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Abstract
Transcription factors (TFs) play a key role in gene regulation by binding to target sequences.

In silico prediction of potential binding to a sequence is a main task in computational biology.
Although many methods have been proposed to tackle this problem, the statistical significance of
the prediction is still not solved. We propose an approach to give a good approximation for the
potential of a sequence to be bound by a TF. Instead of assessing distinct binding sites, we motivate
to focus on the number of binding sites. Based on a suitable statistical model, probabilities for
scoring are approximated for a TF to bind to a sequence. Two examples show the necessity of such
a model as well as the superiority of the proposed method compared to standard approaches.
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1 Introduction

Prediction of transcription factor binding sites (TFBSs) is a crucial task in computational biology [11].
The main problem to be addressed is the statistical significance of the prediction. Searching in a long
genomic sequence for a small binding site rises the problem of a high number of both false positives
and false negatives. Using a statistical approach, it is possible to assess the significance of a predicted
site. Position Weight Matrices (PWMs) are widely used because they have been successfully applied
in many cases [1] and the retrieved scores are proportional to physical binding energy [10]. So far,
most statistics deal with the detection of single binding sites although a higher number of binding sites
increase the probability of binding. In addition, many problems require a score indicating whether a
TF binds anywhere on a sequence instead of a distinct binding site. In such a setting, it is necessary
to construct a score based on the number of significant occurrences on a sequence.

We develop a statistical model to compute the probability to find as many hits as observed by
chance. We use this probability as a score. A main issue is the overlapping structure of the PWM. For
example, a PWM with the consensus ‘CTAACT’ has a higher probability to find two hits overlapping
in two positions than to find two independent hits. This problem has been discussed in broad range for
word counting problems [6]. One solution is the computation of correction terms for the overlapping
structure of words because the overlapping structure is discrete and can be explicitly captured by
enumeration. Since the PWM is a probabilistic description of the consensus word, overlaps can occur
at any position. Therefore, we use the discrete nature of the score to compute the probabilities of
overlapping hits. Based on these probabilities, we can give a good approximation for the probabilities
of any number of overlapping hits. We present such a score based on a statistical model and show the
advantages over naive scores.
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2 Methods

We extend a statistical approach to compute the score distribution on a random sequence as well
as on a binding site model [5]. We use this approach and extend it such that we can compute the
score distribution over a mixture of a random sequence and a binding site model. This distribution
approximates the score distribution on a random sequence where we already detected a binding site.

The PWM is the representation of the binding site. It contains the probabilities for each nucleotide
at every position. We assume that the binding sites of each TF is described by only one PWM. An
extension to more than one PWM is not trivial. The scoring scheme for every position is retrieved by
the log-likelihood ratios of the nucleotide distribution of the PWM and the background model. The
background model is an i.i.d. model incorporating the average GC content of the upstream sequence.
The resulting scoring matrix is called position-specific scoring matrix (PSSM). The PSSM assigns a
score to every position of the potential binding site depending on the observed nucleotide. Sliding a
window over the sequence of the same length as the PWM and summing up the scores in each window,
yields a score for every position of the sequence. At first, we focus on one strand of the sequence, only.
Subsequently, we extend the approach to deal with the complementary strand, as well.

2.1 Statistics for Binding Site Detection

We call a position a hit if the corresponding window yields a score s higher than a certain threshold
t. The threshold controls the probabilities α and β given by α = PH0(s ≥ t) and β = PH1(s < t)
where H0 is the null model having a random sequence and H1 the model for the binding site. α has
to be very small as the expected number of false positives on a sequence of length n is n · α. For long
sequences the number becomes very large. Therefore, we control αm = 1− (1−α)m ≈ 1− exp(−mα)
which is the probability to find at least one false positive on a sequence of length m. We do not set
m equal to the sequence length n as this leads to such a high threshold t that we hardly get any hits.
Instead, we use the heuristic m = 500. This choice is arbitrary but detects a reasonable number of
both true and false positives. In general, the approach is robust against the actual threshold because
α is incorporated into the computation of the probability as long as neither all positions are hits nor
none.

Now, we can set t = tbal such that α500 = β and call it balanced threshold. We compute this
threshold by simulating the score distribution according to the background model and the PWM
model. Unfortunately, a minor fraction of PWMs contain nucleotide distributions very similar to
the background distribution. In these cases, we retrieve very poor probabilities for α and β using the
balanced threshold. This results in many false positives diminishing the performance of the prediction.
In these special cases, we set the threshold t = t̃ such that α500 = 0.1.

