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1. Abstract 
 
Experimental research has revealed components and mechanisms of cellular 
stress sensing and adaptation. In addition, mathematical modelling has proven to 
foster the understanding of some basic principles of signal transduction and 
signal processing as well as of sensitivity and robustness of information 
perception and cellular response. Here we review some modelling principles, 
results and open questions exemplified for a model organism, the yeast 
Saccharomyces cerevisiae. 
 
 
2. Introduction 
 
During their life span, cells face a multitude of stresses and changes in the 
environment. Most of those changes are normal processes that can happen more 
or less frequently, like temperature changes, variation in nutrient supply or 
appearance of a mating partner. Therefore, species had to adapt to such types of 
stress during evolution and to develop appropriate, specific and efficient 
mechanisms to cope with such typical demands. 
In the last few years, a series of modelling approaches has been used and adopted 
to support the understanding of the complex behaviour of signalling networks. 
The concepts range from very abstract models that elucidate some key properties 
of signalling pathways (e.g. Heinrich et al., 2002, Papin and Palsson, 2004) to 
very detailed models that precisely monitor the dynamics of specific regulatory 
events (e.g. Vaseghi et al., 2001, Schoeberl et al., 2002, Yi et al., 2003, Swameye 
et al., 2003). Systematic overview on structural properties and dynamic features 
of signalling pathway models are given in (Papin et al., 2005, Tyson et al., 2003). 
The complexity of biochemical networks is far from being resolved 
experimentally. Nevertheless there is need to understand their behaviour in a 
rational way, which is often hard to achieve by intuition. Establishing models of 
such networks supports the integration of experimental knowledge into a 
consistent picture, the formulation of hypotheses and cognitions in a precise 
language. It serves to test, support, or falsify hypotheses about the underlying 
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biological mechanism. Modelling may integrate different parts of the whole and 
thereby allow analysis of properties that only emerge upon the interaction of 
elements in a comprehensive network. A sound model can produce predictions 
that can be experimentally tested and it can simulate processes that are 
experimentally hidden. 
 
 
3. Modelling: Mathematical Techniques and Tools 
 
3.1. Purpose of Modelling 
The development of a model serves the abstract and condensed representation of 
facts in order to allow for the analysis of their relations and to gain understanding 
about their internal organization and their communication with the environment. 
Although the number of data in biological research currently explodes, such data 
is useless without sufficient interpretation. A computational model can on hand 
serve the data interpretation; on the other hand it can point to biological aspects 
that are still not sufficiently experimentally resolved. Within the field of Systems 
Biology, the view has been established that experimental research and model 
development should go hand in hand in an iterative manner including 
formulation of an initial model, hypothesis generation, experimental testing of 
hypotheses, model-based experimental design, model refinement upon new data, 
and so on. 
The iterative modeling and experimentation process is hard to follow in 
publications, since they often only represent the final results. Model 
improvement with time and with accumulating experimental information is 
documented e.g. for yeast cell cycle (Novak et al., 1999, Chen et al., 2000, Chen 
et al., 2004 and others) and for signaling pathways (Bhalla, 2004, Bhalla, 2002, 
Bhalla and Iyengar, 2001, Bhalla and Iyengar, 1999). 
 
