
Development of a Laboratory
Information Management System for

Medical Genetic Investigations
(LIMS)

Katharina Albers

THESIS

In partial fulfilment of the requirements for the degree Bachelor of
Science in Bioinformatics

Free University Berlin

Department of Mathematics and Computer Sciences

Advisors:
Dr. Annika Hinze
Dr. Andreas Kuß

Max Planck Institute

for Molecular Genetics
Ihnestraße 63-73

14195 Berlin

June 26th - August 17th 2006

 2

Abstract

Studying the genetic factor underlying a set of diseases with modern high-

throughput techniques generates huge amounts of data, posing a challenge for data

management. In this thesis a database management system called FIDB based on

MySQL was developed to handle clinical and experimental genetic data. For the

convenience of the users, a web interface was developed to insert, update, delete

and display the data. In addition security aspects were taken care of.

Currently FIDB is able to organise and store data gathered by analysing 150

consanguineous families with autosomal recessive mental retardation.

Abriss

Das Erforschen von vererbbaren Krankheiten mit modernen Techniken und hoher

Durchsatzleistung produziert sehr große Mengen Daten und stellt eine

Herausforderung an die Datenverwaltung dar. In dieser Arbeit wurde das

Datenbankmanagementsystem FIDB, basierend auf MySQL, entwickelt, um klinische

und experimentelle genetische Daten handzuhaben. Um FIDB benutzerfreundlich zu

machen, wurde ein web interface entwickelt, um die Daten einzutragen, zu

aktualisieren und zu löschen und die Datenbasis anzuzeigen. Zusätzlich wurden

Sicherheitsaspekte bedacht.

Gegenwärtig organisiert und speichert FIDB Daten, die bei der Analyse von ca. 150

consanguinen Familien mit autosomal rezessiver geistiger Behinderung gesammelt

wurden.

 3

Contents

 Abstract 2

1 Motivation 4

2 Data Collection 5

3 Database 8

4 Web Interface 10

5 Database Development of FIDB 13
 5.1 Conceptual Design 13

 5.2 Relational Design 17

 5.3 Tables and Constraints 21

6 Web Interface Development of FIDB 23
 6.1 Database Connection 23

 6.2 Data Security 23

 6.3 Data Display 26

 6.4 Data Manipulation 28

 6.4.1 Data Insertion 28

 6.4.2 Data Updating and Deletion 32

 6.5 Error Message 34

7 Summary and Future Work 35

8 Acknowledgments 36

9 References 37

10 Appendix 39
 10.1 List of Figures 39

 10.2 List of Abbreviations 40

 10.3 Source Code 41

 4

1 Motivation

Since the gene was first proposed as the unit determining inheritance in all living

things, the curiosity about the concepts of life drove many scientists to research in

this field. It was found out about 40 years later that DNA is the material holding the

inherited information. And only 2001, another 50 years later, the whole human

genome was read, now giving the sequence of the about 3,000,000,000 base pairs

composing the DNA, but still leaving open lots of questions.

In the whole genome there are about 25,000 genes, some of them being investigated

quite well, but most largely unknown in their mechanisms and effects. A good way to

find the line of action of genes is the investigation of diseases, caused by mutations

in certain genes.

Nowadays, with the emergence of modern techniques, it is possible to systematically

study the genetic factor underlying a set of diseases. This in turn will generate huge

amounts of data, which are impossible to store in the traditional way, where various

information is separately stored in different files. This posed challenge can be solved

by a database management system, which allows not only storing, but also updating

and querying the data in a convenient and consistent way.

The aim of this work was to develop a database management system to store,

organise and search through clinical and experimental data, called FIDB (Family

Information Database). At present FIDB is used to store information about autosomal

recessive mental retardation in consanguineous families1, gathered by the Research

Group Familial Cognitive Disorders of the Department Ropers within the Max Planck

Institute for Molecular Genetics. Later other groups within the department or

collaborating groups might contribute their data to produce a broader view on the

aetiology of mental disorders.

1 Mental retardation is often defined as the Intetelligence quotient (IQ) being below 70 (WHO,
1980). Autosomes are the non-sex chromosomes, of which there are 22 in humans.
Recessive means that an inherited mutation only causes a disease when both autosomes - in
humans all the autosomes exist twice - are concerned.

 5

2 Data Collection

The data used in this project are medical data concerning families with inherited

mental retardation. Most of the families investigated by the group Familial Cognitive

Disorders are nonsyndromic mentally retarded. That means, apart from being

mentally retarded the affected family members do not have other clinical features and

cannot otherwise be distinguished from healthy individuals. However, as clinicians

may become more aware of subtle features, it is often very useful to have pictures

and a thorough description of the patients and their development.

That the disorder is inherited strongly suggests that a gene defect is responsible for

that observed phenotype2. In order to elucidate such underlying gene defects, a

strategy called positional cloning3 is applied as it is still impossible to sequence the

whole genome of affected individuals in a convenient time and money frame.

The strategy of positional cloning is to map the location of a human disease gene first

and then use the mapped location on the chromosome to clone the gene.

In order to map the chromosomal location the genotype of several affected and

unaffected family members has to be known. A genotype is the specific genetic

composition of the genome of an individual and is often inferred from sequence

analysis of small polymorphic DNA segments, called markers, which are evenly

spread over the entire genome. In this project 10,000 single nucleotide

polymorphisms (SNPs) were applied as markers and have been analysed for each

individual.

Figure 2.1: Pedigree with two markers.

2 The phenotype is the physical appearance of an individual.
3 Positional cloning means cloning a gene knowing only its chromosomal location (Strachan,
2004).

 6

During meiosis (production of egg and sperm cells) in a process called

recombination, fragments of genomic DNA are exchanged between parental

chromosomes. When two markers are located close, they are very often inherited

together because the recombination or crossing-over is a random process and very

unlikely to happen between these markers located very close to each other. On the

other hand, markers located further away or on different chromosomes are not

necessarily inherited together. This phenomenon is taken advantage of to search for

the markers inherited together with diseases, i.e. the markers located close to the

gene carrying the disease causing mutation. Usually this task is fulfilled by a

statistical method called linkage analysis, where the likelihood of any specific

genomic region to carry a disease causing mutation can be calculated.