Next, we show how to compute a score for each upstream sequence reflecting its potential to be
bound by a TF. Since the threshold cannot be lowered unlimited, we expect a certain amount of false
positives for long sequences. Hence, we cannot use the occurrence of at least one hit as an indicator.
In addition, the different lengths of the upstream sequences require a model including the sequence
lengths. Therefore, we compute the probability p = PH0(X ≥ x) where X is the random variable for
the number of occurrences on a random sequence of length n and x is the observed number of hits on
the real sequence.

2.2 An Improved Background Model

In order to compute the probability p, we need an appropriate background model H0. We assume the
positions of the sequence to be i.i.d. The nucleotide distribution at each position is only determined
by the GC content of the potential target sequence. We restrict ourselves to the GC content instead
of base pair composition due to the extension for both strands we introduce later. In contrast to
coding sequence, there is no motivation to handle both strand in the upstream region differently. A
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simple approach would approximate p by p̂1 = 1− B(x;n, α) where B(·) is the binomial distribution
with parameters x for number of successes, n number of trials and α probability of success. The
number of successes corresponds to the number of detected hits. This model also assumes that a hit
is independent of a previous overlapping hit. We propose a more sophisticated model considering the
strongest dependencies of overlapping hits because the independence assumption is arguable.

We achieve this by shifting the focus from hits to clusters where a cluster is a collection of over-
lapping hits. Hence, we exchange the random variable X for the number of hits by ZI which is the
number of clusters with I overlapping hits. We say the cluster has size I. In the special case of
I = 1, Z1 is the number of clusters of size 1. This number is equal to the number of hits without any
overlaps. Again, we use the binomial distribution to compute PH0(ZI = zI) = B(zI ; n, αI) where αI

is the probability to find a cluster of size I. The computation of αI is only tractable for small I. αI

becomes smaller with increasing I because the probability of further hits is always smaller than the
probability for no hits. Thus, it is not necessary to compute αI for large I. In general, αI becomes
negligibly small for i > 2 although it is possible to construct rare artificial matrices where this is not
true. In the following, we show how to compute αi.

Let Yj be an indicator variable which is equal to one if we have a hit starting at position j otherwise
zero. The probability to have a hit in a random sequence is PH0(Yj = 1). Then, α1 corresponds to
the event that there is exactly one hit at a certain position while no overlapping hits occur. Using the
fact that an overlapping hit is a hit within the range of the length of the PWM minus 1 denoted by
l, we get:

α1 = PH0(Yj−l = 0, . . . , Yj−1 = 0, Yj = 1, Yj+1 = 0, . . . , Yj+l = 0)
= PH0(Yj−l = 0, . . . , Yj−1 = 0, Yj+1 = 0, . . . , Yj+l = 0|Yj = 1) · PH0(Yj = 1) . (1)

The conditional probability in the last part of (1) is hard to compute because the events in the
collection ({Yj+k = 0})−l≤k≤l,k 6=0 are not independent, given {Yj = 1}. However, in a first order
approximation we do as if independence would hold here and compute

α1 ≈ PH0(Yj = 1)
l∏

k=−l,k 6=j

PH0(Yj+k = 0|Yj = 1)

= PH0(Yj = 1)
l∏

k=−l,k 6=j

(1− PH0(Yj+k = 1|Yj = 1)). (2)

As described above PH0(Yj = 1) = α, we only have to compute PH0(Yj+k = 1|Yj = 1) for k as
given above. Thus, we need to compute the probability that the score at position j + k exceeds the
threshold given there is a hit at position j: PH0(S

(j+k) ≥ t|Yj = 1). Again, this conditional probability
is difficult to calculate, because conditioning on {Yj = 1} destroys the position independence of the
nucleotide distributions at the positions covered by the hit at position j. Therefore, we make a second
approximation by replacing the true conditional distribution by the position specific (and position
independent) nucleotide distribution specified by the PWM. This enables us to compute the relevant
quantities as convolutions.