3.2. Model Development 
Usually, an experimental observation inspires the formulation of a hypothesis as 
a first step. In the second step we define what questions the model is supposed to 
answer, i.e. the scope of the model. The scope determines what components and 
processes the model will take into account or omit and it defines the system’s 
boundaries. Omitting certain processes from the models even though they might 
play a role is based on the assumption that they have only a minor influence on 
the event under study, that their values remain constant in the experimental setup, 
or that they simply cannot be described with the currently available means. For 
example, the effect of regulated gene expression is usually neglected in the 
modelling of metabolic networks although modellers are certainly aware of 
production and degradation of enzymes. But the different time scales of protein 
turnover and metabolic reactions justify this simplification in many cases. The 
initial model is usually formulated as a word model. The word model itself is 
also subjected to a process of refinement and sophistication in the course of 
model development. A graphical representation of the model structure, e.g. a 
diagram, is also helpful. 
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Subsequently, the word model is translated into a mathematical model (for an 
overview on mathematical techniques see below). To assure that our model is in 
principle able to answer our initial question we must verify whether our model 
can achieve this independently of choice of specific parameter values, i.e. in a 
qualitative way. For example, when we want to explain an observed temporal 
oscillation of a cellular compound, we must test whether our model is structured 
in a way that it is able to produce oscillations. This might not be as trivial as it 
sounds in some cases. For example, until now there exists no general theorem for 
the existence of oscillations in chemical systems with more than three 
compounds (Heinrich & Schuster 1996). When no mathematical theorem is 
available that tells us something about the general properties of our system, 
verification of the proposed model behaviour is generally obtained by playing 
around with the model structure and its parameters, checking whether it behaves 
in the way we want. Verification of the model structure is an important step in 
the process of model development because it can save much time and effort later 
on. When the model is not able to fit observed data, this might be a general 
problem of the model structure. Having checked this in advance we can avoid 
validating a model in vain. 
Generally, it is also desirable to learn more about general properties of the model, 
like e.g. steady states and bifurcation points. When we analyse metabolic 
systems, we can apply mathematical tools like Metabolic Control Theory to 
analyse the system. 
 

 
 
Figure 1: Model development flow chart. 
 
 
Having verified that the model can principally reproduce our expectations we can 
now validate that the model can also reproduce our observations in a quantitative 
manner. This is generally achieved by adjusting the model parameters such that 
the components of the model match observational data. It is important to gain 
further support for our model by testing whether it is also able to reproduce 
independent data without changing the fitted parameters. Independent in this 
sense means that the data was neither used to fit the parameters nor to develop 
our model. We need a training data set and test data set. The test data generally 
describe the same phenomena but under slightly different conditions. It is a 
prerequisite for a sound model validation that the model is able to reproduce 
observed data under different conditions but with the same parameters that were 
used to reproduce the training data set. This is supposed to reflect the fact that 
our model accurately describes the intrinsic structure of the studied system and, 
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like nature, is able to adequately adjust its reaction to a changing 
environment/input without changing internal structure and interactions. 
It is important to know the limits of applicability of a model. They determine to 
what extent possible predictions and conclusion hold. Moreover, it is important 
to know what parameters are sensitive, i.e. whose changes have a substantial 
impact on the systems behaviour, and thus have to be determined with great 
accuracy. To this end we must conduct a sensitivity analysis. Usually, this is 
achieved by changing one parameter value at a time and looking at the resulting 
change of a specific output variable. A classical measure of sensitivity is the 
relative sensitivity S that is defined as 
 

        (1) 
 
