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Zusammenfassung 
 

In der eukaryotischen Ontogenese ist die Etablierung differenzierungsspezifischer 

Genexpression eng an die Unterteilung des Genoms in funktionell getrennte Domänen 

gekoppelt. Solche Domänen lassen entweder erhöhte transkriptionelle Aktivität zu oder 

unterdrücken sie und werden Eu- bzw. Heterochromatin genannt. Heterochromatin enthält 

spezielle Proteine, die zur Ausbildung dieser repressiven Chromatinstruktur beitragen. Eine 

der Hauptfragen in der Heterochromatinbiologie ist, wie solche Proteine rekrutiert werden. 

Dieser Prozess ist entscheidend damit einzelnde Regionen im Genom koordiniert zeit- und 

ortsabhängig reprimiert werden können. In Saccharomyces cerevisiae entsteht Hetero-

chromatin an den silent-mating-type Loci HMRa und HMLα durch die zielgerichtete 

Rekrutierung des Sir-Komplexes über eine Gruppe von Proteinen, die an sogenannte silencer-

DNA Sequenzen binden. In diese Arbeit wird gezeigt, daß das Protein Sum1, bisher bekannt 

als Repressor meiotischer Gene im vegetativen Zellzyklus, als Heterochromatin-

Rekrutierungsfaktor für HMLα fungiert. Sum1 konnte in vitro und in vivo an HMLα über ein 

funktionelles Element innerhalb des HML-E silencers binden und die Deletion von SUM1 

verursachte einen Verlust von Repression an HMLα.  

SUM1 beeinflußte außerdem die Fähigkeit von HML-E als Replikationsstartpunkt (origin) zu 

agieren, was eine Rolle von Sum1 in der Replikation nahelegt. Die Beobachtung, daß orc2-1 

und orc5-1 mit sum1∆ synthetisch lethal waren und daß cdc6-1, cdc7-1 oder cdc45-1 mit 

sum1∆ einen synthetischen Wachstumsdefekt aufwiesen unterstützt die Vermutung, daß 

SUM1 eine globale Rolle in der Replikationsinitiation besitzt. In einer genomweiten Suche 

wurden ARS Elemente gefunden, die sowohl Sum1 als auch ORC rekrutieren. Dabei konnte 

gezeigt werden, daß die Replikationsaktivität dieser ARS Elemente von Sum1 bzw. Sum1 

Bindungsstellen abhängig war. Als Repressor von meiosespezifischen Genen interagiert 

Sum1 oft mit der Histondeacetylase Hst1. In diesem Zusammenhang konnte gezeigt werden, 

daß SUM1-regulierte origins ebenfalls HST1 zur vollen Aktivität benötigten. 

Zusammenfassend schlagen wir Sum1 als neuartigen Modulator für die Replikationsinitiation 

an einer Untergruppe chromosomaler Replikationsstartpunkte vor.  
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Abstract 
 

The division of eukaryotic chromatin into functionally distinct domains is critical to 

implement gene expression programs that drive the development of multicellular organisms. 

Regions termed euchromatin exist in the genome that are generally conducive to transcription, 

whereas heterochromatin contains specialized chromatin binding proteins that repress 

transcription in these regions. A central question in heterochromatin biology is how the 

heterochromatin factors are targeted to specific genomic regions, a process that is crucial to 

ensure that the designated domains, and only they, are repressed in the appropriate spatial and 

temporal fashion. In Saccharomyces cerevisiae heterochromatinization at the silent mating-

type loci HMRa and HMLα is achieved by targeting the Sir complex to these regions via a set 

of anchor proteins that bind to the silencers. Here, we have identified a novel heterochromatin 

targeting factor for HMLα, the protein Sum1, a repressor of meiotic genes during vegetative 

growth. Sum1 bound both in vitro and in vivo to HMLα via a functional element within the 

HML-E silencer, and deletion of SUM1 caused HMLα derepression. Significantly SUM1 was 

also required for origin activity of HML-E, suggesting a role of Sum1 in replication initiation. 

Our observations of a synthetic lethality between orc2-1 or orc5-1 and sum1∆ as well as a 

synthetic growth defect of cdc6-1, cdc7-1 and cdc45-1 with sum1∆ support the notion that 

SUM1 has a global role in replication initiation. In a genome-wide search for Sum1-regulated 

origins, we identified a set of autonomous replicative sequences (ARS elements) that bound 

both the origin recognition complex and Sum1. Full initiation activity of these origins 

required Sum1, and their origin activity was decreased upon removal of the Sum1 binding 

site. In its role as a repressor of meiosis specific genes, Sum1 often works in concert with the 

histone deacetylase Hst1. We found that SUM1-regulated origins also required HST1 for full 

activity. Taken together we propose that Sum1 is a novel replication initiation modulator for a 

subset of chromosomal origins. 
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1 Introduction  
 

The following work addresses a molecular link between two major cellular processes: 

heterochromatin formation and replication initiation. Since these processes are connected to 

chromatin organisation, an introductory chapter will focus on chromatin biology. Moreover, 

the establishment of heterochromatin will be reviewed, with a particular focus on current 

knowledge of silencing in Saccharomyces cerevisiae. The connection of heterochromatin 

formation and replication initiation is reflected by the fact that numerous proteins are 

involved in both processes. Therefore, a second part of this introduction discusses principles 

of replication and factors involved in this process.  

1.1 Epigenetics and regulation of gene expression 

Tight control of gene expression is of pivotal importance during the life of a cell. Besides 

housekeeping genes that are constantly expressed, various genes are only used at specific 

stages of the cell cycle or under particular environmental conditions. Also, during the process 

of differentiation in higher organisms, expression and repression of only the appropriate 

subset of genes at a given time or cell type is fundamental. To accomplish this, mechanisms 

have evolved to switch genes on and off. Organisms have developed a large set of proteins 

that bind to DNA in a sequence-specific manner and positively or negatively influence 

transcription. These proteins are called transcription factors or transcriptional repressors. 

However, besides the dynamic properties of transcriptional regulation, daughter cells of a 

specific cell type can also “remember” the expression pattern of their mother cells. This is of 

particular importance in highly specialized cell types. The process of inheriting a specific 

gene expression pattern without changing the genomic sequence is called epigenetics 

(reviewed in (Hendrich and Willard, 1995)). Epigenetic mechanisms influence a broad 

spectrum of cellular processes ranging from gene expression control to replication origin 

choice in metazoa or gene silencing in eukaryotes. Gene silencing can be distinguished from 

promoter-specific gene repression in that it acts in a regional and gene independent manner. It 

leads to transcriptional inactivation of whole chromosomal areas by densely packing 

chromatin to inhibit access for DNA binding proteins or factors of the transcriptional 
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machinery. Therefore chromatin plays an important role in determining the transcriptional 

status of a gene.  

1.2 Chromatin and gene expression   

Chromatin has traditionally been divided into two main classes based on structural and 

functional  criteria. Euchromatin contains the majority of the genes, both actively transcribed 

and quiescent. Heterochomatin is transcriptionally silent and contains large regions of 

repetitive DNA sequence (reviewed in (Grewal and Moazed, 2003)). It was first described in 

light microscopic studies of moss nuclei as the part of chromatin that remains condensed 

throughout the cell cycle (Heitz, 1928). Coexistence of heterochromatin and transcriptional 

inactivation is observed in polytene chromosomes in salivary glands of Drosophila 

melanogaster. These structures consist of more than 1000 identical chromosomes that align 

and form a giant chromosome. Examination by light microscopy shows a pattern of bands and 

also lateral “puffs” on the chromosomes that are associated with high transcriptional activity. 

After transcription of the genes within the puffed domains these areas are again compacted 

into bands (reviewed in (Zhimulev, et al., 2004)).  

Transcriptional repression by heterochromatin is sequence-independent, which means that 

localization of a gene within the genome is as important for its expression as the composition 

of its promoter elements. One prominent example for a locus specific effect for gene 

expression is a phenomenon called position effect variegation (PEV) in D.melanogaster 

(Muller, 1930). The white+ (w+) gene encodes a factor responsible for red color development 

in the facets of the eye. Red-white mosaic phenotypes are caused by a chromosomal position 

effect in which an X-ray induced rearrangement breakpoint placed the w+ gene from its 

normal euchromatic location to the vicinity of heterochromatin. Some rearrangements lead to 

heterochromatin-mediated silencing of this gene resulting in the occurrence of large patches 

of red and white facets in the adult eyes. This pattern of variegation suggests that a decision to 

express or repress the w+ gene is made early during tissue developement and is maintained in 

a metastable state through multiple cell divisions (reviewed in (Wakimoto, 1998)).  

The phenomenon of transcriptional silencing of genes during development is not restricted to 

dipteria but found in an increasing number of other organisms including humans. For example 

in mammalian females one X-chromosome is transcriptionally silenced. Somatic cells of 

females contain two X-chromosomes, while male cells contain one X and one Y 
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chromosome. Female cells compensate the extra X-chromosome dose by inactivating one of 

them which happens in early embryonic development. The inactivated X-chromosome can be 

seen during interphase as a distinct structure called Barr body and most of its DNA is not 

transcribed (reviewed in (Chow and Brown, 2003)).  

Generally, centromeres and telomeres as well as many intergenic regions in mammalian 

genomes consist of constitutive heterochromatin (Perrod and Gasser, 2003). All these areas 

contain a large number of highly repetitive DNA and heterochromatinization is thought to 

inhibit recombination events. Also repeated gene arrays such as the genes coding for 

ribosomal RNAs (rDNA) and transposons are subject to transcriptional silencing (Walsh, et 

al., 1998). Presumably 90% of the mammalian genome is transcriptionally silent in 

differentiated cells (Perrod and Gasser, 2003). Part of it is constitutive heterochromatin 

whereas the rest is assigned to differentiation specific events.  

 

 
 
Figure 1.1: Schematic representation of various DNA compaction levels. Details are described in 
the text. Image adapted from Sinauer Associates, 2001.  
 

1.3 Chromatin composition 

Genome sizes vary greatly among eukaryotic organisms. For example the genome of the 

bakers yeast Saccharomyces cerevisiae consists of ~12.5 million basepairs (bp), whereas the 

whisk fern (Psilotum nudum) has its genomic information stored in 2.5x1011 bp which is 

20.000 times the genome size of S.cerevisiae. Since DNA is a linear molecule, a prime 
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question is how it can be packed in a space-saving way but be concurrently kept flexible 

enough to allow recombination, replication, transcription or repair. Given the human genome 

with more than 6.4 billion basepairs (bp) per diploid cell, some 2 meters of DNA molecule 

have to fit into each cell nucleus. To accomplish this, different levels of DNA compaction 

have evolved. DNA in eukaryotes does not exist as a naked molecule but is organized within 

an array of proteins, predominantly histones, into a structure called chromatin. The basic 

structural unit of chromatin is the nucleosome. 146 bp of DNA are wrapped in 1.75 turns 

around an octamer of histone proteins which consists of two copies each of histones H2A, 

H2B, H3 and H4 (Luger, et al., 1997).  

Histones are small basic proteins of 103 to 230 amino acids and are highly conserved 

throughout the eukaryotic world. A nucleosome is present every 200±40 bp and because of its 

electron microscopic appearance this structure is termed “beads on a string”. However there 

are several higher-order compaction levels. Arrays of nucleosomes are proposed to fold into a 

fiber of 30 nm diameter upon incorporation of the linker histone H1. Chromatin which is not 

actively transcribed exists predominantly in the condensed 30 nm fiber form, whereas actively 

transcribed chromatin is thought to assume the “beads on a string” form. Higher order 

compaction levels include association of loops of the 30 nm fiber to a scaffold of non-histone 

proteins (Paulson and Laemmli, 1977). Folding of this scaffold into a helix and further 

packing of this helical structure produces the highly condensed structure characteristic of 

metaphase chromosomes (Fig. 1.1). Therefore accessibility of the genetic information is 

necessarily connected to mechanisms that either work on chromatin or are influenced by 

chromatin. Two main enzymatic activities can be distinguished that regulate chromatin 

access: chromatin remodeling complexes that help to move or remove nucleosomes, and 

chromatin modifying complexes that modify histones. 

 

1.4 Mechanisms that alter chromatin properties  

1.4.1 Chromatin remodeling 

Biochemical and genetic experiments showed that nucleosomes are repressive for 

transcription (Laybourn and Kadonaga, 1991; Workman, et al., 1991). Since promoter 

elements and other transcriptional enhancers on the DNA level can be occupied by 

 6



 
                                                                                                                                    Introduction 
 
 
nucleosomes, several mechanisms have evolved that provide access to DNA without 

biochemically modifying structural components of chromatin. Factors involved are called 

chromatin remodeling factors and are defined by their ability to either move or remove 

nucleosomes along a particular DNA sequence or to create a state of altered histone-DNA 

interaction (reviewed in (Becker and Horz, 2002) and (Sif, 2004)). Principally, all chromatin 

remodeling complexes use the energy of ATP hydrolysis to loosen the contact between DNA 

and histones. The first identified chromatin remodeler was the SWI/SNF complex of 

S.cerevisiae (Hirschhorn, et al., 1992). Nucleosome displacement by Swi2/Snf2 occurs by 

sliding or tracking nucleosomes along the DNA (Whitehouse, et al., 1999). How this is 

carried out from a mechanistic point of view is not entirely clear but the RSC complex 

(remodels the structure of chromatin), a close Swi2/Snf2 homologue, is thought to break 

DNA–histone contacts, generating a ‘wave of DNA’ that propagates around the nucleosome 

(Saha, et al., 2002). Besides their roles in transcriptional control there is strong evidence that 

they are also involved in replication, repair, and recombination and can interact with histone 

acetyltransferases, histone deacetylases or histone methyltransferases that biochemically 

modify chromatin.  

1.4.2 Chromatin modifications 

Chromatin modifications can occur either on DNA or on histones in their chromosomal 

context. Some of these modifications are associated with transcriptional activation whereas 

others lead to transcriptional repression. The fact that some modifications are reversible 

creates an additional layer of flexibility beyond the DNA sequence level. DNA methylation 

directly acts on DNA and is widely conserved among eukaryotes. Methylation of cytosine 

residues within CpG islands on gene promoters is a primary epigenetic event that acts to 

suppress gene expression (reviewed in (Bird, 2002)). DNA methylation accounts for the 

specific repression of genes in differentiated cells but also for the stable silencing of 

transposable elements (Lippman, et al., 2004).  

Other chromatin modifying events target histones and include acetylation, methylation, 

phosphorylation, ubiquitination, sumoylation and ADP-ribosylation. Histones consist of a 

globular core domain and N- or C-terminal tails. When assembled into nucleosomes, the 

histone tails protrude unordered from the nucleosome, exposing 20-35 residues (Luger, et al., 

1997). Histone tails as well as the histone core are subject to a large number of 
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posttranslational modifications. It seems likely that nearly every histone residue that is 

accessible to solvent may be a target for posttranslational modification.  

A universal epigenetic mark in eukaryotic genomes is the acetylation of lysine residues at the 

ε-NH3
+ position of the side chain. It is carried out by protein complexes called histone 

acetyltransferases (HATs). HATs can either act genomewide or on a local basis which is also 

dependent on factors that recruit these enzymes to the histones.   

Histone acetylation is a reversible process and accordingly histone deacetylases (HDACs) 

have been isolated. Like histone acetyltransferases, HDACs have different specificities and 

can act either globally or locally. For example in S.cerevisiae Rpd3 deacetylates histones on a 

genomewide basis (Vogelauer, et al., 2000) thereby deacetylating lysine residues of H3 and 

H4 N-termini, whereas Sir2 is only found at transcriptionally silent regions and specifically 

removes acetylgroups of H4 K16, thus antagonizing the HAT Sas2 which acetylates the same 

residue (Suka, et al., 2002). Homologues of Sir2, the Hst proteins Hst1-4 (homologue of Sir 

two) have been identified and described (Brachmann, et al., 1995; Derbyshire, et al., 1996). 

Hst1 and Hst2 are active histone deacetylases and share substrate specificity with Sir2 

(Sutton, et al., 2001). Interestingly, overexpression of Hst1 can partially restore HMRa 

silencing in a sir2∆  strain (Brachmann, et al., 1995). Hst1 is even able to totally restore 

HMRa silencing in this strain background when targeted to HMR-E (Rusche and Rine, 2001; 

Sutton, et al., 2001). So far, wild-type Hst1 has been found to act in transcriptional repression 

of meiotic genes during mitosis (this will be discussed in more detail in chapter 1.8.2). 

Generally, hyperacetylated histones are associated with transcriptionally active chromatin 

whereas hypoacetylated histones correlate with heterochromatic regions. The process of 

acetylation and deacetylation is highly dynamic and some of these modifying complexes 

antagonize each other in a steady state equilibrium. For instance Sir2 acts at telomeric 

histones, whereas Sas2 targets them outside the telomeric region. Disruption of the Sir2/Sas2 

equilibrium leads to either spreading of K16 deacetylation telomere-distal or spreading of 

K16 acetylation telomere-proximal (Kimura, et al., 2002; Suka, et al., 2002).  

Histone acetylation may also affect DNA replication since the human MYST family HAT 

HBO1 interacts with the replication licencing factor Mcm2 (Burke, et al., 2001) and with 

human Orc1 (Iizuka and Stillman, 1999). Likewise, histone deacetylation has been implicated 

in negative regulation of replication. For example, in yeast the deletion of the HDAC Rpd3 

leads to early activation of late origins (Aparicio, et al., 2004; Vogelauer, et al., 2002). Also, 
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deletion of the heterochromatin associated HDAC Sir2 can positively influence the activity of 

a subset of replication origins (Pappas, et al., 2004).  

Another important histone modification is histone methylation which can occur both on the 

tails and the core of the protein. Lysine and arginine residues are targets of histone methyl 

transferases (HMT) and a variety of these modification have been implicated in transcription 

control. For example methylation of K4 and K36 at histone H3 is associated with 

transcriptional activity, whereas methylation of K9 at histone H3 is involved in the formation 

of stable repressive heterochromatin (Peters, et al., 2001). Notably the ε-NH3
+ group of lysine 

can be either mono-, di- or trimethylated, adding an additional layer of complexity to control 

processes. Histone methylation is also reversible (Cuthbert, et al., 2004; Shi, et al., 2004; 

Wang, et al., 2004) and therefore similar dynamics in this type of modification are expected 

as with histone acetylation.  

Interestingly histone modifications do not occur independently but can influence each other. 

Modification of one specific amino acid residue can induce or inhibit other histone 

modifications either in the immediate vicinity or on neighboring histones (Lo, et al., 2001; 

Ng, et al., 2002). In addition, other events like chromatin remodeling are controlled by 

modifications on histones. For example the activity of Chd1, part of the SAGA and SLIK 

chromatin remodeling complexes, is dependent on methylation of K4 at histone H3 (Pray-

Grant, et al., 2005). The growing number of histone modifications that influence important 

cellular processes has lead to the proposal of a “histone code”, which may have universal 

regulative function (Jenuwein and Allis, 2001).  

 

1.5 Silencing in Saccharomyces cerevisiae 

The yeast Saccharomyces cerevisiae has been one of the prime model organisms to study 

heterochromatin for many years. Heterochromatic regions are found in three domains of the 

yeast genome consisting of the two silent mating type loci HMLα and HMRa, the telomeres 

and the rRNA encoding DNA (rDNA). These domains have many features in common with 

heterochromatin of higher organisms as seen in position effect variegation in Drosophila or X 

chromosome inactivation in humans. In this respect silenced areas of the yeast genome are 

replicated late in S-phase, contain hypoacetylated nucleosomes and are generally restrictive to 

DNA modifying enzymes. Also numerous proteins involved in heterochromatin formation of 
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yeast have homologues in higher eukaryotes that are involved in the same processes. 

Silencing in yeast has a function in regulating the expression of genes and moreover, it 

protects repetitive sequences as found at the telomeres and the rDNA locus from homologous 

recombination. While the involvement of the Sir2 protein in the process is common to all 

three silenced regions, the mechanisms of recruitment are different.  

1.5.1 Silencing at the HM loci 

The HM loci are part of the mating type determination system of S.cerevisiae. Yeast cells can 

either assume the a or the α mating type and only haploids of different mating types are able 

to mate and form diploids. The mating type is determined by alternative alleles of a single 

locus located close to the center of chromosome III called the mating type locus (MAT) (Fig. 

1.2A). The MATα allele determines cells of the α mating type and the MATa allele gives rise 

to cells of the a mating type. Both of these alleles contain genes for regulatory proteins that 

control the expression of factors which specify the functional differences between the two cell 

types (reviewed in (Herskowitz, et al., 1992)). In naturally occuring S.cerevisiae populations 

individual cells can interconvert their mating type from a to α or vice versa as frequently as 

once per generation in a gene conversion event catalyzed by the protein HO endonuclease. In 

laboratory strains, this conversion is abolished due to deletion of this endonuclease. Two 

additional copies of mating type information, the cryptic mating type loci, serve as donors 

during the HO endonuclease mating type conversion and are located on the same 

chromosome close to the telomeres (Fig. 1.2A). Situated left of the centromere is HML 

(homothallic mating left) that carries α mating type information, while HMR (homothallic 

mating right) is located to the right of the centromere and contains a mating type information. 

Since simultaneous expression of opposite mating type factors is a cellular signal for diploidy 

and thus sterility, both HM loci are transcriptionally silenced and embedded in a 

heterochromatic region.  

A number of trans-acting proteins as well as cis-acting regulatory DNA sequences called 

silencers that flank the HM loci are responsible for heterochromatin formation. In deletion 

experiments on HMRa, loss of the upstream silencer lead to complete derepression of HMRa, 

whereas loss of the downstream silencer had no apparent effect on silencing but sensitized it  

for additional mutations. Therefore, the former was termed E for essential and the latter I for 

important (Brand, et al., 1985) (Fig. 1.2A). In contrast, either the E- or the I-silencer at HMLα 
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are able to achieve silencing in the absence of the other (Mahoney and Broach, 1989). 

