSMUSG00000021681 ENSMUSG00000021680
2K-2K-106 - 13 96610414 96721173 ENSMUSG00000021678 ENSMUSG00000048376
2K-2K-107 - 13 114290752 114340984 ENSMUSG00000042385 ENSMUSG00000042379
2K-2K-108 - 14 25743872 25831210 ENSMUSG00000040760 ENSMUSG00000040726
2K-2K-109 - 14 33197367 33234834 ENSMUSG00000023064 ENSMUSG00000041445
2K-2K-110 - 14 53662568 53738091 ENSMUSG00000052435 ENSMUSG00000022180
2K-2K-111 - 15 37910458 38173228 ENSMUSG00000037487 ENSMUSG00000061923
2K-2K-112 - 15 39574006 39689541 ENSMUSG00000022303 ENSMUSG00000022304
2K-2K-113 - 15 74546489 74557289 ENSMUSG00000056665 ENSMUSG00000022596
2K-2K-114 - 15 76840742 76886362 ENSMUSG00000018893 ENSMUSG00000033576
2K-2K-115 - 15 89148739 89166776 ENSMUSG00000054136 ENSMUSG00000022613
2K-2K-116 - 15 101970396 101993489 ENSMUSG00000023046 ENSMUSG00000023045
2K-2K-117 - 16 3950371 3995038 ENSMUSG00000005980 ENSMUSG00000005981
2K-2K-118 - 16 26270000 26400125 ENSMUSG00000022512 ENSMUSG00000038148
2K-2K-119 - 16 38264238 38299346 ENSMUSG00000046516 ENSMUSG00000022803
2K-2K-120 - 17 17546242 17590557 ENSMUSG00000003665 ENSMUSG00000045551
2K-2K-121 - 17 31373793 31412057 ENSMUSG00000061613 ENSMUSG00000024041
2K-2K-122 - 17 31847599 31920169 ENSMUSG00000038146 ENSMUSG00000037577
2K-2K-123 - 17 56829330 56881512 ENSMUSG00000019489 ENSMUSG00000005824
2K-2K-124 - 18 34812721 34879482 ENSMUSG00000024366 ENSMUSG00000044201
2K-2K-125 - 18 58679609 58805609 ENSMUSG00000024600 ENSMUSG00000024601
2K-2K-126 - 18 60684137 60719157 ENSMUSG00000024604 ENSMUSG00000049173
2K-2K-127 - 18 61142231 61212428 ENSMUSG00000024619 ENSMUSG00000024620
2K-2K-128 - 19 5458629 5470499 ENSMUSG00000024911 ENSMUSG00000024910
2K-2K-129 - 19 41898527 41951484 ENSMUSG00000047604 ENSMUSG00000035049
2K-2K-130 - X 6829587 6869216 ENSMUSG00000031147 ENSMUSG00000031148
2K-2K-131 - X 53556927 53687513 ENSMUSG00000031132 ENSMUSG00000031133
2K-2K-132 - X 96790873 96823106 ENSMUSG00000044359 ENSMUSG00000060890
2K-2K-133 - X 155732830 155937827 ENSMUSG00000031298 ENSMUSG00000031295
2K-2K-134 - X 162647036 162728804 ENSMUSG00000044583 ENSMUSG00000025742
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A.1.2 2K-next

Name Set Chr. Start End Ensembl.Gene.ID.1 Ensembl.Gene.ID.2

2K-next+1 + 1 108541822 108688726 ENSMUSG00000009905 ENSMUSG00000009907
2K-next+2 + 1 133676410 133790512 ENSMUSG00000026433 ENSMUSG00000026434
2K-next+3 + 2 4751883 4859445 ENSMUSG00000026662 ENSMUSG00000026664
2K-next+4 + 2 18567101 18616776 ENSMUSG00000051154 ENSMUSG00000026739
2K-next+5 + 2 38828178 38897018 ENSMUSG00000026755 ENSMUSG00000026754
2K-next+6 + 2 131906727 131984684 ENSMUSG00000027341 ENSMUSG00000027342
2K-next+7 + 2 151973282 152029647 ENSMUSG00000027465 ENSMUSG00000027466
2K-next+8 + 2 172636507 172737605 ENSMUSG00000027509 ENSMUSG00000027510
2K-next+9 + 3 20227436 20407666 ENSMUSG00000002428 ENSMUSG00000019528
2K-next+10 + 3 88663069 88737824 ENSMUSG00000041355 ENSMUSG00000028059
2K-next+11 + 3 116440569 116552959 ENSMUSG00000000339 ENSMUSG00000000340
2K-next+12 + 3 122223219 122411819 ENSMUSG00000028124 ENSMUSG00000039756
2K-next+13 + 3 138368184 138463811 ENSMUSG00000028138 ENSMUSG00000005813
2K-next+14 + 4 140708182 140818505 ENSMUSG00000006215 ENSMUSG00000040761
2K-next+15 + 5 117600079 117675029 ENSMUSG00000029364 ENSMUSG00000029363
2K-next+16 + 5 135423012 135471995 ENSMUSG00000005374 ENSMUSG00000029681
2K-next+17 + 5 145362289 145393923 ENSMUSG00000029622 ENSMUSG00000029623
2K-next+18 + 6 17121834 17386305 ENSMUSG00000000058 ENSMUSG00000007655
2K-next+19 + 6 21802517 22195460 ENSMUSG00000029670 ENSMUSG00000062980
2K-next+20 + 6 54901992 55019664 ENSMUSG00000002797 ENSMUSG00000029777
2K-next+21 + 6 86634731 86703397 ENSMUSG00000001158 ENSMUSG00000001157
2K-next+22 + 6 108531366 108794428 ENSMUSG00000030103 ENSMUSG00000030105
2K-next+23 + 7 84247088 84651887 ENSMUSG00000030630 ENSMUSG00000030629
2K-next+24 + 7 113908963 114206461 ENSMUSG00000030754 ENSMUSG00000030751
2K-next+25 + 8 86464649 86556972 ENSMUSG00000005483 ENSMUSG00000019433
2K-next+26 + 8 88121541 88214405 ENSMUSG00000031696 ENSMUSG00000031697
2K-next+27 + 8 97549405 97634718 ENSMUSG00000031776 ENSMUSG00000031775
2K-next+28 + 8 108457428 108579535 ENSMUSG00000038604 ENSMUSG00000005698
2K-next+29 + 8 127788018 127940284 ENSMUSG00000031987 ENSMUSG00000056820
2K-next+30 + 9 53338361 53446504 ENSMUSG00000032047 ENSMUSG00000032030
2K-next+31 + 9 123109244 123378103 ENSMUSG00000035202 ENSMUSG00000025239
2K-next+32 + 10 82963862 83331644 ENSMUSG00000034560 ENSMUSG00000020263
2K-next+33 + 10 126911765 126928421 ENSMUSG00000040280 ENSMUSG00000025403
2K-next+34 + 11 51450271 51486511 ENSMUSG00000001056 ENSMUSG00000001054
2K-next+35 + 11 53044482 53194255 ENSMUSG00000020361 ENSMUSG00000018239
2K-next+36 + 11 76514858 76718353 ENSMUSG00000010392 ENSMUSG00000020841
2K-next+37 + 12 31845125 32004814 ENSMUSG00000002900 ENSMUSG00000020664
2K-next+38 + 12 70202567 70279787 ENSMUSG00000020978 ENSMUSG00000020982
2K-next+39 + 13 24821402 24852601 ENSMUSG00000006717 ENSMUSG00000035958
2K-next+40 + 13 55579592 55630034 ENSMUSG00000058569 ENSMUSG00000021504
2K-next+41 + 14 53830827 53860949 ENSMUSG00000022194 ENSMUSG00000022198
2K-next+42 + 15 34085969 34385143 ENSMUSG00000022257 ENSMUSG00000022324
2K-next+43 + 15 76134501 76164828 ENSMUSG00000034259 ENSMUSG00000022561
2K-next+44 + 15 79494916 79518149 ENSMUSG00000022427 ENSMUSG00000022426
2K-next+45 + 15 80042775 80087868 ENSMUSG00000022412 ENSMUSG00000042406
2K-next+46 + 16 87329763 87438270 ENSMUSG00000025616 ENSMUSG00000025613
2K-next+47 + 17 25826822 25866333 ENSMUSG00000024180 ENSMUSG00000024181
2K-next+48 + 18 10610108 10725622 ENSMUSG00000002477 ENSMUSG00000002475
2K-next+49 + 18 64614436 65012094 ENSMUSG00000024587 ENSMUSG00000039529
2K-next+50 + X 102131272 102230042 ENSMUSG00000031232 ENSMUSG00000031231
2K-next+51 + X 135779974 136011319 ENSMUSG00000031432 ENSMUSG00000031431