The intervals with a high probability to carry a mutation and also not being too big are

then investigated further: a genomic database is searched for genes in the interval,

which are then prioritised with different criteria to estimate. One criterion is for

example, where and when the gene is expressed. Expression in the brain or during

development indicates a gene likely to cause mental retardation.

Figure 2.2: Data Collection. Every family is checked for intervals with a high probability
to carry a mutation. The genes in the intervals are then prioritised and screened for a
pathogenic mutation.

 7

The genes rated promising are then sequenced and compared among the family

members for cosegregation, which denotes in this case whether a variation is

inherited together with the illness. Any variation found is then tested in unrelated

healthy individuals. If it is also found there, it is most likely a polymorphism.

Otherwise a variety of assays can be designed, to test the functional relevance of this

mutation. If the screening of the first gene was unsuccessful and did not reveal a

pathogenic mutation, the next gene has to be screened. And so forth until hopefully

something interesting is found.

In the analysis of about 150 consanguineous families, being genotyped by 10,000

Affymetrix chips, about 400 intervals were found after two years of linkage analysis.

By now about 150 genes have been screened, all this generating a huge amount of

data. These data used to be stored in lots of different files, impossible to search

through and keep updated. In addition, results of different people working on this

matter were not comparable in a convenient way. A database management system

storing data in a standardised and consistent way, which makes them comparable,

searchable and easily updateable, is in need.

 8

3 Database

The development of a database management system (DBMS) makes sense, as soon

as one has to deal with big and cross linked amounts of data. The use of a DBMS

asserts that data from different users in different places can be inserted in a

standardised format. The organisation of the stored data, the database schema,

allows for a sensible combination of the inserted information.

The data stored in a database are called the data basis, while the database

management system is the whole of the programs, manipulating and using the

inserted data. Sometimes the DBMS is called database system.

There are different database models, forming the logical level of a DBMS. The most

widely used is the relational data model, which pools the data in two-dimensional

tables, called relations (Korth, 1991). Every column of a table contains data of the

same type, while the rows contain data belonging to one object. Such a table could

for example consist of three columns, holding the name, birthday and sex of a

person, whereas a row contains the information about one person. The columns are

addressed by their names, called attribute names. The rows are addressed by the

value of key attributes, which characterise the object unambiguously. In the example

the key could be the combination of name and birthday (with the name one could not

be sure that only one person is called like that, while one can be pretty sure that no

two persons with the same name are also born on the same day). One could find the

information about the sex of a person by entering the name and birthday of this

person.

Figure 3.1: Table of a relational database. Name and birthday build the primary key; the
rows could not be distinguished by the name alone.

 9

The attributes of a table one chose to be the defining ones are called the primary

key. By referencing the primary key in another table, one can establish a connection

between these different tables. In the referencing table the primary key of the

referenced table is called the foreign key.

Some database systems also support the definition of constraints4, which have to be

fulfilled, so that the database is in a consistent5 state. If alterations violate these

constraints, the system would reject these changes (Codd, 1985).

To avoid redundancies and anomalies, the database schema can be checked for the

compliance with normal forms, which make sure that anomalies cannot occur through

updating, inserting or deleting data. The relations that do not conform to the normal

forms can in most cases be decomposed into more tables, on condition that this can

be done preserving the information and dependencies (Kemper, 2001).

A query language builds the interface between the database system and the user,

whereby the existing tables can be linked and displayed as newly combined tables

(Codd, 1970). The standardised query language (SQL) is supported by almost every

database system. SQL has a comparatively simple syntax and in spite of the name

"query language" provides not only commands to query the data basis, but also

commands to manipulate (insert, update and delete) the data and to build the

relations (Matthiessen, 2000). Despite the standardisation of SQL, different database

systems differ in complex queries.

The deployed database system is MySQL 4.1.21 (http://dev.mysql.com). MySQL is a

very popular open source database system, is easy to set up and administer, with

high performance (DuBois, 2000). It was first released in 1995 and has been

continuously enhanced.

MySQL supports SQL and most of the integrity constraints, like primary key and

foreign key. The databases in this system can be accessed from more than one

person simultaneously, so that the data can be shared. At the same time MySQL

provides data security through access control.

Seeing all this, MySQL is a suitable system for FIDB.

4 A constraint is a condition that can be defined; in the earlier example a constraint would be
that no two persons with the same name and the same birthday can be inserted.
5 Consistency means that the database contains no contradictions, or more precisely that the
DB is accurate, correct and valid.

 10

4 Web Interface

Most database systems offer a simple user interface allowing entering of SQL-

statements. An easier to use interface needs to be able to translate actions to SQL

statements specific to the database schema, thereby allowing users who are not

familiar with SQL to manipulate and display the data.

There are two options to build the interface: an autonomous software packet or a

web interface. The software packet has to be installed on the user's computer and is

called two-tier architecture, because there are only two layers: the DBMS and the

program packet on the client computer (Figure 4.1). In this case a connection

between the database server and the client computer has to be established.

Figure 4.1: Two-tier Architecture. The Figure 4.2: Three-tier Architecture. The
database system is directly addressed database system is addressed via a web
by the client computer. server, so that the user can utilise the
 interface by a browser.

If a web interface is developed, the users can access via a network and only need to

have a browser installed on their computer. This is called three-tier architecture,

 11

because of the three layers of the application, namely the database system, the

(web-) server and the client computers (Figure 4.2). For FIDB a web interface was

chosen because it is more convenient for the users, than the first option. The

complicated implementation of an interface for a web browser is countervailed by the

independence from an installed user interface.

To develop the web interface, Java (http://www.sun.com/java) was used. Java is an

object-oriented and platform independent programming language. To run the

programs, the written code is compiled to Java-byte code and then interpreted and

executed by a Java virtual machine. This virtual machine is specific to the actual

platform and provides a virtual computer for the Java application, so that every

program written in Java can be run on every platform. Java was chosen for FIDB

development, because it has very convenient implementations for our purpose,

including Java-Servlets, JSPs (Java Server Pages), JavaBeans and JDBC (Java

Database Connectivity).

Java-Servlets are programs that run on a web server and build web pages. That

means that instead of having a static web page, the web pages are built on the fly.

This is very useful for pages with changing content and consequently for database

systems, which naturally change a lot.