Let Sκ be the random variable for the score at the PWM position κ and fκ,τ (s) its probability mass
function with PH1(Sκ = s) = fκ,τ (s) for τ = κ. For the mixture of PWM and background model,
we have to differentiate between the position κ the score is retrieved from and the position τ the
nucleotide distribution is sampled from. Similarly, PH0(Sκ = s) = gκ(s) is the probability for getting
a score s at PWM position κ while sampling from the background distribution which is assumed
to be i.i.d. The distribution of the overall score S for a sequence of length l + 1 is the convolution
f(s) = (f1,1 ∗ . . . ∗ fl+1,l+1)(s) under H1 respectively g(s) = (g1 ∗ . . . ∗ gl+1)(s) under H0. Now, we
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can compute PH0(S
(j+k) = s|Yj = 1) using the local approximation PH1(S

(j+k) = s) implying the
nucleotides of the hit at sequence position j to j + l + 1 to be distributed according to the PWM:

PH0(S
(j+k) = s|Yj = 1)

=
{ (

f1,k ∗ f2,k+1 ∗ . . . ∗ fl+1−(k−1),l+1 ∗ gl+1−(k−1)+1 ∗ . . . ∗ gl+1

)
(s) : k > 0

(g1 ∗ . . . ∗ g−k ∗ f1−k,1 ∗ f2−k,2 ∗ . . . ∗ fl+1,l+1+k) (s) : k < 0
. (3)

Based on the explicit distribution of PH0(S
(j+k) = s|Yj = 1) , we can compute PH0(S

(j+k) ≥ t|Yj =
1) = PH0(Yj+k = 1|Yj = 1) given t. With these results, we can compute α1 using (2). As αi is the
probability to have a cluster with exact i hits, we can approximate αi+1 for i > 0 by

αi+1 ≈
l∑

k1=−l

· . . . ·
l∑

ki=−l

α1 ·
∏

k∈{k1,...,ki}

PH0(Yj+k = 1|Yj = 1)
1− PH0(Yj+k = 1|Yj = 1)

, (4)

where k1 6= j, k2 6= j∧k2 6= k1, and so on. Thus, we neglect dependencies between the additional hits.
As the probabilities of these additional hits are very small, the error introduced can be neglected.
As already mentioned, the αi become smaller with increasing i. Thus, it is possible to skip the
computation either if αi has reached a certain threshold or index ε. The probability for clusters with
bigger sizes can be approximated by

αε+ = α−
ε∑

i=1

αi .

Now, the probability can be computed for observed number of clusters z = (z1, . . . , zε, zε+) where
zi is the number of observed clusters with size i and zε+ denotes the number of clusters with size
larger than ε:

p = PH0(Z ≥ z)

=
ε∏

i=1

(1−B(zi; n, αi)) · (1−B(zε+; n, αε+)) .

2.3 Extension for Both Strands

We only consider overlapping hits on the same strand in (1). Searching on both strands introduces the
dependency of hits between the strands. Especially PWMs with a palindrome structure containing
mainly G and C or A and T, e.g. with a consensus like ’CCCGGG’, have a substantially increased
probability to find an overlapping hit on the complementary strand. Considering the background
model, we modify the definition of α1 and accordingly αi by adding a correction term for hits on the
complementary strand:

α1 ≈ PH0(Yj = 1)
l∏

k=−l,k 6=j

(1− PH0(Yj+k = 1|Yj = 1))
l∏

k=−l

(1− PH0(Y
′
j+k = 1|Yj = 1)) .

Here, Y ′
k corresponds to Yk on the complementary strand. We define the position indices on the

complementary strand such that two hits Yk and Y ′
k completely overlap. There, k = j is not excluded

in the second product because a hit on the complementary strand at the same position as the first
hit is counted as a second hit. Furthermore, we change (3) accordingly by substituting f and g with
probability mass functions based on the complementary PWM nucleotide distribution f ′ respectively
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background nucleotide distributions g′. For the complementary strand, we have to cover the case
j = k, as well. Then, we have with S′ denoting the score on the complementary strand

PH0(S
′(j+k) = s|Yj = 1) =

(
f ′1,l+1 ∗ . . . ∗ f ′l+1,1

)
(s) .

2.4 Data

The two main databases holding PWMs are Jaspar [7] and Transfac [4]. It is known that many
PWMs have a high self similarity or a palindrome structure. To underline the practical relevance of
our approach, we use two real PWMs throughout the results section as well as real sequences. We
select the Transfac PWMs ‘M00184’ for the TF myoblast determining factor (MYOD) and ‘M00186’
for the serum response factor (SRF) to illustrate the behaviour of our approach in comparison to naive
models. Both TFs play a central role in heart malformations [3]. The PWMs are preprocessed by
adding position-specific pseudo-counts depending on the information content per position [5].