where ΔO/O is the relative change of some output of interest and Δp/p is the 
relative parameter change, compared to the initial state of parameter, 
respectively. S is easy to interpret, as S = 1 means that a certain percentage 
change of a parameter yields the same percentage change of the considered 
output. Usually, when |S| ≤ 1, p is considered as non-sensitive. When |S| >> 1, p 
is considered as sensitive. The range in which p is changed depends on the 
uncertainty with which p is determined. This can be the measurement error or 
some other knowledge about the range in which p can vary. With no such 
knowledge, it is usually a good start to change p by 50%. 
Classical sensitivity analysis studies the reaction of one or more output variable 
to the change of one parameter at a time. Generally, it cannot be assumed that 
parameters have an independent influence on the considered output. In most 
cases the sensitivity of one parameter depends on the state of one or more other 
parameters. However, manipulating individual parameters can be viewed as 
unusual perturbation of the system by, e.g. a mutation or other kind of damage. It 
is reasonable to assume that under the conditions we are mostly interested in it is 
unlikely that many parameters change or are perturbed at the same time. 
Having determined sensitive parameters gives us important information about 
our system. It not only tells us where small measurements errors can have drastic 
consequences for the system behaviour but also where additional research or 
measurements might be adequate. Sensitive parameters can also be interesting 
targets for drug developers as it makes sense to manipulate a system where it is 
most sensitive. Sensitivity analysis tells us something about the robustness and 
resilience of the system. 
It is not only important to explore the sensitivity of the system to parameter 
changes but also to changes in the input stimuli. Biological systems are always 
subjected to varying environmental conditions and we must check whether our 
system is as flexible as we expect it to be. Moreover, a structural sensitivity 
analysis, i.e. not only changing parameters but also model formulas, can give 
valuable information what features of the model are necessary to exhibit a certain 
behaviour and what parts can be omitted or simplified. 
The sensitivity analysis relates to and complements the two preceding steps 
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verification and validation. Verification tells us something about the theoretical 
properties of our model system, how the model could behave, i.e. the qualitative 
structure of the state space. Validation determines a concrete state of the system 
that reflects observed biological phenomena, i.e. tells us where our system is 
quantitatively located in the theoretical state space. Finally, sensitivity analysis 
provides us with a quantitative picture of the state space around our system. 
We can then use the model to explore more systematically regions of the state 
space that are of particular interest, i.e. make predictions. The model ideally 
should be able to predict future experiments. When the model correctly predicts 
the experiments we gain confidence in the model and also in the original 
hypothesis. Moreover, the model can be used to design future experiments. In 
combination with the sensitivity analysis we can determine where additional 
measurements give us most information about the system. 
In case, the model does not correctly predict the experiments it has to be checked 
whether the experiments still comply with the original hypothesis. If it does we 
have to modify the model, otherwise we have to modify the hypothesis. Both 
ways, we close the cycle. 
 
3.3. Mathematical Description of Dynamic Processes 
Depending on the available experimental information, the purpose of modelling, 
the experience and preference of the modeller, signalling pathways can be 
described with different techniques. In general, all approaches rely on a 
description of the network structure with a graph representing as edges the 
interaction (activation, inhibition, complex formation) between the nodes, i.e. the 
different signal molecules. Boolean networks or Petri nets describe the states of 
individual nodes in a discrete fashion and these states are updated along a 
discretised time axis according to the rules assigned to the edges. In their basic 
version, Boolean networks allow only for two states (1 or 0, i.e. active or not 
active). Petri nets assign individual tokens to the places (i.e. nodes). More 
sophisticated approaches tend to consider more different states and update rules. 
The dynamics on a continuous time scale can be simulated in a stochastic 
manner, e.g. with one of Gillespie’s methods (e.g. Gillespie, 1977) by assuming 
discrete state values, e.g molecule numbers. A frequent approach is the 
description with ordinary differential equations (ODEs), where the state space is 
continuous (concentrations or activities) and the time is continuous. In the 
following we will focus on the ODE model approach. 
The dynamics of the biochemical reaction network is expressed by the balance 
equations 
 

        (2)  
 
where S, v, and p denote the vectors of concentrations, reaction rates, and 
parameters of the system, respectively, and t is the time. The matrix N contains 
the stoichiometric coefficients. Typical expressions for the reaction rates are the 
so-called mass action rate law 
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         (3) 
 
or the Michaelis-Menten rate law  
 

        (4) 
 
or the Hill kinetic 
 

        (5) 
 
The mass action law implies a linear dependence of rate on substrate 
concentration, while hyperbolic Michaelis-Menten kinetics and sigmoid Hill 
kinetics show saturation. Note that more elaborated kinetic mechanisms are 
described, especially for more substrates and for reversible reactions (Cornish-
Bowden, 2004). 
In the cell, signalling pathways have to cross several boundaries: the cell 
membrane, the nuclear envelope, the mitochondrial membranes or others. This 
may make it necessary to include different compartments into the model. Moving 
between compartments has different effects in discrete or continuous settings: if 
one molecule leaves a compartment, then one molecule will arrive in the 
neighbouring compartment. If one µm of a substance leaves a compartment, the 
concentration change in the neighbouring department depends on their relative 
volumes. 
 