JSPs allow including Java code in the static contents of web pages. Thus the design

and the logic of implementation can be kept apart. To execute the JSPs, a JSP

compiler compiles the JSPs into Java Servlets (Hall, 2003).

The difference between JSPs and servlets is substantially that servlets are Java

programs with a HTML page as output, while JSPs are HTML pages with embedded

Java code. JSPs facilitate the development of the design, while servlets facilitate the

implementation of extensive program logic.

I used the JSPs mainly to write forms to display, insert and change the data, while

the servlets interact with the database.

JavaBeans are software components used as containers for data transfer. In web

applications they allow to encapsulate the logic behind it and remove the bulk of the

scriptlet code that would otherwise clutter up the JSPs (Avedal, 2000).

 12

With JDBC Java provides an interface to the relational database systems of different

producers. This API (application programming interface) provides methods for

establishing and managing connections to a database, as well as querying and

updating data in a database. Querying and updating are achieved by forwarding SQL

statements to the database and changing the outcome to a form usable in Java

(Avedal, 2000). In FIDB a MySQL interface of JDBC was used.

In the web pages I also used Java Script to generate adequate alerts, for example

when the fields in a JSP form are not filled in correctly. Java Script – despite the

name – does not have a lot in common with Java (the only common ground being

their debt to the C programming language syntax). It is a prototype based scripting

language and can be used in different host environment applications: the best known

being web technologies. Here it is used to write functions that are embedded in

HTML pages – or in this case JSPs - to perform tasks not being possible in HTML

alone. One can, for example, check if the user submitted a name and a password on

a login page and alert him if he did not.

The web application server used in FIDB is Tomcat 5.5.17 (http://tomcat.apache.org)

of the Apache Jakarta Project, because it supports the Java-Servlets and JSP

technology and is convenient in its functions and features. Besides it is an open

source program, which might be important for further development.

 13

5 Database Development of FIDB

5.1 Conceptual Design

As pictured in Figure 5.1, the first step in designing a database model is the

conceptual design, where the essential information of the "real world" is moulded.

This part of the database development does not depend on the specific database

system and not even on the database type. One could transfer this semantic

specification not only to a relational data model, but also to a network, hierarchical or

object-oriented data model (Kemper, 2001).

Figure 5.1: Steps in designing a database. After the requirement analysis, the
conceptual design is developed. Based on this, a logical schema is generated. The last
step in setting up the database is the physical design. After it is set up, it needs
administration. (Figure taken from slides of the lecture "Einführung in die
Datenbanksysteme", SS06, FU Berlin)

A widely used concept to model the conceptual design is the entity-relationship-

model, where entities and relationships form the basis of the scheme (Chen, 1976).

The entity-relationship model allows the description of a conceptual scheme to be

written down without attention to efficiency or physical design (Ullman, 1988). It is not

suitable for straight implementation, but is a good method to describe the regularities

of the "real world".

In the entity-relationship model, as shown in Figure 5.2, entities are objects and are

represented by rectangles. Relationships are depicted by rhombuses which relate

 14

two entities by connecting them. Additionally there are attributes and recursive

relationships. The attributes are represented by ovals, characterise entities or

relationships and are connected to entities or relations (Kemper, 2001). Recursive

relationships are diagrammed by a relationship of an entity with itself where role

names are added to the connecting lines.

Figure 5.2: Entity-relationship model. The entities pedigree and person are connected
by the relationship is_in. Pedigree has the attributes family_id and fam_name with
family_id being the primary key. Person has not only attributes, but also a recursive
relationship is_parent with the role names child and parent.

Supplementary to the entities and relationships, one can give the degree of a

relationship, which is the number of entities associated in a relationship (Teorey,

1999) and is called cardinality. In the min-max notation, this is given by two

characters for every entity, the first one denoting the minimum and the second one

the maximum of possible relations with the related entity (see Figure 5.3).

Figure 5.3: Cardinalities. Every person has a driving license or has no driving licence;
a driving licence belongs to exactly one person. Every child has zero to two parents
and a person can have every number of children.

With these definitions and concepts, an entity-relationship model with the

cardinalities for FIDB is shown in Figure 5.4 and explained in the following sections.

 15

Figure 5.4: The entity-relationship model of FIDB.

Pedigree: The central entity in the database schema is the pedigree. All the other

entities are linked to this one, even though some are not directly, but through another

entity. The attributes family_id, fam_name, ped_file and comment belong to this

entity. The family_id was given to every family when it was filed and is used in the

laboratory to identify the families. So this attribute is a perfect primary key. The

ped_file is a pedigree file, which holds information about the pedigree and is the input

file for the linkage analysis. Fam_name and comment are self-explanatory.

 16

Person: In every family there are persons, who also have an ID (person_id) and a

name. Additional attributes include sex, birthday and affect_status; the affect status

specifies if someone is mentally retarded.

The role is_parent can model a parent-child relationship.

Clin_inf: The affected persons have different symptoms, which are described in the

entity clin_inf with only one attribute also called clin_inf. The clinical information was

set as a separate entity, because otherwise one could not put in every quantity, but

only a fixed number of symptoms for every patient.

This entity is weak, which is denoted by the double lines and means that it cannot be

identified by its own key alone, but also needs the primary key of the entity it is linked

to. In this case many persons can have the same symptoms, but every person has

the same symptom only once. A weak entity must have the cardinality (1,1), because

otherwise it would not be assignable.

Sample: For the entity sample it is the same as in clin_inf: to insert more than one, a

new entity is introduced. The type could for example be “blood”, “DNA” or “cell line”.

Sample is also a weak entity.

Linkage: Three weak entities, namely linkage, genotype and intervals depend on the

entity pedigree. The linkage has got a method and a result_file, where the method is

the used program and setting (parametric or nonparametric) and the result_file is the

output of the used linkage analysis program. Because every program is used with the

same setting only once, the method is the weak key.

Genotype: The genotype does not need its own key, because genotyping is done

only once for every family.

Intervals: The intervals are the ones that were found to be disease associated in the

linkage analysis. They are defined by the chromosome, a start and an end marker.

Additonally, there are the attributes lod score6 and comment. The chromosome and

the start marker serve as a weak key, because no two different intervals in the same

family can start at the same position.