Silencers are about 150bp in length and contain protein binding sites for the proteins Rap1 

(repressor-activator protein 1), Abf1 (autonomous replicative sequence (ARS) binding factor 

1) and ORC (origin recognition complex). While Rap1 and Abf1 binding site occurrence and 

composition is variable, ORC binding sites are present at each silencer (Fig. 1.2A). 

Interestingly, each of these proteins has distinct roles in the cell elsewhere, Rap1 and Abf1 

being general transcription factors (Planta, et al., 1995) and ORC being a protein complex 

important for replication initiation (reviewed in (Bell and Dutta, 2002)). At the silencers their 

function is to serve as anchor sites for the superordinate Sir-family proteins which ultimately 

create heterochromatin across the region.  

 

 
 

Fig. 1.2: Schematic representation of mating-type loci and silencers 
(A) Localization of the MAT locus and the silenced HM loci on chromosome III. Each of the HM 
loci is flanked by one E and one I silencer which is composed of binding sites for ORC, Rap1 and 
Abf1. (B) Nucleation of heterochromatin at HML-E and HMR-E. Sir-proteins bind the anchor 
proteins at the silencer and spread across the region thereby creating heterochromatin.  
 

The composition of binding sites within the silencers has been well studied in the past years. 

However, a sequence of approximately 100bp termed the D element in close vicinity to the 

Rap1 and ORC binding site was identified at the HML-E silencer, but has not been 

molecularly characterized (Mahoney, et al., 1991) (Fig. 1.2A). Natural silencers are redundant 

in function and therefore, deletion of any one of the binding sites still allows repression, 

whereas deletion of any two of these sites abolishes silencing (Mahoney and Broach, 1989). 
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At HML-E the D element showed the same redundancy upon deletion with simultaneous 

deletion of the Rap1 or the ORC binding site in the absence of HML-I (Mahoney, et al., 

1991). Therefore a binding site for another, yet unidentified silencing protein might be 

contained within the D element of HML-E. The identification of this factor was the goal of 

this thesis. 

One interesting issue is how the binding sites for three factors with independent roles in the 

cell can create a silencer element. The observation of a redundant function within silencers 

lead to the current view that while each of these proteins has some affinity for one or more Sir 

proteins only the close juxtapostion of two or three of these factors can create a sufficiently 

high local concentration of Sir proteins to sustain silencing. Consistent with this model, arrays 

of multiple Rap1 binding sites recruit Sir proteins to telomeres (Cockell, et al., 1995; Hecht, 

et al., 1996) and can create artificial silencers (Stavenhagen and Zakian, 1994).  

The Sir proteins are the major effectors of heterochromatin formation. Sir3 and Sir4 (and to a 

limited extent Sir1) consitute structural components of heterochromatin while Sir2 contributes 

to the process via its activity as an NAD+ (nicotin adenine dinucleotide) dependent histone 

deacetylase. Sir2 targets and deacetylates K9 and 14 of H3 and K16 of H4 in vitro (Imai, et 

al., 2000) and Sir2, Sir3 and Sir4 are essential for the silencing process (Rine and Herskowitz, 

1987). Sir1 is not essential but aids in the establishment of silenced regions in that it acts as a 

bridging factor between ORC and Sir4 (Triolo and Sternglanz, 1996). The establishment of a 

silenced region is thought to occur in a stepwise process of Sir protein polymerization across 

the region (Hoppe, et al., 2002) (Fig. 1.2B). The anchor proteins Rap1, Abf1 and ORC are 

bound to the silencers and assemble the nucleation sites. Sir2 and Sir4 form heterodimers and 

bind to them via interaction of Sir4 with Sir1 and Rap1. Sir3 can bind the silencers 

independently via interactions with Rap1 and Sir4. Sir2 which is now localized to the 

immediate vicinity of nucleosomes starts to deacetylate lysine residues at the tails of histones 

H3 and H4. Exposure of unacetylated histone tails leads to binding of Sir3 and Sir4 thus 

recruiting more Sir2/Sir4 complex to this locus (Rusche, et al., 2002). These processes of 

ongoing deacetylation and polymerization are completed when the Sir proteins emanating 

from both silencers meet. Although important for the establishment of silenced HM loci the 

role of the Abf1 binding sites at any of the HM silencers except HML-E is not clear since so 

far Abf1 was not found to interact with any of the other proteins implicated in silencing. 

However, Abf1 has the ability to alter chromatin organization (Venditti, et al., 1994) and 
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could therefore aid in silencing by allowing easier loading of other silencing proteins 

(Miyake, et al., 2002). 

Heterochromatin nucleating from the silencers generally spreads to both sides across the 

region. To limit it to the designated areas, boundary elements have evolved that block this 

spreading. For example actively transcribed genes can constitute such a barrier (Bi, 2002; 

Donze, et al., 1999) since mutations in the respective promoter region or in polymerase 

factors abolish this barrier function. This could be due to parts of a stably bound polymerase 

complex forming a physical obstacle to the spreading of heterochromatin. Also the enzymatic 

activity of HATs or chromatin remodeling factors at the promoter can counteract the 

propagation of histone deacetylation (Oki, et al., 2004; Suka, et al., 2002). However, 

spreading of heterochromatin can also be unidirectional as it is the case at the HML-I silencer 

which causes heterochromatin to spread only in direction of the α-genes (Bi, et al., 1999).  

Interestingly all silencers can also confer autonomous replication to plasmids but only HMR-E 

and -I are true chromosomal origins (Dubey, et al., 1991). This discrepancy is explained by 

the fact that the HML silencers, although capable of initiating replication, are passively 

replicated by an early initiating replication origin in the vicinity (Sharma, et al., 2001). ORC 

and to a lesser extent Abf1 and Rap1 binding are responsible for the bimodular ability of the 

silencers to nucleate silencing and to initiate replication (Fox, et al., 1995).  

1.5.2 Silencing at the telomeres and the rDNA locus 

Due to the fact that telomeres constitute the extreme end of the chromosome and contain a 

single stranded DNA overhang, they are subject to degradation or fusion with telomeres of 

other chromosomes. However, this is prevented by the creation of heterochromatin in these 

domains. The mechanistics of heterochromatin formation are similar to those of the HM loci.  

The telomere ends consist of tandem C1-3A/TG1-3 repeats that are free of nucleosomes and are 

bound by Rap1 at 10-20 copies per telomere (Gilson, et al., 1993; Wright, et al., 1992). Here, 

it is the multitude of Rap1 copies that constitutes anchor sites for the recruitment of the 

Sir2/Sir4 heterodimer and Sir3, which ultimately leads to the same concerted event of histone 

deacetylation and Sir complex spreading as described for the HM loci (Luo, et al., 2002). 

Thereby heterochromatin can spread up to 3kb inwards and silence reporter genes inserted at 

telomere proximal locations. Telomeric C1-3A/TG1-3 repeats are also able to silence reporter 

genes when placed elsewhere in the genome although a higher repeat copy number is 
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necessary (Stavenhagen and Zakian, 1994). This is due to the fact that natural telomeres 

contain an additional silencing anchor, an ORC and an Abf1 binding site within a sequence of 

~500bp called the CoreX. This region is located subtelomerically as part of a larger X repeat 

element which is present at most telomeres. Silencing at natural telomeres is discontinuous 

and is enhanced around subtelomeric CoreX elements. Since Rap1 and ORC are in close 

proximity at the HM silencers to establish stable silencing, a current hypothesis for telomeric 

silencing is that Rap1-Sir clusters contact the ORC-Sir complex at CoreX by forming a 

foldback loop structure (Strahl-Bolsinger, et al., 1997). 

Silencing at rDNA is different from that of telomeres and the HM loci. The S.cerevisiae locus 

coding for ribosomal RNA (rDNA locus) consists of a 9.1kb sequence that is repeated 100 to 

200 times (Petes and Botstein, 1977). Each rDNA repeat encodes 35S rDNA, which is the 

precursor to the 25S, 18S, and 5.8S rRNA and is transcribed by polymerase I, and the 5S 

rRNA which is transcribed by polymerase III. These two genes are separated by the 

nontranscribed spacers NTS1 and NTS2. Only a fraction of the rDNA genes are transcribed at 

a given time and the majority remains silenced by the action of Sir2 (Smith and Boeke, 1997). 

Sir2 in this context does not act via Sir4 in but is part of the nucleolar RENT (regulator of 

nucleolar silencing and telophase) complex (Straight, et al., 1999). RENT also contains Net1, 

which is required for association of Sir2 with the rDNA, and Cdc14, a phosphatase required 

for mitotic exit. However the mechanistic aspects of rDNA silencing are still unclear.  

 

 

1.6 Replication initiation 

In S.cerevisiae and Drosophila a shared feature between replication initiation and some types 

of heterochromatin formation is the fact that both require ORC binding at their nucleation 

sites (Foss, et al., 1993; Huang, et al., 1998; Pak, et al., 1997). Moreover, ORC is essential for 

replication initiation in all eukaryotes studied to date (Bell and Dutta, 2002). This chapter 

gives a general overview on this topic with a particular interest in origins of replication as 

nucleation sites for replication. The first part addresses the composition of replication origins 

in yeast and metazoa (chapter 1.6.1) while the second part aims to outline the events that 

occur at the origin during the time of replication initiation (chapter 1.6.2).  
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1.6.1 Origins of replication 

Origins of replication as starting points for DNA replication are scattered across the genome 

in eukaryotes. The origin number varies from about 300-400 in Saccharomyces cerevisiae 

(Raghuraman, et al., 2001; Wyrick, et al., 2001) to an estimated ten thousand in humans 

(Gilbert, 2001). While in S. cerevisiae a DNA consensus sequence (the ORC binding site) 

specifies origins of replication, to date no specific DNA sequence could be assigned to 

general origin function in any of the other eukaryotes tested.  

An origin of budding yeast spans a sequence of 150 to 200 base pairs and is able to support 

autonomous replication of plasmids. These autonomously replicating sequences (ARS) do not 

share obvious homology to each other except for an essential consensus sequence of 11 

basepairs (WTTTAYRTTTW). This sequence called the A element or the ARS consensus 

sequence (ACS) is essential but not sufficient for full origin function (Celniker, et al., 1984). 

Notably, an expanded 17 basepair ACS (EACS: WWWWTTTAYRTTTWGTT) has been 

described that more effectively predicts in vivo ARS elements (Theis and Newlon, 1997). The 

A element is bound by the origin recognition complex (ORC) in a sequence specific manner 

(Diffley and Cocker, 1992). Flanking the A element there are one or more B elements which 

are important but not essential for ARS activity (Marahrens and Stillman, 1992). ARS1, 

possibly the best studied yeast origin contains three B elements (Marahrens and Stillman, 

1992) (Fig. 1.3). The B1 element is closest to the ACS and cooperates in ORC binding (Lee 

and Bell, 1997). B2 is required for loading of the MCM (minichromosome maintenance) 

complex (Wilmes and Bell, 2002; Zou and Stillman, 2000), and B3 is bound by Abf1 (Diffley 

and Stillman, 1988). The B2 element often overlaps with DNA unwinding elements (DUEs) 

that are presumably melted during replication initiation (Matsumoto and Ishimi, 1994). Abf1 

is an accessory factor for origin function at a subset of chromosomal replication origins 

(Eisenberg, et al., 1988; Rhode, et al., 1992). Abf1 sites are found in several origins, and in 

three of the four HM silencers (Kimmerly, et al., 1988). 

Analysis of other yeast ARS elements suggest that many origins may share at least the 

conserved A and B1 elements that form the ORC binding site (Fig. 1.3). Apart from that, 

additional B elements are very variable in size and location. Also highly individual sequence 

elements have been found like the REN1501 enhancer, an ARS element present at ARS1501 

which is important for full origin function (Raychaudhuri, et al., 1997). 
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Fig. 1.3: Comparison of ARS elements in S.cerevisiae 
ARS 1 as described by (Marahrens and Stillman, 1992); ARS305 (Huang and Kowalski, 1996), 
the B4 element is of unknown function; ARS1501 (Raychaudhuri, et al., 1997); HMR-E 
(ARS317) an inefficient ARS (Rivier and Rine, 1992); HML-E (ARS301) (Mahoney, et al., 1991). 
Asterisk: ARS301 does not initiate replication in its chromosomal context.  
 

In budding yeast prediction of ARS sites on a DNA sequence level is difficult since the 

occurrence of an ACS alone is not sufficient for ARS activity and B elements do not share 

sequence homology. There are more than 10 000 matches of the ACS in the yeast genome, 

but only 300-400 among them serve as an ARS site (Breier, et al., 2004). One posibility to 

identify new origins is to test the origin activity of an ARS containing DNA sequence in 

individual experiments (Fangman and Brewer, 1991; Stinchcomb, et al., 1979). However, the 

majority of origins has been identified based on prediction methods that addressed additional 

hallmarks for origin activity. One large scale experiment searched for simultaneous in vivo 

presence of ORC and the MCM complex because these two complexes are present on active 

origins (see chapter 1.6.2) (Wyrick, et al., 2001). In another study the genomewide replication 

timing profile of S.cerevisiae was created using density transfer experiments. Regions that 

doubled their DNA sequences earlier than the surrounding area were presumed to be in vivo 

origins of replication (Raghuraman, et al., 2001). Although these two approaches greatly 

advanced the knowledge of origin location, more work is necessary to clarify why particular 

ACS containing sequences are origins and others are not. A number of recent studies suggest 

that in addition to an ARS sequence many more factors affect the activity of an origin (see 

also chapter 1.7). 
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In other eukaryotes ARS sequences are less well defined. While origins in fission yeast are 

loosely determined by their high A-T content (Clyne and Kelly, 1995; Okuno, et al., 1999), 

metazoan origins cannot be identified on DNA sequence level. Instead of that in metazoans 

sites of replication initiation can appear both in small defined sequence areas (Toledo, et al., 

1998) or large initiation zones of 10 to 50kb (Dijkwel, et al., 2002). Still the question remains 

why the origins in more complex eukaryotes are not specified by a certain sequence element. 

An explanation may come from the fact that origins are generally distributed in non-

transcribed intergenic regions, most probably to avoid undesired interference of the 

replication and the transcription machinery. In budding yeast with its heavily transcribed 

genome there would be a selective pressure for origins to locate to nontranscribed regions. An 

advantage to target replication initiation to those regions would therefore be the evolution of 

specific DNA sequences as markers for nucleation sites of replication (Brewer, 1994). 

Metazoans with significantly larger genomes but unproportionally more untranscribed regions 

would not need such a specific sequence since a stochastic distribution of nucleation sites 

would still lead to sufficient origin spacing. This hyphothesis can also explain the findings of 

distinct initiation loci and initiation zones in metazoans. Most solitary origin sites have been 

identified within loci containing multiple genes (Abdurashidova, et al., 2000; Aladjem, et al., 

1998; Toledo, et al., 1998). By contrast, broad initiation zones consisting of multiple 

inefficient origins are observed at loci where there are large intergenic regions (Dijkwel, et al., 

2002; Ina, et al., 2001; Little, et al., 1993).  

1.6.2 Events during replication initiation 

Principally every origin has the potential to initiate replication once per cell cycle. In vivo 

only a subset of origins initiates per S-phase. This is because some origins can assemble 

proteins important for initiation faster than others. They are called early origins and 

replication forks emanating from them migrate across sites containing later origins before 

these have a chance to fire. The creation of an active origin can be divided into four different 

phases (Fig. 1.4): 

The first is the binding of ORC to the ACS within an origin (Fig. 1.4 (1)) (Bell and Stillman, 

1992). In S.cerevisiae ORC remains bound to the origins throughout the cell cycle probably to 

mark them as sites of replication initiation (Aparicio, et al., 1997; Diffley, et al., 1994).  
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Fig. 1.4: Different phases of replication initiation. Details are described in the text.  

 

In the second phase, ORC promotes assembly of a multiprotein complex called the pre-

replicative complex (pre-RC) at origins (Fig. 1.2, (2)) (Diffley, et al., 1994). Pre-RC 

formation starts during G1 phase and requires minimally ORC, Cdc6, Cdt1 and the MCM 

(Mcm2-7) complex (Bell and Dutta, 2002). The pre-RCs license origins to initiate replication 

once per cell cycle and disassemble after the origin has started replicating in S phase. During 

pre-RC formation Cdc6 directly interacts with ORC and is required together with Cdt1 to 

recruit the MCM complex, a putative DNA helicase (Bell and Dutta, 2002; Lei and Tye, 

2001).  

In the third phase, additional proteins join the pre-RC immediately prior to replication 

initiation. These include Cdc45, the recently described four subunit GINS complex and the 

replicative DNA polymerases (Fig. 1.2, (3)) (Takayama, et al., 2003). Cyclin-dependent 

kinase (CDK) activity is required for Cdc45 to associate with the pre-RC (Zou, et al., 1997), 

and the association of Cdc45 with origins coincides with their time of activation  - late origins 

recruit Cdc45 later in S-phae than earlier origins (Aparicio, et al., 1999). The Cdc7-Dbf4 

kinase also associates with chromatin just prior to S-phase and interacts with ORC (Duncker, 

et al., 2002; Weinreich and Stillman, 1999). The following activation of the putative MCM 
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helicase and the Polα-primase involves at least 20 polypeptides that must assembly 

coordinately within the chromatin context of hundreds of origins throughout the S.cerevisiae 

genome.  

The fourth phase, origin initiation, signals the beginning of S-phase, and involves localized 

DNA unwinding at the origin and the start of DNA polymerization. The mechanism of origin 

unwinding and the initiation of DNA synthesis are poorly understood in eukaryotes and might 

occur simultaneously with the association of some of the factors outlined in phase three. As 

the replication starts, Cdc45 and MCM become associated with replication forks. To avoid 

that origins initiate replication repeatedly within one S-phase, ORC, the MCM complex and 

Cdc6 are prevented from re-establihing pre-RCs. This is achieved by the activity of CDK, 

which is upregulated during S and G2/M phase (Drury, et al., 2000; Labib, et al., 1999; 

Nguyen, et al., 2001). Therefore CDK has the dual role to activate the pre-RC by promoting 

the binding of Cdc45 and simultaneously prevent new pre-RC assembly until the next G1 

phase.  

In summary, replication initiation at a given origin is a complex process requiring multiple 

proteins binding in several steps. It is conceivable that each individual step could be enhanced 

or inhibited by particular chromatin environments.  

 

1.7 Regulation of replication initiation 

There are many more factors besides origin structure that determine origin activity. Therefore 

the efficiency and timing of replication initiation for a given origin is always a sum of these 

factors that influence each other. The following chapter gives an overview on events that have 

been implicated in the regulation of replication initiation: 

 

Chromosome localization  

In yeast a number of observations suggest that the localization of an origin within the 

chromosome is important for its activity. For example placing a large 15kb fragment 

containing the late initiating ARS501 to a plasmid renders it to an early active origin 

(Ferguson, et al., 1991). Conversely, placing the effective and early initiating origin ARS1 

near ARS501 on the chromosome causes ARS1 to fire as late as ARS501. Interestingly, 

ARS501 is located 27kb away from the right telomere of chromosome V, suggesting that 
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telomeres can exert a negative position effect on origin activity. In fact, whole genome 

replication timing experiments revealed that origins located proximal to telomeres (~40kb or 

less) are often activated later in S-phase (Raghuraman, et al., 2001).  

However, not only the position relative to a telomere but also to other chromosomal regions 

determine the time of origin activity. For example a cluster of late initiating origins at 

chromosome XIV (ARS1411-ARS1414) is located more than 150kb away from telomeres. 

ARS1412 and ARS1413 sites function as early origins on plasmids but a considerable amount 

of surrounding DNA is necessary to recapitulate the late origin activation time (Friedman, et 

al., 1996). This indicates that large chromosomal areas distinct from the ARS sites are 

required to determine different activation times.  

 

Chromatin structure 

The telomere binding Ku protein complex (Ku) was shown to control the late activation of 

ARS501 and other telomere proximal origins (Cosgrove, et al., 2002). Ku is required for the 

telomere position effect (TPE) in S.cerevisiae (Mishra and Shore, 1999) but the effect of Ku 

on ARS501 firing is independent of Sir proteins (Cosgrove, et al., 2002). Thus, a specialized 

chromatin domain established by Ku might be responsible for modulating the timing of 

origins over a long distance. One role of Ku is to tether telomeres to the nuclear envelope 

(Laroche, et al., 1998) and perinuclear position appears to correlate with late replication in 

mammalian cells (Heun, et al., 2001). This lead to the theory that Ku influences the activity of 

origins by locating them in a nuclear compartment containing chromatin modifying factors 

that can establish a late-activation domain (Gilbert, 2001). 

The Sir protein complex also affects origin activity by establishing a specialized chromatin 

structure. The telomeric X elements contain an inactive ARS and serve along with telomeric 

repeats as nucleation sites for Sir dependent heterochromatin formation at the telomeres (see 

chapter 1.5.2). Deletion of Sir3 revealed that telomeric sequence of chromosome V replicates 

earlier because of earlier initiation of a nearby ARS and activation of the inactive X element 

ARS (Stevenson and Gottschling, 1999).  

However the regulation of origin activity by the Sir proteins appears not only to be restricted 

to regions that are repressed by Sir-mediated heterochromatin. A recent study found that 

deletion of the HDAC Sir2 rescued the general replication defect of a cdc6-4 mutation 

(Pappas, et al., 2004). This could be caused by a loss of deacetylase activity around certain 
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origins. Interestingly, direct targeting of the HAT Gcn5 to the late initiating origin ARS1412 

could significantly advance its timing of initiation (Vogelauer, et al., 2002).  

