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Abstract

Values of enzyme kinetic parameters are a key requisite for the kinetic modelling of biochemical
systems. For most kinetic parameters, however, not even an order of magnitude is known, so the
estimation of model parameters from experimental data remains a major task in systems biology.
We propose a statistical approach to infer values for kinetic parameters across species and enzymes
making use of parameter values that have been measured under various conditions and that are
nowadays stored in databases. We fit the data by a statistical regression model in which the
substrate, the combination enzyme-substrate and the combination organism-substrate have a linear
effect on the logarithmic parameter value. As a result, we obtain predictions and error ranges for
unknown enzyme parameters. We apply our method to decadic logarithmic Michaelis-Menten
constants from the BRENDA database and confirm the results with leave-one-out crossvalidation,
in which we mask one value at a time and predict it from the remaining data. For a set of 8
metabolites we obtain a standard prediction error of 1.01 for the deviation of the predicted values
from the true values, while the standard deviation of the experimental values is 1.16. The method
is applicable to other types of kinetic parameters for which many experimental data are available.
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1 Introduction

Systems biology aims at understanding the behaviour of entire cells by combining experiments, data
analysis, and computational modelling. Typical models of biochemical networks in the form of ordinary
differential equations (ODEs) comprise a few up to tens of reactions, which is much less than the total
number of chemical reactions in the cell. To grasp the complexity of the behaviour of living cells under
different natural or experimental conditions, all major constituents of the system should be included.
Such models would contain hundreds or more metabolites or proteins.

Metabolic networks have been studied for a long time and means for their analysis have been
developed (e.g. Metabolic Control Theory [3, 5]). Deterministic models of metabolic networks consist
of ODE systems describing the kinetics of the metabolic processes, i.e. the production and consumption
of metabolites and the role of enzymes in these processes. The mathematical expressions of the kinetic
laws each require parameters. In the case of a reversible enzyme catalysed reaction with one substrate
and one product

A ←→ B

and assuming Michaelis-Menten-kinetics, the net rate in the direction A−→B reads

v =
vmax
+ (A/KA)− vmax− (B/KB)

1 + A/KA + B/KB
.

This expression contains four kinetic parameters, namely the Michaelis-Menten-constants KA and KB

for substrate A and B, respectively, and the maximal velocities vmax
+ and vmax− . The subscripts “+”
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and “−” denote the two directions of the reaction. Reactions with more substrates or products employ
even more parameters, such as Michaelis-Menten constants for all reactants or dissociation constants
for the modifiers. Thus, even moderately sized models with tens of components can already contain a
large number of parameters.

When it comes to simulating a biological system, it is important to have the values for all param-
eters at hand. Often, the only data available are of poor quality because measurements have not been
repeated sufficiently often or have been undertaken in conditions different from the ones considered
in the model. To cope with these limitations, we have to estimate missing parameters on the basis of
the best information available. A standard approach in parameter estimation is to move through the
solution space and to optimise an objective function [2, 7, 8]. A prominent example are least-square
fits to experimental metabolic time courses. For setting inequality constraints in parameter optimi-
sation and for regularising ill-defined estimation problems by prior distributions, it is in a first step
very helpful to know rough parameter estimates that match at least the order of magnitude.

Here we describe a way to estimate unknown enzyme parameters from the known parameter values
of related enzymes. We demonstrate the approach with Michaelis-Menten constants KM and appraise
the prediction errors. While Michaelis-Menten constants KM can generally vary within a broad range,
we may expect that the values for homologous enzymes share some similarity. Moreover, we may also
expect that a certain substrate show increased KM values, at least in a certain organism.

If such similarities hold true, we can roughly predict an unknown KM value from known KM values
in other species and from KM values of other enzymes (acting the same substrate). Technically, we
quantify our expectation in form of a statistical regression model. In the model, a Michaelis-Menten
constant is influenced by three factors: the substrate, the enzyme, and the organism in which the
enzyme is found.

2 Method

2.1 Data Retrieval

To predict KM values, we retrieve a set of measured KM values from the BRENDA database [11, 14].
For a chosen metabolite, we search the data for all KM values related to this metabolite and store
them together with their associated enzymes (denoted by EC numbers) and the organisms in which
the values were measured. The result is a set of data triples (KM value, EC number, organism).