6 The lod score is used to calculate the probability of a pedigree arising randomly or by
genetic linkage. LOD = log ((probability of birth sequence with a given linkage value) /
(probability of birth sequence with no linkage))

 17

Gene: In the intervals, there are genes that were screened for disease causing

mutations. These genes are identified by the RefSeq ID provided by the NCBI

Reference Sequence project. Additionally the HUGO (Human Genome Organisation)

gene name and the number of exons already screened are stored.

Variations: If something unusual was found in a screened gene, it is stored as the

entity variations. A variation is identified by a chromosome, a start and an end. Start

and end in this case are not denoted by markers, but instead by the base pair

position on the chromosome. Since this information can differ in different versions of

the human genome assembly, the assembly also has to be specified. More

information about the variation is type, function, known polymorphisms and the

cosegregate status. The type is the type of the variation, which might for example be

an insertion or a deletion. The attribute function holds information about the function

of the intact DNA, such as exon or intron. A known polymorphism means a variation

already known to occur in the normal population. Cosegregate status means in this

case, whether the variation and the illness are inherited together. For flexibility one

can also add a comment.

5.2 Relational Design

To make use of a relational database system like MySQL, one has to generate a

relational model, which models the entities and relationships in relations. The

relations are then easily converted to tables, forming the relational database.

To get a relational model, one has to transfer the entity-relationship-model to

relations. This is done by first converting each entity with all attributes to a relation.

The key attributes of the entity also become the primary key of the relation. To

transform a weak entity, the attributes of the weak entity and the key attributes of the

identifying entity are included. Here the key attributes of both entities form the

primary key.

Secondly the relationships are transformed: all the key attributes of the related

entities are included. Which of these are picked to form the primary key depends on

 18

the cardinality. The relationships of the weak entities were already transformed by

including all the keys of the involved entities.

Recursive relationships are converted by renaming the primary keys, which have to

be included twice. For example the recursive relationship is_parent could be

converted to a relation with the attributes parent_id and child_id, each being a

person_id.

In the last step, the obtained relational schema is simplified, whereby relations with

the same key might be collected into one relation.

Below I will list the relations, but only describe the changes that had to be carried out

during the transformation, as the entities and the attributes were described

sufficiently in the previous part.

pedigree: {[family_id: string,

fam_name: string,
ped_file: string,
genotype_data: string,
comment: text]}

The curly brackets show, that a relation is a set of tuples. In the squared brackets the

attributes the tuples are composed of are given. The type of the attribute is specified

after the colons: string for a short text and text for a long text.

In the relation pedigree, genotype_data, being modelled in an own entity before, was

added to the attributes, because for every family there is exactly one such file.

As in the some other tables, there is an attribute comment in pedigree. Since often

nothing is inserted in this field of the table, one could put this attribute in an additional

relation, to save disk space. In FIDB, I decided not to do this for all of the concerned

tables, as the current data already contains many comments and also without

splitting the tables, it is avoided to save the key a second time.

The relation person has got the foreign key family_id, referencing the relation pedigree.

This replaces an extra relation for the relationship between these two. within_fam_id

is the ID that one person has inside his pedigree. This makes it easier to associate

the person in a picture of the corresponding pedigree and might later be used for

some additional programs. The role is_parent is not modelled in this schema; instead

the IDs of father and mother are inserted. This is the better choice, because in some

cases one might only want to insert the affected person but not its parents. Modelled

 19

in a recursive relationship, the parents needed to be entered in an own row in the

table person.

person: {[person_id: string,

within_fam_id: string,
family_id: string,
name: string,
sex: string,
birthday: date,
affect_status: boolean,
father: string,
mother: string]}

The domain of sex is given by the set
dom(sex): {'f', 'm'},

meaning that only these values are allowed to put into the table.

The type date describes a date; boolean allows only the values 'yes' or 'no' to be

inserted.

clin_inf: {[person_id: string,

clin_inf: string,
comment: text]}

sample: {[person_id: string,

type: string]}

The weak entities clin_inf and sample are transformed in the usual way, where

person_id references person.

So is the weak entity linkage, which is dependent on the relation pedigree and

references pedigree with the foreign key family_id.

linkage: {[family_id: string,
method: string,
result_files: string]}

The entities intervals, gene and variations were changed quite a lot.

In intervals, an artificial key was introduced, because otherwise the primary key

would consist of family_id, chromosome and start_marker. This would be cumbersome

when the interval was referenced in gene and variations. With the key interval_id, the

referencing is greatly simplified.

 20

Because of this change, the primary key of the relation gene does not consist of four

attributes, but only of ref_seq_nr and interval_id.

Another artificial key is introduced for variations. In this case it also replaces four

attributes (ref_seq_nr, interval_id, chromosome and chrom_start) and makes the relation

much easier to handle.

These artificial keys change both the table intervals and the table variations to entities

that are not weak.

The assigning of the keys is later handled in the layer of the web interface, because

MySQL does not cover the option "auto_increment" in a convenient way (http://sql-

info.de/mysql/gotchas.html).

intervals: {[interval_id: int,
family_id: string,
chromosome: string,
start_marker: string,
end_marker: string,
lod_score: float,
comment: text]}

gene: {[ref_seq_nr: string,

interval_id: int,
gene_name: string,
processed: string]}

variations: {[var_id: int,

ref_seq_nr: string,
interval_id: int,
type: string,
chromosome: string,
chrom_start: int,
chrom_end: int,
assembly: string,
function: string,
known_poly: string,
coseg_status: string,
misc: text]}

dom(type): {'single', 'microsatellite', 'in-del', 'insertion', 'deletion'}

dom(function): {'unknown', 'locus', 'coding', 'coding-synon', 'coding-nonsynon', 'untranslated',
 'intron', 'splice-site', 'cds-reference'}

dom(known_poly): {'unknown', 'yes', 'no'}

dom(coseg_status): {'unknown', 'yes', 'no'}

 21

5.3 Tables and Constraints

The relational schema discussed in the previous part is converted to a relational

database schema. The tables are created by the CREATE TABLE statement, such

as

CREATE TABLE pedigree (
family_id VARCHAR(20) NOT NULL,
fam_name VARCHAR(255) NOT NULL default '',
ped_file VARCHAR(255) NOT NULL default '',
genotype_data VARCHAR(255) NOT NULL default '',
comment TEXT,
PRIMARY KEY (family_id)
);

Here, after specifying the table name, the attributes with their types are given in

brackets. The text type in MySQL is VARCHAR, the maximum length of the stored

string is defined in the brackets behind this type. VARCHAR can at most be 255

characters long. TEXT is also a text type, but can be much longer: at most 65,535

characters.