3.4. Analysis of Models 
The model can be analyzed in various ways, first to test whether its behaviour 
really reflects the aspects that we wanted to represent, second to deduce 
predictions based on a presumably appropriate description. 
Purely based on the stoichiometry, i.e. on the wiring, is the analysis of the 
stoichiometric matrix N. The linear dependence of rows of the stoichiometric 
matrix points to moiety conservation in the system, i.e. it reveals which 
compounds or moieties are neither produced nor degraded by the network in 
total, such as the sum of differently modified forms of a protein. In mathematical 
terms, one has to find a regular matrix G such that  . Then   
expresses the conservation relations. The linear dependence of columns of N 
(   with regular matrix K) reveals the dependence of fluxes in steady state, 
i.e. steady state fluxes are linear combinations of the columns of matrix K. For 
example, in an unbranched pathway, all fluxes must be the same in case of steady 
state. 
Flux balance analysis (FBA) is based on the relations revealed for fluxes in 
steady state. To elucidate operation modes of the cell under different 
environmental conditions or to suggest such modes for biotechnological 
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processes, it calculates from all possible steady state fluxes that set of fluxes that 
maximizes or minimizes a certain function of these fluxes, e.g. by linear 
programming. 
Metabolic control analysis (MCA) seeks to quantify the impact of individual 
rates or parameters on the steady state values of variables by calculating the 
respective derivative. In MCA a version of the above-defined sensitivity S is 
often applied, the response coefficient R, that is actually nothing else than the 
sensitivity S of the linearised system 
 

  .      (6) 
The theorems of MCA (Reder, 1988) establish a relation between R, which is a 
property of the whole system, and the local sensitivities of the individual rates  
with respect to the compound concentrations and the network stoichiometry N. 
Especially interesting for signalling pathways is the analysis of time-dependent 
response coefficients  
 

       (7) 
 
which show the impact of a parameter value on the dynamics of a compound, not 
only on its steady state value (Ingalls and Sauro, 2003). 
 
 
4. Modelling Cell Signalling: Concept and Examples 
 
4.1. Components of Signalling Pathways 
Despite their diversity in function and design, many signalling pathways use the 
same essential components, which are often highly conserved through evolution 
and between species. For example, proteins in yeast pathways have homologs in 
human pathways and G proteins or MAP kinases are conserved throughout 
kingdoms. Here, we will introduce the most prevalent signalling pathway 
modules that are frequently connected in series. 
Receptors receive extracellular stimuli by ligand binding and transmit a signal to 
intracellular signalling molecules. Many receptors are transmembrane proteins. 
Upon signal sensing, they change their conformation and become active (Figure 
2A), now being able to initiate downstream processes. Cells can regulate the 
number and the activity of specific receptors, e.g. in order to shut off the signal 
transmission during sustained stimulation. An interplay of production and 
degradation regulates the number of receptors (for a model involving receptor 
internalization in the yeast pheromone pathway see (Yi et al., 2003)). 
Phosphorylation of serine/threonine or tyrosine residues in the cytosolic domain 
by protein kinases can regulate the activity and thereby adapt the signalling 
system to input signals of different intensity. 
A possible way of signal transmission from the receptor is the binding to and the 
activation of G proteins. The heterotrimeric G protein consists of the subunits α, 
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β, and γ (Figure 2B). Upon activation, a GDP bound to the α-subunit is 
exchanged with a GTP, and the G protein dissociates into different subunits, 
which transmit the signal to downstream processes. As soon as the GTP is 
hydrolyzed to GDP, the subunits can re-associate to form the initial 
heterotrimeric G protein. 
The change between GTP- or GDP-bound states is also characteristic for so-
called small G proteins like Ras, Rho, Rab, Ran, or Arf. They have different 
activities in both forms (Figure 2C). Transformation from the GDP state to the 
GTP state is catalyzed by the Guanine Exchange Factor (GEF), while the reverse 
process is facilitated by a GTPase-activating protein (GAP), which induces 
hydrolysis of the bound GTP (Schmidt and Hall, 2002). 
 
 

 
 
Figure 2: Building blocks of signalling pathways. A) Activation of the receptor 
by a ligand, B) G protein cycle including slow and fast mode; the fast mode is 
activated by feedback loop involving a protein (RGS), C) Small G protein switch 
between two states, GDP-bound and GTP-bound, D) the MAP kinase cascade 
involves several successive phosphorylation events. 
 
