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ABSTRACT

Motivation:  Neighbor dependent substitution processes
generated specific pattern of dinucleotide frequencies in
the genomes of most organisms. The CpG-methylation-
deamination process is, for example, a prominent process
in vertebrates (CpG-effect). Such processes, often with
unknown mechanistic origins, need to be incorporated into
realistic models of nucleotide substitutions.

Results: Based on a general framework of nucleotide sub-
stitutions we develop a method that is able to identify the
most relevant neighbor dependent substitution processes,
estimate their relative frequencies, and judge their import-
ance to be included into the modeling. Starting from a model
for neighbor independent nucleotide substitution we succes-
sively add neighbor dependent substitution processes in the
order of their ability to increase the likelihood of the model
describing given data. The analysis of neighbor dependent
nucleotide substitutions based on repetitive elements found in
the genomes of human, zebrafish and fruit fly is presented.
Availability: A web server to perform the presented analysis
is publicly available at: http://evogen.molgen.mpg.de/server/
substitution-analysis.

Contact: arndt@molgen.mpg.de

explained by the presence of tl@gpG methylation deami-
nation process (Arndet.al, 2002). Biochemical studies in
the 1970s already compared these odds ratios for different
genomes and different fractions of genomic DNA (Russell
et.al, 1976; Russell and Subak-Sharpe, 1977) and concluded
that these ratios are a remarkably stable property of geno-
mes. Subsequently, Karlin and coworkers (Karlin and Burge,
1995; Karlin and Mazek, 1997; Karliret.al, 1997) elabo-
rated and expanded upon these observations, showing that
the pattern of dinucleotide abundance constitutes a genomic
signature in the sense that it is stable across different parts
of a genome and is generally similar between related orga-
nisms. Since this signature is also present in non-coding and
intergenic DNA, it is tempting to study neighbor dependent
mutation and fixation processes (which we refer to as the sub-
stitution process henceforth) to understand the evolution of
neutral DNA. However, to pursue this line of research, it is
necessary to establish accurate and yet computationally trac-
table models of nucleotide evolution, beyond the familiar and
widely-used single-nucleotide substitution models (see e.g.
(Lio and Goldman, 1998) for a review).

Recently a mathematical and computational framework to
include such neighbor dependent substitution processes has
been introduced (Arndét.al, 2002) and was successfully

1 INTRODUCTION applied to model th&€€pG methylation deamination process
The mutation rate of a nucleotide can be drastically affecin vertebrates (Arndét.al, 2003). Other extensions of single
ted by the identity of the neighboring nucleotides in thenucleotide substitution models, which generalize zhe 4
genome. A well-known and studied example of this fact is theSUbstitution matrix for single nucleotides td@x 16 one for
increased mutation of cytosine to thyminedpGdinucleoti- dinucleotides, have also peen considered (Siepel and Haus-
des in vertebrates (Coulondet.al, 1978; Razin and Riggs, sler, 2004; Lunter and Hein, 2004). As t_hose, the framework
1980). This process is triggered by the methylation of cyto-Of Arndt et.al. (2002) allows the inclusion of any type of
sine in CpG followed by deamination, and mutation from Ne€ighbor dependent process and these models allow one to
CpGto TpG or CpA (on the reverse strand). Due to this pro- make a quantitative analysis of neighbor dependent processes
cess the number dEpGis decreased while the number of as Well as to get reliable estimates of other properties e.g. the
TpG andCpA s increased with respect to what is expectedsta_tionary GC—.conter_n. Here we will extend t_his. framework
from independently evolving nucleotides. Most of the deviantl© includemultiple neighbor dependent substitution proces-
dinucleotide odds ratios (dinucleotide frequencies normaliSes and infer their relevance without prior knowledge of the

zed for the base composition) in the human genome can dénderlying biomolecular processes, which are often not fully
understood or characterized.
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The rest of the paper is organized as follows. In the nexbf cytosine inCpGresulting inTpG or CpA Especially in
section we will describe details of our method. A public webmammals, its rate is about 40 times higher than this of a
server at http://evogen.molgen.mpg.de/server/substitutiortransversion (Arndet.al, 2003). This process is triggered
analysis is provided for readers who want to analyze theiby the methylation and subsequent deamination of cytosine
own sequences. First applications of such an analysis wilh CpGpairs. It is commonly (and erroneously) assumed that
be presented in the results section where we study neighbdinis process only affec8pGdinucleotides. However, this is
dependent substitutions in humatiomo sapiens zebrafish  not the case as it has been shown (Aretcl, 2002).