2K-next-1 - 1 127423361 127742288 ENSMUSG00000026343 ENSMUSG00000026344
2K-next-2 - 1 130065282 130159136 ENSMUSG00000026353 ENSMUSG00000026354
2K-next-3 - 1 137585545 137657285 ENSMUSG00000026418 ENSMUSG00000041782
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Name Set Chr. Start End Ensembl.Gene.ID.1 Ensembl.Gene.ID.2

2K-next-4 - 2 28375091 28431463 ENSMUSG00000026818 ENSMUSG00000026816
2K-next-5 - 2 30652343 30774980 ENSMUSG00000039476 ENSMUSG00000050737
2K-next-6 - 2 62212145 62398288 ENSMUSG00000000394 ENSMUSG00000000392
2K-next-7 - 2 73076166 73144298 ENSMUSG00000041777 ENSMUSG00000008226
2K-next-8 - 2 74470976 74492808 ENSMUSG00000001823 ENSMUSG00000042499
2K-next-9 - 2 84758796 84796726 ENSMUSG00000027073 ENSMUSG00000027072
2K-next-10 - 2 93365132 93636272 ENSMUSG00000040310 ENSMUSG00000027198
2K-next-11 - 2 113559486 113701036 ENSMUSG00000023236 ENSMUSG00000041219
2K-next-12 - 2 142548869 143237619 ENSMUSG00000008333 ENSMUSG00000027416
2K-next-13 - 2 162600055 162673800 ENSMUSG00000016921 ENSMUSG00000035576
2K-next-14 - 2 164064152 164115451 ENSMUSG00000016995 ENSMUSG00000017007
2K-next-15 - 2 180404261 180518866 ENSMUSG00000027568 ENSMUSG00000027569
2K-next-16 - 2 181086423 181134969 ENSMUSG00000016344 ENSMUSG00000038751
2K-next-17 - 3 14779328 15348524 ENSMUSG00000027559 ENSMUSG00000027562
2K-next-18 - 3 87902029 87992292 ENSMUSG00000028071 ENSMUSG00000004895
2K-next-19 - 3 90691968 90740228 ENSMUSG00000001023 ENSMUSG00000001025
2K-next-20 - 3 97695609 97775228 ENSMUSG00000028088 ENSMUSG00000038205
2K-next-21 - 3 102650067 102969922 ENSMUSG00000027858 ENSMUSG00000027857
2K-next-22 - 3 134901426 135245133 ENSMUSG00000045328 ENSMUSG00000028167
2K-next-23 - 3 158496650 159775029 ENSMUSG00000028175 ENSMUSG00000028174
2K-next-24 - 4 11577631 11886957 ENSMUSG00000028214 ENSMUSG00000028217
2K-next-25 - 4 25099864 25398459 ENSMUSG00000028259 ENSMUSG00000040359
2K-next-26 - 4 41213850 41303098 ENSMUSG00000028427 ENSMUSG00000028435
2K-next-27 - 4 63098339 63381905 ENSMUSG00000050395 ENSMUSG00000028362
2K-next-28 - 4 125210393 125560904 ENSMUSG00000028859 ENSMUSG00000028861
2K-next-29 - 4 126750113 126853389 ENSMUSG00000050234 ENSMUSG00000042367
2K-next-30 - 4 138016650 138071319 ENSMUSG00000028749 ENSMUSG00000041202
2K-next-31 - 4 140014715 140085056 ENSMUSG00000025330 ENSMUSG00000025328
2K-next-32 - 4 146789283 146850283 ENSMUSG00000029019 ENSMUSG00000041616
2K-next-33 - 5 33479555 33695405 ENSMUSG00000037379 ENSMUSG00000037373
2K-next-34 - 5 37937397 38327483 ENSMUSG00000062329 ENSMUSG00000048450
2K-next-35 - 5 78189899 78368948 ENSMUSG00000053030 ENSMUSG00000029249
2K-next-36 - 5 93290609 93359209 ENSMUSG00000029410 ENSMUSG00000029413
2K-next-37 - 5 93403318 93463342 ENSMUSG00000034855 ENSMUSG00000060183
2K-next-38 - 5 100812528 101002453 ENSMUSG00000029319 ENSMUSG00000035273
2K-next-39 - 5 104354036 104537489 ENSMUSG00000053268 ENSMUSG00000029307
2K-next-40 - 5 108613529 108681355 ENSMUSG00000029491 ENSMUSG00000050856
2K-next-41 - 5 110510185 110580494 ENSMUSG00000029499 ENSMUSG00000007080
2K-next-42 - 5 115715202 115750457 ENSMUSG00000029522 ENSMUSG00000029524
2K-next-43 - 6 3672974 3953986 ENSMUSG00000029664 ENSMUSG00000029663
2K-next-44 - 6 18775060 19268246 ENSMUSG00000044155 ENSMUSG00000029517
2K-next-45 - 6 55247890 55381557 ENSMUSG00000004655 ENSMUSG00000004654
2K-next-46 - 6 65387729 65687513 ENSMUSG00000044162 ENSMUSG00000049001
2K-next-47 - 6 71263640 71424171 ENSMUSG00000053977 ENSMUSG00000002222
2K-next-48 - 6 83643458 83728301 ENSMUSG00000034777 ENSMUSG00000006269
2K-next-49 - 6 112404402 112529418 ENSMUSG00000062694 ENSMUSG00000049112
2K-next-50 - 6 122451942 122543410 ENSMUSG00000030116 ENSMUSG00000040627
2K-next-51 - 6 122756500 122840175 ENSMUSG00000003154 ENSMUSG00000040552
2K-next-52 - 6 126990338 127091326 ENSMUSG00000000182 ENSMUSG00000038028
2K-next-53 - 6 134989465 135103220 ENSMUSG00000046733 ENSMUSG00000030205
2K-next-54 - 6 136804704 136871582 ENSMUSG00000030217 ENSMUSG00000030218
2K-next-55 - 7 24142151 24215940 ENSMUSG00000046223 ENSMUSG00000054793
2K-next-56 - 7 30300664 30342377 ENSMUSG00000006313 ENSMUSG00000036751
2K-next-57 - 7 80916232 81087250 ENSMUSG00000038763 ENSMUSG00000025726
2K-next-58 - 7 89729552 89829867 ENSMUSG00000039391 ENSMUSG00000062797
2K-next-59 - 7 109515056 109549231 ENSMUSG00000035951 ENSMUSG00000031021
2K-next-60 - 7 109573203 109763363 ENSMUSG00000007279 ENSMUSG00000035901
2K-next-61 - 7 119852182 119965024 ENSMUSG00000030917 ENSMUSG00000030911
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Name Set Chr. Start End Ensembl.Gene.ID.1 Ensembl.Gene.ID.2