Next, we arrange these data (still for a single metabolite) in a matrix X with rows corresponding
to the EC numbers and columns corresponding to the organisms. A matrix element xij contains the
logarithmic KM value for the respective combination (EC number, organism). We sometimes find
several KM values for the same pair (EC number, organism): in this case, we compute the mean of
the logarithmic values and take this as the matrix element. Because the values are logarithmic, this
accounts to the geometric mean of the real KM values. However, many of the elements will remain
empty either because the respective KM value has not been measured yet or because the enzyme simply
does not exist in the organism. Our aim is to fill the missing values for the biologically meaningful
combinations (EC number, organism) with a prediction based on the known elements.

2.2 Linear Regression Model

To this end, we fit the logarithmic KM values contained in the data matrix (xij) by a linear statistical
model. The EC numbers and the organism names are regarded as qualitative data (factors) defining
classes with associated effects αi and βj . If we denote the logarithmic KM value of enzyme i in
organism j by xij , the model reads

xij = µ + αi + βj + εij (1)



82 Borger et al.

where µ is the general mean, αi denotes the effect of enzyme i, βj is the effect of the organism j, and
the εij are independent identically distributed Gaussian random numbers: εij = N (0, σ2). We shall
take Equation 1 as a purely statistical model and study whether it is supported by the data. Given
experimental data for some of the xij , we compute the effects µ, αi, and βj by a least squares fit,
minimising the sum of quadratic residuals. For the actual calculations, we use the function lm() from
the R language for statistical computing [15].

It is known [9] that only certain linear combinations of µ, αi, and βj can be estimated. Another
possibility in order to identify meaningful values µ, αi, and βj is to set restrictions such as 〈αi〉 =
〈βj〉 = 0 on the effects. This last method we employ.

Predictions x∗ij for unknown KM values are, in the best case, obtained from the fitted model by
computing

x∗ij = µ + αi + βj . (2)

This requires that αi and βj be well defined.
There are four cases. In the most undetermined case, we want to predict a KM value where

neither KM values are known for the same enzyme in other organisms nor for other enzymes in the
same organism. This corresponds to the case where in the data matrix (xij) the row i and the column j
are empty. The linear model does not yield any result neither for αi nor for βj , so the prediction will
only be the overall mean

x∗ij = µ. (3)

In a second case, there are known KM values for other enzymes in the same organism, but no known KM

values the same enzyme in other organisms. In the data matrix (xij) row i is empty but the column
j is not.There is only a result of the linear model for βj and the prediction is

x∗ij = µ + βj . (4)

In a third case, KM values for the same enzyme have been measured in other organisms, but no KM

value for different enzymes is known for the same organism. In the data matrix (xij) the row i is not,
but the column j is empty. The linear model yields a result for the effect αi only and the prediction is

x∗ij = µ + αi. (5)

Finally, there are known KM values for different enzymes in the same organism and for the same
enzyme in other organisms. The prediction will be according to Equation 2

x∗ij = µ + αi + βj .

Figure 1 illustrates this method for some logarithmic KM values of enzymes measured in 9 different
organisms for some substrate. In this example all empty fields can be calculated according to Equa-
tion 2. Thus for every matrix entry, there is information from its column and its row contributing to
its prediction.

2.3 Cross-Validation

The linear model yields predictions of the missing KM values. In order to check the quality of these
predictions, we compared them to known KM values. This test is known as leave-one-out cross-
validation. That is, the fit to the linear model 1 is done with the respective logarithmic KM value x
omitted from the data set. We compute a prediction x∗ of the specific x value by the linear fit of the
reduced data set and compare to its original value. To assess the quality of the prediction, we plot x
and x∗ against each other and compute the root mean square error σpred =

√〈(x− x∗)2〉.
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Figure 1: A regression model for hypothetical KM values. Here we compare values x and predicted
values x∗. Enzymes (denoted by EC numbers) are listed in the rows, while the numbers of the columns
columns refer to different organisms. The left matrix corresponds to the true values, the right one to
the predicted ones. The greyscales indicate numerical values as can be seen in the grayscale bars to
the right of the figures.The original data are sparse(see Table 2). That is why so many fields in the
left matrix are empty (white). The right matrix shows values x∗ predicted from the regression model.
As a result of the fitting procedure, rows and columns that correspond to strong values in the true
data become also strong, and vice versa for weak values.

3 Results

The number of KM values in the BRENDA database varies greatly for the different metabolites. For
NAD+ for instance, we found 1216 hits in the BRENDA database. These were reduced to 581 cases
after the classification according to enzymes and organisms, i.e. several values for the same enzyme
and the same organism were averaged over arithmetically . Acetyl-CoA yielded 487 search results in
BRENDA and we were left with 269 data points.