Also deletion of the Rpd3, a global histone deacetylase, advanced replication of the entire 

genome (Vogelauer, et al., 2002). This was caused by a preferential advancement of late 

firing origins that also showed an increased acetylation status. It will be interesting to learn 

whether acetylation of origin regions coincides generally with a facilitated assembly of active 

origins.  

 

Nucleosome positioning 

While the influence of nucleosome movement and positioning in transcriptional regulation is 

well established, a picture is emerging that these events are also involved in the regulation of 

origin activity (Lipford and Bell, 2001; Simpson, 1990; Thoma, et al., 1984). At ARS1 the 

binding of Abf1 and ORC results in a nucleosome free zone across the origin and mutations in 

the Abf1 binding site can lead to nucleosome repositioning and reduced origin function 

(Venditti, et al., 1994). Similarly, forced movement of ARS1 into the central core of a 

nucleosome significantly reduced its origin activity (Simpson, 1990). Interestingly, if a 

nucleosome that normally constitutes one boundary of ARS1 is missing, origin function of 

ARS1 is also impaired. However, not the ability of ORC but of the MCM complex (Mcm2-7) 

to bind the origin is compromised. This points towards the influence of nucleosome 

positioning in events like late pre-RC formation or replication elongation (Lipford and Bell, 

2001). 

Origin activity is not only dependent on the close binding of nucleosome positioning factors 

but can also be regulated by factors binding to DNA within a distance of several hundred 

basepaires. For example the presence of multiple binding sites for the protein Mcm1 in a  

domain up to 600bp upstream of the telomeric ARS120 was shown to be important for full 

origin activity (Chang, et al., 2004). Since the binding of Mcm1 induces a 66° bend in the 

DNA (Acton, et al., 1997; West and Sharrocks, 1999) a theory is that multiple Mcm1 

molecules in this domain induce a loop-like tertiary structure that could help to exclude 

nucleosomes from the area thus providing an environment for pre-RC assembly. Alternatively 

this tertiary complex could limit the region where ORC can bind to enhance its specificity for 

the ACS. Other DNA binding factors also regulate origin activity. For example stability of 
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plasmids carrying the ARS HMR-E as sole origin is compromised if a binding site for Rap1 

within HMR-E is mutated (Kimmerly, et al., 1988).  

Given the importance of the correct position of a nucleosome, protein complexes that can 

move or remove nucleosomes might also play a role in origin activity. Several chromatin 

remodelling factors like the chromatin accessibility complex (CHRAC) in Drosophila or 

SWI/SNF of S.cerevisiae and humans have been implicated in origin activity (Alexiadis, et 

al., 1998; Flanagan and Peterson, 1999). For example the human SWI/SNF complex interacts 

with the human papilloma virus E1 replication protein and is involved in efficient replication 

of papilloma virus DNA (Lee, et al., 1999). Also mutations in the budding yeast SWI/SNF 

remodeling complex compromises plasmid stability of plasmids carrying some origins 

(Flanagan and Peterson, 1999). Interestingly, while ARS1 activity is unaffected in this 

SWI/SNF mutant, a deletion of its Abf1 binding site renders this ARS1 dependent on 

SWI/SNF suggesting that Abf1 and SWI/SNF have redundant roles in the modulation of 

origin activity.  

 

1.8 Proteins investigated in this work 

The following two chapters provide information on the proteins Sum1, Hst1 and Rfm1 that 

had been the focus of this study. Since Sum1 is implicated in multiple cellular roles, more 

detailed sub-chapters will individually refer to these roles.  

1.8.1 Sum1 

Sum1 in silencing 

More than a decade before the wild-type function of the protein Sum1 was described, a 

mutant allele of SUM1, SUM1-1 puzzled researchers in the field of transcriptional silencing. 

In a screen for mutant suppressors of a loss of function allele of SIR2, a strong suppressing 

candidate allele was isolated. Since the screen was initially carried out with a SIR2 mutant 

called MAR1-1, the identified allele received the name SUM1 (suppressor of mar) (Klar, et al., 

1985). Silencing at the HM loci can be disrupted or compromised  by mutating or deleting any 

member of the SIR family genes (Fig. 1.5A). Surprisingly the identified mutant allele SUM1-

1 was able to reestablish silencing of both HM loci in any sir mutant (Klar, et al., 1985; 

Laurenson and Rine, 1991). It also suppressed several other mutations that impair HM locus 
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repression like mutations in HHF2, a gene for histone H4 or deletional weakening of the 

HMR-E silencer. Interestingly the ability of SUM1-1 to repress HMLα in sir2∆ was decreased 

by 100fold in comparison to HMRa and SUM1-1 required either HMR-E or -I for full 

suppression of HMRa (Laurenson and Rine, 1991; Sutton, et al., 2001). SUM1-1 was also not 

able to overcome the telomeric derepression effect that occurs in a sir2∆ strain or upon 

introduction of the rap1-17 mutant allele, while wild-type repression of telomeric silencing 

could be slightly improved (Chi and Shore, 1996). 

 

 
 

Fig. 1.5: Sum1-1 can establish silencing at HMRa independently of the Sir-proteins 
(A) Schematic representation of Sir mediated silencing of HMRa. (B) Schematic representation 
of Sir-independent silencing of Sum1-1 via Rfm1 and the HDAC Hst1.  
 

Also notable was the finding that SUM1-1 mutants exhibit reduced viability and a 

significantly increased chromosome loss rate compared to wild-type cells. Cloning of the 

SUM1-1 gene revealed a single missense mutation at codon 974 in the predicted 1062 aa of 

the gene SUM1, which resulted in a threonine-to-isoleucine change and was responsible for 

the dominant SUM1-1 suppressor phenotype (Chi and Shore, 1996). It was later found that 

Sum1-1 as well as Sum1 recruit the Sir2 homologue Hst1 (homologue of Sir two) via a 

bridging factor Rfm1 (repression factor of MSEs) (McCord, et al., 2003; Rusche and Rine, 

2001; Sutton, et al., 2001; Xie, et al., 1999). In addition Sum1-1 considerably enhanced an 

interaction with ORC at the silencer and therefore recruited the HDAC Hst1 to the silencer. It 

was hypothezised that the strong ORC-Sum1-1 interaction enabled Hst1 to deacetylate 
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histone tails at HMRa analogous to Sir2. Since Hst1 as well as Sum1-1 were not only found at 

the silencer but also across the entire HMRa locus it was assumed that these proteins were 

able to establish an alternative repressive structure that could spread along a chromosome like 

the Sir-protein complex (Rusche and Rine, 2001; Sutton, et al., 2001) (Fig. 1.5B). Interaction 

of Sum1-1 and ORC was probably via the N-terminus of Orc1 since a mutant allele of Orc1 

that misses the 235 N-terminal amino acids eliminated the ability of Sum1-1 to silence the 

HM loci (Rusche and Rine, 2001).  

So far, wild-type Sum1 has not been implicated in silencing since overexpression of SUM1 

did not lead to the SUM1-1 phenotype and this phenotype was decreased if SUM1 was 

coexpressed from plasmids. Therefore it was hypothesized that the SUM1-1 mutation was not 

of increased function (hypermorphic) but rather of new function (neomorphic) (Chi and 

Shore, 1996). Additional investigations revealed that Sum1 was localized to the nucleus and 

was neither essential for normal growth nor transcriptional repression at the telomeres or the 

HM loci. In sum1∆ strains only a very mild derepression effect was observed at HMRa in a 

sensitized assay where the ADE2 gene replaced HMRa and the E silencer was compromised 

by deletion of the ACS or the Abf1 binding site (Chi and Shore, 1996).  

 

Sum1 in gene specific repression and meiosis 

Although the mutant allele SUM1-1 was a repressor of HM silencing defects, the wild-type 

gene product appeared not to be required for silencing. Instead, Sum1 was found to be a 

repressor for a number of middle sporulation specific genes during vegetative growth and in 

the early and late phase of sporulation (Lindgren, et al., 2000; Pak and Segall, 2002; Pak and 

Segall, 2002; Pierce, et al., 2003; Xie, et al., 1999). Sporulation specific genes can broadly be 

divided into early, middle or late categories based on the timing of their expression (Mitchell, 

1994). In this respect middle sporulation specific genes are expressed as cells exit prophase, 

enter the nuclear division and assemble spores. More than 150 genes are induced around that 

time (Chu, et al., 1998). Activation of these genes is carried out by the Ndt80 transcription 

factor that binds to a conserved sequence termed the middle sporulation element (MSE) found 

in many middle sporulation gene promoters (Chu, et al., 1998; Ozsarac, et al., 1997). The 

MSEs of a subset of these genes is also bound by Sum1 during vegetative growth and in the 

early and late stages of meiosis which leads to their repression. This repression is brought 

about through Sum1´s recruitment of the histone deacetylase Hst1 (Xie, et al., 1999). 
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Comparison of sequence requirements for MSE binding revealed very similar but distinct 

consensus sequences for Sum1 (DSYGWCAYWDW) and Ndt80 (VNDNCRCAAW), so 

Ndt80 binding sites can be contained within Sum1 binding sites. Also subtle basepair changes 

within the MSE can alter the individual affinities of Sum1 or Ndt80 to the respective MSE 

site (Pierce, et al., 2003). Notably only a subset of middle sporulation genes was derepressed 

in sum1∆ strains, and some sporulation unrelated genes were affected (Pierce, et al., 2003). 

However, Sum1-repressed middle sporulation genes are further divided into two subclasses: 

one class whose repression is also dependent on Hst1 and Rfm1 and the other which is only 

Sum1 dependent (McCord, et al., 2003). The reason why not all MSE containing genes were 

derepressed in a sum1∆ strain is probably because some Sum1 repressed genes require 

additional activation by the meiosis specific Ndt80 transcription factor while others are not a 

target of Sum1. Also at some genes additional regulatory sequences such as URS1 (upstream 

regulatory sequence 1) are present. URS1 is mitotically bound by the Ume6-Rpd3-Sin3 

repressor complex that prevents expression in a sum1∆ strain (Kadosh and Struhl, 1997; Pak 

and Segall, 2002). This, and the fact that Ndt80 itself contains MSE sites which are partly 

targets of Sum1, points towards a carefully controlled execution programm for meiotic genes 

(Pak and Segall, 2002).  

 

1.8.2 Hst1 and Rfm1 

All eukaryotic species examined to date have multiple homologues of Sir two (HSTs), which 

share a highly conserved globular core domain. In S.cerevisiae the family of HST proteins 

consists of four members HST1 to HST4 (Brachmann, et al., 1995; Derbyshire, et al., 1996). 

Yeast Hst1 is the closest relative to Sir2, showing 63% overall identity and 82% identity in 

the conserved core. Like Sir2 it exhibits NAD+ dependent deacetylase activity on K16 of 

histone H4 (Sutton, et al., 2001). Disruption of HST1 has no phenotype regarding mechanisms 

in which SIR2 has a role, namely, regional silencing of HMLα (Brachmann, et al., 1995) or in 

rDNA recombination (Derbyshire, et al., 1996). However HST1 overexpression can partially 

restore HMRa silencing in a sir2∆ strain (Brachmann, et al., 1995). The other HST members 

have varying silencing phenotypes. For example the cytosolic HST2 which also shows NAD+ 

dependent deacetylase activity improves rDNA silencing but reduces telomeric silencing 

when overexpressed, probably by competing with Sir2 for a limiting ligand (Perrod, et al., 
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2001). HST3 and HST4 double mutants are defective in telomeric silencing and chromosome 

maintenance (Brachmann, et al., 1995).  

Cellular Hst1 occurs in two different complexes: in the SET3 complex (Set3C) and in 

complex with Rfm1 and Sum1 (Pijnappel, et al., 2001; Xie, et al., 1999). Set3C consists of 

Set3, Snt1, YIL112w, Sif2, Cpr1 and two histone deacetylases, Hos2 and Hst1. It acts as a 

meiosis specific repressor for a set of genes that are expressed at the early middle- and middle 

stage of meiosis (Chu, et al., 1998; Pijnappel, et al., 2001). The repressive properties of Set3C 

are dependent on Hos1 and Hst1 but Hst1 is only weakly associated with Set3C (Pijnappel, et 

al., 2001). The second complex is the Hst1-Rfm1-Sum1 complex. As pointed out above, Hst1 

almost exclusively interacts with Sum1 through Rfm1 (McCord, et al., 2003). It represses 

many but not all of the middle sporulation genes that are bound by Sum1 during vegetative 

growth (Xie, et al., 1999). Hst1 is also the enzymatically active component responsible for 

histone deacetylation and silencing at the HM loci in the SUM1-1 mutant (Rusche and Rine, 

2001; Sutton, et al., 2001).   

Interestingly, Hst1 as an NAD+ dependent deacetylase is also involved in biosynthesis and  

maintenance of cellular NAD+ levels. Hst1 has a relatively low affinity to NAD+ and 

represses via Sum1 key factors for the de novo synthesis of NAD+. When NAD+ levels 

decrease, the repressive properties of Hst1 diminish and repression at these genes is abrogated 

so that NAD+ biosynthesis can take place (Bedalov, et al., 2003). By this simple feedback 

loop maintenance of particular cellular NAD+ levels are ensured.  
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1.9 Outline of this thesis 

Silencers flanking the HM loci are among the determinants for the establishment of a 

transcriptionally silent domain across these regions. It has been shown that they consist of a 

set of binding sites for proteins that in turn can recruit the Sir-family proteins to this loci. Sir 

proteins are subsequently able to polymerize across the region, thereby deacetylating histone 

tails and creating heterochromatin. Thus, silencers provide the targeting sites for 

heterochromatin nucleation.  

While the HMR-E silencer had been thoroughly mapped in the past, one sequence element 

within the HML-E silencer escaped molecular characterization. Deletional studies at HML-E 

had discovered a Rap1, an ORC binding site and a sequence of 93bp termed the D element. 

Deletion of each of these sites individually lead to minor derepression of HMLα . Deletion of 

any combination of two of these sites however resulted in total loss of HMLα silencing 

(Mahoney, et al., 1991). This lead to the assumption, that the D element contained a binding 

site for a yet unidentified silencing protein. 

The aim of this study was to identify a protein that binds the D element. Specifically, we 

found a minimal sequence element within the D element that was essential for D function. 

This element spanned 14 basepairs and was termed D2 element. We further identified a 

factor, the transcriptional repressor Sum1, that acted genetically via the D element. Using in 

vitro binding assays we showed that Sum1 bound the D element and that this binding was 

mediated via D2. In vivo assays further confirmed this finding, suggesting that Sum1 is the 

assumed factor that aids in the establishment of silencing at HML-E. 

All silencers can act as origins of replication if replaced on plasmids. We found that Sum1 

was necessary for full origin function of HML-E but not HMR-E and other origins lacking a 

Sum1 binding site. We (and others) found that sum1∆ was synthetically lethal with a mutation 

in the second largest ORC subunit, orc2-1 (Suter, et al., 2004). Since this allele has severely 

reduced genomewide replication initiation efficiency (Foss, et al., 1993), this and the effect of 

Sum1 on origin activity of HML-E pointed towards a general relevance for Sum1 in 

replication initiation. This predicts a larger number of origins that are bound and affected by 

Sum1. Using the datasets of two in vivo binding studies (Lee, et al., 2002; Wyrick, et al., 

2001), we identified a number of origins, that were bound by ORC and Sum1. Examination of 

several of these origins revealed that their activity on plasmids was indeed dependent on 
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SUM1. Furthermore we found for a subset of these origins that full activity in their 

chromosomal context was also dependent on Sum1.  

As Sum1 in its role as transcriptional repressor often acts in concert with the HDAC Hst1, we 

tested the influence of hst1∆ on the activity of the origins of our dataset. Like Sum1, Hst1 

also was able to positively regulate the activity of these origins. Since hst1∆, like Sum1, also 

was synthetically lethal with orc2-1 (Suter, et al., 2004), this pointed towards an important 

function of Sum1 and Hst1 in replication initiation for a subset of origins in the genome.  

In summary, we provide evidence for two novel findings: (1) Sum1 is binding the D2 

sequence within the D element and aids in the establishment of heterochromatin at HML. (2) 

Sum1 and Hst1 are general replication factors that are important for the activity for a subset of 

origins.  
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2 Materials and Methods 
 

2.1 E.coli strains 
 
TOP 10: F- mcrA ∆(mrr-hsdRMS-mcrBC) φ80lacZ∆M15 lacX74 recA1 

araD139 (ara- leu)7697 galU galK rpsL (StrR ) endA1 nupG 
(Invitrogen, chemically competent) 
 

DH5alpha: F- φ80lacZ∆M15 ∆(lacZYA-argF)U169 recA1 endA1 hsdR17(rk
-, mk

+) 
phoA supE44 thi-1 gyrA96 relA1 λ-

(Invitrogen, chemically competent) 
 

BL 21 CodonPlus 
(DE3) RIL: F- ompT hsdS(rB

-mB
-) dcm+  Tetr gal λ(DE3) endA Hte [argU ileY leuW 

Camr]  (Stratagene, chemically competent) 
 

2.2 Growth conditions and media 
E.coli strains used for plasmid amplification were cultured according to standard procedures 
(Sambrook, et al., 1989) at 37°C in Luria-Bertani (LB) medium supplemented with either 100 
µg/ml ampicillin or 50 µg/ml kanamycin. Media for the growth of S.cerevisiae were as 
described previously (Sherman, 1991). YM (yeast minimal) medium was supplemented as 
required with 20 µg/ml for adenine, uracil, tryptophan and histidine or 30 µg/ml leucine and 
lysine. YM + 5-FOA (5-fluoro-orotic acid) medium contained 5-FOA at 1mg/ml and 2% 
glucose. Strains were grown at 30°C unless otherwise noted. 
 

2.3 Yeast strain construction  
Yeast strains 
Yeast strains used in this study are given in Table 2.1. Strains were generated either by direct 
deletion or by chromosomal integration of the sequence area of interest. Alternatively, strains 
were derived from crosses between strains from the laboratory stock. Strain AEY3474 was 
generated by transformation of AEY1558 with AflII digested pAE223. Expression of the 
tagged Orc2 protein was confirmed by Western blotting using anti-polyhistidine antibody 
(Sigma). To generate strain AEY3552, pAE1163 was linearized in HML with Bsu36I and 
AEY2 was transformed to uracil prototrophy. Yeast transformations were according to 
(Klebe, et al., 1983) or by the lithium acetate procedure according to (Ito, et al., 1983).   
 
 
Gene disruption 
Gene knockouts were performed with the kanMX or HIS3MX module according to the 
guidelines for EUROFAN (Wach, et al., 1997; Wach, et al., 1994). Knockout strains were 
verified by PCR analysis. For genomic introduction of HML-E mutated alleles, the two step 
gene replacement technique was used. In brief the entire HMLα locus was replaced by the 
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URA3 gene by transformation of AEY2 with an URA3 PCR-product that carried primer-
mediated homologous sequences of the respective genomic region resulting in the 
hml∆::URA3 strain AEY3387. To construct HML-E mutant strains, HML-E mutant plasmid 
derivates (see chapter 2.5) were digested with ApaLI/HindIII, thus releasing a 4.2kb fragment 
that contained the HMLα locus and adjacent regions including HML-E. AEY3387 was 
transformed with these fragments and plated on 5-FOA plates to select for integrants that had 
lost the URA3 gene at HML. Successful integration was verified via PCR analysis. 
 
Sporulation and dissection of asci 
For crosses, cell material of the two parental strains grown overnight was mixed together in a 
drop of water on YPD plates. After 8 h of incubation at 30°C (23°C for temperature sensitive 
strains) the cells were streaked out on selective medium for diploids.  To induce the formation 
of spores, diploids were plated on sporulation medium (Sherman, 1991) and incubated at 
30°C for 2-3 days or at 23°C for 3-4 days. Next, a loopful of asci was incubated in 10 µl 
zymolyase buffer (1M sorbitol, 0.1 M Na Citrate, 60 mM EDTA, pH 8.0, 5 mg/ml zymolyase 
(Seikagaku Corp.)) for 10 min. at RT. The zymolyase reaction was stopped by adding 250 µl 
H2O. The ascospores were then dissected on YPD plates using a micromanipulator 
(Narishige) connected to a Zeiss Axioscope FS microscope. Plates were incubated at 30°C or 
23°C for 3-5 days. 