NOT NULL is an integrity constraint and ensures that no tuples without a value are

inserted. The default value will be inserted in case no value is specified, so in

these columns a default value is assigned to the attributes, being an implicit NULL-

value. By defining these default values it was later easier to program the JSPs and

servlets controlling the insertion of the data.

The primary key is specified at the end of the table definition, as are the foreign keys.

Both key constraints can be named, but in MySQL this does not affect the error

message. So I did this only for the foreign keys.

CREATE TABLE person (
person_id VARCHAR(20) NOT NULL,
within_fam_id VARCHAR(10) NOT NULL default '',
family_id VARCHAR(20) NOT NULL,
name VARCHAR(255) NOT NULL default '',
sex ENUM('f', 'm'),
birthday DATE,
affect_status BOOL,
father VARCHAR(20) NOT NULL default '',
mother VARCHAR(20) NOT NULL default '',
PRIMARY KEY (person_id),
CONSTRAINT family_exists
FOREIGN KEY (family_id)
REFERENCES pedigree(family_id) ON DELETE CASCADE
);

 22

ENUM is a type that only allows inserting values specified in the brackets and is able

to define the domains given earlier. DATE is a date type, in My SQL written yyyy-

mm-dd, for example 2006-08-14. BOOL denotes a Boolean, meaning that this type

can either be yes or no, or in the case of MySQL '0' or '1'.

ON DELETE CASCADE causes the row with the reference to be deleted, when the

referenced entry is deleted. Another option would be ON DELETE SET NULL, but

we do not allow NULL-values for foreign keys. If the ON DELETE instruction is

omitted, one is not allowed to delete any referenced value as long as a foreign key

referring to this row exists (http://dev.mysql.com/doc/refman/4.1/en/innodb-foreign-

key-constraints.html).

I will not display more create table statements here, because they do not differ

much from the relations in the relational schema. The whole schema in form of the

SQL statements is provided in the appendix.

 23

6 Web Interface Development of FIDB

To develop the web interface of FIDB I used Java servlets, Java server pages

(JSPs), JavaBeans and a Java class without interaction with the hypertext transfer

protocol (HTTP). Both servlets and JSPs are used to generate current HTML pages,

which conform to the actual demands. The web server forwards these pages to the

web browser of the client computer, where they are displayed.

The JavaBeans are classes with the same attributes as the relations and are used to

hold the data to be displayed. The Java class without interaction with the HTTP is

used to set up a connection pool.

6.1 Database Connection

A Java class without interaction with the HTTP establishes the connections to the

database. Together with settings in Tomcat's context.xml and server.xml, a

connection pool is configured. Connection pooling is a technique used for sharing

server resources among requesting clients; instead of establishing a new connection

for every user, established connections are kept and allocated according to the

demand.

6.2 Data Security

To keep the data basis secure, there are two groups of users: one is only allowed to

read and search the data and the other one is also allowed to insert, delete and

update data. To protect data privacy, the data basis is not accessible from outside of

the institute, and users within the institute are assigned by the FIDB administrator to

the appropriate group.

FORM based authentication, provided by Tomcat was chosen to handle the

authentication of users. It allows for the administrator to write a login page (see

Figure 6.1 and 6.2) and to define roles, complying with the groups specified in FIDB.

The usernames, passwords and roles are stored in a separate MySQL database of

FIDB.

 24

The roles and their authorisation are specified in the web.xml. To get usernames,

passwords and roles, a connection to the database is established in the server.xml.

With this technique, both the username and the role are retrievable as long as the

user is logged in.

Figure 6.1: Login page. Figure 6.2: Login page after a failed try.

After login the user's role determines the pages the user is allowed to view.

Additionally for the users with different roles, the same pages can be displayed with a

different content. I used this to make sure, that the users only allowed to display the

data basis, will not see any links to pages they are not allowed to use. For example

the index page is different for the two groups (see Figure 6.3 and 6.4).

 25

Figure 6.3: Index page for users not allowed updating FIDB.

Figure 6.4: Index page for users allowed updating FIDB.

 26

6.3 Data Display

There are eight display pages, each displaying the contents of one relation of the

database (for an example see Figure 6.5).

Figure 6.5: Page displaying interval information (for users allowed to update FIDB). By
clicking the interval_id, all available information about the interval is displayed.

If applicable hyperlinks are available to display related information (see Figure 6.5).

When a pedigree is chosen, the persons in the pedigree, the path to the linkage files

and the intervals are displayed.

Clicking a person will lead to a page where the clinical information and the samples

are displayed. Similarly selecting a specific interval will display the genes belonging

to this interval and clicking a gene will display all the variations within the gene that

have been deposited in FIDB.

 27

Figure 6.6: Page displaying information belonging to one interval (for users not
allowed to update FIDB).

Figure 6.7: Gene information. (For users not allowed updating FIDB.) The display link
leads to the UCSC Genome Browser website.

 28

To help users to make use of the available genome annotation, there are links in the

display of gene and variations (see Figure 6.7). Following such link leads to the to the

UCSC Genome Browser website with the respective region displayed.

6.4 Data Manipulation

6.4.1 Data Insertion

The insert pages are only allowed to be accessed by the users allowed to update.

Every relation has got an insert page, where all the attributes have text input fields,

drop down lists or file select fields (for an example see Figure 6.8).

Figure 6.8: Insert pedigree information.

With the file select, one can browse through the computer, but the path to the file is

lost as soon as the submit button is clicked and only the name of the file is passed.

As only the path to the file is needed, I wrote a function in Java script to save the

path, by putting it into another invisible field.

 29

When there are foreign keys in the relation, there is usually a drop down list with the

already inserted keys (for an example see Figure 6.9).

Figure 6.9: Insert linkage information. Including a drop down list for family_id.

If one wants to insert a gene, the interval has to be picked first. The same is true for

variations, where a gene has to be picked first (see Figure 6.10).