2K-next-62 - 7 127190149 127233285 ENSMUSG00000045757 ENSMUSG00000045251
2K-next-63 - 8 3625533 3665755 ENSMUSG00000004626 ENSMUSG00000012705
2K-next-64 - 8 24059307 24124757 ENSMUSG00000031535 ENSMUSG00000031536
2K-next-65 - 8 69447325 69789961 ENSMUSG00000044014 ENSMUSG00000036437
2K-next-66 - 8 71836438 72064491 ENSMUSG00000036330 ENSMUSG00000006273
2K-next-67 - 8 107485995 107528967 ENSMUSG00000031881 ENSMUSG00000031880
2K-next-68 - 8 119968427 120143123 ENSMUSG00000031845 ENSMUSG00000052557
2K-next-69 - 8 123974087 124013938 ENSMUSG00000031816 ENSMUSG00000046714
2K-next-70 - 9 20426129 20619102 ENSMUSG00000004098 ENSMUSG00000053773
2K-next-71 - 9 39938627 40048477 ENSMUSG00000025602 ENSMUSG00000049281
2K-next-72 - 9 48587865 48737316 ENSMUSG00000032269 ENSMUSG00000008590
2K-next-73 - 9 48800215 49020503 ENSMUSG00000032264 ENSMUSG00000032268
2K-next-74 - 9 54805917 54947514 ENSMUSG00000032303 ENSMUSG00000035200
2K-next-75 - 9 83391495 83678931 ENSMUSG00000032262 ENSMUSG00000038379
2K-next-76 - 9 107160886 107257833 ENSMUSG00000032579 ENSMUSG00000037977
2K-next-77 - 9 119312929 119602456 ENSMUSG00000032511 ENSMUSG00000034533
2K-next-78 - 10 60977600 61075677 ENSMUSG00000020090 ENSMUSG00000020089
2K-next-79 - 10 79190660 79257796 ENSMUSG00000035863 ENSMUSG00000035852
2K-next-80 - 10 79286304 79297837 ENSMUSG00000020125 ENSMUSG00000061780
2K-next-81 - 10 92740635 92953136 ENSMUSG00000015889 ENSMUSG00000020017
2K-next-82 - 10 127103997 127142486 ENSMUSG00000025401 ENSMUSG00000025400
2K-next-83 - 10 127658851 127699088 ENSMUSG00000047631 ENSMUSG00000040033
2K-next-84 - 11 5776936 5855834 ENSMUSG00000020469 ENSMUSG00000041798
2K-next-85 - 11 7078510 7692313 ENSMUSG00000020429 ENSMUSG00000020427
2K-next-86 - 11 53381343 53474746 ENSMUSG00000018395 ENSMUSG00000000869
2K-next-87 - 11 53489805 53613500 ENSMUSG00000020380 ENSMUSG00000036117
2K-next-88 - 11 71853654 71970124 ENSMUSG00000020808 ENSMUSG00000040543
2K-next-89 - 11 87602123 87669444 ENSMUSG00000009350 ENSMUSG00000009356
2K-next-90 - 11 98905393 99048852 ENSMUSG00000037944 ENSMUSG00000037935
2K-next-91 - 11 99238347 99330713 ENSMUSG00000035775 ENSMUSG00000006777
2K-next-92 - 11 99866642 99918298 ENSMUSG00000046095 ENSMUSG00000048013
2K-next-93 - 11 99952019 100019251 ENSMUSG00000020911 ENSMUSG00000051617
2K-next-94 - 11 100138187 100177805 ENSMUSG00000017165 ENSMUSG00000006930
2K-next-95 - 11 100554281 100582421 ENSMUSG00000035355 ENSMUSG00000045471
2K-next-96 - 11 101904606 101940163 ENSMUSG00000017316 ENSMUSG00000017311
2K-next-97 - 11 106117657 106181561 ENSMUSG00000040592 ENSMUSG00000001027
2K-next-98 - 12 29168752 29235907 ENSMUSG00000036655 ENSMUSG00000061477
2K-next-99 - 12 36460003 36600641 ENSMUSG00000020581 ENSMUSG00000020577
2K-next-100 - 13 56188424 56372522 ENSMUSG00000048904 ENSMUSG00000021508
2K-next-101 - 13 96438541 96577999 ENSMUSG00000021681 ENSMUSG00000021680
2K-next-102 - 13 96579355 96727873 ENSMUSG00000021678 ENSMUSG00000048376
2K-next-103 - 13 114229213 114463425 ENSMUSG00000042385 ENSMUSG00000042379
2K-next-104 - 14 25742143 25865965 ENSMUSG00000040760 ENSMUSG00000040726
2K-next-105 - 14 33184486 33240157 ENSMUSG00000023064 ENSMUSG00000041445
2K-next-106 - 14 53644950 53770691 ENSMUSG00000052435 ENSMUSG00000022180
2K-next-107 - 15 37905645 38182898 ENSMUSG00000037487 ENSMUSG00000061923
2K-next-108 - 15 39512528 39700676 ENSMUSG00000022303 ENSMUSG00000022304
2K-next-109 - 15 74544325 74559507 ENSMUSG00000056665 ENSMUSG00000022596
2K-next-110 - 15 76777990 76895045 ENSMUSG00000018893 ENSMUSG00000033576
2K-next-111 - 15 89142935 89178770 ENSMUSG00000054136 ENSMUSG00000022613
2K-next-112 - 15 101964252 102005031 ENSMUSG00000023046 ENSMUSG00000023045
2K-next-113 - 16 3914581 3997428 ENSMUSG00000005980 ENSMUSG00000005981
2K-next-114 - 16 26021143 26497061 ENSMUSG00000022512 ENSMUSG00000038148
2K-next-115 - 16 38261017 38315355 ENSMUSG00000046516 ENSMUSG00000022803
2K-next-116 - 17 17543690 17592441 ENSMUSG00000003665 ENSMUSG00000045551
2K-next-117 - 17 31365876 31572966 ENSMUSG00000061613 ENSMUSG00000024041
2K-next-118 - 17 31829644 31924979 ENSMUSG00000038146 ENSMUSG00000037577
2K-next-119 - 17 56792849 56889308 ENSMUSG00000019489 ENSMUSG00000005824
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2K-next-120 - 18 34776538 34884879 ENSMUSG00000024366 ENSMUSG00000044201
2K-next-121 - 18 58335175 58962132 ENSMUSG00000024600 ENSMUSG00000024601
2K-next-122 - 18 60684132 60719359 ENSMUSG00000024604 ENSMUSG00000049173
2K-next-123 - 18 61139569 61230940 ENSMUSG00000024619 ENSMUSG00000024620
2K-next-124 - 19 5457505 5474700 ENSMUSG00000024911 ENSMUSG00000024910
2K-next-125 - 19 41884121 41965233 ENSMUSG00000047604 ENSMUSG00000035049
2K-next-126 - X 6826580 6879182 ENSMUSG00000031147 ENSMUSG00000031148
2K-next-127 - X 53452231 53733141 ENSMUSG00000031132 ENSMUSG00000031133
2K-next-128 - X 96780608 96825604 ENSMUSG00000044359 ENSMUSG00000060890
2K-next-129 - X 155614069 155985934 ENSMUSG00000031298 ENSMUSG00000031295
2K-next-130 - X 162607912 162790093 ENSMUSG00000044583 ENSMUSG00000025742