(Danio rerig) and fruit fly (Drosophila melanogastgrin all Our substitution model is defined by the set of substitu-
these studies, we compare repetitive elements found in thigon processes, which include all neighbor independent single
genomes of the above species with their respective ancestnalicleotide changes and additional neighbor dependent pro-
Master sequence, which can easily be reconstructed from atlesses. All these processes carry one rate paramgieng
identified copies. All copies accumulated nucleotide substithe number of substitutions per bp and time. Further, the
tutions, which we first try to model by including only single length of the time spanit, the respective substitution pro-
nucleotide substitutions without any neighbor dependenciesesses act on some sequence has to be specified. In our
Subsequently, we ask which neighbor dependent substitapplication, this time would be the timéd,, between the
tion process could be added to better describe the observéasertion of the repetitive element into the genome and its
data. Our strategy is to capture most of the observed data lybservation today. Since we have the freedom to rescale time
single nucleotide substitutions (independent of the neighboand measure it in units df’, the time spanit = 1 and

ring bases) and then include neighbor dependent substitutiomgth this choice the substitution rates are in fact equal to the
one by ondo generate successively better models with thesubstitution frequencies giving the number of nucleotide sub-
least number of parameters. Neighbor dependent processstitutions per bp. In the simplest case our model includes
are added in the order of their ability to describe the obserneighbor independent processes only and is parameterized
ved data better. Naturally, the addition of any further procesdy 12 substitution frequencies. For each additional neighbor
(together with one rate parameter) into a model will incre-dependent process we need to add one additional parameter.
ase the likelihood of this model to describe the observedhe set of all these substitution frequencies will be denoted
data. In order not to over-fit the data we use a likelihoodby {r}. The number of parameters can actually be reduced
ratio test to judge whether the addition of further processy a factor of two when one considers substitutions for neu-
is justified. Compared to other approaches, the strength dfally evolving DNA. In this case we cannot distinguish the
our approach is to generate a model with fewer parametersvo strands of the DNA and therefore the substitution rates
that nevertheless captures the essential neighbor dependeme reverse complement symmetric, e.g. the rate for the sub-
substitution processes. This prevents over-fitting the modedtitution C—A is equal to the rate for the substituti@+-T

to given data and eases the computational demand for th@n the following we will denote this process ByG—AT,

guantitative estimation of the parameters. for the rates we havey, = rgr).
In order to facilitate the subsequent maximum likelihood
2 METHOD analysis we need to compute the probabiliff,. (-2 -
o | asars), that the basex, flanked by, to the left and by
2.1 The substitution model a3 to the right, changes into the base for given neighbor

In total there are 12 distinct neighbor independent substitudependent substitution frequencigs. This probability can
tion processes of a single nucleotides by another; four oéasily calculated by numerically solving the time evolution of
them are so-called transitions that interchange a purine witthe probability to find three base$ag~;t) at timet, which

a purine or a pyrimidine with a pyrimidine. The remaining is given by the Master equation and can be written as the
eight processes are the so-called transversions that intefellowing set of differential equations:

change a purine with a pyrimidine and vice versa. The rates

of these processesy — [, will be denotedr,s, where

o, € {A,C,G, T} denote a nucleotide. In addition to these

12 processes, we want to consider also neighbor dependent

processes of the kind\ — ko andsA — o), wherex),

ko, ando X\ denote dinucleotides, and either the right or left

base of a dinucleotide changes, respectively. There might be ap(aﬁv; t) =

several of those processes present in our model, their rates

will be denoted by, .. OF rxox . We do not consider the > [rea p(eBYit) + Tep plaey;t) + Tey p(afe;t)]
very rare processes where both nucleotides of a dinucleotide ~ ¢€{A.¢.¢.T}
change at the same time. In vertebrates, the most important +Z7“ee/a5 plee'v;t) + Zree/m plaee’st), Q)

neighbor dependent process to consider is the substitution

ee’ ee’
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where the rate parameters with the equal initial and final stategnd accumulated corresponding amounts of changes. Various

Taa @NdTegag, are defined by such repetitive elements and their respective alignment to
the once active master (which is taken to be the ancestral
Taa = —Zme, TaBaf = — Z Tafee’ s sequence (Arndet.al, 2003)) can be identified using the
e#a (ee’)#(aB) RepeatMasker, http://www.repeatmasker.org.