2.4 Yeast strains 
Table 2.1: S. cerevisiae strains used in this study 
Strain Genotype Sourcea

AEY2 MATa can1-100 ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 (W303-1A)  
AEY80 MATa nat1∆::LEU2 R.Sternglanz 
AEY264 MATa his4  
AEY265 MATα his4  
AEY279 MATα cdc7-1 ADE2 lys2∆  J.Rine 
AEY373 MATα cdc45-1   
AEY1223 MATa sum1∆::URA3 D.Shore 
AEY1227 MATα nat1∆::LEU2   
AEY3006 MATα sum1∆::URA3  
AEY3008 MATα nat1∆::LEU2 sum1∆::URA3  
AEY3010 MATa nat1∆::LEU2 sum1∆::URA3  
AEY3358 MATa sum1∆::HisMX  
AEY3362 MATa sum1∆::HisMX orc2-1 + pURA3-ORC2  
AEY3368 MATa sum1∆::HisMX orc2-1 + pLEU2-ORC2  
AEY3385 MATa sum1∆::HisMX orc2-1 + pTRP1-SUM1  
AEY3387 hml∆::URA3  
AEY3388 MATa HML-∆I  
AEY3391 MATa HML-E ∆123-216 (∆D) ∆I  
AEY3395 MATa HML-E ACS- ∆I  
AEY3398 MATa HML-E ACS- ∆123-216 (∆D) ∆I  
AEY3401 MATa HML-E ACS- ∆123-132 (∆D1) ∆I  
AEY3404 MATa HML-E ACS- ∆133-142 (∆D2) ∆I  
AEY3407 MATa HML-E ACS- ∆143-154 (∆D3) ∆I  
AEY3410 MATa HML-E ACS- ∆155-160 (∆D4) ∆I  
AEY3412 MATa HML-E ACS- ∆161-166 (∆D5) ∆I  
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AEY3416 MATa HML-E ACS- ∆167-176 (∆D6) ∆I  
AEY3419 MATa HML-E ACS- ∆177-186 (∆D7) ∆I  
AEY3422 MATa HML-E ACS- ∆187-198 (∆D8) ∆I  
AEY3424 MATa HML-E ACS- ∆199-210 (∆D9) ∆I  
AEY3426 MATa HML-E ACS- mutated 133-146 (d2) ∆I  
AEY3430 MATa HML-E ACS- mutated 133-139 (d2a) ∆I  
AEY3434 MATa HML-E ACS- mutated 140-146 (d2b) ∆I  
AEY3476 MATa HML-E ∆D HML-∆I sum1∆::HisMX  
AEY3535 MATa sum1∆::HisMX sir4∆::kanMX  
AEY3536 MATa sir4∆::kanMX  
AEY3542 MATa cdc7-1   
AEY3543 MATa cdc7-1   
AEY3544 MATα cdc7-1 sum1∆::HisMX  
AEY3545 MATa cdc7-1 sum1∆::HisMX  
AEY3546 MATa sum1∆::HisMX  
AEY3548 MATα cdc45-1 sum1∆::HisMX  
AEY3549 MATα cdc45-1 sum1∆::HisMX  
AEY3550 MATα cdc45-1 sum1∆::HisMX  
AEY3551 MATα sum1∆::HisMX  
AEY3552 MATa HML-E ACS- ∆147-216 (∆D3-D9) ∆I :: URA3  
AEY565 MATa ade2-101 his3∆200 leu2-∆1 trp1∆1 ura3-52 lys2-801 

ppr1∆::HIS3  
O.Aparicio 

AEY1558 MATa leu2 trp1 ura3-52 prc1-407 pep4-3 prb1-112 B. Jones 
AEY3474 AEY1558 ORC2-6xHis  
AEY1281 MATa can1-100 ade2-1 his5-2 leu2-3,112 lys1-1 trp5-48 ura3-52 HML-

E∆90-95 (∆RAP) HML-I∆242 
J. Broach 

AEY1282 MATa HML-E∆123-216 (∆D)  J. Broach 
AEY1283 MATa HML-E∆107-216 (∆ACS∆D)  J. Broach 
AEY1313 MATa HML-E∆107-119 (∆ACS)  J. Broach 
AEY3193 AEY1313 sum1∆::kanMX  
AEY3202 AEY1283 sum1∆::kanMX  
AEY3204 AEY1281 sum1∆::kanMX  
AEY3480 AEY1281 rfm1∆::kanMX  
AEY3482 AEY1313 rfm1∆::kanMX  
AEY3484 AEY1283 rfm1∆::kanMX  
AEY3486 AEY1281 hst1∆::kanMX  
AEY3488 AEY1313 hst1∆::kanMX  
AEY3490 AEY1283 hst1∆::kanMX  
AEY600 cdc6-1 MATa leu2-3,112 lys2∆ ura3-1  D.Koshland 
AEY3537 cdc6-1 b  
AEY3538 cdc6-1 b  
AEY3539 cdc6-1 sum1∆::HISMX b   
AEY3540 cdc6-1 sum1∆:: HISMX b   
AEY3541 cdc6-1 sum1∆:: HISMX b   
BY4741 MATa his3∆1 leu2∆0 met15∆0 ura3∆0 Resgen Inc. 
 
aUnless indicated otherwise, strains were constructed during the course of this study or were 
from the laboratory strain collection. Groups of strains between horizontal lines are isogenic. 
bsegregant from AEY600 x AEY3358 
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2.5 Plasmid construction 
E.coli transformation by plasmids was carried out with TOP10 or DH5α strains according to 
the manufacturers´ protocols. Plasmid DNA was extracted from E.coli by the alkaline lysis 
procedure (Sambrook, et al., 1989), and further purification using the Qiagen plasmid kits. 
Plasmids from yeast were isolated using the protocol of Jacques Paysan: 1.5ml yeast culture 
was grown to saturation, pelleted and incubated in 200µl zymolyase solution (1.2M sorbitol, 
0.1M KPO4 pH 7.5, 400µg/ml zymolyase) for 2h at 37°C. Then plasmids were isolated by 
alkaline lysis with the Qiagen plasmid kit continuing with 400µl Buffer 2.  
Plasmids used in this study are listed in Table 2.2. To generate pAE419 and pAE421 a 
SpeI/PstI fragment of HML-E was blunt ended using Klenow enzyme and ligated into the 
SmaI site of pAE370. To generate pAE440 and pAE442 a 140bp EcoRI fragment of HML-E 
was blunt ended and ligated into the SmaI site of pAE370. The directionality of the ligations 
was checked by sequencing. Deletions in the ACS site or the D element of HML-E were 
introduced using the Quick Change site-directed mutagenesis kit from Stratagene (La Jolla, 
CA) generating the plasmids pAE735-736 and pAE739-740. To generate the mutant D-
element versions of HML-E, a 5.17kb HindIII/BamHI fragment of HML-E was ligated into 
the HindIII/BamHI site of pUC18 (pAE1033). The HML-I deletion, the HML-E ACS-site 
mutation and the small deletions across the D-element were introduced using the Quick 
Change site-directed mutagenesis kit from Stratagene. HML-I was deleted in pAE1033 
according to (Mahoney, et al., 1991) to generate pAE1034. Mutation of the HML-E ACS site 
was achieved by replacing the central part of its 11bp sequence by a KpnI restriction site in 
pAE1034 to generate pAE1035. For the D-element-core screen, deletions of 10bp were 
introduced to create the D1- to D3- plasmids. To construct plasmids D4- to D9-, 6 to 12 
basepairs were replaced by a SacII restriction site in the specified sequences. The numbering 
system shown in Table 2.2 is based on (Feldman, et al., 1984). The mutation d2 affecting the 
D2 element was introduced by replacing the wild-type 14bp sequence TTTTCGGCACGGAC 
by AATACCGGAGGCAG, thus creating pAE1050. Derivates of pAE1050, where the first 7 
bp (d2a) or last 7bp (d2b) of the D2 sequence were mutated as indicated above are pAE1051 
and 1052. To create the minimal D plasmid, 68bp downstream of D2 were deleted to generate 
pAE1162. The parent plasmid of the resulting plasmids pAE1036 through 1052 and pAE1162 
was pAE1035. As a control, the entire 5.17 KB BamHI/HindIII fragment containing the HML 
locus on the final plasmids was sequenced. For genomic insertion of the minimal D element, 
pAE1162 was digested with HindIII/BamHI and the resulting insert ligated into the 
HindIII/BamHI site of pRS306, resulting in pAE1163. The N-terminally tagged 6xHis-SUM1 
expression plasmid for bacterial expression was constructed by ligating a PCR-generated 
fragment of the complete SUM1 open reading frame (ORF) into the NdeI/BamHI sites of 
pET15b (Novagen) to generate pAE1054. The N-terminally 6xmyc tagged SUM1 expression 
plasmid was constructed as follows: the 500bp upstream promoter region of SUM1 was PCR 
amplified with flanking KpnI and XhoI sites and ligated into the KpnI/XhoI sites of pAE469. 
pAE469 was derived from pRS306 and carries six c-myc tags in its XhoI/NotI site. Next, the 
entire SUM1 ORF was PCR amplified with flanking NotI and SacII sites and ligated into the 
NotI/SacII sites of the previous construct, which placed the SUM1 ORF downstream of the 
6xc-myc sequence. To generate a 2µ-version, the promoter-6xmyc-SUM1 sequence was 
released from the previous construct by KpnI/SacII digestion and ligated into the KpnI/SacII 
digested  multiple cloning site of pRS424. The resulting construct pAE1032 was verified by 
sequence analysis, and the expression of the recombinant protein in yeast was confirmed by 
Western blot of yeast transformants using an anti-myc antibody. To generate plasmids for the 
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plasmid loss tests of ARS606, ARS1223 and ARS1511, the ARS1013-1 carrying plasmid 
pAE1078 was digested with EcoRI/HindIII to release ARS1013-1 and blunt ended using 
Klenow enzyme. The above mentioned ARS sites were PCR amplified from genomic DNA of 
AEY2 using the primer pairs ARS606fw: GTCTTCTTGATAATTCTGTGGGCGC, 
ARS606rv: GTCTTGCCTTAGGACTCAGCCAGG for ARS606, ARS1223up: CTTGAGT-
CAAGTTCAGAGTAATTTTCGG, ARS1223down: CCCATTTGACGCAAGGCAATTTC-
CCTG for ARS1223 and ARS1511up: CGACCCTGCAGCAGCTGCTCAG, ARS1511down: 
CCAGCTCATCTGCAGCTGCC for ARS1511. Amplicons were subcloned into the TOPO-
TA xl vector (Invitrogen). For ligation into the plasmid backbone of pAE1076,  they were 
released from TOPO by SacI/XhoI digestion and blunt ended using Klenow enzyme. The 
resulting constructs pAE1126 (ARS606), pAE1130 (ARS1223) and pAE1135 (ARS1511) 
were verified by sequence analysis. To generate plasmids that carried ectopic Sum1 binding 
sites upstream of ARS1013-2, pAE1080 was digested with HindIII and blunt ended using 
Klenow enzyme. Inserts were either a 56bp oligonucleotide containing 4xD2 sequence 
resulting in pAE1159 or a PCR product derived from pAE1035 (HML-D) using primers 
HML-Eup: GGTGTATCGCAATGGAATG and HML-Edown: CCCGAAATCGATAATAA-
TGGCC resulting in pAE1160. The SMK1 promoter insert was PCR generated from genomic 
DNA using the primers for SMK1 as used in the chromatin immunoprecipitation PCR which 
resulted in pAE1161.  
 

Table 2.2: Plasmids used in this study   

Plasmid Description Sourcea

pAE 53 pRS315 ORC2 J.Rine 
pAE 168 pRS316 HMLα J.Rine 
pAE 223 YIplac128-GPD-His6-ORC2  
pAE 298 YIp5-CEN6 ssHMR-E  J.Rine 
pAE 299 YIp5-CEN6  HMR-E J.Rine 
pAE 469 pRS306 6xmyc  
pAE 370 pRS315 URA3 a1 HMR-I  
pAE 374 pRS315 HMR-E URA3 a1 HMR-I  
pAE 419 pRS315 HML-E URA3 a1 HMR-I  
pAE 421 pRS315 HML-E revers URA3 a1 HMR-I  
pAE 440 pRS315 HML-E ∆D URA3 a1 HMR-I  
pAE 442 pRS315 HML-E ∆D revers URA3 a1 HMR-I  
pAE 735 pRS315 HML-E ∆ACS URA3 a1 HMR-I  
pAE 736 pRS315 HML-E ∆ACS ∆D URA3 a1 HMR-I  
pAE 739 pRS315 HML-E ∆ACS revers URA3 a1 HMR-I  
pAE 740 pRS315 HML-E ∆ACS ∆D revers URA3 a1 HMR-I  
pAE 1032 pTRP1 6xmycSUM1  
pAE 1033 pUC18 HMLα    
pAE 1034 pUC18 HMLα HML-∆I  
pAE 1035 pUC18 HMLα HML-E ACS-  HML-∆I   
pAE 1036 pUC18 HMLα HML-E ∆123-216 (∆D) HML-∆I  
pAE 1038 pUC18 HMLα HML-E ACS- ∆123-216 (∆D) HML-∆I  
pAE 1039 pUC18 HMLα HML-E ACS- ∆123-132 (∆D1) HML-∆I  
pAE 1040 pUC18 HMLα HML-E ACS- ∆133-142 (∆D2) HML-∆I  
pAE 1041 pUC18 HMLα HML-E ACS- ∆143-154 (∆D3) HML-∆I  
pAE 1042 pUC18 HMLα HML-E ACS- ∆155-160 (∆D4) HML-∆I  
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pAE 1045 pUC18 HMLα HML-E ACS- ∆161-166 (∆D5) HML-∆I  
pAE 1046 pUC18 HMLα HML-E ACS- ∆167-176 (∆D6) HML-∆I  
pAE 1047 pUC18 HMLα HML-E ACS- ∆177-186 (∆D7) HML-∆I  
pAE 1048 pUC18 HMLα HML-E ACS- ∆187-198 (∆D8) HML-∆I  
pAE 1049 pUC18 HMLα HML-E ACS- ∆199-210 (∆D9) HML-∆I  
pAE 1050 pUC18 HMLα HML-E ACS- mutated 133-146 (d2) HML-∆I  
pAE 1051 pUC18 HMLα HML-E ACS- mutated 133-139 (d2a) HML-∆I  
pAE 1052 pUC18 HMLα HML-E ACS- mutated 140-146 (d2b) HML-∆I  
pAE 1054 pET15B-SUM1   
pAE 1076 CEN4-URA3 + ARS1012 O. Aparicio 
pAE 1078 CEN4-URA3 + ARS1013-1 O. Aparicio 
pAE 1080 CEN4-URA3 + ARS1013-2 O. Aparicio 
pAE 1081 CEN4-URA3 + ARS1013-3 O. Aparicio 
pAE 1119 pMW311 HML-E J. Huberman 
pAE 1123 pRS426 HMLα  
pAE 1126 CEN4-URA3 + ARS606  
pAE 1130  CEN4-URA3 + ARS1223  
pAE 1135 CEN4-URA3 + ARS1511  
pAE 1159 CEN4-URA3 + ARS1013-2 + 4xD2  
pAE 1160 CEN4-URA3 + ARS1013-2 + HML-E ACS-  
pAE 1161 CEN4-URA3 + ARS1013-2 + SMK1promoter  
pAE1162 pUC18 HMLα HML-E ACS- ∆147-216 (∆D3-D9) HML-∆I  
pAE1163 pRS306 HMLα HML-E ACS- ∆147-216 (∆D3-D9) HML-∆I  
 
aUnless indicated otherwise, plasmids were constructed during the course of this study or 
were from the laboratory plasmid collection.  

2.6 Silencing assays 
Mating assays were performed using AEY264 (MATa his4) and AEY265 (MATα his4) as 
mating-type tester strains. For qualitative mating assays (patch mating), strains were grown on 
YPD plates overnight and replica-plated to a lawn of the respective tester strain on YM 
medium selective for diploids. After 2-4d of incubation, the yield of diploids indicated the 
mating efficiency of the strain. Quantitative mating assays were performed as described 
(Ehrenhofer-Murray, et al., 1997). All quantitative mating efficiencies are the average of at 
least two independent determinations and were normalized to the wild-type srain AEY2. 
 

2.7 Plasmid loss assay  
Plasmid loss rates were determined in strains AEY2 and AEY2 sum1∆::HISMX. 
Transformants were grown into stationary phase in minimal medium lacking uracil before 
inoculating into rich medium (YPD) that was further supplemented with adenine, histidine, 
leucine, lysine, tryptophan and uracil at standard concentrations. The initial fraction of cells 
that contained the plasmid (Fi) was determined by plating dilutions of the new culture onto 
solid medium either containing or lacking uracil. After at least 12 doublings at 30°C with 
shaking, the final fraction of cells that contained the plasmid (Ff) was determined in the same 
way. The loss rate (L) was calculated as 1-10m, where m = [log(Ff) - log(Fi)]/number of cell 
divisions (Dillin and Rine, 1997). The loss rate is therefore equivalent to the fraction of 
daughter cells that have received no plasmid during the previous cell division  
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2.8 Yeast extracts for Western blotting 
Approximately 10 OD of cells were harvested and washed once in ice cold TBS. Then the 
cells were resuspended in 250µl lysis buffer (50mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM 
EDTA, 1% Triton X-100, 1mM PMSF, 1x ”complete” proteinase inhibitor (Roche 
Diagnostics)) and glass beads (0.5mm diameter) were added slightly below liquid level. Cells 
were disrupted by vortexing at full speed for 3 min followed by 2 min incubation on ice, this 
step was repeated once. The resulting lysate was pipetted off the glass beads and centrifuged 
for 10 minutes at 14,000 rpm in a 5415C Eppendorf table centrifuge. The supernatant was 
collected and 15-50µl were mixed with the appropriate amount of 4 x Laemmli buffer (see 
(Sambrook, et al., 1989)), incubated for 5 min at 70°C and applied on SDS gels. Alternatively 
the samples were stored at -80°C. 
 

2.9 SDS PAGE and Immunoblotting 
Proteins were separated by SDS-PAGE in Tris-glycine buffer according to standard methods 
(Laemmli, 1970). Transfer to nitrocellulose membranes (Pharmacia) was accomplished by 
blotting with the BIO-RAD Tank Transfer System for 1 hour at 0.8 mA/cm2 in 39 mM 
glycine; 48 mM Tris; 0.037% SDS; 20% methanol. The nitrocellulose membrane was 
subsequently blocked for 1 hour at RT in 5% milk/TBS-T (50 mM Tris-HCl pH7.5; 150 mM 
NaCl; 0,05% Tween-20). After incubation over-night at 4°C with the primary antibody 
(concentrations see below) in 5% milk/ TBS-T, the blot was washed 4 times for 5 minutes 
with TBS-T. It was then incubated with the appropriate secondary antibody (concentrations 
see below) in 5% milk/ TBS-T for 30-60 minutes at RT. After washing 6 times for 5 minutes 
with TBS-T the SuperSignal West Pico Chemiluminescent Substrate from Pierce was used for 
immunochemical detection. 
Anti-epitope antibodies were purchased from Invitrogen (α-myc; 1:5,000) and Sigma (α-
polyhistidine 1:3000). Secondary antibodies conjugated to horseradish peroxidase were 
purchased from Sigma (sheep α-mouse; 1:1000 and goat α-guinea pig; 1:10,000). Antibodies 
were used for Western blotting in the concentrations as indicated. 
 

2.10 Co-Immunoprecipitation 
Yeast extracts from the protease deficient strains AEY1558 and AEY3474 were prepared as 
follows: Per co-immunoprecipitation experiment, 50 OD of cells were suspended in 500µl 
lysis buffer (50mM Tris-HCl pH7.5, 140mM NaCl, 1% Triton X-100, 0,1% ND-40, 1mM 
PMSF, 1x ”complete” proteinase inhibitor (Roche Diagnostics), 1mM DTT) and disrupted 
with glass beads for 5min at 4°C using a vortex mixer. The lysate was cleared by 
centrifugation for 10min at 4°C. Antibody (α-myc, Invitrogen or α-poly-His, Sigma) was 
added to the cleared lysate and incubated overnight at 4°C with shaking. For experiments 
excluding DNA mediated co-immunoprecipitation, ethidiumbromide was added to a 
concentraion of 100µg/ml to the lysate prior to the addition of antibody. Subsequently, G-
Sepharose 4-FF beads (Pharmacia) were added to the lysate-antibody mix and incubated for 
1h. Immunoprecipitates were collected by brief centrifugation and washed three times with 
lysis buffer. The resulting precipitate was resuspended in SDS sample buffer and analyzed by 
SDS-PAGE and immunoblotting according to standard protocols. 
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2.11 Electrophoretic mobility shift assays (EMSA) 
Protein expression and purification  
For bacterial expression of Sum1, N-terminal 6xHis-tagged Sum1 was generated by inserting 
SUM1 into the NdeI/BamHI-site of plasmid pET15B (Novagen) resulting in pAE1054. BL21 
Codon Plus (DE3)-RIL cells (Stratagene) were transformed with pAE1054. Liquid cell 
culture (1300 ml LB-Amp, 2% glucose) was grown to mid-log phase (OD 0.5) at 37°C and 
subsequently mixed with 700 ml LB-Amp, 2% glucose of 15°C.  Sum1-expression was 
induced by addition of isopropyl-β-D-thiogalactopyranoside (IPTG) to a concentration of 
0.5mM. To reduce protein degradation, ethanol was added to a final concentration of 2%. To 
minimize the risk for inclusion body formation, the cells were allowed to grow at 15°C for 
16h. LacZ expression was induced by addition of 1mM IPTG to a mid-log culture of 300ml 
and subsequently incubated at 37°C for 3h. Protein extraction under native conditions and 
purification was essentially done as described in protocols 9+12 of the QIAexpressionist™ 
handbook (Qiagen, 2003). Cells were harvested and resuspended in 15 ml lysis buffer (50mM 
Tris-HCl pH7.5, 150mM NaCl, 10mM imidazole, 1% Triton X-100, PMSF 1mM, 1x 
proteinase inhibitor mix). Cell lysis was carried out by sonication (3x 20sec at 40% sonicator 
capacity) and the lysate was cleared by centrifugation. 2 ml 50% Ni-NTA matrix was then 
added to the supernatant and incubated with rotation for 1h at 4°C. The suspension was 
loaded onto a column and washed twice with 10ml washing buffer (50mM Tris-HCl pH7.5, 
150mM NaCl, 20mM imidazole). The matrix bound fraction of the lysate was eluted by 
adding 10 x 500µl buffer (see washing buffer) containing 250mM imidazole and collected 
separately. Protein containing fractions were pooled and dialyzed overnight at 4°C against 
protein dilution buffer (20mM Tris-HCl pH 8, 50mM NaCl and 1mM EDTA). To increase the 
protein concentration centricon tubes (Amicon) with an exclusion threshold of 10 kDalton 
were used according to the manufacturers guidelines.  
 