Definition of mouse 2K-next dataset

A.2 Human Orthologous Datasets (hg18)

A.2.1 H2K-2K

Name Set Chr. Start End Ensembl.Gene.ID.1 Ensembl.Gene.ID.2

H2K-2K+1 + 18 59146813 59242673 ENSG00000119537 ENSG00000119541
H2K-2K+3 + 10 13357806 13432303 ENSG00000107537 ENSG00000086475
H2K-2K+4 + 10 22642909 22662419 ENSG00000148444 ENSG00000168283
H2K-2K+7 + 20 334694 393197 ENSG00000125826 ENSG00000125875
H2K-2K+9 + 3 150190024 150289007 ENSG00000163754 ENSG00000071794
H2K-2K+10 + 1 154181269 154259374 ENSG00000116584 ENSG00000163479
H2K-2K+11 + 1 100430324 100532913 ENSG00000137992 ENSG00000137996
H2K-2K+12 + 1 94102427 94149600 ENSG00000067334 ENSG00000023909
H2K-2K+13 + 4 100133903 100227399 ENSG00000164024 ENSG00000197894
H2K-2K+15 + 12 116936893 116985334 ENSG00000111445 ENSG00000176871
H2K-2K+16 + 7 72586622 72632908 ENSG00000106635 ENSG00000106638
H2K-2K+18 + 7 115924680 115990466 ENSG00000105971 ENSG00000105974
H2K-2K+21 + 2 69908336 69987852 ENSG00000087338 ENSG00000124380
H2K-2K+22 + 3 4994208 5199701 ENSG00000134107 ENSG00000134108
H2K-2K+25 + 19 14447572 14492201 ENSG00000123159 ENSG00000132002
H2K-2K+26 + 16 45249095 45291806 ENSG00000069329 ENSG00000091651
H2K-2K+27 + 16 55834539 55878077 ENSG00000102931 ENSG00000102934
H2K-2K+28 + 16 66118221 66232584 ENSG00000039523 ENSG00000102974
H2K-2K+30 + 11 107382618 107525485 ENSG00000166266 ENSG00000075239
H2K-2K+31 + 3 45403072 45698569 ENSG00000011376 ENSG00000144791
H2K-2K+32 + 12 104023622 104156138 ENSG00000136051 ENSG00000136044
H2K-2K+34 + 5 177488603 177515567 ENSG00000145916 ENSG00000145912
H2K-2K+35 + 5 132358579 132470608 ENSG00000155329 ENSG00000170606
H2K-2K+36 + 17 25728110 25879957 ENSG00000108582 ENSG00000108587
H2K-2K+37 + 7 107316847 107433040 ENSG00000091140 ENSG00000091136
H2K-2K+39 + 6 24756184 24811921 ENSG00000111802 ENSG00000112304
H2K-2K+40 + 5 176949814 176971918 ENSG00000184840 ENSG00000027847
H2K-2K+42 + 8 98854461 99119116 ENSG00000104341 ENSG00000132561
H2K-2K+43 + 8 145203510 145215102 ENSG00000178896 ENSG00000197858
H2K-2K+44 + 22 37405900 37428405 ENSG00000100216 ENSG00000100221
H2K-2K+45 + 22 38226230 38250637 ENSG00000100335 ENSG00000128272
H2K-2K+46 + 21 29316809 29369881 ENSG00000156256 ENSG00000156261
H2K-2K+47 + 16 355437 373979 ENSG00000086504 ENSG00000129925
H2K-2K+48 + 18 17444235 17540724 ENSG00000167088 ENSG00000158201
H2K-2K+51 + X 106756385 106907858 ENSG00000147224 ENSG00000157514

Definition of human H2K-2K dataset
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Name Set Chr. Start End Ensembl.Gene.ID.1 Ensembl.Gene.ID.2

H2K-2K-3 - 1 199614589 199667617 ENSG00000159166 ENSG00000159173
H2K-2K-4 - 9 134893897 134939069 ENSG00000148308 ENSG00000170835
H2K-2K-5 - 9 131465741 131557165 ENSG00000167157 ENSG00000148344
H2K-2K-6 - 2 162706779 162810291 ENSG00000115263 ENSG00000078098
H2K-2K-7 - 2 162829836 162927875 ENSG00000115267 ENSG00000115271
H2K-2K-8 - 2 174919126 175003971 ENSG00000138433 ENSG00000144306
H2K-2K-9 - 2 176670776 176684562 ENSG00000170178 ENSG00000128713
H2K-2K-10 - 11 56898819 56916684 ENSG00000156575 ENSG00000186652
H2K-2K-11 - 11 44071675 44290195 ENSG00000151348 ENSG00000052850
H2K-2K-12 - 15 30692983 30778584 ENSG00000198826 ENSG00000166922
H2K-2K-13 - 20 16656629 16682809 ENSG00000125870 ENSG00000125879
H2K-2K-14 - 20 41517932 41605949 ENSG00000124193 ENSG00000185513
H2K-2K-15 - 20 43353499 43381876 ENSG00000124159 ENSG00000124232
H2K-2K-16 - 20 60808634 60904390 ENSG00000101188 ENSG00000101189
H2K-2K-17 - 20 61620521 61641151 ENSG00000125534 ENSG00000101213
H2K-2K-18 - 8 86535710 86582945 ENSG00000164879 ENSG00000104267
H2K-2K-22 - 1 115371938 115435644 ENSG00000134200 ENSG00000134198
H2K-2K-24 - 1 68665033 68737386 ENSG00000116745 ENSG00000024526
H2K-2K-25 - 8 95206566 95345733 ENSG00000079112 ENSG00000164949
H2K-2K-26 - 6 97074405 97173233 ENSG00000014123 ENSG00000112214
H2K-2K-28 - 9 116589421 116734591 ENSG00000181634 ENSG00000106952
H2K-2K-29 - 1 36691906 36723466 ENSG00000116898 ENSG00000119535
H2K-2K-30 - 1 35017377 35035935 ENSG00000188910 ENSG00000187513
H2K-2K-31 - 1 34991235 35003912 ENSG00000189280 ENSG00000189433
H2K-2K-32 - 1 20309019 20351466 ENSG00000117215 ENSG00000158786
H2K-2K-36 - 4 4910307 5074100 ENSG00000163132 ENSG00000170891
H2K-2K-37 - 4 57368784 57498767 ENSG00000128040 ENSG00000084093
H2K-2K-38 - 4 76998052 77083126 ENSG00000156194 ENSG00000138744
H2K-2K-40 - 4 84402003 84477329 ENSG00000173085 ENSG00000173083
H2K-2K-41 - 4 88749085 88806529 ENSG00000152591 ENSG00000152592
H2K-2K-44 - 12 119222546 119251975 ENSG00000089163 ENSG00000170890
H2K-2K-45 - 7 93350663 93380421 ENSG00000105825 ENSG00000127928
H2K-2K-46 - 7 117609455 117671977 ENSG00000128534 ENSG00000106013
H2K-2K-47 - 7 30915993 30992114 ENSG00000106125 ENSG00000106128
H2K-2K-48 - 4 122174232 122306926 ENSG00000173376 ENSG00000050730
H2K-2K-49 - 2 86798995 86873578 ENSG00000153561 ENSG00000153563
H2K-2K-51 - 3 8748253 8788300 ENSG00000182533 ENSG00000180914
H2K-2K-52 - 12 8646147 8708700 ENSG00000111732 ENSG00000197614
H2K-2K-53 - 12 8074626 8112280 ENSG00000065970 ENSG00000171860
H2K-2K-54 - 12 4298632 4361155 ENSG00000078237 ENSG00000118972
H2K-2K-56 - 12 14871512 14932025 ENSG00000111339 ENSG00000111341
H2K-2K-57 - 19 48816362 48868539 ENSG00000105767 ENSG00000011422
H2K-2K-58 - 19 40828995 40863207 ENSG00000126267 ENSG00000105668
H2K-2K-60 - 11 85688936 85813798 ENSG00000149196 ENSG00000149201
H2K-2K-61 - 11 8913695 8944578 ENSG00000176009 ENSG00000175348
H2K-2K-64 - 16 30470587 30493556 ENSG00000169951 ENSG00000197162
H2K-2K-65 - 19 7606010 7643340 ENSG00000076944 ENSG00000104918
H2K-2K-66 - 8 42313131 42355832 ENSG00000070501 ENSG00000104371
H2K-2K-67 - 4 164462567 164494534 ENSG00000164128 ENSG00000164129
H2K-2K-68 - 8 20044646 20125485 ENSG00000036565 ENSG00000147416
H2K-2K-69 - 16 55948219 55978455 ENSG00000102962 ENSG00000006210
H2K-2K-70 - 16 65497526 65518939 ENSG00000166589 ENSG00000166592
H2K-2K-71 - 16 79827797 79973441 ENSG00000135697 ENSG00000127688
H2K-2K-73 - 19 9929237 9995954 ENSG00000080573 ENSG00000080511
H2K-2K-74 - 11 123003107 123119573 ENSG00000166257 ENSG00000166261
H2K-2K-75 - 11 113278729 113368241 ENSG00000149305 ENSG00000166736
H2K-2K-76 - 11 113061483 113151635 ENSG00000166682 ENSG00000086827