 30

Figure 6.10: Select a gene. Before inserting variation information, the gene the
variation was found in has to be picked.

Another special case within the insert pages is the page to insert clinical information.

A person is picked first, and then all the clinical features for this person can be

inserted repeatedly (see Figures 6.11 and 6.12).

 31

Figure 6.11: Choose a patient. Figure 6.12: Insert clinical information. All the
Before inserting clinical information, clinical information for a patient can be filled in
a patient has to be chosen. on the same page.

 32

6.4.2 Data Updating and Deletion

The users with the right to change the data in the database do also have a link to

delete every entry displayed on the display pages. For the tables consisting of more

than two attributes, a link to update is also available for this group of users (see

Figure 6.13).

Figure 6.13: Page displaying interval information (for users allowed to update FIDB).

All of the update pages have all the attributes displayed in input fields, with the key

attributes not changeable (for an example see Figure 6.14). The non key attributes

can be changed easily in this way.

 33

Figure 6.14: Update interval information.

When a user tries to delete an entry that might be referenced in another relation like

entries in pedigree, person, intervals and genes, Java Script was used to give an

alert that more data might be deleted in other tables (see Figure 6.15).

Figure 6.15: Alert when deleting an entry in intervals is tried.

 34

6.5 Error Message

The error page displays the SQL error message, which is self explaining (see Figure

6.16).

Figure 6.16: Error page. Displaying the SQL exception.

 35

7 Summary and Future Work

In this work a database management system to handle clinical and experimental data

was developed. One is able to insert, update and delete the data using the web

interface. Furthermore the data can be displayed in different manners.

Data security was taken into account and the different authority for two user groups

are established. Up to now, the data gathered through the analysis of about

approximately 150 families with autosomal recessive mental retardation have been

inserted.

On this huge data basis it also makes sense to develop more sophisticated search

options. For example, a function to be implemented is to search for all the families

with a common clinical feature and then compare their linkage intervals.

 36

8 Acknowledgments

First of all I want to thank Wei Chen for his support and helpful discussion. Further I

want to acknowledge my supervisors Dr. Annika Hinze and Dr. Andreas Kuß for not

only making this work possible, but also for the many vital comments on my work. In

addition I thank Lars Jensen and Mahdi Motazacker for the explanation of biological

issues.

Also, I thank Garreth Hollands and Jannis Uhlendorf for carefully proofreading the

manuscript and Maximilian Sauermoser for his help on creating the figures. This work

was funded by the Max Planck Society for the Advancement of Science.

 37

9 References

Avedal, Karl / Ayers, Danny / Briggs, Timothy / Burnham, Carl / Halberstedt, Ari /

Haynes, Ray / Henderson, Peter / Holden, Mac / Li, Sing / Malks, Dan / Myers, Tom /

Nakhimovsky, Alexander / Osmont, Stéphane / Palmer, Grant / Timney, John / Tyagi,

Sameer / Van Damme, Geert / Wilcox, Mark / Wilkinson, Steve / Zeiger, Stefan /

Zukowski, John: "Professional JSP"; Birmingham 2000.

Bry, Francois / Kröger, Peter: "A Computational Biology Database Digest: Data,

Data Analysis, and Data Management"; Munich 2003.

Chen, Peter P.: "The Entity-Relationship Model - Toward a Unified View of Data";

Transactions on Database Systems, Vol. 1, pp. 9-36, New York 1976.

Codd, E. F.: "A Relational Model of Data for Large Shared Data Banks";

Communications of the ACM, Vol. 13, No. 6, pp. 377-387, 1970.

Codd, E. F.: "Does Your DBMS Run By the Rules?"; Computer World, 21st October

1985.

DuBois, Paul: "MySQL"; Indianapolis 2000.

Hall, Marty / Brown, Larry: "Core Servlets and Java Server Pages"; 2nd edition, 2003.

Kemper, Alfons / Eickler, A.: "Datenbanksysteme, Eine Einführung"; 4.,

überarbeitete und erweiterte Auflage, München 2001.

Korth, Henry F. / Siberschatz, Abraham: "Database System Concepts"; 2nd edition,

New York, 1991.

Louis, Dirk / Müller, Peter: “Java 2. Praxis der objektorientierten Programmierung“;

München, 2004.

Strachan, Tom / Read, Andrew P.: "Human Molecular Genetics"; 3rd edition, New

York 2004.

 38

Teorey, Toby J.: "Database Modeling and Design"; 3rd edition, San Francisco 1999.

Ullman, Jeffrey D.: "Principles of Database and Knowledgebase Systems", vol. 1,

Rockville 1988.

World Health Organization: "International classification of impalments, disabilities

and handicaps"; World Health Organization, Geneva 1980.

 39

10 Appendix

10.1 List of Figures

Figure 2.1: Pedigree with two markers. 5

Figure 2.2: Data Collection. 6

Figure 3.1: Table of a relational database. 8

Figure 4.1: Two-tier Architecture. 10

Figure 4.2: Three-tier Architecture. 10

Figure 5.1: Steps in designing a database. 13

Figure 5.2: Entity-relationship model. 14

Figure 5.3: Cardinalities. 14

Figure 5.4: The entity-relationship-model of FIDB. 15

Figure 6.1: Login page. 24

Figure 6.2: Login page after a failed try. 24

Figure 6.3: Index page for users not allowed updating FIDB. 25

Figure 6.4: Index page for users allowed updating FIDB. 25

Figure 6.5: Page displaying interval information. 26

Figure 6.6: Page displaying information belonging to one interval. 27

Figure 6.7: Gene Information. 27

Figure 6.8: Insert pedigree information. 28

Figure 6.9: Insert linkage information. 29

Figure 6.10: Select a gene. 30

Figure 6.11: Choose a patient. 31

Figure 6.12: Insert clinical information. 31

Figure 6.13: Page displaying interval information. 32

Figure 6.14: Update interval information. 33

Figure 6.15: Alert when deleting an entry in intervals is tried. 33

Figure 6.16: Error page. 34

 40

10.2 List of Abbreviations

API Application programming interface

DB Database

DBMS Database management system

DNA Desoxyribonucleic acid

FIDB Family Information Database

HTML Hypertext markup language

HTTP Hypertext transfer protocol

HUGO Human Genome Organisation

ID Identification

IQ Intelligence quotient

JDBC Java database connectivity

JSP Java server pages

LAN Local area network

SNP Single nucleotide polymorphism

SQL Structured query language

WHO World Health Organization

 41

10.3 Source Code

Due to the extensive source code, I will only give a few examples and the SQL create

statements.