Probe preparation  
Probe preparation and EMSAs were essentially carried out as previously described (Xie, et 
al., 1999). For EMSAs, PCR fragments of the respective regions were amplified from AEY2 
(for the HML-E wt and the INO1 sequence), AEY3395 (for the HML-E ACS- sequence), 
AEY3391 (for the HML-E D∆ sequence) or AEY3398 (for the HML-E ACS-D∆ sequence) 
and were purified and and diluted to equal concentrations. The primer sequence for the HML-
E wt and HML-E ACS- PCR reaction was: GGTGTATCGCAATGGAATG (HML-E up) and 
CCCGAAATCGATAATAA (HML-E down). The reverse primer for the HML-E ACS-D∆ 
PCR reaction was  GTTTACATTTCATTCTATGTGCGCTAG (HML-E downII). For the 
INO1 PCR product, primers TGTTCTGTTGTCGGGTTCC (INOup) and GTAGTCTT-
GAACAGTGGGCG (INOdown) were used.. For experiments described in Fig. 3.5B, PCR 
primers for HML-E wild-type and HML-E D2∆ were GGGTTTTTGATTTTTTTATGTTTTT-
TTTAAAACATTAAAG (HML-EACSfw) and HML-Edown. For HML-E D∆, primers were 
GGGTTTTTGATTTTTTTATGTTTTTTTTAAATCGATTTCG (HML-E D-fw), and HML-E 
downII. For SMK1 sequence binding, the oligonucleotide sequence was CCACTAATTTGT-
GACACTT (with corresponding antiparallel oligonucleotide). Radioactive labeling was done 
by polynucleotide kinase catalyzed addition of [γ-32P]-ATP to 5´-ends of the double stranded 
DNA. Separation of unincorporated nucleotides was accomplished by gel filtration using 
Nick™ Sephadex G-50 columns (Amersham Biosciences) or Micro Bio-Spin P-30 columns 
(Biorad) according to the manufacturers guidelines. The specific activity of the DNA-probes 
was determined by a scintillation counter.  
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EMSA 
Binding reactions for the protein preparations were carried out in 10 mM Tris-HCl pH 7.5, 40 
mM NaCl, 4 mM MgCl2, 6% (w/v) glycerol, 10µg/ml of sonicated salmon sperm DNA and 
32P-labeled DNA sequence (10 000 counts per minute) in a total volume of 20µl at room 
temperature. Competition experiments were performed by premixing a 400fold molar excess 
of unlabeled HML-E DNA or the unspecific INO1-DNA with protein extract before the 
addition of labelled HML-E DNA probe. Incubation time was 20min prior to loading on gels.  
Samples were analyzed on 20cm 6% polyacrylamide gels (run in 0.5xTBE buffer for 120 min 
at 200V). Gels were dried after electrophoresis, exposed to a storage phosphor screen 
(Molecular Dynamics) and scanned on a phosphorimager (Molecular Dynamics).  
 

2.12 Chromatin immunoprecipitations 
Chromatin immunoprecipitations (ChIP) were performed essentially as described (Rusche and 
Rine, 2001), except that mouse anti-myc antibody (Invitrogen) at 4µg per sample and protein 
G sepharose beads were used. Crosslinking was carried out in 1xTBS with 10mM dimethyl-
adipimidate (DMA, Pierce) for 45min at room temperature and subsequently in 1xTBS with 
1% formaldehyde for 30min (Kurdistani and Grunstein, 2003). PCR reactions were performed 
using 1.25 units of Taq DNA polymerase (Promega), with 3mM MgCl2, 0.25mM dNTPs and 
0.5 µM per primer. Samples were cycled 28 times for 15sec at 94°C, 20 sec at 54°C and 2.5 
min at 72°C. The oligonucleotides used are described in (Rusche and Rine, 2001), except 
HML-EdownII: GTTTACATTTCATTCTATGTGCGCTAG which was used as reverse 
primer for HML-E sequence amplification.  
 

2.13 In vivo replication-origin assay 
The replication-origin assay was carried out according to (Fangman and Brewer, 1991) and is 
described below in brief:. 
Preparation of genomic 2-D DNA 
a.) Culture growth and harvesting 
Per replication origin test 1 liter each of AEY2 and AEY3358 was grown in liquid YPD to an 
OD600 of 1.0 to 1.5 either at 18°C or at 30°C. For harvesting, 1L centrifuge bottles were 
prepared with 100ml dry-ice frozen EDTA-glycerol solution (0.2M EDTA pH 8.0, 20% 
glycerol in water) each. Prior to harvesting, the cell culture was treated with azide at a 
concentration of 1g/liter and 900ml were subsequently poured into the precooled centrifuge 
bottles and incubated until the EDTA-glycerol solution was completely thawed. Cells were 
pelleted by centrifugation in a GS3 rotor (Sorvall) for 5 min at 5000 rpm at 4°C. The pellet 
was washed in 10m ice cold water. Cells were resuspended in 6ml Nuclear Isolation Buffer, 
NIB (17% glycerol, 50mM MOPS, 150mM K-COOH, 2mM MgCl2, 500µM spermidine and 
150µM spermine, adjusted to pH 7.2) and frozen at -80°C for DNA isolation. 
b.) Nucleus extract preparation  
Cells in NIB were mixed with an equal amount of glass beads in a 50ml conical bottomed 
plastic tube. Cell disruption was carried out by multiple cycles (20 to 25) of 30 seconds 
vortexing at full speed and 30 seconds incubation on ice. The cell nuclei-containing 
supernatant was recovered and the glass beads were washed twice with 8ml NIB per washing 
step. Supernatants from each washing step were combined and centrifuged in an SS-34 rotor 
(Sorvall) at 8000 rpm, 4°C for 10 min. The resulting pellet was resuspended at 2x109 cell 
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equivalents/ml in 50mM Tris, 50mM EDTA, 100mM NaCl, pH 8.0. Cell nucleus disruption 
was achieved by adding the detergent N-Laurylsarcosine to a final concentration of 1.5%. 
Subsequently proteinase K was added to a final concentration of 300µg/ml and incubated at 
37°C for 1h. Cell nucleus ghosts were removed upon centrifugation for 5 min at 4°C and 5000 
rpm using a SS-34 rotor.  
c.) High molecular weight DNA preparation 
The supernatant from the previous step was recovered and mixed with 1.05g CsCl/ml. 
Hoechst 33258 dye was added to a final concentration of 125µg/ml, the samples were 
transfered to ultracentrifuge tubes and centrifuged at 50.000 g for 17-24h. High molecular 
weight DNA was visualized by long wave ultraviolett light and recovered with a syringe. 
Subsequently the DNA was precipitated by addition of 3 volumes of 70% ethanol and gentle 
swiveling of the reaction tube. The precipitate was washed with 70% ethanol, air dried and 
dissolved in 200µl TE per liter yeast culture for 3-4 days at 4°C.  
 
2-D gel electrophoresis 
Restriction enzymes were chosen, that resulted in a fragment of 4kb-5kb carrying the 
suspected replication origin in its center. For analysis of ARS 1013, 250µg DNA of strains 
grown at 30°C was digested with BfuAI, which generates a 4.25kB fragment. For analysis of 
ARS606, 100µg DNA of strains grown at 18°C or 30°C was digested with NarI and SfoI, 
generating a fragment of 4.3kb. For analysis of ARS 607, 100µg DNA of strains grown at 
18°C was digested with ApaLI and SacI, which generates a 4.2kB fragment. For analysis of 
ARS1511, 100µg DNA of strains grown at 18°C was digested with PstI, generating a 
fragment of 5.7kb. Per origin, DNA was digested in a volume of 500µl. 100-200 units of 
restriction enzyme were used and after an incubation time of 1h at 37°C again 100-200 units 
of restriction enzyme was added and incubated for another hour at 37°C. To enrich single-
stranded replication intermediates BND-Cellulose (Benzoylated Naphtoylated DEAE 
Cellulose, Sigma St. Louis, USA) was used according to J.A. Huberman. After precipitation 
the DNA was resuspended in 30µl TE for 2h on ice. DNA was separated on a 15cm 0,4% 
TBE agarose gel in 1xTBE buffer for 18h at 2,5-3V/cm and 4°C. DNA between 1n and 2n of 
the tested fragment was cut out, cast into a 1% TBE agarose gel at a 90° turned angle and run 
for 18h at 50V and 4°C to resolve the DNA in its second dimension. 
 
Southern blotting and hybridization 
A rectangle containing the twodimensionally separated DNA structures was cut out from the 
gel and blotted onto a Zeta-Probe GT membrane (BioRad, Hercules CA) via Southern blot. 
The membran was hybridized with one or two [α-32P]-dCTP labeled probes. ARS1013 was 
detected using two probes: a 1.2-kB EcoRI-HindIII fragment of pAE1078 and a 380-bp 
EcoRI-SacI fragment of pAE1081. ARS606 was detected by a 490bp probe, amplified via 
PCR from genomic DNA. The primer sequence was ARS606up: GGTCTTCTTGATA-
ATTCTGTGGGCGC and ARS606dn: TGTCTTGCCTTAGGACTCA-GCCACC generated 
from genomic DNA. ARS607 was detected using a 1145bp probe amplified via PCR from 
genomic DNA. The primer sequence was ARS607up: GCTCTAGAAGTAGTTCTAGTGGG 
and ARS607dn: GGCCTAATAGGAGTAACTACGGG. ARS1511 was detected by a 653bp 
probe, amplified via PCR from genomic DNA. The primer sequence was ARS1511up: 
CTCTACTACTACAACTATTCCCACTGG and ARS1511dn: GACATATTGTGCCTCAA-
CTCTTGCAG. After washing the membrane was exposed to a storage phosphor screen 
(Molecular Dynamics) and scanned on a phosphorimager (Molecular Dynamics).  
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3 Results 

3.1 Definition of a core region within the D element 

The HM loci are flanked by the E- and I-silencers that contain a number of protein binding 

sites (Fig. 3.1A). At the HML-E-silencer, three functional elements essential for silencing 

have been defined within a region of 150bp. Deletion experiments uncovered the presence of 

a Rap1- and an ORC-binding site and the so called D element (Mahoney, et al., 1991) (Fig. 

3.1A). In a strain lacking the HML I-silencer, deletion of any one of these regions leads to 

minor loss but deletion of any two of these regions leads to a complete loss of silencing at 

HMLα (Fig. 3.1B) (Mahoney, et al., 1991). Unlike the Rap1- and the ORC binding site, the D 

element was so far uncharacterized and consisted of a large 93bp sequence stretch. Since all 

other essential silencer elements contain protein binding sites we hypothesized that the D 

element might also harbor an unidentified binding site for a silencing protein which we sought 

to identify in this study.  

 

 
 

Figure 3.1: Silencing properties of the D-element at the HML-E silencer. 
(A) Schematic representation of the HMLα locus on the left arm of chromosome III. Location 
and elements of the silencers HML-E and HML-I are indicated (RAP = Rap1 binding site, ACS = 
ORC binding site, D = D element, ABF = ABF binding site). (B) Redundancy of HML-E silencer 
elements. Loss of HMLα silencing in HML-E silencer deletion mutants was measured as loss of 
a-mating ability in a patch mating assay. All strains were HML-∆I.  
 

In a first set of experiments, we asked whether the D element could be narrowed down to a 

smaller DNA segment, because protein binding motifs usually occupy a sequence stretch of 

10 to 20 basepairs. A deletion of this core element should lead to the same silencing defect as 

deletion of the complete D element. Similar to the original study, we used a strain that carried 

a deletion of HML-I and a mutation at the ORC binding site (ACS-) and inserted 6-12bp 

deletions or mutations in D. In this situation, silencing is compromised such that any further 
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weakening by disruption of D element function should lead to total loss of silencing at HMLα. 

Expression of HMLα in a MATa strain leads to simultaneous presence of α- and a 

information, which results in a non-mating phenotype. Therefore, the HMLα silencing 

properties of individual D mutants were evaluated as their ability to mate and form diploids 

with a MATα tester strain. Indeed deletion of a 10bp segment within D termed D2, located 

16bp centromere proximal to the ACS (position 133-143, numbering system based on 

(Feldman, et al., 1984)), mimicked the deletion of the full D element (Fig. 3.2A).  Deletion of 

other segments within D did not alter the silencing properties of the ACS- strain (Fig. 3.2A). 

These results suggested that sequences essential for D function were located within the D2 

element.  

 

 
 

Figure 3.2: Identification of a D-element core region within the HML-E silencer.  
(A) D2 was the core element of D. Quantitative mating assays were performed to compare the 
effect on silencing of different D element deletions in a MATa HML-E ACS- ∆I strain 
background (AEY3395, lane 3). Lane 1: MATa HML-E wild-type (AEY2), lane 2: MATa HML-E 
∆I (AEY3388). The mean values of at least three independent experiments are shown. (B) D2 
was both necessary and sufficient for HML-E function. Loss of silencing in HML-E ACS- ∆I 
strains was measured for the 14bp sequence element containing the D2 element (D, AEY3395), 
mutations in the entire (d2, AEY3426), the first (d2a, AEY3430) or the second (d2b, AEY3434) 
half of the D2 element, or with the D2 element remaining as the sole D sequence at HML-E (D2, 
AEY3552).  
 

We next asked whether D2 function could be abrogated by mutating rather than deleting the 

sequence, because a sequence deletion might not just remove a protein binding site, but could 

alter silencing by other means, for instance by changing nucleosome position and chromatin 
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architecture. Therefore, we mutated every other basepair by transition in a 14-bp region that 

contained D2, thus maintaining the purin/pyrimidine composition of the original area. We 

found that the fully mutated 14-bp area (termed d2) caused HMLα derepression just like the 

D2 deletion (Fig. 3.2B). We used the same strategy to individually mutate the first or the 

second seven bp of this region (termed d2a and d2b). Both d2a and d2b lead to a complete 

derepression of HMLα (Fig. 3.2B), indicating that sequences necessary for D function were 

present in both elements.  

As the D2 integrity was necessary for D function we next asked whether the presence of D2 

alone without accompanying D sequence might suffice for D function. To this end we 

constructed a HML-E ACS- ∆I strain that had all D element sequence downstream of D2 

removed and assessed its HMLα silencing properties. When compared to a strain carrying the 

complete D element, no difference in mating capability was dectectable (Fig. 3.2B). This 

indicated that D2 was also sufficient for the execution of D function.  

Taken together, these results showed that the D2 region was the core sequence of the D 

element. Furthermore, because this element is comparable in length to the Rap1 and ORC 

binding sites, this suggested that D2 contained a binding site for a protein (complex) essential 

for silencing.  

 

3.2 Genetic interaction of SUM1 and the D element 

3.2.1 sum1∆ caused HMLα derepression 

We next sought to genetically identify the hypothesized D binding factor. One prediction for a 

mutation or deletion in the gene encoding this factor is that it causes derepression when 

silencing is compromised at HMLα, but not HMRa, because only HMLα, but not HMRa, 

contains a D element. More specifically, this mutation is expected to cause strong 

derepression only when HMLα silencing is weakened for instance by mutations in RAP or 

ACS of HML-E in an HML-∆I background. In short, removal of the D binding factor is 

expected to have the same silencing phenotypes as mutation of its binding site in the HML-E 

silencer and should be epistatic to the binding site deletion.  

In genetic crosses to characterize HMLα silencing, we observed that a deletion of SUM1 

exactly matched the genetic predictions for the D binding factor. This observation was made 
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in experiments to elucidate the role of the N-terminal acetyltransferase NatA at Orc1 

(Geissenhoner, et al., 2004). In the course of this study, double mutants of nat1∆, a member 

of the NatA complex, and sum1∆ were generated and routinely assayed for HM silencing 

defects. Surprisingly the nat1∆ sum1∆ mutant exhibited strong derepression at HMLα, but not 

HMRa (nat1∆, Fig 3.3A). Deletion of NAT1 alone leads to weakened HM silencing 

(Geissenhoner, et al., 2004) which is a pre-requisite to uncover redundant silencing 

mechanisms. Since Sum1 is a known DNA binding protein it was possible that the silencing 

phenotype of sum1∆ was mediated via the D element.  

 

 
 

Figure 3.3: SUM1 was required for HMLα silencing and was epistatic to the D element.  
(A) Repression of HMLα or HMRa in strains deleted for SUM1, NAT1 or both was measured by 
patch mating assays. (B) SUM1, but not RFM1 or HST1 was genetically linked to HML-D. 
HMLα silencing of sum1∆, rfm∆ or hst1∆ strains in combination with silencer element deletions 
at HML-E is shown by patch mating assays.  
 

3.2.2 sum1∆ was epistatic to the D element 

Since NAT1 deletion weakened HM locus repression by compromising ORC function 

(Geissenhoner, et al., 2004), the additional silencing defect of a SUM1 deletion suggested that 

Sum1 acted in a parallel pathway to ORC. We therefore investigated the effect of sum1∆ in 

the presence of mutations at HML-E. Based on the finding of (Mahoney, et al., 1991), full 

derepression of HMLα is only expected if any two of the three silencer elements are 

compromised. This can be achieved either by deleting the binding site in cis, or by mutating 

the respective gene coding for the binding protein in trans. We thus combined a deletion of 

SUM1 with individual deletions of any of the E silencer elements and assessed HMLα 
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silencing. If Sum1 acted via D, the only cis-trans combination without silencing defect should 

be the one with a D element deletion since then only one silencer element would be impaired. 

Significantly, sum1∆ caused a strong loss of HMLα silencing when RAP or ACS of HML-E 

were deleted (Fig. 3.3B). However, sum1∆ did not generally weaken HMLα silencing, 

because it did not cause derepression when the D element was deleted. Thus, sum1∆ affected 

silencing of HMLα as predicted for the D binding factor in that it caused derepression when 

HMLα silencing was compromised and was epistatic to a deletion of the D element.  

 

3.2.3 SUM1 dependent HMLα silencing was independent of HST1 and RFM1 

Previously, the Sum1 protein has been characterized as mitotic repressor for a set of genes 

that are upregulated in the middle stages of meiosis (Xie, et al., 1999). In this function, Sum1 

binds a regulatory DNA sequence, the middle sporulation element (MSE), which is present at 

the promoters of these genes and recruits the histone deacetylase Hst1 via a bridging protein 

Rfm1 (McCord, et al., 2003; Xie, et al., 1999). Although wild-type Sum1 has so far not been 

implicated in silencing a mutant allele of Sum1, Sum1-1 is able to confer silencing to the HM 

loci in a sir∆ background (Chi and Shore, 1996; Laurenson and Rine, 1991; Livi, et al., 1990). 

In this role, Sum1-1 exerts its function by binding ORC and by recruiting Rfm1 and Hst1 

(McCord, et al., 2003; Rusche and Rine, 2001; Sutton, et al., 2001). 

Our results suggested that normal Sum1 indeed had a role in HMLα silencing and bound a 

sequence element within HML-D, although the MSE consensus sequence was not present at 

the D element. However, it was previously shown that not all Sum1 repressed middle 

sporulation genes contain an MSE at the promoter (Pierce, et al., 2003), and likewise, not all 

Sum1 repressed genes require Hst1 and Rfm1 for repression (McCord, et al., 2003). 

Nonetheless it was conceivable that Sum1 exerted its silencing function at HMLα via these 

two proteins. To address this question we carried out epistasis experiments of RFM1 and 

HST1 with HMLα alleles as done with SUM1. However, while deletion of RFM1 showed a 

general weakening of HMLα silencing at each of the single silencer deletion strains, the 

deletion of HST1 did not cause HMLα derepression (Fig. 3.3B). This indicated that Rfm1 had 

a role in HMLα silencing beyond Sum1, and that Sum1 did not cooperate with Hst1 in this 

context.  
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3.3 Sum1 bound specifically to the D element within HML-E 

3.3.1 In vitro binding of Sum1 to HML-E 

To test the notion that the Sum1 protein was the D binding factor, we asked whether Sum1 

was able to bind HML-E in vitro. To this end, we performed electrophoretic mobility shift 

assays (EMSA) with purified full length Sum1 (6xHis-tagged at the N-terminus) from E.coli 

and HML-E DNA. As a control, the purified 6xHis-Sum1 shifted DNA of a known Sum1 

binding sequence, the MSE containing SMK1 promoter (Xie, et al., 1999), towards a slower 

mobility (Fig. 3.4B, lane 1 and 2).  

 

 
 
Figure 3.4: Binding of Sum1 to HML-E in vitro  
(A) Sum1 bound in vitro to HML-E, but not the INO1 promoter region. (Left) A radioactively 
labeled 220bp HML-E fragment was incubated without protein (lane 1) or with 0,1µM of 
bacterially expressed 6xHis-Sum1 (lanes 2-4). For competition experiments, unlabeled DNA of 
HML-E (specific competitor, lane 3) or a 210bp INO1 fragment (unspecific competitor, lane 4) 
was added. DNA-protein complexes were resolved on a polyacrylamide gel and labeled DNA 
visualized by autoradiography. (Right) Sum1 did not bind INO1 DNA, and bacterially expressed 
6xHis-β-galactosidase (β-Gal) did not bind HML-E DNA. (B) Competition between SMK1 and 
HML-E for Sum1 binding. A radioactively labeled double-stranded 19bp fragment containing 
the MSE site of the SMK1 promoter was incubated without protein (lane 1) or with 0,1µM of 
bacterially expressed 6xHis-Sum1 (lanes 2-4). For competition experiments, unlabeled DNA of 
HML-E (specific competitor, lane 3) or HML-E D∆ was added. Upper arrow: protein-DNA 
complex, lower arrow: free DNA. 
 

Importantly, 6xHis-Sum1 also caused a 220bp HML-E fragment to migrate more slowly (Fig. 

3.4A, lane 1 and 2), indicating that Sum1 bound to HML-E. This binding was competed away 

by adding a molar excess of unlabeled HML-E DNA, but not by adding an unspecific 210bp 
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INO1 promoter region fragment, indicating specificity for HML-E (Fig. 3.4A, lane 3 and 4). 

Sum1 also did not bind the INO1 fragment in an individual binding assay (Fig. 3.4A, lane 5 

and 6). Also, the binding ability was unrelated to the 6xHis affinity tag, because 6xHis-tagged 

β-galactosidase was unable to bind to HML-E DNA (Fig. 3.4A, lane 7 and 8).  