Definition of human H2K-2K dataset

90



Master Thesis A Datasets Markus Schüler

Name Set Chr. Start End Ensembl.Gene.ID.1 Ensembl.Gene.ID.2

H2K-2K-78 - 6 80679248 80810958 ENSG00000118402 ENSG00000112742
H2K-2K-79 - 3 50568467 50599426 ENSG00000088543 ENSG00000114735
H2K-2K-80 - 3 38562558 38812505 ENSG00000183873 ENSG00000185313
H2K-2K-81 - 10 71630592 71698154 ENSG00000180817 ENSG00000148734
H2K-2K-82 - 19 658002 717318 ENSG00000099864 ENSG00000099812
H2K-2K-83 - 19 801291 816606 ENSG00000197561 ENSG00000197766
H2K-2K-84 - 12 94889273 94955496 ENSG00000084110 ENSG00000111144
H2K-2K-85 - 12 55688053 55732160 ENSG00000166863 ENSG00000166866
H2K-2K-87 - 7 44142990 44197563 ENSG00000106631 ENSG00000106633
H2K-2K-88 - 7 45892484 45929396 ENSG00000146678 ENSG00000146674
H2K-2K-89 - 5 132035272 132103229 ENSG00000113520 ENSG00000131437
H2K-2K-90 - 5 131903035 132009651 ENSG00000113525 ENSG00000113522
H2K-2K-91 - 17 6286483 6402601 ENSG00000129195 ENSG00000091622
H2K-2K-92 - 17 53668847 53715281 ENSG00000167419 ENSG00000005381
H2K-2K-93 - 17 53623088 53650606 ENSG00000121053 ENSG00000011143
H2K-2K-95 - 17 36283721 36349362 ENSG00000171431 ENSG00000108244
H2K-2K-96 - 17 36867588 36893194 ENSG00000108759 ENSG00000197079
H2K-2K-101 - 17 59357832 59406010 ENSG00000007312 ENSG00000007314
H2K-2K-103 - 7 16757853 16813133 ENSG00000106537 ENSG00000106541
H2K-2K-104 - 5 134896566 134944868 ENSG00000181965 ENSG00000145824
H2K-2K-105 - 5 76282436 76398815 ENSG00000145708 ENSG00000164252
H2K-2K-107 - 5 54307449 54368155 ENSG00000164283 ENSG00000113088
H2K-2K-109 - 10 88683277 88714997 ENSG00000173269 ENSG00000173267
H2K-2K-110 - 14 22654387 22724689 ENSG00000092067 ENSG00000092068
H2K-2K-112 - 8 105419228 105550453 ENSG00000164935 ENSG00000147647
H2K-2K-113 - 8 143803623 143822831 ENSG00000130193 ENSG00000126233
H2K-2K-116 - 12 51775703 51806589 ENSG00000167779 ENSG00000167780
H2K-2K-118 - 3 191504197 191613027 ENSG00000163347 ENSG00000113946
H2K-2K-119 - 3 120841596 120880933 ENSG00000121577 ENSG00000138495
H2K-2K-120 - 19 56906177 56948912 ENSG00000105509 ENSG00000171051
H2K-2K-121 - 21 43384136 43467982 ENSG00000160201 ENSG00000160202
H2K-2K-122 - 19 15129445 15206231 ENSG00000074181 ENSG00000105131
H2K-2K-123 - 19 6534867 6623599 ENSG00000125726 ENSG00000125735
H2K-2K-125 - 5 128326720 128479612 ENSG00000113396 ENSG00000066583
H2K-2K-129 - 10 99080244 99153090 ENSG00000181274 ENSG00000052749
H2K-2K-130 - X 48855278 48913766 ENSG00000068394 ENSG00000017621
H2K-2K-131 - X 135556002 135693913 ENSG00000102245 ENSG00000129675
H2K-2K-133 - X 18818339 19052676 ENSG00000044446 ENSG00000173698
H2K-2K-134 - X 12717452 12820420 ENSG00000101911 ENSG00000196664

Definition of human H2K-2K dataset

A.2.2 H2K-next

Name Set Chr. Start End Ensembl.Gene.ID.1 Ensembl.Gene.ID.2

H2K-next+1 + 18 59137594 59295198 ENSG00000119537 ENSG00000119541
H2K-next+3 + 10 13316338 13520642 ENSG00000107537 ENSG00000086475
H2K-next+4 + 10 22596142 22674404 ENSG00000148444 ENSG00000168283
H2K-next+7 + 20 326206 411339 ENSG00000125826 ENSG00000125875
H2K-next+9 + 3 150188144 150294832 ENSG00000163754 ENSG00000071794
H2K-next+10 + 1 154179365 154271715 ENSG00000116584 ENSG00000163479
H2K-next+11 + 1 100416389 100590539 ENSG00000137992 ENSG00000137996
H2K-next+12 + 1 94085295 94160128 ENSG00000067334 ENSG00000023909
H2K-next+13 + 4 100070140 100263854 ENSG00000164024 ENSG00000197894
H2K-next+15 + 12 116777725 116985782 ENSG00000111445 ENSG00000176871
H2K-next+16 + 7 72574552 72645459 ENSG00000106635 ENSG00000106638
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Name Set Chr. Start End Ensembl.Gene.ID.1 Ensembl.Gene.ID.2