The complete code can be requested at "albers@inf.fu-berlin.de".

The database schema in form of the SQL create statements:
CREATE TABLE pedigree (
family_id VARCHAR(20) NOT NULL,
fam_name VARCHAR(255) NOT NULL default '',
ped_file VARCHAR(255) NOT NULL default '',
genotype_data VARCHAR(255) NOT NULL default '',
comment TEXT,
PRIMARY KEY (family_id)
);

CREATE TABLE person (
person_id VARCHAR(20) NOT NULL,
within_fam_id VARCHAR(10) NOT NULL default '',
family_id VARCHAR(20) NOT NULL,
name VARCHAR(255) NOT NULL default '',
sex ENUM('f', 'm'),
birthday DATE,
affect_status BOOL,
father VARCHAR(20) NOT NULL default '',
mother VARCHAR(20) NOT NULL default '',
PRIMARY KEY (person_id),
CONSTRAINT family_exists
FOREIGN KEY (family_id)
REFERENCES pedigree(family_id) ON DELETE CASCADE
);

CREATE TABLE clin_inf (
person_id VARCHAR(20) NOT NULL,
clin_inf VARCHAR(255) NOT NULL,
comment TEXT,
PRIMARY KEY (person_id, clin_inf),
CONSTRAINT person_exists
FOREIGN KEY (person_id)
REFERENCES person(person_id) ON DELETE CASCADE
);

CREATE TABLE sample (
person_id VARCHAR(20) NOT NULL,
type VARCHAR(50) NOT NULL,
PRIMARY KEY (person_id, type),
CONSTRAINT person_exist
FOREIGN KEY (person_id)
REFERENCES person(person_id) ON DELETE CASCADE
);

CREATE TABLE linkage (
family_id VARCHAR(20) NOT NULL,
method VARCHAR(50) NOT NULL,
result_files VARCHAR(255) NOT NULL default '',

 42

PRIMARY KEY (family_id, method),
CONSTRAINT family_exist
FOREIGN KEY (family_id)
REFERENCES pedigree(family_id) ON DELETE CASCADE
);

CREATE TABLE intervals (
interval_id BIGINT NOT NULL,
family_id VARCHAR(20) NOT NULL,
chromosome VARCHAR(5) NOT NULL default '',
start_marker VARCHAR(30) NOT NULL default '',
end_marker VARCHAR(30) NOT NULL default '',
lod_score FLOAT(5,3),
comment TEXT,
PRIMARY KEY (interval_id),
CONSTRAINT family_exis
FOREIGN KEY (family_id)
REFERENCES pedigree(family_id) ON DELETE CASCADE
);

CREATE TABLE gene (
ref_seq_nr VARCHAR(30) NOT NULL,
interval_id BIGINT NOT NULL,
gene_name VARCHAR(20) NOT NULL default '',
processed VARCHAR(20) NOT NULL default '',
PRIMARY KEY (ref_seq_nr, interval_id),
CONSTRAINT interval_exists
FOREIGN KEY (interval_id)
REFERENCES intervals(interval_id) ON DELETE CASCADE
);

CREATE TABLE variations (
var_id BIGINT NOT NULL,
ref_seq_nr VARCHAR(30) NOT NULL,
interval_id BIGINT NOT NULL,
type ENUM('single', 'microsatellite', 'in-del',

'insertion', 'deletion')
NOT NULL,

chromosome VARCHAR(5) NOT NULL default '',
chrom_start BIGINT,
chrom_end BIGINT,
assembly VARCHAR(20),
function ENUM('unknown', 'locus', 'coding', 'coding-

synon', 'coding-nonsynon', 'untranslated',
'intron', 'splice-site', 'cds-reference')

NOT NULL default 'unknown',
known_poly ENUM('unknown', 'yes', 'no')

NOT NULL default 'unknown',
coseg_status ENUM('unknown', 'yes', 'no')

NOT NULL default 'unknown',
misc TEXT,
PRIMARY KEY (var_id),
CONSTRAINT gene_exists
FOREIGN KEY (ref_seq_nr, interval_id)
REFERENCES gene(ref_seq_nr, interval_id)

ON DELETE CASCADE,
);

 43

Examples of a JSP, a servlet and a JavaBean.

JSP to insert person information:

<%@page
 contentType="text/html"
 language="java"
 import="java.util.*"
 import="java.lang.Integer.*"
 %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=UTF-8">
 <title>insertPerson</title>
 <script type="text/javascript">
 function chkForm () {
 if (document.form.person_id.value == "") {
 alert("Please fill in the Person ID!");
 document.form.person_id.focus();
 return false;
 }
 }
 </script>
 </head>
 <body bgcolor="#FFFFC8">

 <h2>INSERT PROBAND INFORMATION</h2>

 <table>

<form name="form" action="controller" method = "get"
onsubmit="return chkForm()">

 <tr>
 <td>Person ID:</td>
 <td><input type="text" name="person_id"</td>
 </tr>
 <tr>
 <td>ID within the Pedigree:</td>
 <td><input type = "text" name="within_fam_id"></td>
 </tr>
 <tr>
 <td>Family ID:</td>
 <td>
 <select name="family_id">

 <jsp:useBean
 id="pedi"
 scope="request"
 class="beans.pedigreeBean"/>

<% Vector pedigree = (Vector)request.getAttribute("selectPedigree");

for (Enumeration e = pedigree.elements() ; e.hasMoreElements() ;) {
 pedi = (beans.pedigreeBean)e.nextElement();
 %>