Since Sum1 bound two unrelated sequences, SMK1 (containing MSE) and HML-D (without 

MSE), we were interested to determine whether the two sequences could compete with each 

other for Sum1 binding. Significantly, the mobility shift of Sum1 with SMK1 DNA was 

competed away by addition of a molar excess of HML-E, but not by the same amount of 

HML-E lacking the D element (Fig. 3.4B, lanes 2 to 4), thus showing a competition between 

the two fragments for Sum1 binding. 

 

 
 

Figure 3.5: D-specific binding of Sum1 in vitro 
(A) Binding of Sum1 to HML-E required the D element. Mutant versions of HML-E were 
incubated with Sum1(+) or without protein (-) and gel-electrophorezed as in Fig. 3.4. HML-E 
DNA containing a mutation in the ACS site is termed ACS- (lanes 3,4,7,8), HML-E DNA with 
deletion of the 93bp D element is termed D∆ (lanes 5, 6, 7, 8). To maintain DNA size in the D∆ 
derivates, the deleted D element was substituted for the genomic 3´-region of equivalent length. 
All DNA fragments were ~220bp. (B) Binding of Sum1 to HML-E required the D2 element. 
Mutant versions of HML-E were incubated with Sum1(+) or without protein (-) as in (A). WT, a 
134bp wild-type HML-E fragment containing the ACS and the D element (lanes 1, 2). D2∆, 
HML-E without the D2 element (lanes 3, 4). D∆, a 140bp HML-E fragment lacking the entire D 
element (lanes 5,6).  
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To test whether the Sum1-mediated mobility shift of HML-E DNA depended on the D 

element, we performed a series of EMSAs with mutated HML-E DNA. Whereas a shift was 

visible both with wild-type HML-E and HML-E with the ACS mutated, it was abolished when 

either the D element alone or the ACS and the D element together where mutated (Fig. 3.5A, 

lanes 1 to 8). This showed that Sum1 required the D element in order to bind to HML-E. We 

also attempted EMSAs of Sum1 with a 14-bp fragment containing the D2 element. However, 

Sum1 was unable to bind to this short sequence (data not shown), indicating that neighboring 

sequences within the D element were necessary for full binding of Sum1 in vitro.  

To further test the involvement of D2 in Sum1 binding, we determined how the deletion of 

D2 affected the ability of HML-E to bind Sum1. Whereas a 134bp wild-type HML-E fragment 

bound Sum1 (Fig. 3.5B, lanes 1 and 2), binding was strongly decreased with a fragment of 

HML-E lacking 10bp of D2 (Fig. 3.5B, lanes 3 and 4). However, the binding was not as 

strongly reduced as with a complete deletion of the D element (Fig. 3.5, lanes 5 and 6), 

indicating that sequences surrounding D2 influenced the binding affinity of Sum1. In 

summary, these experiments showed that Sum1 bound HML-E in vitro in a D2-dependent 

fashion.  

 

3.3.2 In vivo localization of Sum1 at HML-E  

We next asked whether Sum1 bound to HML-E in vivo. To this end, we performed chromatin 

immunoprecipitation (ChIP) experiments with 6xmyc tagged Sum1. In the precipitates, we 

observed a weak, but consistent 2.5-fold enrichment of HML-E DNA in the presence of the α-

myc antibody as compared to ChIPs without antibody (Fig. 3.6A) or in strains lacking myc-

tagged Sum1 (data not shown). In the same precipitates, the SMK1 promoter, a known 

binding region for Sum1, was enriched 8-fold (Fig. 3.6A, WT), whereas the unrelated SSC1 

gene promoter was not enriched (data not shown). We next tested whether the HML-E 

enrichment was dependent on the D element. We reasoned that if Sum1 bound the D element 

in vivo, there should be no antibody specific enrichment of HML-E in a strain deleted for the 

D element. To this end, we performed ChIP analysis in a strain with an additional deletion of 

HML-D. In these experiments the difference in HML-E enrichment in the fractions with or 

without antibody was indistinguishable (Fig. 3.6A, ∆D).  

 

 46



 
                                                                                                                                            Results 
 

 

 
 

Figure 3.6: In vivo localization of Sum1 at HML-E 
(A) Sum1 was associated in vivo with HML-E in a D-element dependent manner. ChIPs were 
performed on sum1∆ strains containing a 2µ plasmid carrying N-terminally 6xmyc tagged 
SUM1 under control of its own promoter (pAE1032). WT: wild-type HMLα (AEY2); ∆D: 
HML∆D∆I (AEY3391). DNA was immunoprecipitated with (+) or without (-) anti-myc antibody 
and PCR amplified. A total of 1/50 or 1/100 of the input DNA (lanes 7, 8) or 1/2 (lanes 1, 4), 1/4 
(lanes 2, 5) or 1/8 (lanes 3,6) of the immunoprecipitated DNA was analyzed. As a control, the 
promoter region of the SMK1 gene was PCR amplified. (B) ChIP was performed in sir4∆ strains. 
Columns indicate the ratio of DNA enrichment with versus without anti-myc antibody (black 
columns: 6xmyc Sum1; white columns: untagged). The y-axis indicates fold enrichment.  
 

The enrichment of Sum1 at HML-E was consistently weaker than that of Sum1 at the SMK1 

promoter. One explanation is that the SMK1 promoter likely contains more than one Sum1 

binding site (Pierce, et al., 2003), whereas HML-E has only one Sum1 binding site. To test the 

possibility that Sum1 ChIP at HML-E is sterically hindered due to heterochromatin, we 

performed co-immunoprecipitations in a sir4∆ strain. However Sum1 enrichment was not 

stronger at HML-E in a sir4∆ strain than in a wild-type. Quantitation showed that HML-E and 

SMK1 enrichment were 3- and 8-fold, respectively (Fig. 3.6B). Also, adding the 6xmyc tag to 

the C- rather than the N-terminus did not alter the ability to chromatin-immunoprecipitate 

Sum1 at HML (data not shown). However, the fact that we observed consistent enrichment, 

combined with the in vitro binding of Sum1 to HML-E DNA and the effect of sum1∆ on 

HMLα silencing strongly suggests that Sum1 bound in vivo to HML-E via the D element.  

 

 47



 
                                                                                                                                            Results 
 

3.4 sum1∆ decreased origin function of HML-E  

The presumed Sum1 binding site at the D2 element lies close to the ORC binding site of 

HML-E. Interestingly, other protein binding sites close to ACS sites of replication origins like 

one for Abf1 at ARS1 strongly influence the ability of such sequences to initiate replication 

(Marahrens and Stillman, 1992), raising the question whether Sum1 affected HML-E origin 

function. In its chromosomal location, HML-E does not initiate replication (Dubey, et al., 

1991), because it is inactivated by replication forks emanating from centromere-proximal 

origins (Sharma, et al., 2001). However, when removed from this context and placed on a 

plasmid, HML-E has ARS activity, meaning that it confers autonomous replication to 

plasmids lacking an origin. Sharma et al. (2001) showed that deletion of a sequence stretch 

including the D element abrogated the ARS activity of HML-E, indicating that D was required 

for ARS function.  

 

 
 

Figure 3.7: sum1∆ reduced the ARS activity of HML-E.  
Plasmid loss rates were determined in a wild-type (AEY2) and a sum1∆ (AEY3358) strain. 
Strains with plasmids carrying ARS H4 (pRS316), HML-E (pAE1119), HMR-E (pAE229) or the 
HMR-E synthetic silencer SS HMR-E (pAE298) as their sole origins were analyzed. The average 
loss rates obtained from three independent experiments are shown with corresponding error 
bars. 
 

We now asked how Sum1 affected HML-E origin activity by measuring the stability of a 

plasmid carrying HML-E as the sole origin of replication in wild-type and sum1∆ strains. 

Notably, the sum1∆ strain exhibited a more than two-fold higher loss rate of the HML-E 

plasmid than the wild-type strain (Fig 3.7). This suggested that Sum1 was required for full 

replication initiation efficiency of HML-E on a plasmid. Furthermore, sum1∆ strains grew 

more slowly than wild-type strains when selecting for the HML-E plasmid (data not shown), 

also indicating that plasmid transmission, probably through reduced origin initiation, was 
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impaired. In contrast, sum1∆ did not affect the stability of plasmids carrying the wild-type or 

synthetic HMR-E silencers as origins. Also, sum1∆ did not affect plasmid stability of an ARS 

H4 plasmid (Fig. 3.7). These results showed that sum1∆ did not affect other plasmid 

functions, for instance CEN function. Also, the effect of sum1∆ was restricted to HML-E, 

which was predicted because the D element is not found in the other origins tested. 

Furthermore, it showed that sum1∆ did not simply impair weak origins of replication (like the 

synthetic HMR-E silencer). In summary, these results demonstrated that Sum1 showed a 

specific effect on origin function of HML-E.  

 

3.5 sum1∆ interacted genetically with orc mutations, cdc6-1, cdc7-1 and cdc45-1 

The plasmid maintenance defect of sum1∆ strains with an HML-E-origin plasmid likely 

reflects a role of  Sum1 in replication initiation at this origin. This observation prompted us to 

ask whether Sum1 might be required more globally for replication initiation and thus might 

constitute a novel replication initiation factor that aids ORC in initiation at selected 

chromosomal origins. Significantly, we observed that sum1∆ caused lethality in strains with 

mutations in the ORC subunits Orc2 and Orc5, since we were unable to recover double 

mutants in genetic crosses between sum1∆ and orc2-1 or orc5-1 strains (data not shown), 

which was in agreement with (Suter et al., 2004). The orc mutants on their own are 

temperature sensitive and show reduced firing of chromosomal origins and high plasmid loss 

(Fox, et al., 1995; Loo, et al., 1995). sum1∆ orc2-1 double mutants were able to grow when 

provided with a URA3-marked plasmid carrying ORC2. However, they were only able to 

survive on URA3-counterselective medium (5-fluoro-orotic acid, 5-FOA) when supplemented 

with plasmids carrying either SUM1 or ORC2 (Fig. 3.8A), showing that the lethality depended 

on these two genes and that sum1∆ orc2-1 strains were not inviable due to a germination 

defect. One interpretation of the synthetic interaction between ORC and SUM1 is that 

chromosomal replication initiation in the orc mutants is further impaired by the absence of 

Sum1 such that the cells are unable to survive. 

We further assessed genetic interactions between sum1∆ and mutations in genes encoding 

other factors required for replication initiation (reviewed in (Bell and Dutta, 2002)). 
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Figure 3.8: Genetic interactions between SUM1 and replication initiation components. 
(A) Synthetic lethality of orc2-1 and sum1∆. An orc2-1 sum1∆ strain carrying an URA3 marked 
ORC2 plasmid (pRS316-ORC2) was transformed with a SUM1 (pAE1032) or an ORC2 (pAE53) 
plasmid or the corresponding empty vectors. Its ability to lose the pURA3-ORC2 plasmid was 
tested on 5-FOA medium. (B) Synthetic growth defects of cdc6-1, cdc7-1 or cdc45-1 with sum1∆. 
Serial dilutions of several segregants from each cross were plated and incubated at the semi-
permissive temperature of the respective cdc single mutant. For cdc6-1, strains AEY600, 3358 
and AEY3537 to 3541, for cdc7-1 strains AEY3542 to 3546 and for cdc45-1 stains AEY373 and 
AEY3548 to 3551 were used. Incubation was 3 days for cdc6-1 and cdc7-1 and 6 days for cdc45-
1. Cdc6-1 marked with an asterisk indicates the parental strain, which was not isogenic to the 
sum1∆  strain.  
 

Cdc6 is required in early G1 for chromatin binding of MCM proteins and formation of the 

pre-replicative complex (pre-RC) at origins of replication. Cdc7 is part of the DKK (Dbf4 

dependent kinase) that is required for the G1/ S-phase transition, perhaps by phosphorylating 

MCM proteins. Cdc45 plays an important role in the transition from initiation to replication. It 

is required for association of the DNA polymerases with chromatin and colocalizes with the 

polymerases at the replication fork (see also chapter 1.6.2). We found that double mutant 

strains of sum1∆ with temperature-sensitive alleles of CDC6, CDC7 and CDC45 were viable, 

but showed a growth defect as compared to the single mutants at their respective semi-

permissive growth temperature (Fig. 3.8B). Since these mutations impair replication 

initiation, our findings further supported the notion that Sum1 played a global role in 

initiation.  
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Figure 3.9: Test for physical interaction of Sum1 and Orc2. 
(A) Co-immunoprecipitation of Sum1 and Orc2. Strains AEY1558 (-) and AEY3474 (6xHis-
Orc2, +) carried a 6xmyc-Sum1 2µ-plasmid (pAE1032) and a HMLα (pAE1123) 2µ-plasmid. 
Precipitates were analyzed by SDS-PAGE and immunoblotting using anti-myc-antibody. Input 
(lanes 1,2), Immunoprecipitation (IP, lanes 3, 4), Supernatant (sup, lanes 5,6). (B) Co-
immunoprecipitation of Sum1 and Orc2 in the presence of ethidiumbromide. Strains and 
experimental procedures were as described in (A). Where indicated, ethidiumbromid to a 
concentration of 100µg/ml was added to the lysate (Input, lanes 2, 4) prior to the addition of 
antibody (IP, lane 6, 8).  
 

Our observation of a role for Sum1 in replication initiation and the genetic interaction 

between sum1∆ and orc mutations might be due to a direct interaction of Sum1 and ORC. A 

previous study reported a weak interaction between Orc3 and Sum1 in vivo (Sutton, et al., 

2001). We also found a weak interaction between Orc2 and Sum1 by co-IP (Fig. 3.9A, lane 

4). However this interaction is possibly mediated via DNA since it was abrogated upon 

addition of high concentrations of ethidiumbromide, which is thought to disrupt protein-DNA 

interactions (Fig. 3.9B, lane 5,6). This indicated that Sum1 may not interact directly with 

ORC. However it could also mean that subpopulations of Sum1 and ORC are located close to 

each other on DNA sequences.  

 

3.6 Sum1 was a replication initiation factor for several origins of replication 

3.6.1 Identification of genomic sites of combined Sum1 and ORC binding 

A global role for Sum1 in replication initiation predicts a significant number of replication 

origins that are also bound by Sum1. To search for such sequences, we used the data from two 

previous studies that identified genomewide Sum1 and ORC binding sites using ChIP 

mediated microarray analysis (Lee, et al., 2002; Wyrick, et al., 2001). 
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Figure 3.10: Search for intergenic regions that bind both Sum1 and ORC.  
Plot of p-values for Sum1 binding (Lee et al. 2002), p<0.01 versus ORC binding (Wyrick et al. 
2001), p<0,05. Inserted diagram: all data points. The origin function of intergenic regions 
marked with an asterisk was tested below. 
 

In both experiments, the authors used the same error model to convert the observed Cy5/Cy3 

intensity ratios into p-values (the probability that such a ratio or larger could be observed 

from a non-binding event). In their large-scale analysis, they imposed a strict prescription 

(p<0.001) to reduce the number of wrong binding predictions (false positives) at the expense 

of a higher false negative rate (discarding true binding events). For our purposes, we 

considered those eight intergenic regions where p(Sum1)<0.01 and p(ORC)<0.05 (Fig. 3.10; 

Table 3.1). 
 

1 2 3 4 5 6 7 

 
p(Sum1) 

 
p(ORC) 

 
intergenic 

Gene 
name 

 
ARS 

sum1∆ / 
WT 

hst1∆ / 
WT 

5.60E-03 2.60E-04 iYDR383C NKP1 ARS433 1.2 1.0 

2.90E-06 9.30E-02 iYDR523C SPS1 ARS446 21.6 12.6 

7.90E-03 3.20E-02 iYDR533C HSP31 ARS447 2.3 1.6 

3.50E-04 3.20E-04 iYFR023W PES4 ARS607 3.4 2.0 

4.10E-04 2.00E-02 iYJL038C YJL038C ARS1013 2.8 2.0 

9.10E-03 8.40E-04 iYKL059C MPE1 ARS1109 0,8 1.0 

1.50E-03 1.00E-03 iYLR307W CDA1 ARS1223 25.5 6.2 

1.40E-03 1.80E-03 iYOL024W YOL024W ARS1511 5.1 1.5 
 
Table 3.1: Genomic loci that are bound by Sum1 at p<0.01 and ORC at p<0.05  
For the indicated gene loci, p-values as an estimation of in vivo Sum1 binding have been 
determined by (Lee, et al., 2002) (1) and for ORC binding by (Wyrick, et al., 2001) (2). The 
indicated ARS sites are located upstream of the respective gene (5). Expression change of the 
indicated ORF in a sum1∆ (6) or hst1∆ (7) strain compared to the wild-type (WT) as determined 
by (Bedalov, et al., 2003).  
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Of these, five were located upstream of a gene that is derepressed in sum1∆ more than 2,5fold 

as determined by (Bedalov, et al., 2003), suggesting that they constitute true Sum1 binding 

regions (Table 3.1, column 6). 

In a complementary approach we used a binding-motif based sequence search to find origins 

that require Sum1 for full activity. Initially, we used the consensus sequence for ORC binding 

(WTTTAYRTTTW) (Broach, et al., 1983) and the sequence of the identified D2 element 

(TTTTCGGCACGGAC) and searched the genome for co-occurrance of the two sequences 

within an distance of 200bp or less. One problem in this approach was that there was no 

consensus sequence available for D2, so sequence variations in other possible D2 elements 

could only be considered upon allowing a certain number of random mismatches. Except one 

candidate (Table 3.2, line 1), we found a high number of hits that did not pass subsequent 

refining steps (see below). 

 
Motif 1-Motif 2 Ch ARS(1) origin(2) ORF p-value Sum1(3) sum1∆(4)

ORC-D2 7 726 No YGR087C 7.5E-01 1.21 
ORC-Sum1 2 229 Probable (5) YBR297W 3.8E-02 1.17 
ORC-Sum1 6 606* Yes (9) YFR012W 3.3E-02 2.35 
ORC-Sum1 7 715 Yes (9) YGL118C 2.1E-01 1.10 
ORC-Sum1 7 724 Probable (3) YGR043C 2.4E-01 1.37 
ORC-Sum1 12 1217 Yes (9) YLR178C 9.3E-01 0.71 
ORC-Sum1 12 1227 Probable YLR345W 2.8E-01 0.93 
ORC-Sum1 13 1335 No YMR325W 4.4E-05 1.09 
ORC-Sum1 16 1609 Yes (8) YPLWdelta7 1.2E-01 n.d. 
ORC-Sum1 16 1618 Yes (9) YPL087W 2.5E-02 1.33 

 
Table 3.2: Genomic loci of ORC and Sum1 consensus motif co-occurrence. 
(1) The indicated ARS or proposed ARS (pro-ARS) sites are located upstream of the respective 
ORF. (2) In vivo origin activity (Raghuraman, et al., 2001). The authors estimated the 
probability to be an in vivo origin for the respective ARS ranging from 1 to 9. (3) p-value as an 
indication of in vivo Sum1 binding at the indicated ORFs. (4) Expression change of the indicated 
ORF in a sum1∆ strain compared to the wild-type. Ch: chromosome; ORF: ORF downstream of 
the indicated ARS. The indicated loci are found at a distance of less than 200bp. ARS606 
marked with an asterisk has been independently shown to be an active origin of replication. 
 

In a subsequent approach we searched genomewide for areas <200bp that contained the 

consensus motif of the MSE (DSYGWCAYWDW), a well characterized Sum1 binding site 

(Pierce, et al., 2003), and the ORC binding site. To exclude random sequences, we checked 

the resulting ~100 candidates for whether they were in vivo targets of ORC and Sum1. As 

above we used the data from two previous studies that identified genomewide Sum1 and ORC 

binding sites using ChIP mediated microarray analysis (see Table 3.2, (1) and (3)) (Lee, et al., 
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2002; Wyrick, et al., 2001). Additionally, we utilized data on replication timing by 

(Raghuraman, et al., 2001) to find possible in vivo origins (2). Finally we checked whether 

expression of ORFs adjacent to the loci was upregulated in a sum1∆ strain (3) (Bedalov, et al., 

2003). Loci that fullfilled at least two of the above mentioned requirements were scored as 

possible candidates.  

 

 
 

Figure 3.11: Sum1 influenced origin function of ARS1013 
(A) Schematic representation of ARS1012 and ARS1013 located at the ORF YJL038C on 
chromosome X. The location of Ndt80 and Sum1 consensus sites (Pierce et al. 2003) and ACS 
matches is indicated. Bold lines represent fragments whose ARS function was tested. (B)  SUM1 
was required for ARS activity of ARS 1013 on plasmids. Strains AEY2 (WT) and AEY3358 
(sum1∆) were transformed with URA-CEN4 plasmids  carrying either ARS1012 (pAE1076) or 
ARS1013-3 (pAE1081) as their sole origin. Transformants obtained upon transformation of 
ARS1013-1 or ARS1013-2 -URA-CEN4 plasmids (pAE1078, pAE1080) were not restreakable.  
 

3.6.2 Sum1 influenced origin function of ARS1013 

Among the known ARS sites that had been identified in the Sum1-ORC binding screen was 

ARS1013 (Fig. 3.10, Table 3.1) which mapped to the intergenic region upstream of ORF 

YJL038C (Wyrick, et al., 2001). We asked whether ARS activity of ARS1013 was affected by 

Sum1 by testing ARS function of three overlapping ARS1013 fragments (Wyrick, et al., 

2001) in wt and sum1∆ strains (Fig. 3.11A). Two fragments (ARS1013-1, -2) formed pin-

prick transformants that failed to grow upon restreaking (data not shown). In contrast, 

ARS1013-3, which contains several Sum1 bindings sites, formed small transformants in wild-

 54



 
                                                                                                                                            Results 
 

type strains and pin-prick transformants in sum1∆ strains. Furthermore, the wild-type 

transformants formed colonies upon restreaking, whereas the sum1∆ transformants did not 

(Fig. 3.11B). This demonstrated that ARS function of ARS1013 was improved by the 

presence of Sum1 binding sites and depended on SUM1. Another ARS adjacent to ARS1013, 

ARS1012, is an active origin of replication (Raghuraman, et al., 2001), but does not contain 

Sum1 binding sites closeby (Fig. 3.11B). When tested for plasmid maintenance, ARS1012 

transformants grew equally well in wild-type and sum1∆ strains (Fig. 3.11B). Taken together, 

these experiments showed that Sum1 binding sites within a replicator improved origin 

function. 