 
Extracellular signal-regulated kinase (ERK) or mitogen-activated protein kinase 



(MAPK) cascades consist of three or four different proteins that specifically 
catalyse the phosphorylation of the subsequent proteins (Figure 2D). According 
to their roles, these kinases are called MAP kinase (MAPK), MAP kinase kinase 
(MAPKK), and so on. The dephosphorylation is ensured by phosphatases that are 
often less specific, but can also be very specific to certain targets. In some cases, 
the MAP kinases bind to a scaffold protein forming a complex. 
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Several functions for such scaffold formation are discussed, such as to ensure the 
physical vicinity of components or their correct molecular orientation or an 
increase in signal amplification. Scaffolding can account for the fact that 
signalling pathways often appear to be decoupled although they contain common 
components. 
 
4.2. Stress Response Pathways in Yeast 
The response of yeast cells to external stimuli, environmental changes, nutrient 
supply or availability of a mating partner is ensured by a variety of signaling 
pathways that partly overlap by the use of common proteins (Figure 3). 
 
 

 
 
Figure 3: Selected signalling pathways of the yeast Saccharomyces cerevisiae. 
Shown are the pheromone pathway, the filamentous growth pathway (responding 
to starvation signals) and high osmolarity glycerol (HOG) pathway. These 
pathways share several components, and mechanisms for ensuring signal 
specificity and appropriate signal integration are still under investigation. 
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Signal transduction in yeast has been studied thoroughly; an overview is given 
for example in (Hohmann, 2002). Several quantitative models have been 
published so far and some of them are collected in databases like JWSonline 
(Snoep and Olivier, 2003). Yi and colleagues (Yi et al., 2003) presented a first 
model of the G protein activation within the pheromone pathway. This model 
takes into account G protein activities that have been measured using 
fluorescence resonance energy transfer (FRET). It comprises the production, 
degradation and activation of the G protein coupled α-receptor (Ste2), the activity 
cycle of the G protein and its regulation by the regulator of G protein (RGS) Sst2 
(compare Figure 3). 
This model has been adapted and incorporated into a more comprehensive model 
of the pheromone pathway (Kofahl and Klipp, 2004), which includes 
downstream processes of the activation of Gβγ. As shown in Figure 3, the 
components of the MAP kinase cascade bind to the scaffold protein Ste5. 
Binding of Ste5 to Gβγ and the MAP KKKK Ste20 brings Ste20 into the vicinity 
of Ste11, the MAP KKK, permitting its activation. Furthermore, a cycle of 
binding, phosphorylation and release of the MAPK Fus3 is considered. 
Phosphorylated Fus3 triggers the following events including the activation of the 
transcription factor Ste12, the activation of the cell cycle regulator Far1 and the 
activation of the RGS Sst2. 
The pheromone pathway model includes several feedback loops that help to 
downregulate the pathway after successful signal transduction. First, the 
activation of Fus3 leads to a repeated phosphorylation of more Fus3 molecules. 
Secondly, the activation of Sst2 itself depends on the activation of Fus3. It 
accelerates the closing of the G protein cycle by enhancing the rate of hydrolysis 
of Gα-bound GTP. Yi et al. (Yi et al., 2003) studied strains with either 
constitutively active or inactive Sst2. Third, the transcription factor Ste12 
enhances the expression of the protease Bar1, which is exported, and cleaves the 
α-factor, and thereby counteracts the input signal. Hence, the pathway design 
ensures the long-term downregulation of the pathway after successful activation 
of target processes. 
The parameters of this model have been estimated from literature values. The 
impact of individual values has been tested by sensitivity analysis. Although this 
model is not based on data specifically measured to support it, its predictions for 
graded response to increasing concentration of α-factor or for the behaviour of 
mutant cells match very well with experimental observations. 
The response of yeast to osmotic stress has been described by a model (Klipp et 
al., 2005) that comprises the high osmolarity glycerol (HOG) pathway, 
transcriptional regulation, the effect on metabolism and the change in the 
production of glycerol and an additional model describing regulation of volume 
and osmotic pressure. The HOG pathway consists of two input branches, the 
Sln1 branch and the Sho1 branch (which is not considered in the model). The 
receptor Sln1 is a membrane protein that regulates a phosphorelay system. Under 
normal conditions, it is continuously phosphorylated and transmits its phosphate 



