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ABSTRACT

Summary:Theestimationofmodelparameters fromexperimental data

remains a bottleneck for a major breakthrough in systems biology. We

present a Systems Biology Markup Language (SBML) based

ParameterEstimationTool (SBML-PET). The tool is designed to enable

parameter estimation for biological models including signaling path-

ways, gene regulation networks and metabolic pathways. SBML-

PET supports import and export of the models in the SBML format. It

can estimate the parameters by fitting a variety of experimental data

fromdifferentexperimental conditions.SBML-PEThasaunique feature

of supporting event definition in the SMBL model. SBML models can

alsobesimulated inSBML-PET.StochasticRankingEvolutionStrategy

(SRES) is incorporated in SBML-PET for parameter estimation jobs.

A classic ODE Solver called ODEPACK is used to solve the Ordinary

Differential Equation (ODE) system.

Availability: http://sysbio.molgen.mpg.de/SBML-PET/. The website

also contains detailed documentation for SBML-PET.

Contact: klipp@molgen.mpg.de, zhike_zi@molgen.mpg.de

1 INTRODUCTION

The aim of parameter estimation for biochemical network models is

to find the most feasible parameters that reproduce these experi-

mental results according to a given set of experimental data. Several

efforts have been dedicated to this problem. Some researchers focus

on the development of optimization methods (Tsai andWang, 2005;

Klipp and Heinrich, 1994; Mendes and Kell, 1998; Kremling et al.,
2004; Zak et al., 2003; Matsubara et al., 2006; Runarsson and Yao,

2000; Gadkar et al., 2005), others pay attention to making the

methods available for the users. For example, Grid Cellware

(Dhar et al., 2005) and OBIYagns (Kimura et al., 2004) are grid-

based tools with parameter estimator. Gepasi (Mendes, 1993) and

Copasi (http://www.copasi.org), both complex pathway simulators,

enable parameter estimation with different optimization methods

using data from time course or steady state experiments. The C

library libSRES (Ji and Xu, 2006) is composed of a parameter esti-

mator mainly implementing stochastic ranking evolution strategy.

Although there are some simulation programs with parameter

estimation facility, it is still hard for systems biologists to apply

them to their specific problems. First, none of the currently existing

software supports models in which events have been defined,

although events are very common and important for biological

experiments. Most experimental data refer to a specific event in

the experiment like changing signal source or strength at a specific

time, or blocking protein synthesis during the experiment. Currently

available software is difficult to apply to such cases. Second, some-

times it is impossible to directly measure the concentration of the

components in the biological model. Instead, only the sum amount

of several components or the relative change of a component can

be measured. Parameter estimators should support any kind of

experimental data, e.g. measurement error in the experimental

data, normalized data or any mathematical expression with the

concentration of the components.

In order to satisfy the specific customized requirements for

parameter estimation, we developed an SBML-based Parameter

Estimation Tool (SBML-PET). SBML-PET is designed to do

parameter estimation work for biological models including signal-

ing pathways, gene regulation networks and metabolic pathways.

To the best of our knowledge, SBML-PET has a unique feature of

supporting the models including events. It also supports a variety of

data from different experimental conditions and the data can be exp-

ressed with common mathematical expression (e.g. trigonometric

and transcendental functions).

2 FEATURES

The following is a summary of the features of SBML-PET:

SBML-PET supports model import and export in SBML format, a

widely accepted standard for the exchange of biochemical network

models. All estimated parameters will be saved in a new SBML file,

which can be imported by other SBML supported simulation

softwares.

SBML-PET supports event structures that describe the time and

form of explicit, instantaneous, discontinuous state changes in the

model.

Frequently, experimental data are (1) obtained from different

labs and (2) produced under different conditions. SBML-PET

can estimate the parameters using all such diverse types of data.

Concentration measurements are often indirect. SBML-PET

supports any kind of experimental data, e.g. normalized data or

common mathematical expression involving the concentration of

components.

SBML-PET supports common mathematical expressions for the

qualitative and quantitative description of the model, such as con-

straints for parameters or combinations thereof.

SBML-PET also supports the standard deviation for the data and

the noise or measurement error existed in the experiments.�To whom correspondence should be addressed.
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3 METHODS

SBML-PET incorporates Stochastic Ranking Evolution Strategy (SRES) for

parameter estimation jobs. SRES is a (m, l)-ES evolutionary optimization

algorithm that uses stochastic ranking as the constraint handling technique

(Runarsson and Yao, 2000). Moles et al. (2003) compared several common

global optimization methods and showed that SRES achieves the best result

in the case of a three-step pathway. The performance of SRES has been

extensively tested on various pathway parameter estimation problems and is

found to be satisfactory.

All solutions of ODE systems in SBML-PET are computed by ODEPACK

(Hindmarsh, 1983), which is a collection of FORTRAN ODE solvers. For

models without events, SBML-PET uses LSODA, which solves ODE sys-

tems with automatic method selection between non-stiff (Adams) and stiff

(Backward Differentiation Formula, BDF) methods. For models including

events, LSODAR is chosen. LSODAR is a variant of LSODA with a root

finding capability added. LSODARs root finder is used in this application to

locate events defined in the model.

4 IMPLEMENTATION

SBML-PET runs in a command interactive mode environment. It is

tested both in Linux and Cygwin on Windows. It is easy to install

and to use. Following the guide information printed on the screen,

you can easily finish the parameter estimation work for your SBML

model.

Before implementing SBML-PET, the users need to prepare the

data file following the instructions for the data file. Detailed

information about the preparation of data file is described in the

manual document.

Five examples covering different cases of parameter estimation

are provided in the manual document. The simple parameter estima-

tion for the model of Michaelis-Menten equations clearly shows

how to use SBML-PET. A yeast aging model and a JAK-STAT

model (Swameye et al., 2003) demonstrate how SBML-PET sup-

ports events. Real experimental data with mathematical expression

are used to estimate parameters in JAK-STAT model and the model

of irreversible inhibition of HIV proteinase (Petr 1996; Mendes and

Kell, 1998). Parameter estimation for different experimental con-

ditions (different extra-cellular trypophan concentrations) are

shown in the dynamic model of Escherichia coli tryptophan operon
(Sharad et al., 2003).
The time to find the best fit solution depends on the complexity of

the ODE system (the number of ODEs and parameters), the number

of experimental data and the CPU speed of the computer. For simple

problem (with a few number of species and data), it takes minutes

and hours to get the best result. For complex problem (with a lot of

species or data), it takes �1 day to get the best result. The time of

finding best solution for the tested examples shown in manual file is

�15 min for model of Michaelis-Menten equations, Yeast Aging

model and JAK-STAT model, 5 h for HIV Model and 2 h for

dynamic model of E.coli tryptophan operon. The examples are

run in Windows 2000 with CPU of AMD Athlon 64 3200, 2.2 GHz.
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