 

3.6.3 Sum1 binding sites controlled origin function of ARS1013 

To further test this notion, we next determined whether Sum1 sites other than those naturally 

present at ARS1013 could improve ARS function of a weak origin. This was achieved by 

adding ectopic Sum1 binding sites from HML-D (4xD2 or HML-D) or the SMK1 promoter to 

ARS1013-2 and testing ARS function in wt and sum1∆ strains. 

 

 

 
 

Figure 3.12: Addition of  Sum1 binding sites improved the ARS function of ARS1013-2.  
Strains AEY2 (WT) and AEY3358 (sum1∆) were transformed with URA-CEN4 plasmids either 
carrying ARS1013-3 (pAE1081) or variants of ARS1013-2 containing additional fragments of 
HML-E (4xD2, pAE1159 and HML-E ACS-, pAE1160) or the SMK1 promoter (pAE1161) 
upstream of the ARS1013-2 fragment.  
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Addition of HML-D or the SMK1 promoter significantly improved ARS function, and the 

improvement was completely dependent on Sum1 (Fig. 3.12), which showed that Sum1 sites 

from alternative sources had the ability to increase replication initiation of a plasmid origin. 

Addition of four D2 elements barely increased initiation, suggesting that the D2 element was 

too minimal for Sum1 binding in this context.  

 

3.6.4 Sum1 affected the chromosomal origin activity of ARS1013 

Our observation that Sum1 influenced plasmid stability suggested that it might also affect 

chromosomal replication initiation of Sum1-binding origins. To investigate this, we measured 

origin firing of ARS1013 in its native chromosomal location in wt and sum1∆ strains by 

performing two-dimensional origin mapping gels (Fangman and Brewer, 1991).  

 

 
 

Figure 3.13: Sum1 was required for chromosomal origin activity of ARS1013 
(A) Schematic representation of hybridization patterns of DNA harboring a chromosomally 
active or inactive origin after two dimensional gel electrophoresis (Y-arc: passively replicated 
fragment, bubble-arc: fragment carrying an active origin of replication). 
(B) Sum1 was required for chromosomal origin activity of ARS1013. The appearance of bubble 
shaped replication intermediates indicative of chromosomal initiation (arrows) was measured by 
2-D gel electrophoresis and Southern hybridization in a wild-type (AEY2) and sum1∆ 
(AEY3358) strain. 
 

The principle of origin mapping by using two-dimensional gel-electrophoresis is based on the 

fact that actively replicating DNA migrates differently from passively replicating DNA in an 

agarose gel. To visualize this difference, DNA fragments carrying a suspected origin of 

replication are generated by restriction enzyme digestion of genomic DNA and separated in a 

two-dimensional gel run. After transfer to a membrane via Southern blot, the fragment is 
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detected with a radioactively labeled DNA and the migration pattern is visualized by 

autoradiography. If an active origin is present on the fragment, two replication forks are 

emanating outwards from the origin thus creating a bubble shaped structure. Passively 

replicated DNA shows only one replication fork migrating through the fragment creating a 

characteristic Y-shape (Fig. 3.13A). Since the tested DNA is obtained from a pool of cells, the 

fragments represent a pool of possible replication stages ranging from not yet replicated DNA 

to almost replicated DNA with doubled DNA content. A 2D-migration pattern resembling a 

strongly bent arc therefore represents passively replicated Y-DNA (Fig. 3.13A left) while 

actively replicated bubble-DNA is indicated by a lightly bent arc pattern (Fig. 3.13A right). 

Simultaneous presence of the two migration patterns indicates that the examined ARS does 

not initiate replication in all cells.  

Upon testing ARS1013 we observed a weak signal indicative of bubble-shaped replication 

intermediates along with strong signal for Y-arc shaped replication intermediates in the wild-

type strain (Fig. 3.13B, arrow), indicating that ARS1013 was only active in a fraction of cells 

and thus, that it was an inefficient chromosomal origin. This was expected, because ARS1013 

lies close to ARS1012, which has stronger ARS activity than ARS1013 and therefore 

probably initiates in the majority of cell cycles and inactivates ARS1013. However, this 

signal was absent in the sum1∆ strain (Fig. 3.13B). This showed that Sum1 was required for 

replication initiation of ARS1013 in its chromosomal environment.  

 

3.6.5 Sum1 influenced origin function of selected origins 

We also determined the plasmid maintenance properties of other intergenic regions from our 

dataset (see Table 3.1). The intergenic regions iYLR307W (ARS1223) and iYOL024W 

(ARS1511) were both designated “proposed ARS” (pro-ARS) by Wyrick et al (2001) due to 

their ability to bind ORC and Mcm proteins. However, their ARS activity so far has not been 

tested. We selected these regions, because they colocalize with probable in vivo origins of 

replication as determined by genome-wide density transfer experiments (Raghuraman, et al., 

2001). In a plasmid maintenance assay, we found that ARS1223 and ARS1511 indeed 

conferred autonomous replication to an origin-less plasmid, and that they displayed a 

significantly increased plasmid loss rate in sum1∆ cells as compared to wild-type cells (Fig. 

3.14A). This showed that the replication capacity of these origins depended on Sum1.  
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Additionally we tested ARS606 that had been identified by our consensus sequence search 

(see Table 3.2). When assaying plasmid stability of plasmids carrying ARS606 as the only 

origin, we observed that ARS activity of ARS606 strongly depended on Sum1. sum1∆ 

transformants containing this ARS did not grow upon restreaking, whereas wild-type 

transformants did (Fig. 3.14B).  

 

 
Figure 3.14: Sum1 affected ARS activity of selected origins of replication. 
(A) ARS1223 and ARS1511 required SUM1 for full ARS activity. Plasmid loss rates were 
determined in a wild-type, WT (AEY2) and a sum1∆ (AEY3358) strain. Strains with URA-CEN4 
plasmids carrying ARS1223 (pAE1130) or ARS1511 (pAE1135) as their sole origins where 
analyzed. The average loss rates obtained from three independent experiments are shown with 
corresponding error bars. The loss rate in sum1∆ strains was approximately 2-fold (ARS1223) 
and 5.5-fold (ARS1511) higher than in wild-type strains. (B) ARS activity of ARS606 was 
dependent on SUM1. Strains AEY2 (WT) and AEY3358 (sum1∆) were transformed with URA-
CEN4 plasmids carrying ARS606 (pAE1126) as their sole origin and streaked on a -Ura plate. 
 

3.6.6 Sum1 affected origin function at chromosomes 

Since ARS1511 and ARS606 exhibited a strong dependence on SUM1 if tested on plasmids it 

was of interest to test the SUM1 dependence of these origins at their native chromosomal 

location. To this end we measured origin firing of ARS606 and ARS1511 in wt and sum1∆ 

strains by performing two-dimensional origin mapping gels (Fig. 3.15). ARS607 was 

additionally chosen, because it located to an intergenic region that also co-localized with a 

known Sum1 binding site (Fig. 3.10, iYDR523C). In a first approach we measured origin 

activity of ARS606 in strains grown at normal temperature (30°C). However the amount of 

origin firing of ARS606 was indistinguishable in wild-type and sum1∆ strains. Signal 

quantification revealed that both strains exhibited a comparable ratio of bubble shaped to Y-

arc shaped replication intermediates (Fig 3.15A, 30°C and Table 3.3). Since sum1∆ strains 
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show a mild growth defect at low temperature (data not shown) we reasoned that an existing 

difference in origin activity might be enhanced at lower temperature.  

 

 
 
Figure 3.15: Chromosomal origin activity of selected ARS sites in wild-type and sum1∆ strains. 
 (A) SUM1 improved chromosomal origin activity of ARS606. The ratio of bubble- to Y-arc 
shaped replication intermediates was compared by 2-D gel electrophoresis and Southern 
hybridization in a wild-type (AEY2) and sum1∆ (AEY3358) strain grown at 30°C or at 18°C. 
Bubble shaped replication intermediates in sum1∆ are marked with an arrow. (B) Chromosomal 
origin activity of ARS607 and ARS1511 in wild-type (AEY2) and sum1∆ (AEY3358) strains 
grown at 18°C. Bubble shaped replication intermediates of the sum1∆ autoradiogram are 
marked with an arrow. 
 

To this end we performed the experiment with DNA from strains grown at 18°C. In fact the 

sum1∆ strain showed a slightly reduced ratio of bubble to Y-arc signal compared to the wild-

type (Fig. 3.15A, 18°C and table 3.1), indicating that at 18°C ARS606 was less often active in 

the sum1∆ strain. However signal intensity ratios for ARS607 and ARS1511 were 

indistinguishable between wild-type and sum1∆ strains (Fig. 3.15B, table 3.1).  

This either indicated that the difference was only prominent enough at ARS606 to be 

visualized by the method of 2D gel electrophoresis mapping, or that ARS607 and ARS1511 

are not affected by Sum1 in their chromosomal location. However, the observed influence of 
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Sum1 on chromosomal origin activity of ARS1013 and ARS606 along with the synthetic 

phenotypes of sum1∆ with replication initiation proteins (see chapter 3.5) showed that Sum1 

acted as a global initiation factor.  

 
Investigated ARS WT [B/Y] sum1∆ [B/Y] 

ARS 606, 30°C 6.35 7.52 

ARS 606, 18°C 4.46 0.91 

ARS 607, 18°C 3.39 4.80 

ARS 1511, 18°C 1.26 1.39 

 
Table 3.3: Sum1 affected chromosomal origin activity of ARS606 at low temperature.  
The signal intensity ratio of bubble to Y-arc [B/Y] intermediates is indicated. The signal 
intensity per arc of a representative section in each autoradiogram in Fig. 3.14 was quantified 
and normalized to background noise. Signal quantification was carried out using the 
ImageQuantTM 1.1 software (Molecular Dynamics, CA).  
 

3.7 Hst1 affected Sum1-modulated replication origins  

In our search for replication origins that are bound by Sum1 we mostly selected candidate 

origins that were located upstream of genes that are derepressed in a sum1∆ strain (see chapter 

3.6). Since Sum1 acts in concert with Hst1 in a subset of these genes (Table 3.1(7)) (Bedalov, 

et al., 2003; McCord, et al., 2003), we asked whether Hst1 might also affect the ability of our 

selected origins to initiate replication. In a plasmid maintenance assay, we found that 

ARS1223 and ARS1511 displayed a significantly increased plasmid loss rate in hst1∆ cells as 

compared to wild-type cells (Fig. 3.16A). Notably the magnitude of plasmid loss in hst1∆ 

cells (ARS1223: 1.9fold; ARS1511: 5.4fold) was almost identical to that in sum1∆ cells 

(ARS1223: 2fold; ARS1511: 5.5fold, Fig.3.14A). This suggested that these two proteins acted 

in concert at the tested origins.  

We also tested the involvement of Hst1 in origin activity of ARS1013 which was shown to be 

dependent on Sum1 (see chapter 3.6 and Fig. 3.11B and 3.13B). When assaying the ARS 

function of overlapping ARS1013 fragments in hst1∆ cells we found - as with Sum1 - that 

fragment 1013-2 formed pin-prick transformants (data not shown). ARS activity of fragment 

1013-3, which contains several Sum1 binding sites, however, was completely dependent on 

Hst1, since hst1∆ transformants failed to grow upon restreaking whereas wild-type 
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transformants did (Fig. 3.16B). This demonstrated that ARS function of ARS1013 was both 

dependent on the presence of Sum1 binding sites and Hst1. 

ARS606 was identified independently of our first search (see Fig.3.10), and ORFs in the 

vicinity of this origin are only weakly affected in sum1∆ cells (Bedalov, et al., 2003) (Table 

3.2). Nevertheless, its activity in plasmid loss assays was strongly dependent on Sum1 (Fig. 

3.14B). This prompted us to ask whether Hst1 also affected the activity of this ARS. Indeed 

we observed that origin activity of ARS606 strongly depended on Hst1, since hst1∆ 

transformants containing this ARS did not grow upon restreaking, whereas wild-type 

transformants did (Fig. 3.16C left).  

 

 
 

Figure 3.16: Hst1 affected ARS activity of Sum1 modulated origins of replication. 
(A) ARS1223 and ARS1511 required HST1 for full ARS activity. Plasmid loss rates were 
determined in a wild-type, WT (AEY2) and a hst1∆ (AEY1499) strain. The experimental 
procedure was as described in Fig. 3.14A. The loss rate in hst1∆ strains was approximately 1,9 
fold (ARS1223) and 5,4 fold (ARS1511) higher than in wild-type strains. (B) HST1 was required 
for ARS activity of ARS 1013 on plasmids. Strains AEY2 (WT) and AEY1499 (hst1∆) were 
transformed with a URA-CEN4 plasmid carrying ARS1013-3 (pAE1081) as its sole origin. 
Transformants obtained upon transformation of a ARS1013-2 -URA-CEN4 plasmid (pAE1080) 
were not restreakable. (C) ARS activity of ARS606 was dependent on HST1 but not on SET3. 
(Left) Strains AEY2 (WT) and AEY1499 (hst1∆) or (Right) strains BY4741 (WT) and BY4741 
set3∆ (set3∆) were transformed with URA-CEN4 plasmids carrying ARS606 (pAE1126) as their 
sole origin and streaked on a -Ura plate.  
 

Hst1 was previously shown to occur in two different protein complexes. In one case, it is in 

complex with Sum1 and Rfm1 (McCord, et al., 2003; Pijnappel, et al., 2001) and the other 

case, it is in the Set3 complex (Pijnappel, et al., 2001). The multisubunit Set3 complex acts as 

a histone deacetylase and functions as a repressor of genes during the early/middle stages of 

the sporulation program (Pijnappel, et al., 2001). Therefore it was conceivable that the Set3 

complex might be involved in modulating the activity of Sum1-regulated origins. Since the 
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protein Set3 is the central component of the multi-subunit Set3 complex, we assayed ARS606 

activity in a set3∆ strain. However, growth of set3∆ transformants was indistinguishable from 

that of wild-type transformants (Fig. 3.16C right), indicating that the Set3 complex was not 

involved in origin activity of Sum1/Hst1 affected ARS sites.  

Considering that hst1∆, like sum1∆, is synthetically lethal with orc2-1 and orc5-1 (Suter, et 

al., 2004) these results indicate that Hst1 also plays a significant role in replication initiation 

of a notable set of replication origins.  
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4 Discussion  
 
An important question in heterochromatin biology is how its formation is targeted to the right 

location. In S.cerevisiae, the presence of a set of DNA binding proteins serves as nucleation 

point for the spreading of heterochromatin. In this work, we identified a new anchor protein 

for this purpose, the protein Sum1, which was shown to bind a sequence element within the 

HML-E silencer. Heterochromatin targeting and replication initiation are mechanistically 

linked by the observation that ORC, the replication initiator, is required for both processes. 

Here, we show that Sum1 was also required for replication initiation of several origins of 

replication in the yeast genome. Since the Sum1 protein has previously been identified to be a 

mitotic repressor for a set of middle meiotic genes, our results notably expand the knowledge 

about this protein and identify it as a novel regulator of replication and silencing in yeast.  

 

4.1 Sum1 in silencing 

Previous studies described a role of the mutant Sum1-1 protein but not the wild-type Sum1 in 

transcriptional silenicing at both HM loci (Chi and Shore, 1996; Klar, et al., 1985; Laurenson 

and Rine, 1991). Sum1-1, through its interaction with the HDAC Hst1 is thereby able to 

establish an alternative type of heterochromatin that is independent of the Sir-proteins 

(Rusche and Rine, 2001; Sutton, et al., 2001) (Fig. 4.1B left). In this study we show that the 

wild-type Sum1 protein is also implicated in silencing of HMLα, though not HMRa. In this 

role Sum1 binds to a sequence element within the D element, termed D2 at the HML-E 

silencer.  

This finding extends the current knowledge on biological functions of wild-type Sum1 that to 

date was only known as mitotic transcriptional repressor for a set of middle meiosis specific 

genes (Xie, et al., 1999). As a transcriptional repressor, Sum1 often acts in concert with Rfm1 

and Hst1 (Fig. 4.1A, left). The histone deacetylase activity of Hst1 is thereby important for 

the repressive properties of this protein complex. In contrast, we found that the activity of 

Sum1 as a silencing protein at HML-E was independent of Hst1. This is surprising, especially 

in light of the observed dependence of Sum1-1 on Hst1 in silencing the HM loci. However, 

Sum1 as a transcriptional repressor does not always act via Hst1. Microarray analysis of 

sum1∆, hst1∆ and rfm1∆ strains revealed that of the 146 genes that were derepressed in a 
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sum1∆ strain only 55 were also derepressed in hst1∆ and rfm1∆ strains (McCord, et al., 

2003). This shows that Sum1 has the potential to repress transcription independently of Hst1. 

Interestingly, genes that are repressed both by Sum1 and Hst1 are significantly stronger 

derepressed in a sum1∆ than in an hst1∆ strain (McCord, et al., 2003; Xie, et al., 1999). These 

data indicate either that Sum1 has intrinsic repressive properties or that Sum1 can interact 

with an additional factor that has repressive properties (Fig. 4.1A, right). Sum1 interacts with 

Rfm1, but Rfm1 serves exclusively as bridging protein between Sum1 and Hst1, which was 

determined genetically and biochemically (McCord, et al., 2003). In its role as a silencer 

protein Sum1 may interact with Sir2 or may stabilize the establishment of the Sir-protein 

complex at HMLα. In fact one study using a specialized repression system showed an indirect 

dependence of Sir2 repression to Sum1 presence (Xie, et al., 1999). However, in numerous 

protein-protein interaction screens the Sir proteins have not been shown to interact with 

Sum1. Nevertheless it would be interesting to directly address the question of a Sum1-Sir2 

interaction or to search for Sum1 interactors in a yeast two-hybrid screen. 

However, Sum1 could also act as silencer protein at HML-E as Abf1 does at HMR-E. Abf1 

was so far not found to interact with any of the other proteins implicated in silencing and yet 

it is important for full repression at HMR. Besides the fact that it is a transcriptional activator 

elsewhere, Abf1 has been shown to posses nucleosome positioning activity (Lipford and Bell, 

2001). Sum1 could also possess this activity and act comparably to Abf1 at the silencer, thus 

supporting heterochromatin formation (Fig. 4.1B right).  

In its role as transcriptional repressor Sum1 often binds to a sequence element called the MSE 

upstream of middle sporulation genes (Xie, et al., 1999). A consensus sequence for the MSE 

has been determined (Pierce, et al., 2003) but the identified D2 sequence of HML-D does not 

contain this consensus sequence. This could mean that Sum1 binds to a non-consensus 

sequence at D2. Perhaps, accessory sequence elements outside D2 also aid in binding. In line 

with this, in electrophoretic mobility shift assays (EMSA) we observed binding of Sum1 to a 

sequence that contained the 93 basepair D element but we were unable to detect binding of 

Sum1 to an oligonucleotide that solely contained the 14 basepair D2. 

While in vitro, bacterially expressed and purified full length Sum1 bound HML-E DNA with 

high affinity, the in vivo ChIP assay showed only a weak binding of tagged Sum1 to HML-E. 

We used different experimental approaches to improve the in vivo Sum1 binding at HML-E. 

This included the addition of the c-myc tag to either end of Sum1, prevention of 
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heterochromatin formation across HML by the deletion of Sir4, or ChIPs at different 

timepoints of the cell cycle, but the enrichment of Sum1 to HML-E remained weak. Possible 

interpretations are that Sum1 in vivo binds weakly to the non-consensus sequence D2 element, 

or that Sum1 binds transiently to D2 and is influenced by factors that are not dependent on the 

cell cycle. Alternatively, using an affinity tag different from the c-myc tag may yield higher 

enrichment of HML-E in ChIP assays.   

 

 
 
Fig. 4.1: The different facets of Sum1 
(A) Sum1 functions as a repressor for middle sporulation (MS) genes either in concert with 
Rfm1 and Hst1 (Left) or without Rfm1/Hst1 (Right). (B) Sum1 in silencing. (Left) The mutant 
allele Sum1-1 can repress HMRa in the absence of the Sir proteins. (Right) Wild-type Sum1 aids 
in the establishment of silencing at HMLα upon binding the D2 element. (C) Sum1 in replication 
initiation. Sum1 and Hst1 regulate the activity of a subset of origins. The ability of Hst1 to 
deacetylate histone tails at the surrounding nucleosomes might be involved in this regulation. 
 

4.2 Sum1 in replication initiation  

A second, unexpected finding of this study is that Sum1 was not only a novel anchor protein 

at HML-E to silence HMLα, but also a regulator of replication initiation. In this function, 

Sum1 may be comparable to Rap1 (Kimmerly, et al., 1988), Mcm1 (Chang, et al., 2004) or 

Abf1 (Diffley and Stillman, 1988; Eisenberg, et al., 1988) which bind to a subset of yeast 
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origins and are required for efficient initiation. A picture emerges in which yeast replication 

origins, in addition to ORC, bind an accessory factor that enhances initiation, with different 

subsets of origins being bound by different modulators.  