We choose the two real sequences from the genes MEF2C and IRX4. The human (ENSG00000081189
and ENSG00000113430) and mouse (ENSMUSG00000005583 and ENSMUSG00000021604) sequences
are retrieved from Ensembl [2]. We apply the Smith-Waterman algorithm [9] to find local alignments
between the human and the mouse sequences. The aligned parts of the sequences are called conserved.
We mask the non-conserved parts of the upstream sequences as conservation increases the possibility
of a functional site [11]. In addition, we cut sequences if a new gene on either strand appears and
restrict the length of the upstream sequence to 10k bp. As the gene has multiple transcription start
sites (TSS), we use the upstream sequence of each TSS with a maximum length of 10kb if neither a
gene nor another TSS occurs within this range.

3 Results

We compare our method with two naive approaches for the significance of an observed number of hits
in a sequence. The first alternative has already been defined in the method section. Let p̂1 denote the
probability for the observed number of hits modeled by a binomial distribution. The second approach
p̂2 only counts the number of clusters neglecting the number of overlapping hits while the model is
still based on the binomial distribution. Our approach is denoted by p̂3. Neither in the example nor
usually in practice occur clusters with greater size than 2. Thus, we only compute the probabilities
for those clusters (α1 and α2).

The conserved upstream region of MEF2C contains 3681 bp. We detect two clusters of size 1 and
one cluster of size 2, thus, z = (2, 1, 0). Looking at the sequence logo [8] in Figure 1 shows that the
matrix has a self similarity due to the palindromic structure at positions 3-4 and 11-12 of the PWM.
Therefore, the probability to have two overlapping hits is higher than the probability of two single
hits. The computation of the probabilities retrieves p̂1 = 0.042, p̂2 = 0.0076, and p̂3 = 0.018. Due
to the self similarity, it is clear that p̂2 overestimates the probability. Furthermore, p̂1 ignores the
overlapping hit. Therefore, the probability is underestimated as the probability for one single hit is
higher than the probability for two overlapping hits. Thus, the application of p̂1 and p̂2 should be
avoided. Hence, in this example the real probability should be between p̂1 and p̂2. This holds for p̂3

supporting our approach.
Next, we focus on a matrix without any self similarity. In this case, the probability for two

overlapping hits is smaller than the probability for two single hits. Using the not self similar TF
MYOD with PWM M00184 (see Figure 2), we search for hits in the sequence IRX4 (5698 bp conserved).
There are two clusters of size 1 and two clusters of size 2. The computed probabilities are p̂1 = 0.029,
p̂2 = 0.0012, and p̂3 = 0.00074. In fact, p̂3 is the smallest probability. Again, this shows that p̂3 is the
more appropriate model.
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Figure 1: Sequence Logo for PWM
M00186 retrieved from Transfac.
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Figure 2: Sequence Logo for PWM
M00184 retrieved from Transfac.

4 Discussion

We have presented a reasonable statistical model to improve the computation of a probability as a
score for the number of occurrences on a sequence. The results show that an adequate statistical
model is necessary for valid statements about statistical significance. Furthermore, the palindromic
structure and self similarity have a strong impact on the dependence of overlapping hits. Thus, it
is necessary to model these dependencies to get reasonable probabilities. The examples give support
for our model such that it is able to capture the strongest dependencies in contrast to the naive
approaches. Furthermore, we want to stress that all computations run in less than 1 minute on a
standard PC with 1.6 GHz processor and 512 MB RAM.

Our approach can serve as a starting point for more realistic models. For example, TFs often
have multiple PWMs which are not independent of each other. Extending this approach to deal with
multiple PWMs seems to be possible though not trivial due to the combinatorics for different scoring
distributions. Another extension could preserve the restriction of our model to consider dependencies
only in an interval of twice the length of the PWM. In case of a long chain of overlapping hits,
our approach will underestimate the probability of such an observation leading to a artificial low
probability. Although, the impact of this problem on real analyses is small because one hardly observes
clusters with size larger than 2. In addition, the occurrence of such large clusters could be used as an
indicator for erroneously small probabilities.

We are aware of the fact that we abstained from giving biological evidence for the results. Since the
decision whether a sequence can be bound by a TF or not is based on a threshold for the probability,
the threshold influences the result substantially. Focusing on only two genes and TFs makes the
choice of a threshold very randomized. Thus, a larger set including true positives and true negatives
are necessary for a thorough analysis. This can be the goal of further research. In contrast, we aimed
at showing the shortcomings of the naive approaches and the superiority of our model from a principle
point of view.
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