H2K-next+18 + 7 115686072 116099694 ENSG00000105971 ENSG00000105974
H2K-next+21 + 2 69906411 69993330 ENSG00000087338 ENSG00000124380
H2K-next+22 + 3 4895387 5204226 ENSG00000134107 ENSG00000134108
H2K-next+25 + 19 14447175 14501354 ENSG00000123159 ENSG00000132002
H2K-next+26 + 16 45218252 45298959 ENSG00000069329 ENSG00000091651
H2K-next+27 + 16 55831888 55950218 ENSG00000102931 ENSG00000102934
H2K-next+28 + 16 66075218 66236530 ENSG00000039523 ENSG00000102974
H2K-next+30 + 11 107339417 107534878 ENSG00000166266 ENSG00000075239
H2K-next+31 + 3 45272117 45705467 ENSG00000011376 ENSG00000144791
H2K-next+32 + 12 104002367 104248543 ENSG00000136051 ENSG00000136044
H2K-next+34 + 5 177485714 177545325 ENSG00000145916 ENSG00000145912
H2K-next+35 + 5 132356792 132560050 ENSG00000155329 ENSG00000170606
H2K-next+36 + 17 25711718 25908255 ENSG00000108582 ENSG00000108587
H2K-next+37 + 7 107230907 107451231 ENSG00000091140 ENSG00000091136
H2K-next+39 + 6 24754363 24813067 ENSG00000111802 ENSG00000112304
H2K-next+40 + 5 176914115 176978508 ENSG00000184840 ENSG00000027847
H2K-next+42 + 8 98853828 99123129 ENSG00000104341 ENSG00000132561
H2K-next+43 + 8 145186924 145221967 ENSG00000178896 ENSG00000197858
H2K-next+44 + 22 37404351 37431752 ENSG00000100216 ENSG00000100221
H2K-next+45 + 22 38215386 38255047 ENSG00000100335 ENSG00000128272
H2K-next+46 + 21 29313564 29380052 ENSG00000156256 ENSG00000156261
H2K-next+47 + 16 352534 376763 ENSG00000086504 ENSG00000129925
H2K-next+48 + 18 17434844 17558077 ENSG00000167088 ENSG00000158201
H2K-next+51 + X 106733260 106924106 ENSG00000147224 ENSG00000157514

H2K-next-3 - 1 199613432 199701242 ENSG00000159166 ENSG00000159173
H2K-next-4 - 9 134886375 134946516 ENSG00000148308 ENSG00000170835
H2K-next-5 - 9 131444266 131605252 ENSG00000167157 ENSG00000148344
H2K-next-6 - 2 162639299 162831835 ENSG00000115263 ENSG00000078098
H2K-next-8 - 2 174910398 175004620 ENSG00000138433 ENSG00000144306
H2K-next-9 - 2 176668047 176689745 ENSG00000170178 ENSG00000128713
H2K-next-10 - 11 56894126 56931004 ENSG00000156575 ENSG00000186652
H2K-next-11 - 11 44062146 44543716 ENSG00000151348 ENSG00000052850
H2K-next-12 - 15 30681857 30797496 ENSG00000198826 ENSG00000166922
H2K-next-13 - 20 16599388 16911475 ENSG00000125870 ENSG00000125879
H2K-next-14 - 20 41513315 41621021 ENSG00000124193 ENSG00000185513
H2K-next-15 - 20 43316621 43384414 ENSG00000124159 ENSG00000124232
H2K-next-16 - 20 60802278 60906621 ENSG00000101188 ENSG00000101189
H2K-next-17 - 20 61600950 61642606 ENSG00000125534 ENSG00000101213
H2K-next-18 - 8 86478496 86742205 ENSG00000164879 ENSG00000104267
H2K-next-22 - 1 115339515 115630059 ENSG00000134200 ENSG00000134198
H2K-next-24 - 1 68481327 69806668 ENSG00000116745 ENSG00000024526
H2K-next-25 - 8 95007471 95453364 ENSG00000079112 ENSG00000164949
H2K-next-26 - 6 96837461 97204049 ENSG00000014123 ENSG00000112214
H2K-next-28 - 9 116448524 116822633 ENSG00000181634 ENSG00000106952
H2K-next-29 - 1 36688640 37033714 ENSG00000116898 ENSG00000119535
H2K-next-30 - 1 35016833 35091718 ENSG00000188910 ENSG00000187513
H2K-next-31 - 1 34907883 35016748 ENSG00000189280 ENSG00000189433
H2K-next-32 - 1 20290249 20363070 ENSG00000117215 ENSG00000158786
H2K-next-36 - 4 4594677 5104427 ENSG00000163132 ENSG00000170891
H2K-next-37 - 4 57367055 57524272 ENSG00000128040 ENSG00000084093
H2K-next-38 - 4 76971481 77090082 ENSG00000156194 ENSG00000138744
H2K-next-40 - 4 84254936 84547526 ENSG00000173085 ENSG00000173083
H2K-next-41 - 4 88669411 88884129 ENSG00000152591 ENSG00000152592
H2K-next-44 - 12 119215424 119263515 ENSG00000089163 ENSG00000170890
H2K-next-45 - 7 93059023 93388973 ENSG00000105825 ENSG00000127928
H2K-next-46 - 7 117300798 119015496 ENSG00000128534 ENSG00000106013
H2K-next-47 - 7 30898146 31058666 ENSG00000106125 ENSG00000106128
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Name Set Chr. Start End Ensembl.Gene.ID.1 Ensembl.Gene.ID.2