How does Sum1 promote replication initiation? We showed that Sum1-binding sites in the 

vicinity of origins and simultaneous presence of Sum1 are important for their replication 

activity. Data of (Lee, et al., 2002) and our data for HML-E indicated that Sum1 is physically 

present at origins whose activity is regulated by Sum1. Finally, the ectopic addition of Sum1 

binding sites to an inactive origin could render it active, and this activity was also Sum1 

dependent. Thus, in regulating origin activity Sum1 is functionally comparable to Abf1 

(Diffley and Stillman, 1988; Eisenberg, et al., 1988), which also shares its ability to be a 

silencing protein (Kimmerly, et al., 1988). Abf1 binding repositions nuclesosomes both in 

vivo and in vitro (Lipford and Bell, 2001). This leads to a region of favourably positioned 

nucleosomes around the ACS and increases the likelihood of replication initiation. The same 

could be true for Sum1, though additional experiments will directly have to address this 

question. Alternatively, Sum1 could be implicated in facilitating the binding of ORC to the 

ARS site. It is conceivable that Sum1 interacts physically with ORC at the origin such that 

this interaction is further stabilized by the presence of a Sum1 binding site nearby. In light of 

this one could re-interpret our co-immunoprecipitation experiment where a Sum1-ORC 

interaction was abolished upon addition of an agent that can destroy protein-DNA 

interactions. Abolishing the Sum1-DNA interaction might have weakened the Sum1-ORC 

interaction to an extent that it was not possible to detect it via co-immunoprecipitation. 

However, it is also possible, that Sum1 aids in events like the formation of the pre-RC or at 

the transition of pre-RC formation to replication initiation in that it stabilizes the assembly of 

involved protein complexes.  

We also found that deletion of Hst1 had a negative effect on origin activity at Sum1-regulated 

origins. Interestingly, in hst1∆ strains the origin function was impaired to a comparable extent 

as in sum1∆ strains. This suggests that both proteins affect origin activity by related 

mechanisms. The fact that HST1 in its role as transcriptional repressor acts almost exclusively 

via SUM1 (McCord, et al., 2003; Robert, et al., 2004) and that the individual deletions of 

HST1 or SUM1 are synthetically lethal with mutant orc alleles (Suter, et al., 2004) suggests 

that Hst1 also interacts with Sum1 at origins. To confirm this hypothesis, the effect of double 

mutants on origin activity needs to be quantified and compared to that of the individual 
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mutants. Also, it will be interesting to investigate the involvelment of Rfm1, a bridging factor 

between Sum1 and Hst1, in origin activity. 

Since Hst1 is an HDAC (Sutton, et al., 2001), the influence of Hst1 on initiation may be 

exerted through chromatin deacetylation (Fig. 4.1C). In fact, HDAC activity at an origin had 

previously been linked to its activity. Nucleosomes adjacent to OriP, the replication origin of 

the Epstein Barr virus, were shown to be deacetylated, presumably by human HDAC1/2, at 

the G1/S transition but not at other times of the cell cycle (Zhou, et al., 2005). How histone 

deacetylation around origins promotes their replication initiation capacity is not yet clear but 

(Zhou, et al., 2005) showed that the chromatin remodeling complex SNFh2 was bound to the 

origin concurrently to HDAC1/2 and was important for origin activity. Thus it is conceivable 

that deacetylation of origins by Hst1 is also a prerequisite for the association of a chromatin 

remodeling factor which in turn leads to increased DNA accessibility and facilitates pre-RC 

assembly. In line with this, it has previously been shown that acetylation of lysine 16 at 

histone H4 influences the function of ISWI, another chromatin remodeler (Corona, et al., 

2002). However, although Hst1 is a histone deacetylase, another possibility is that it might 

deacetylate a non-histone protein such as ORC, other pre-RC components or a regulator of 

initiation thereby activating replication initiation. Hst1 is a homologue of Sir2, and 

mammalian Sir2 homologues have been shown to deacetylate non-histone proteins such as 

p53 (Luo, et al., 2001). 

Interestingly, two other HDACs have been implicated in replication initiation: The absence of 

Rpd3 deacetylation causes late origins to fire early (Aparicio, et al., 2004; Vogelauer, et al., 

2002), and Sir2 has a negative role in initiation at selected origins (Pappas, et al., 2004). This 

is an apparent paradox, since (histone) deacetylation by Hst1 causes increased firing at the 

origins we tested. However the authors investigated origins unrelated to the set of origins 

identified in this work. Perhaps there are different classes of origins which are also subject to 

differential regulation by histone deacetylases. Regulation of origin initiation is known to be 

context dependent, and it would be interesting to test our set of origins in rpd3∆ strains. To 

test the effect of Sir2 on origins of our selection one could target Sir2 fused to a Gal4 binding-

domain to an origin that carries Gal4 binding sites instead of Sum1 binding sites. When 

targeted to our set of origins Sir2 may behave much like Hst1 since there are several 

indications that Sir2 under some circumstances can substitute for Hst1. For example, one 

study showed that Hst1 in vitro is able to deacetylate K16 at histone H4 just as Sir2 (Sutton, 
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et al., 2001). Another study, that used the MSE of SMK1 fused upstream of a LacZ reporter 

gene showed that expression of this gene was repressed under wild-type conditions but 

activated in a sum1∆ or hst1∆  strain (Xie, et al., 1999). Overexpression of Sir2 in the 

hst1∆ strain partially re-established repression of LacZ, indicating that Sir2 could take over 

the task of Hst1 to a certain extent (Xie, et al., 1999).  

The observation of synthetic phenotypes between orc and cdc mutations and sum1∆ suggests 

that SUM1 may have a global role in replication initiation. SUM1, although it is not lethal if 

deleted (Chi and Shore, 1996), may have a supportive function at a number of origins. The 

observed synthetic phenotypes of sum1∆ and mutant alleles of replication proteins suggest 

that deletion of SUM1 may compromise replication initiation such that it is incompatible with 

reduced initiation ability. A reason why the synthetic phenotype of sum1∆ and orc2-1 was 

more severe than the one of sum1∆ and the cdc mutations could either be a direct function of 

Sum1 with ORC, but could also be due to differences in severity of the mutant alleles. 

Hst1 might have a comparably important role in replication since independent observations 

found a synthetic lethal phenotype between orc mutations and hst1∆ (Suter, et al., 2004). 

However, it is also possible that sum1∆ and hst1∆ additionally affect other processes that 

become essential in orc mutants, for instance sister chromatid cohesion (Suter, et al., 2004).  

An increased plasmid loss as observed in sum1∆ and hst1∆ can also result if factors involved 

in sister chromatin cohesion are impaired. This could be caused by inefficient function at 

CEN sequences on the plasmid. We can rule this out for Sum1 because we used identical 

plasmid backbone sequences (including CEN) in some of our ARS assays and also scored 

origins, whose activity was equally high in wild-type and sum1∆ strains (i.e. ARS1012). This 

indicates, that Sum1 did not affect CEN function.  

A global effect for sum1∆ on replication initiation suggests that the number of Sum1-

modulated origins must be sufficiently high to cause cell death in orc2-1 sum1∆ mutants, but 

our predicted set of possible Sum1-affected origins shows only few such origins. However, 

our mode of prediction was quite stringent: For our first approach, in addition to a 

requirement to be bound by both ORC and Sum1, we only scored origins upstream of genes 

that were derepressed in a sum1∆ strain (Pierce, et al., 2003). Thus, several parameters 

restricted here our origin identification: 1) The ChIP-on-chip analysis for ORC binding sites 

has probably not identified all sites, since (Breier, et al., 2004) found sequences by 
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computational analysis that were not in the ORC binding data set (Wyrick, et al., 2001) but 

were active origins in the ARS assay. This is also reflected by the fact, that we found another 

Sum1-dependent ARS, ARS606, by an independent search for Sum1 and ORC binding site 

colocalization. 2) Similarly, the p-value prescription of the binding experiment may also 

exclude intergenic regions with real binding of Sum1. For instance, one known Sum1 binding 

site, the MSE within the SMK1 promoter (Xie, et al., 1999), was bound according to (Lee, et 

al., 2002) at a p-value of 0.22 which was more than one decimal power beyond our cutoff p-

value of 0.01 and hence did not score in our search. Also, microarray analysis may only be 

sensitive enough to find locations with multiple Sum1 binding sites, as is the case for many 

Sum1-regulated genes (Pierce, et al., 2003), whereas origins may contain only one Sum1 

binding site, as is the case for HML-E. 3) There may be Sum1 binding sites that do not 

regulate the neighboring gene, but may be part of an origin. 4) The Sum1 binding site may be 

at a longer distance from the ACS, and 5) origins with co-occurrence of ORC and Sum1 

binding may also lie within coding regions.  

In our second approach to find Sum1-ORC binding site co-occurrences in silico we initially 

obtained ~100  possible candidates. In several stringent refinement steps we applied much of 

the above mentioned large scale data to evaluate whether the selected loci might be in vivo  

loci of co-occurrance. Thus many of these shortcomings also affect this selection and might 

explain why we only obtained 10 possible candidates of which we tested ARS606. Taken 

together, it seems likely that several more Sum1-regulated origins exist that await 

identification.  

 

4.3 Sum1 as a cell programm-dependent replication initiator? 

So far, Sum1 was solely considered a repressor of meiotic genes. Our work now demonstrates 

that Sum1 has a global function in replication initiation. One notable aspect about the 

involvement of Sum1 in replication is its regulation during meiosis. While constant 

throughout the mitotic cell cycle, Sum1 protein levels dramatically decrease during the early 

stages of meiosis, probably concomitantly with premeiotic S phase, and are lowest in the 

middle stages (Lindgren, et al., 2000). This raises the question how Sum1-affected origins 

initiate in premeiotic replication. Perhaps the absence of Sum1 leads to a delayed or a reduced 

firing rate at selected origins, and thus origin usage may be reduced in meiotic cells, which is 

 69



 
                                                                                                                                      Discussion 
 

in agreement with the observation that sum1∆ diploids progress slightly slower than wild-type 

into meiosis (Lindgren, et al., 2000). The decrease of Sum1 levels is most probably 

accomplished by targeted protein degradation since mRNA levels remain constant throughout 

meiosis (Lindgren, et al., 2000). It is necessary to determine the exact kinetics of this 

degradation since meiotic replication initiates in the early meiotic stages. Sum1 levels must be 

low enough at the time of pre-RC formation to inhibit this process. An experimental approach 

to address this question would be to have a synchronyzed cell population proceed into meiosis 

and to determine in vivo origin activity of a Sum1-regulated origin in premeiotic S-phase.  

In contrast to Sum1, expression of HST1 and RFM1 is significantly increased during that 

time. Since Sum1 is the targeting factor for Hst1, availability of Hst1 and/or Rfm1 might lead 

to interaction with another cofactor to reestablish repression of genes that were specifically 

induced during the earlier stages of meiosis (Chu, et al., 1998).  

The fact that Sum1 is repressed in meiosis, which in yeast is induced by depriving cells of 

glucose, and that Sum1 is required for HML silencing, is in agreement with an earlier, elegant 

observation that silencing can be made dependent on environmental conditions (Shei and 

Broach, 1995). In this study, HM silencers transposed to the MAT locus could repress MAT if 

grown on glucose-containing medium, but this silencing was relieved on non-fermentable 

carbon sources such as are used to induce meiosis. In light of our results, one interpretation of 

this observation is that Sum1 is no longer present under these conditions, so that silencing is 

abrogated. However, in the original study, not only HML-E, which contains a Sum1 binding 

site, but also HMR-E, which lacks Sum1 binding sites, showed this effect. Perhaps there are 

as yet unrecognized binding sites for environmentally regulated proteins at HMR-E that aid in 

HMR silencing. However reestablishment of silencing after a shift back to glucose-containing 

medium exhibited a long lag in HML-E (Shei and Broach, 1995). Thus one might hypothesize 

that upon shift to conditions favourable for SUM1, a certain lag time would be expected until 

Sum1 protein is present again and HML-E can fully exert its repressive properties. 

Interestingly, in the early/middle stages of meiosis the protein kinase Ime2, one of the general 

meiosis regulators, negatively regulates Sum1 repression at a promoter (Pak and Segall, 

2002). It was speculated that Ime2 marks Sum1 for targeted degradation by phosphorylation 

of Sum1 (Pak and Segall, 2002). Therefore it would be worthwile to test this hypothesis by 

observing mitotic Sum1 levels in a strain that carries an inducible copy of Ime2 on plasmids. 

If Sum1 levels decreased upon induction of Ime2 it would be interesting to test the influence 
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of targeted Sum1 degradation on HML-E silencer activity in the experimental setup done by 

Shei and Broach (Shei and Broach, 1995). 

Interestingly, other silencer binding proteins like Rap1 and Abf1 function as transcriptional 

activators rather than repressors elsewhere in the genome (Halfter, et al., 1989; Shore and 

Nasmyth, 1987). This situation is paralleled in higher eukaryotes in that the recruitment of 

Polycomb group complexes to Polycomb response elements (PREs) to maintain homeotic 

gene repression involves proteins like GAGA and Pho that can function as transcriptional 

activators as well as repressors (Brown, et al., 1998; Kerrigan, et al., 1991).  

On a broader perspective, the finding that a factor, whose expression is regulated by the cell 

program (i.e. meiosis vs mitosis), influences replication initiation and silencing in yeast, can 

be compared to the way multicellular organisms exercise control over replication and 

heterochromatin formation during development. Metazoans use differential origin patterns to 

replicate a given chromosomal area depending on the cell type. For example, Drosophila 

embryonic cells have a much broader use of origins than cells of later stages, probably in 

order to complete the early cell cycles faster than in more differentiated cells, which must 

accommodate their cell cycle to the respective tissue environment (Sasaki, et al., 1999). Also, 

the spacing between meiotic origins in the newt Triturus cristatus is much longer than in 

mitotic cells, and accordingly, premeiotic S phase is substantially longer than the mitotic S 

phase (Callan, 1974). The function of Sum1 at yeast origins may be analogous to that of 

Drosophila Myb at replication origins in the chorion loci of follicle cells, where Myb is 

required for site-specific DNA replication leading to gene amplification (Beall, et al., 2002).  

On an amino-acid sequence level there are no homologues of Sum1 in budding yeast and in 

more complex eukaryotes. Syntenic homologues in two other fungi, AAL045C of  Ashbya 

gossypii (ATCC 10895) (Dietrich, et al., 2004) and an unnamed ORF in Kluyveromyces lactis 

have been found by sequence comparison but their role is unknown to date. The Sum1 protein 

exhibits only few distinct domains. Two AT-hook domains indicating a DNA binding protein 

had been identified at pos. aa 204-216 and aa 326-338 (Aravind and Landsman, 1998). Also a 

coiled coil domain was predicted at pos. aa 155-170. In light of the absence of sequence 

homologues in larger eukaryotes perhaps other eukaryotic replication modulators exist that 

are functionally related to Sum1. They might be expressed in the early stages of development 

and, in cooperation with ORC, activate origins that are silent in their absence. The down-

regulation of these hypothesized factors would reduce origin usage, thus contributing to the 
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lengthening of the cell cycle by increasing the distance between origins. Conversely, origins 

could be activated differentially in specialized cell types or in meiosis by regulating the 

expression of origin accessory factors. In summary, the modulation of heterochromatinization 

and replication initiation by regulating an accessory factor could constitute an economical 

way for an organism to control origin usage and heterochromatin formation during 

development and differentiation.  

In conclusion, we propose a model for the regulation of origin choice and usage as well as 

heterochromatin formation during meiosis and differentiation. We present data that a factor 

that is repressed in meiosis is required for replication initiation at several origins and for gene 

silencing in yeast. We propose that larger eukaryotes use this mechanism of regulating an 

accessory factor to differentially control replication and the chromatin state of their genome 

during different stages of development. A future challenge will be to identify such eukaryotic 

regulators and to investigate how they integrate the processes of replication initiation and 

heterochromatin formation.  
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5 Appendix 

The D-element silencer screen in the “silencing cassette”- plasmid 

To search for silencing active sequences within the D element of HML-E, we initially used a 

plasmid carrying the “silencing cassette” (pAE370) that had been previously developed 

(Grunweller and Ehrenhofer-Murray, 2002). Using this cassette it is possible to assess the 

capability of DNA sequences to confer silencing to reporter genes. The silencing cassette 

consists of two components: (1) the URA3 gene, whose expression can be monitored by 

growth of transformants on uracil-lacking medium and whose repression can be monitored by 

growth of transformants on medium containing the drug 5-FOA, and (2) the mating-type gene 

a1, whose expression leads to a non-mating phenotype in a MATα strain that can be measured 

in mating assays. The effect of silencing on URA3 is sensitized by utilizing strain AEY565 

that lacks the trans-activator of URA3, Ppr1 (Roy, et al., 1990). The silencing cassette is 

flanked on one side by the HMR-I silencer (Fig. 5.1), which on its own does not confer 

silencing, but is capable of supporting silencing by weak silencers. On the other side of the 

cassette it is possible to insert potential silencers and test their silencing activity. For our 

purpose of screening HML-D we wanted to compare the silencing activity of HML-E with that 

of HML-E lacking small fragments of HML-D.  

 

 
 

Fig. 5.1: Schematic representation of the silencing cassette.  
X indicates the location for the tested sequences. Arrows indicate, that the silencing properties of 
a DNA sequence can depend on its direction relatively to the reporter genes. 
 

The properties of the silencing cassette are such that in the absence of a silencer, 

transformants are completely Ura+ and FOA sensitive, indicating full expression of URA3, 

despite the presence of HMR-I (Fig. 5.2A line 2). In the presence of a silencer (Fig. 5.2A, WT 

line 1), transformants are FOA resistant but at the same time URA3+, indicating that URA3  is 

still expressed in a portion of the (Grunweller and Ehrenhofer-Murray, 2002). In our 

experiment HML-E did also confer silencing to URA3 in the above mentioned fashion 

regardless of its orientation towards the reporter gene (Fig. 5.2, line 3 and data not shown). 
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However if the HML-E silencer lacking the D element was inserted into the plasmid URA3 

repression in the transformants was not discernable from that of the complete HML-E silencer 

(Fig. 5.2, line 3, 4). This was also observed in a tester strain of the opposite mating type 

(pAE2225, data not shown). Thus we were not able to visualize subtle effects on silencing 

capacity at HML-E.  

In a second approach we wanted to exploit the observation of (Mahoney, et al., 1991) that 

removal of any one of the silencer elements at HML-E results only in little derepression at 

HMLα whereas removal of any two of the silencer elements leads to total loss of silencing. 

We reasoned that if silencing at the silencer cassette is compromised by a deletion of the ACS 

site of HML-E any further removal of silencer elements, for example HML-D should lead to 

total loss of silencing. However deleting the ACS site alone completely abolished the ability 

of the HML-E silencer to confer silencing to the silencing cassette regardless of the 

orientation (Fig. 5.2A, lines 5-8).  

 

 
 

Fig. 5.2: HML-E properties in the silencing cassette 
(A) HML-E silencing was independent of D but dependent on the ACS. Serial dilutions of 
transformants with plasmids carrying the indicated sequence elements at the silencer cassette 
were plated and incubated at 30°C for 4 days (+ura) and 7 days (-ura, +ura +5-FOA) 
respectively. ∆X: no sequence element was ligated into X. ∆A: The ACS site was deleted. 
Plasmids were 1: pAE374, 2: pAE369, 3: pAE421, 4: pAE442, 5: pAE735, 6: pAE736, 7: 
pAE739, 8: pAE740;  (B) HML-E silencing was abolished in an orc2-1 strain. Control: CEN6-
LEU2 plasmid as a control for plasmid maintenance. Plasmids were 1: pRS315,  2: pAE369, 3: 
pAE419, 4: pAE440, 5: pAE421, 6: pAE442.  
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This was in contrast to HML-E deletion experiments done previously (Mahoney, et al., 1991), 

where an ACS deletion alone was not sufficient to cause full derepression at HMLα. However 

the deletions there had been introduced genomically and the necessity for a silencer element 

could be altered on a plasmid.  

Binding of ORC to the ACS is important for the establishment of silencing but mutant alleles 

of ORC with reduced silencing properties exist. We reasoned that performing the HML-D 

screen in an ORC mutant strain might circumvent the strong effect of an complete ACS 

deletion. The orc2-1 allele represents such a mutation. orc2-1 haploids are severly but not 

completely mating defective, indicating that this mutation is strongly affecting silencing at the 

HM loci (Foss, et al., 1993). We transformed AEY565 that harboured an orc2-1 mutation with 

the wild-type HML-E and HML-E ∆D silencing-cassette plasmids and measured URA3 

silencing. However, as in an HML-E ∆ACS plasmid, silencing was completely abolished in 

this strain background. Therefore we considered the plasmid based silencer cassette as 

inappropriate for our plan to search for a silencing active core element within D. We 

proceeded with a screening method, where mutations or deletion were genomically introduced 

into the D element as outlined in chapter 3.1. 
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Abbreviations 
 

2-D  two dimensional 

5-FOA  5-fluoro-orotic acid 

aa  amino acids 

ACS  ARS consensus sequence 

ARS  autonomously replicating sequence 

bp   basepair 

ChIP  Chromatin Immunoprecipitation 

Co-IP  Co-Immunoprecipitation  

EMSA  electrophoretic mobility shift assay 

HAT  histone acetyltransferase 

HDAC  histone deacetylase 

HM  homothallic (referring to HML and HMR) 

HML  homothallic mating left 

HMR  homothallic mating right 

HMT  histone methyltransferase 

Hst  homologue of Sir two 

MAT  mating type locus 

MCM  minichromosome maintenance 

MSE  middle sporulation element 

NAD  nicotine adenine dinucleotide 

NAT  N-terminal acetyltransferase 

OD  optical density 

ORC  origin recognition complex 

ORF  open reading frame 

PCR  polymerase chain reaction  

PEV  position effect variegation  

Rfm  repression factor of MSEs 

rpm  revolutions per minute 

RT  room temperature 

SDS  sodium dodecyl sulfate 

Sir  silent information regulator 

Sum  suppressor of mar 

ts  temperature sensitive 

WT  wild-type 
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