To test the quality of our data prediction, we performed a cross-validation. To this end, we
dropped, one after the other, each experimental value from our dataset and predicted it from the
remaining data. The results are shown in scatter plots in Figure 2. In three of the four cases the root
mean square error of the deviation of the predicted from the original value σpred =

√〈(x∗ − x)2〉 is
smaller than root mean square value of the original data σx =

√〈(x− x)2〉.
In Table 1 we list for different metabolites the root mean square errors. The one in brackets

is σx, the other the root mean square error of the deviation of the predicted values from the original
values σpred. We list those values for the different prediction cases according to the Equations 2, 3, 4
and 5 and for all the values together. In the bottom line we show the values for the data of all
metabolites put together.

For the entire data set we get a prediction error of σpred = 1.01 that is smaller than the uncertainty
σx. In three of the four different cases corresponding to the Equations 3, 4 5 and 2 the prediction error
is smaller than the uncertainty of the experimental values. Only for the case 2, in which the prediction
is based on non-related enzymes, the prediction error is bigger, σpred = 1.51 compared to σx = 1.32.

4 Discussion

Motivation. Modelling of biochemical networks with ordinary differential equations is a classical
approach to understand their dynamics and to study the effect of experimental intervention or envi-
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Figure 2: Scatter plots of the predicted against the true logarithmic KM values for four different
metabolites and for the different prediction cases 1, 2, 3 and 4 according to the Equations 3, 4, 5
and 2. The four metabolites are D-Glucose (4), Ethanol (×), NADP+ (+) and Pyruvate (◦). Below
each plot two root mean square errors are indicated. The one in brackets is the root mean square error
of the original data σx =

√〈(x− x)2〉, the other the root mean square error of the deviation from the
predicted values of the true values σpred =

√〈(x∗ − x)2〉. In the case of perfect prediction the points
would all lie on the dotted lines.
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Table 1: Quality of predicted KM values. We calculated the root mean square error σpred =√〈(x∗ − x)2〉 where x∗ denotes the predicted value of x for the different cases denoted by 1, 2, 3
and 4 that correspond to the different prediction cases according to the Equations 3, 4, 5 and 2. The
last column contains the overall root mean square error for each metabolite regardless of the 4 cases.
The bottom line integrates the data from all the metabolites.

metabolite σpred,1 σpred,2 σpred,3 σpred,4 σpred,1+2+3+4

D-Glucose 1.17 (1.14) 1.39 (1.09) 0.92 (1.39) 1.65 (1.33) 1.22 (1.35)
Ethanol 1.3 (1.22) 2.53 (2.15) 1.16 (1.01) 1.9 (1.61) 1.56 (1.33)
NADP+ 1.22 (1.21) 1.03 (1.02) 0.8 (0.74) 0.88 (0.83) 0.91 (0.88)
Pyruvate 0.51 (0.5) 1.14 (0.85) 0.79 (0.75) 0.75 (0.88) 1.06 (0.83)
D-Fructose-6-phophate 1.44 (0.84) 0.55 (0.56) 0.7 (0.68) 0.5 (0.62) 0.88 (0.74)
D-Glucose-6-phosphate 0.03 (0.24) 0.76 (1.04) 0.57 (0.79) 0.65 (0.9) 0.79 (0.86)
Acetyl-CoA 0.87 (0.86) 0.94 (0.85) 0.71 (0.69) 0.88 (0.8) 0.83 (0.77)
Succinyl-CoA 0.55 (0.52) 1.42 (0.45) 1.23 (0.6) 1.18 (0.71) 1.41 (0.67)
all 1.25 (1.31) 1.51 (1.32) 0.87 (1.1) 0.94 (1.11) 1.01 (1.16)

ronmental changes [4, 6]. The system dynamics are determined by (i) the network structure and (ii)
by the kinetic parameters in the kinetic rate laws. In this paper, we focus on the parameters and
acknowledge that it is important to know the values of such parameters. On the other hand, it is
well-known from parameter sensitivity studies [1] and from bifurcation analysis that some parameter
values may change over smaller or wider ranges without qualitative changes of the system behaviour.
Other parameters may have strong effect and thus need to be determined accurately. In any case,
even if we cannot learn the exact parameter values, it is worth to have the best possible guess for such
values.