H2K-next-48 - 4 122063464 122333401 ENSG00000173376 ENSG00000050730
H2K-next-49 - 2 86703521 86895972 ENSG00000153561 ENSG00000153563
H2K-next-51 - 3 8668761 8893759 ENSG00000182533 ENSG00000180914
H2K-next-52 - 12 8641502 8743708 ENSG00000111732 ENSG00000197614
H2K-next-53 - 12 8059052 8126104 ENSG00000065970 ENSG00000171860
H2K-next-54 - 12 4284778 4413568 ENSG00000078237 ENSG00000118972
H2K-next-56 - 12 14868054 14958240 ENSG00000111339 ENSG00000111341
H2K-next-57 - 19 48815847 48912077 ENSG00000105767 ENSG00000011422
H2K-next-58 - 19 40827614 40895669 ENSG00000126267 ENSG00000105668
H2K-next-60 - 11 85667427 85829797 ENSG00000149196 ENSG00000149201
H2K-next-61 - 11 8911104 8960969 ENSG00000176009 ENSG00000175348
H2K-next-64 - 16 30453696 30497794 ENSG00000169951 ENSG00000197162
H2K-next-65 - 19 7604637 7647513 ENSG00000076944 ENSG00000104918
H2K-next-66 - 8 42309131 42368546 ENSG00000070501 ENSG00000104371
H2K-next-67 - 4 164307524 164612455 ENSG00000164128 ENSG00000164129
H2K-next-68 - 8 19867913 20131569 ENSG00000036565 ENSG00000147416
H2K-next-70 - 16 65479357 65523468 ENSG00000166589 ENSG00000166592
H2K-next-71 - 16 79811477 80036395 ENSG00000135697 ENSG00000127688
H2K-next-73 - 19 9908229 10014155 ENSG00000080573 ENSG00000080511
H2K-next-74 - 11 122998973 123129497 ENSG00000166257 ENSG00000166261
H2K-next-75 - 11 113251467 113435524 ENSG00000149305 ENSG00000166736
H2K-next-76 - 11 112986680 113173807 ENSG00000166682 ENSG00000086827
H2K-next-78 - 6 80470092 80873082 ENSG00000118402 ENSG00000112742
H2K-next-79 - 3 50516033 50618924 ENSG00000088543 ENSG00000114735
H2K-next-80 - 3 38558442 38862263 ENSG00000183873 ENSG00000185313
H2K-next-81 - 10 71600286 71728734 ENSG00000180817 ENSG00000148734
H2K-next-82 - 19 646484 748410 ENSG00000099864 ENSG00000099812
H2K-next-83 - 19 799176 818960 ENSG00000197561 ENSG00000197766
H2K-next-84 - 12 94886501 95019859 ENSG00000084110 ENSG00000111144
H2K-next-85 - 12 55686498 55735697 ENSG00000166863 ENSG00000166866
H2K-next-87 - 7 44128239 44207102 ENSG00000106631 ENSG00000106633
H2K-next-88 - 7 45849867 45981500 ENSG00000146678 ENSG00000146674
H2K-next-89 - 5 132024702 132111035 ENSG00000113520 ENSG00000131437
H2K-next-90 - 5 131854390 132021763 ENSG00000113525 ENSG00000113522
H2K-next-91 - 17 6279244 6422374 ENSG00000129195 ENSG00000091622
H2K-next-92 - 17 53648607 53733594 ENSG00000167419 ENSG00000005381
H2K-next-95 - 17 36276989 36368194 ENSG00000171431 ENSG00000108244
H2K-next-96 - 17 36851123 36896153 ENSG00000108759 ENSG00000197079
H2K-next-101 - 17 59349887 59433707 ENSG00000007312 ENSG00000007314
H2K-next-103 - 7 16712663 16865553 ENSG00000106537 ENSG00000106541
H2K-next-104 - 5 134815888 135198314 ENSG00000181965 ENSG00000145824
H2K-next-105 - 5 76252608 76403652 ENSG00000145708 ENSG00000164252
H2K-next-107 - 5 53875479 54372431 ENSG00000164283 ENSG00000113088
H2K-next-109 - 10 88674926 88715477 ENSG00000173269 ENSG00000173267
H2K-next-110 - 14 22639501 22798513 ENSG00000092067 ENSG00000092068
H2K-next-112 - 8 105333264 105565772 ENSG00000164935 ENSG00000147647
H2K-next-113 - 8 143782603 143828630 ENSG00000130193 ENSG00000126233
H2K-next-116 - 12 51759438 51818595 ENSG00000167779 ENSG00000167780
H2K-next-118 - 3 191365998 191629141 ENSG00000163347 ENSG00000113946
H2K-next-119 - 3 120831342 120902675 ENSG00000121577 ENSG00000138495
H2K-next-120 - 19 56900255 56955994 ENSG00000105509 ENSG00000171051
H2K-next-121 - 21 43369542 43573005 ENSG00000160201 ENSG00000160202
H2K-next-122 - 19 15117123 15209300 ENSG00000074181 ENSG00000105131
H2K-next-123 - 19 6524069 6628877 ENSG00000125726 ENSG00000125735
H2K-next-125 - 5 127901635 128824001 ENSG00000113396 ENSG00000066583
H2K-next-129 - 10 99071663 99170943 ENSG00000181274 ENSG00000052749
H2K-next-130 - X 48845004 48915188 ENSG00000068394 ENSG00000017621
H2K-next-131 - X 135552255 135726303 ENSG00000102245 ENSG00000129675

Definition of human H2K-next dataset
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Name Set Chr. Start End Ensembl.Gene.ID.1 Ensembl.Gene.ID.2

H2K-next-133 - X 18756098 19271967 ENSG00000044446 ENSG00000173698
H2K-next-134 - X 12652564 12834678 ENSG00000101911 ENSG00000196664

Definition of human H2K-next dataset
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Appendix B
Description & Overview of Used Scripts

B.1 Description of Scripts

1. SequenceExtractor.pl
The SequenceExtractor script extract the nucleotide sequence for a specified region
on any chromosome of the Mouse February 2006 (mm8) assembly from NCBI
(Build 36) and the actual Human March 2006 (hg18) assembly from NCBI (Build
35). It provides some attributes to format the output sequence. The script is
described in section 2.4.

2. FeatureExtractor.pl
The FeatureExtractor script extracts specific features for a specified region on any
chromosome of the Mouse February 2006 (mm8) assembly from NCBI (Build 36)
and the actual Human March 2006 (hg18) assembly from NCBI (Build 35).
The following features can be annotated by the script:
• CpG island
• CpG region
• SP1 bindings site (TRANSFAC)
• GC Box
• CTCF binding site
• TATA Box (TRANSFAC)
• All repeat classes as annotated by UCSC genome browser
• Regions with “Regulatory Potential”
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The annotation is returned using three different formats:
a) Full (Potentially Overlapping) Masking List

The full masking list contains the exact and sorted start/end positions of
all extracted features in the specified region (using chromosome based coor-
dinates). As several features could overlap with each other, this list might
contain overlapping regions.

b) Masking String
The masking string is a one-to-one representation of the annotation. Each
nucleotide of the sequence is assigned by an appropriate symbol that repre-
sents the feature that is annotated to that particular position. An overlap of
features is indicated by the symbol ‘∼’. Nucleotide positions that lack any
feature assignment are represented by a ‘-’.

c) Non-overlapping Masking List
The non-overlapping masking list contains sorted start/end positions of all
extracted features in the specified region (using chromosome based coordi-
nates). In contrast to the full masking list, overlaps between distinct features
are indicated by “overlap” entries.

The script is described in section 2.5.

3. SequenceMasker.pl
The SequenceMasker script takes the sequence extracted by SequenceExtractor.pl
and the appropriate feature annotation provided by FeatureExtractor.pl to com-
pute a masked sequence that can be used as input to the motif finding programs.
The masking process comprises of changing every nucleotide, that is masked by a
certain feature - as indicated by the full masking list - into a user-specified charac-
ter. The script provides the possibility to include regulatory potential information
into the masking. It is described in section 2.6.

4. ProjectHandler.pl
The ProjectHandler script was implemented to build a user-friendly interface to the
three scripts SequenceExtractor.pl, FeatureExtractor.pl, and SequenceMasker.pl. It
is controlled by project files which include the position of the dataset definition
file (which itself contains the start/end positions and additional localisation pa-
rameters for every single region of the positive/negative dataset) and the output
directory. The files are structured according to the key-value principal. It is pos-
sible to enable/disable every single feature from the extraction procedure and to
define the appropriate parameters individually. The process is then guided by
ProjectHandler using the SequenceExtractor script to extract the sequence of ev-
ery defined region. Afterwards the FeatureExtraction script is started to extract
the appropriate annotation of that regions. The masking step is fulfilled by the
SequenceMasker script again for every region defined in the dataset definition file.
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5. PreMotifFinder.pl
The PreMotifFinder script concatenates all masked sequences from the positive
dataset gained from the sequence masking procedure into one file in FASTA format
that can afterwards be used as input for the motif finding programs. The script is
mentioned in section 2.7.