 44

 <option> <%=pedi.getFamily_id()%> </option>

 <% } %>

 </select>
 </td>
 </tr>
 <tr>
 <td>Name:</td>
 <td><input type="text" name="name"</td>
 </tr>
 <tr>
 <td>Sex:</td>
 <td><select name="sex" size="1">
 <option>m</option><option>f</option>
 </select>
 </td>
 </tr>
 <tr>
 <td>Birthday (yyyy-mm-dd):</td>
 <td><select name="year">
 <%for (int i = 1900; i <= 2010; i++) { %>
 <option><%=i%></option>
 <% } %>
 </select>
 <select name="month">
 <%for (int i = 1; i <= 12; i++) { %>
 <option><%=i%></option>
 <% } %>
 </select>
 <select name="day">
 <%for (int i = 1; i <= 31; i++) { %>
 <option><%=i%></option>
 <% } %>
 </select>
 </td>
 </tr>
 <tr>
 <td>Affect Status:</td>
 <td><select name="affect_status" size="1">
 <option>affected</option>

<option>not affected</option>
 </select>
 </td>
 </tr>
 <tr>
 <td>Father (ID):</td>
 <td><input type = "text" name="father"></td>
 </tr>
 <tr>
 <td>Mother (ID):</td>
 <td><input type="text" name="mother"></td>
 </tr>
 <tr>
 <td>
</td>
 </tr>
 <tr>

 45

<td><input type="submit" name="action" value="Insert into
'Person'"></td>

 </tr>
 </form>
 <form>
 <tr>
 <td>
</td>
 </tr>
 <tr>

<td><input type="submit" name="action" value="Display
Person Inf."></td>

 </tr>
 <tr>
 <td><input type="submit" name="action" value="back"></td>
 <td></td>

<td><input type="submit" name="action"
value="logout"></td>

 </tr>
 </form>
 </table>

 </body>
</html>

Servlet to insert person information:

/*
 * insertPerson.java
 *
 * Created on 21. Juni 2006, 10:10
 */

package db;
import java.io.*;
import java.net.*;

import javax.servlet.*;
import javax.servlet.http.*;

import java.sql.* ;

/**
 *
 * @author albers
 */
public class insertPerson extends HttpServlet {

 private String insertSQL = " INSERT INTO person VALUES (? , ? ,
? , ? , ? , ? , ? , ? , ?) ;";

 public void destroy() { }

 protected void doGet(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, java.io.IOException {

 46

 processRequest(request, response);
 }

 protected void doPost(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, java.io.IOException {
 processRequest(request, response);
 }

 protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, java.io.IOException {
 Connection con = null ;

 try{
 pool p = new pool();
 con = p.get();

 int affect_status = 0;

if((request.getParameter("affect_status")).equals("affected"))
 affect_status = 1;
 else
if((request.getParameter("affect_status")).equals("not affected"))
 affect_status = 0;

 String birthday = "";
 String month, day = "";

 if(Integer.parseInt(request.getParameter("month")) < 10)
 month = "0" + (request.getParameter("month"));
 else
 month = request.getParameter("month");

 if(Integer.parseInt(request.getParameter("day")) < 10)
 day = "0" + (request.getParameter("day"));
 else
 day = request.getParameter("day");

 birthday = request.getParameter("year") + "-" + month +
"-" + day;

 PreparedStatement pstmt = con.prepareStatement(insertSQL);

 pstmt.setString(1, request.getParameter("person_id"));
 pstmt.setString(2, request.getParameter("within_fam_id"));
 pstmt.setString(3, request.getParameter("family_id"));
 pstmt.setString(4, request.getParameter("name"));
 pstmt.setString(5, request.getParameter("sex"));
 pstmt.setString(6, birthday);
 pstmt.setInt(7, affect_status);
 pstmt.setString(8, request.getParameter("father"));
 pstmt.setString(9, request.getParameter("mother"));

 pstmt.executeUpdate();

 //close data connection

 47

 pstmt.close();

 String dispatch ="/selectPedigree?action=person" ;

 RequestDispatcher dispatcher =
request.getRequestDispatcher(dispatch) ;
 dispatcher.forward(request, response) ;

 }catch(SQLException ex){
 System.out.println("\nERROR:----- SQLException -----\n");

 request.setAttribute("getException", ex);
 String dispatch = "exceptionJSP.jsp";

 RequestDispatcher dispatcher =
request.getRequestDispatcher(dispatch) ;
 dispatcher.forward(request, response) ;

 }catch(Exception e) {
 e.printStackTrace();
 }finally {
 try {
 if(con != null)
 con.close() ;
 }catch (SQLException ex) {
 System.out.println("\nERROR:----- SQLException -----\n");
 System.out.println("Message: " + ex.getMessage());
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("ErrorCode: " + ex.getErrorCode());
 }
 }

 }
 public String getServletInfo() {
 return "Servlet inserts Persons";
 }
}

JavaBean for the relation person:

/*
 * personBean.java
 *
 * Created on 9. Juni 2006, 12:54
 */

package beans;

import java.beans.*;
import java.io.Serializable;

/**
 *
 * @author albers
 */

 48

public class personBean extends Object implements Serializable {

 private String person_id;
 private String within_fam_id;
 private String family_id;
 private String name;
 private String sex;
 private java.sql.Date birthday; //oder java.sql.date??
 private int affect_status;
 private String father;
 private String mother;

 /** Creates a new instance of personBean */
 public personBean() {}

 public String getPerson_id() {
 return person_id;
 }
 public String getWithin_fam_id() {
 return within_fam_id;
 }
 public String getFamily_id() {
 return family_id;
 }
 public String getName() {
 return name;
 }
 public String getSex() {
 return sex;
 }
 public java.sql.Date getBirthday() {
 return birthday;
 }
 public int getAffect_status() {
 return affect_status;
 }
 public String getFather() {
 return father;
 }
 public String getMother() {
 return mother;
 }

 public void setPerson_id(String person_id) {
 this.person_id=person_id;
 }
 public void setWithin_fam_id(String within_fam_id) {
 this.within_fam_id=within_fam_id;
 }
 public void setFamily_id(String family_id) {
 this.family_id=family_id;
 }
 public void setName(String name) {
 this.name=name;
 }
 public void setSex(String sex) {
 this.sex=sex;
 }
 public void setBirthday(java.sql.Date birthday) {

 49

 this.birthday=birthday;
 }
 public void setAffect_status(int affect_status) {
 this.affect_status=affect_status;
 }
 public void setFather(String father) {
 this.father=father;
 }
 public void setMother(String mother) {
 this.mother=mother;
 }

}