Summary. We presented an approach to deduce the values of kinetic parameters from experimen-
tally determined values that are stored in databases. We used kinetic parameters from the database
BRENDA and compared the parameter values for specific reactions that are determined by (i) a
metabolite involved in that reaction, (ii) the enzyme catalysing the reaction, and (iii) the organism for
which the value was measured. We assume correspondence for all parameter values that belong to the
same EC number and metabolite, but originate from different organisms and are measured in different
experiments for possibly different enzymes. By applying a linear regression model to the logarithmic
data, we implicitly assume that these factors have multiplicative effects on the (non-logarithmic) KM

values.
The KM values for each metabolite are first arranged in a matrix. The rows are determined by the

enzymes, and the columns are defined by the species for which at least one parameter value has been
measured. An example is shown in Figure 1. The resulting matrices are very sparse (see Table 2), since
not in all species the parameters for each enzyme have been measured. Moreover, not all positions in
the matrix must be realised in the biological reality: it is possible that for a certain metabolite there
are experimental values for enzyme A and B in species X and experimental values for enzymes B and
C in species Y. Thus both species X and Y as well as all enzymes A, B, and C give rise to rows and
columns in the matrix, although species X does not necessarily also have enzyme C.

Our statistical approach uses a linear regression model that is also the basis for analysis of vari-
ance (ANOVA) [9]. As explained above, we assign values to empty entries according to the values in
non-empty entries in the matrix. As a consequence, a high experimental value in one entry causes
high values in the unknown fields in the same row and column. Therefore, measurement errors or
errors in data handling (writing errors, mismatch of units) may drastically influence the prediction
(see Figure 1).
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Table 2: The size of the data matrices and a measure of their sparseness for 8 different metabolites.
I is the number of enzymes found that catalyse the metabolite. J is the number of organisms found
in which the metabolite is catalysed by an enzyme. Ndata is the number of data entries for a given
metabolite.

metabolite I × J Ndata/(I · J)
D-Glucose 39× 87 114/3393
Ethanol 17× 56 66/952
NADP+ 140× 222 382/31080
Pyruvate 68× 181 260/12308
D-Fructose-6-phosphate 17× 74 88/1258
D-Glucose-6-phosphate 14× 28 39/392
Acetyl-CoA 78× 154 269/12012
Succinyl-CoA 16× 19 25/304

We tested the quality of our parameter prediction by leave-one-out cross-validation. The results
are summed up in Figure 2 and Table 1. For the entire data set the prediction error σpred = 1.01 is
smaller than the uncertainty in the experimental values σx = 1.16.

After collecting the error ranges from many metabolites, we can use them to appraise the expected
error when predicting new, unknown KM values. In doing so, we need to assume that there is no
systematic bias between the experimentally known and unknown parameters, in other words, that the
missing mechanism is at random.

Biological interpretation of the statistical model. The Michaelis-Menten constants in cells
are an outcome of evolution: the KM values may be conserved between related species, and most
probably they have also been shaped by functional requirements. Both factors would lead to similar-
ities between related KM values in different species. Our cross-validation results show that part of
the statistical variation in KM values can indeed be predicted from combinations of metabolite, EC
number, and organism. But how can the influence of these factors on the KM values be interpreted
in biological terms?

According to our regression model, a KM value depends (i) on the substrate (the total mean µ), (ii)
on the combination substrate-enzyme (effect αi), and (iii) on the combination substrate-organism (ef-
fect βj). The effect αi allows some enzyme-substrate pairs to have higher or lower KM values, irrespec-
tive of the organism. This can reflect conservation in evolution, or to functional requirements within
conserved pathways. The effect βj captures increased KM values of a metabolite in a certain organism,
irrespective of the enzyme. To justify this, we may hypothesize that KM values are adjusted to the
order of magnitude of the substrate concentration. If this is the case and if a metabolite exhibits a
particularly high concentration in a certain organism, then all corresponding KM values should also
tend to be increased.

Application to other kinetic parameters. To illustrate the approach, we restricted ourselves
here to KM values. The presented approach can as well be applied to other types of parameters that
are stored in databases, such as maximal velocities or catalytic constants, inhibition constants, Hill
coefficients, or association and dissociation constants. The hand-curated database BRENDA hosts
currently data of different type for approximately 83,000 different enzymes. In the future, we plan
to extend our analysis to more data from various sources. In particular, we shall also use the about
200,000 parameter values that have been obtained by an automatic search in all abstracts contained
in PubMed, using a text-mining approach. These data are stored in the database KMedDB [13].

In systems biology, it would be desirable to obtain all parameters for a specific model from ex-
periments that are performed to support this model and to determine its parameters. Ideally, these
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experiments should be undertaken in compatible conditions, equal cell lines or strains, and so on. In
reality, such data are typically not available. The presented method is an approach to integrate data
from different experiments and to extract information about parameter values and ranges, which can
then be readily used for dynamical modelling. By running the analysis on large data sets, we may
also study conservation of kinetic parameters between related species, which could then be used to
improve the prediction scheme.
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