6. Motif Finding Programs
Motif finding programs try to find overrepresented subsequences (motifs) in an
input set of sequences. We used different programs that have been developed by
several groups:

• AlignACE
• MEME
• BioProspector
• Improbizer

For further details on these motif finding programs refer to sections 2.7.1 to 2.7.4.

7. PostMotifFinder.pl
The PostMotifFinder script converts the output (the found motifs) of the single
motif finding programs into a common file format (called mot file format) that is
then used as input for MAST. MAST screens a database of nucleotide sequences
for occurrences of one motif provided by the user. The searching process is based
on a statistical model to ensure significance of the found positions and therefore
to search for reliable occurrences of this motifs. Mast is described in section 2.9.
The PostMotifFinder script also manages the call for ScoreMotifs.pl that com-
putes motif statistics like the ratio of group frequencies and the group specificity
score (see section 2.10) for a single motif in the whole (positive and negative)
sequence database. PostMotifFinder.pl guides the pairwise comparison between
motifs and the clustering of similar motifs using the CompareACE and TREE pro-
grams. Furthermore it calls the sequence logo drawing program (WebLogo) and
the comparison of the found motifs to the TRANSFAC vertebrate PSSM. Finally
it outputs a latex-style ASCII file which is afterwards translated into a PDF file.
The script and the appropriate programs and approaches are described in section
2.9 to 2.13.

8. FeatureStatistics.pl & FeatureStatistics.R
The two FeatureStatistics script read the extracted features prepared by the Fea-
tureExtraction script and compute median, mean and density for each single fea-
ture. The perl scripts converts the start/end annotations of the FeatureExtrac-
tion.pl output into the total number of a particular feature contained in the region
of interest as well as the percentage coverage of that region. These values are ad-
ditionally computed for each subregion (like the intergenic or transcript regions).
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The appropriate R script takes these values and computes means, medians and
densities using the standard R functions (density is called with from=0 ). Addi-
tionally, a Wilcoxon rank sum test is performed on each individual distribution
using the standard wilcox.test function with the two data vectors (one from the
positive dataset and one from the negative) to investigate difference in distribution
between these two sets. Finally, the density, mean and median are plotted for each
dataset separately. The approach is described in section 2.15.

9. DistributionExtractor.pl
The DistributionExtractor computes 0-vectors in the length of the region. For each
features to be analysed one vector is computed and filled with 1s at positions that
are annotated by the specific feature. These 0-1-vectors can then be imported into
R and used by the FeaturePlotter.

10. FeaturePlotter Package
The FeaturePlotter package consist of two kinds of R functions:

a) Functions that adjust/map distributions over regions of different
size to the same length

b) The plotFeature function that draws the FeaturePlotter plots

Both kinds of functions are described in detail in section 2.16.
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B.2 Interaction Diagram

Figure B.1: Diagram of the interaction between the different scripts and programs used
in this master thesis. Yellow boxes represent data files, blue rounded boxes
represent scripts and programs. Green rounded boxes depict packages or
scripts that are programmed to call other scripts. The arrows illustrate the
dataflow.
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Appendix C
Feature Distribution Figures

C.1 Mean, Median and Density

Figure C.1: Mean, median and density for the procentage coverage of SINE repeats. A:
2K-2K p = 2.3x10−3 B: 2K-next p = 3.57x10−3 C: H2K-2K p = 4.19x10−3

D: H2K-next p = 1.34x10−3.
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Figure C.2: Mean, median and density for the procentage coverage of LINE repeats. A:
2K-2K p = 0.916 B: 2K-next p = 0.908 C: H2K-2K p = 0.165 D: H2K-next
p = 0.245.
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Figure C.3: Mean, median and density for the procent coverage of Simple repeats.
A: 2K-2K p = 9.776x10−7 B: 2K-next p = 1.79x10−4 C: H2K-2K p =
4.265x10−4 D: H2K-next p = 6.874x10−3.
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Figure C.4: Mean, median and density for the procentage coverage of Low Complexity
repeats. A: 2K-2K p = 0.263 B: 2K-next p = 0.424 C: H2K-2K p = 0.666
D: H2K-next p = 0.482.
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Figure C.5: Mean, median and density for the procentage coverage of LTRs. A: 2K-2K
p = 0.0989 B: 2K-next p = 0.885 C: H2K-2K p = 0.0105 D: H2K-next
p = 0.0593.
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Figure C.6: Mean, median and density for the procentage coverage of DNA repeats. A:
2K-2K p = 0.828 B: 2K-next p = 0.799 C: H2K-2K p = 0.604 D: H2K-next
p = 0.777.
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C.2 FeaturePlotter Plots

Figure C.7: Average distribution of CpG islands over the positive (red) and negative
(blue) sequence. A: 2K-2K B: 2K-next C: H2K-2K D: H2K-next I: Uni-
directional Pairs II: Convergent Pairs III: Divergent Pairs
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Figure C.8: Average distribution of CpG regions over the positive (red) and negative
(blue) sequence. A: 2K-2K B: 2K-next C: H2K-2K D: H2K-next I: Uni-
directional Pairs II: Convergent Pairs III: Divergent Pairs
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Figure C.9: Average distribution of SP1 binding sites over the positive (red) and neg-
ative (blue) sequence. A: 2K-2K B: 2K-next C: H2K-2K D: H2K-next
I: Unidirectional Pairs II: Convergent Pairs III: Divergent Pairs
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Figure C.10: Average distribution of GC Box hexanucleotides over the positive (red)
and negative (blue) sequence. A: 2K-2K B: 2K-next C: H2K-2K D: H2K-
next I: Unidirectional Pairs II: Convergent Pairs III: Divergent Pairs
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Figure C.11: Average distribution of CTCF binding sites over the positive (red) and
negative (blue) sequence. A: 2K-2K B: 2K-next C: H2K-2K D: H2K-next
I: Unidirectional Pairs II: Convergent Pairs III: Divergent Pairs
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Figure C.12: Average distribution of SINE repeats over the positive (red) and neg-
ative (blue) sequence. A: 2K-2K B: 2K-next C: H2K-2K D: H2K-next
I: Unidirectional Pairs II: Convergent Pairs III: Divergent Pairs
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Figure C.13: Average distribution of LINE repeats over the positive (red) and neg-
ative (blue) sequence. A: 2K-2K B: 2K-next C: H2K-2K D: H2K-next
I: Unidirectional Pairs II: Convergent Pairs III: Divergent Pairs
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Figure C.14: Average distribution of simple repeats over the positive (red) and neg-
ative (blue) sequence. A: 2K-2K B: 2K-next C: H2K-2K D: H2K-next
I: Unidirectional Pairs II: Convergent Pairs III: Divergent Pairs
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List of Abbreviations

ACH active chromatin hub
EM expectation maximisation
GSS group specificity score
HAT histone acetyltransferase
HDAC histone deacetylase
HCP highly co-expressed gene pair
HMM hidden Markov model
HS hypersensitive site
LCR locus control region
LINE long interspersed nuclear elements
LTR long terminar repeat
NR nuclear receptor
NRF nucleosome-free regions
PFM position frequency matrix
PSFM position-specific frequency matrix
PSSM position-specific scoring matrix
PWM position weight matrix
RNAi RNA interference
RP regulatory potential
SINE short interspersed nuclear elements
TF transcription factor
TFBS transcription factor binding site
TSS transcriptional start site
UCP uncorrelated gene pair
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