group to Ypd1, which in turn passes it on to Ssk1. In this way, Ssk1 is kept 
phosphorylated and inactive. Upon osmotic stress, phosphorylation of Sln1 is 
interrupted and Ssk1 switches to a non-phosphorylated, active state. In this form, 
it triggers the HOG MAP kinase cascade, which involves the redundant proteins 
Ssk2 and Ssk22 as well as Pbs2 and Hog1. Phosphorylated Hog1 can enter the 
nucleus and regulate the transcription of a series of genes. 
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An interesting feature of this pathway is that it is downregulated despite 
sustained activation by external osmolarity. This cellular response could not be 
explained by modelling the signalling pathway in isolation. It was argued that the 
cells sense turgor pressure instead of the external salt concentration. The turgor 
pressure is partially regulated by glycerol. Active Hog1 activates the expression 
of genes coding for enzymes that are involved in the production of glycerol. 
The parameters for this model have been determined on the basis of a standard 
experiment applying 0.5M NaCl to wild type cells and have been tested for 
various experimental scenarios with mutant cells and different salt 
concentrations. 
Model simulations have revealed details of the signalling process, enlightening 
the role of the glycerol channel Fps1 in glycerol accumulation, and the feedback 
control exerted by protein phosphatases in the MAP kinase pathway. It turns out 
that Fps1 is responsible for the immediate control on the internal glycerol 
concentration, while the stimulated expression of GPD1/2 and GPP1/2 and the 
resulting increased glycerol production preserves a high level of glycerol during 
growth in high osmolarity. The model implies that the HOG pathway is shut off 
by to glycerol accumulation, cell re-swelling, and turgor increase rather than by 
enhanced expression of phosphatases. This result has been confirmed by the 
experimental fact that the pathway can be fully reactivated by a second osmotic 
stress. 
 
4.3. Studied Phenomena 
 
4.3.1. Relative Importance of Kinases and Phosphatases 
MAP kinase cascades are regulated by the activity of kinases that phosphorylate 
the proteins, and by phosphatases that in turn ensure the dephosphorylation. 
While kinases activate and phosphatases deactivate, both partners are necessary 
to determine the basic level of activation in absence of external stimuli, but also 
strength and duration of activation in its presence. It has been discussed that 
kinases are responsible for the amplitude of the signal, while phosphatases 
determine its duration [Hornberg, 2005]. Interestingly, this holds only for weakly 
activated cascades [Heinrich, 2002], while strongly activated cascades show the 
tendency of prolonged activation upon increase of stimulus. This is based on 
conservation of MAP kinase proteins on each level, which limits the increase of 
the active form upon strong activation (Figure 4). 
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Figure 4: Time courses of the concentration of the phosphorylated forms of three 
kinases (Raf, MEK, ERK) in the MAP kinase cascade as in Figure 2D, i.e. their 
activation profiles over time: low activation of the receptor leads to an increase 
of the amplitude, stronger receptor activation causes longer activation. All rate 
laws are mass action kinetics with rate constants of kinases and phosphatases 
equal to 1 and the initial concentration values of the phosphorylated proteins 
were 0 and of the non-phosphorylated proteins were 1. 
 
 
4.3.2. Dynamic Behaviour and Parameters 
The specific behaviour of a biochemical network is determined by (i) its wiring, 
expressed by the stoichiometric matrix N, (ii) by the kinetic laws of the 
individual reactions including the involvement of modifiers that are not substrate 
or product of this reaction, (iii) by the values of the kinetic parameters and (iv) 
by the concentrations involved, like initial concentrations and conserved 
moieties. 
In order to obtain a satisfactory picture of the studied object, all four aspects must 
be appropriate. The wiring scheme is frequently (but not always!) sufficiently 
well known from experimental information. For some metabolic reactions, the 
kinetic mechanism is also determined together with the respective parameters. 
However, kinetic laws and parameters are often not well-defined by experimental 
information, whereas concentration or number of molecules involved are often 
known to a satisfactory extent. 
To develop models with predictive value, high-quality data is necessary. Time 
series data must cover the regions, in which the dynamics of the pathways take 
place. Moreover, for sound model validation and parameterization it is necessary 
to have a measure of uncertainty for the measured data, as standard deviations, 
for instance. This requires measurement repetitions to be done that are 
unfortunately often not available. 
 
4.3.3. Signalling: Network Versus Pathway 
The original perception of signalling pathways stems from the experimental 
analysis that could connect a stimulus of the cell with a measurable effect and 
could trace the path connecting both. Nowadays, it becomes obvious that cells 
possess a comprehensive arsenal of signalling molecules that may interact in 
various combinations giving rise to the transmission of various signals, but also 
to the integration and separation of diverse types of information. 
It is now a matter of taste whether modelling starts immediately with the 
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complete signalling network, or whether one starts with the individual traditional 
pathways that are sometimes well understood and then tries to integrate them. 
Coupling of pathways may be performed in the same way as modelling 
individual pathways: pathway structure is merged and individual reaction rates 
are adopted using a mixture of handcrafted rules and intuition. Approaches for 
systematic model integration are rare. A starting point is SBMLmerge, which 
combines models implemented in SBML. 
 
4.3.4. Crosstalk Between Pathways 
There are many different ways in which signalling pathways can interact with 
each other, a phenomenon often called crosstalk. For example, different 
pathways can be triggered by the same receptor or they can share components 
that, once activated by one pathway, leak into another pathway and thereby 
activate it. For an overview of different ways of pathway crosstalk see (Schwartz 
& Baron 1999, Schwartz & Madhani 2004, Cowan & Storey 2003). In modelling 
crosstalk there has been the issue of quantifying the amount of crosstalk. Some 
studies analysed the topological and structural properties of signalling networks 
by, e.g., classifying modes of interaction (Papin & Palsson 2004) or by counting 
the theoretically possible interactions between pathways (Binder & Heinrich 
2004). 
As signalling is a transient process one can argue that it is the dynamic behaviour 
of interacting pathways that is important rather than the static features. Two 
recent studies address the dynamic features of pathway crosstalk. By analysing 
the activation of pathways by a so-called intrinsic and an extrinsic stimulus, 
respectively, one study defined measures for pathway specificity and fidelity 
(Komarova et al., 2005). These measures give useful insights how pathways 
interact with each other. However, it is important to note that these measures 
refer to responses to one stimulus at a time. However, it can be assumed that cells 
usually process multiple information in parallel and these measures give no clue 
how signals interact while being transmitted concomitantly, It can be expected 
that signals amplify or inhibit each other, when transmitted at the same time. 
Thus, it does not suffice to study each signal in isolation but also to study the 
cell’s response to multiple stimuli at the same time. Schaber et al. (under review) 
proposed crosstalk measures that include parallel multiple pathway activation 
called the intrinsic and extrinsic specificity that yield a better understanding of 
how the pathways dynamically interact. 
 
4.3.5. Modelling and Standards 
The purpose of modelling is to provide an abstract description of an instance that 
fosters the understanding/representation of specific aspects of this instance. Such 
a model must neglect other aspects for the sake of simplicity, and these neglected 
aspects will change with a change of the specific question to be answered by the 
model. Therefore, one cannot establish fixed rules for a model that are valid once 
and forever. On the other hand, the growing modelling community and the need 
to communicate with experimental researchers make it necessary to establish 
some rules how specific aspects should be expressed in a model of a certain type. 
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A prominent approach for the development of such a standard is the Systems 
Biology Markup Language (SBML) (Hucka et al., 2003), which serves as a 
unified exchange language for the description of biochemical network models. 
Another standard is the Minimal Requirements in the Annotation of Models 
(MIRIAM) (Novere et al., 2005), a standard for the description and 
documentation of models in a publication. 
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