. i The log likelihood that a sequenéeevolved from a master
and rates of neighbor dependent substitution processes ngéquencei’ under a given substitution model parameterized
included into the model are take to be zero. The abowv

%y the substitution f i¢s} is given b
definitions guarantee the conservation of the total probabi-y e substitution frequenci¢s} is given by

lity, >°,5,0p(aBv;t)/0t = 0, since the total influx is log Liyy = 10gP{r}(5|52)
balanced by an appropriate outflux of probability. The first

three terms on the r.h.s. in Eq. (1) describe single nucleo- Lt

tide substitutions on the three sites whereas the last two sums ~ log H Py (B - loi-ricivr)

(which are summed over all pairs of nucleotides) represent =2

the neighbor dependent processes at the §it@3 and(2, 3), = Z N(ayasas — -Ba-) X
respectively. To describe the evolution of three nucleotides arasasfs

ajasas, these differential equations have to be solved for log Py (-6 - |arasas), (4)

initial conditions of the form

where Py, (G]@) is the probability of the evolution of the

sequence into B This probability can be approximated very
) _ ) ) _ ~well by the product in the second line, due to the fact that
After numerically iterating the above differential equationstne correlations induced by the substitutional processes are
using the Runge-Kutta algorithm (Prestsal, 1992) we get  yery short ranged (Arndit.al, 2002). We therefore take into
the above transition probability as account the identities of bases and the dynamics on the nea-
rest neighbors to the left and to the right, and neglect those
Py (02 - larasaz) = Z p(Brfafsit =1) . (3) on the next nearest neighbors and beyond. For most app-
P1Bs lications this approximation turns out to be sufficient since
The above iteration has to be carried out 64 times for alEStimated substitution frequencies deviate less than 1% from
possible combinations of initial bases asa;. After each their actual values (see below). Note that this approximation
iteration 4 of the transition probabilitiag{r}(-ﬂ - |arasas) i_s even exact in the absence of neighbor dependent substitu-
with 3 =A,C,G, or T can be computed. Note, that the abovetion processes. The numbe¥ga; a3 — -f32-) denotes the
set of differential equations describes the time evolution offounts of observations of a base substitution fronflanked
only three nucleotides. It can easily extended to describ®Y a1 to the left anch; to the right) tog,.
systems of lengthV > 3, in which case one has to solve T estimate the substitution frequencigs’} for a given
for 4V functionsp(ajas . .. an;t). pair of @ and 5 or given numbersV(ajasas — -B-) we
. . I . maximize the above likelihood by adjusting the substitution
2.2 Estimation of substitution frequencies frequencies. This can easily be done using Powell’s method
To estimate the above mentioned substitution frequenciegrresset.al, 1992) while taking care of boundary conditions
from real sequence data we need to compare a pair of anc@Box, 1966), i.e. the positivity of the substitution frequencies.
stral sequenc& = ajas...ay and daughter sequence . . .
3 = B8,...08y, where the daughter sequence repres-2-3 Uncertainty of estimates for finite sequence
ents the state of the ancestral sequence after the substitution length
processes acted upon it for some time. Note that we d®ue to the stochastic nature of the substitution process and
not assume any other properties regarding the nucleotide alue to the fact that always only a finite amount of sequence
dinucleotide distributions of the sequences. Especially, thélata is available to estimate the substitution frequereit},
two sequences do not need to be in their stationary state withstimated frequencies will show deviations from the real
respect to the substitution model. In practice, these pairs afubstitution frequencies. In general we do not know or can-
ancestral and daughter sequences can be obtained in varioust infer these real frequencies otherwise. In order to be
ways. One very fruitful approach is to take alignments ofable to analyze the uncertainty of frequency estimates from
repetitive sequences, which can be found in various genomdite sequences we synthetically (in silico) generate pairs of
due to the activity of retroviruses. Such repetitive element@ancestral and daughter sequences using known substitution
have entered these genomes during short periods in evolprocesses and rat¢s}. In the following section we include
tion. Hence all copies of such elements in a genome havgist one neighbor dependent substitution process, namely
been subject to nucleotide substitutions for the same timéhe CpGmethylation deamination proce$gpG—CpATpG,

Pt =0={ § gpome @
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Fig. 2. Plot of the deviations of the estimated frequendigs — 7|} (open

Fig. 1. Plot of the estimated frequencies and their standard deviatiorsYMbols) and the standard deviatipAr*} (closed symbols) from 500 mea-
(from 500 measurements) for randomly drawn sequences of various lengtfUrements for randomly drawn sequences of various lengths. The daughter
The daughter sequences have been synthetically aged using the followirRgauences have been synthetically aged using the following processes (with
processes (with frequency as indicated by the dotted lines): transversiorf&edquency): transversions (0.0008)T—GC (0.0003),GC—AT (0.0005),
(0.01), AT—GC (0.03), GC—AT (0.05), andCpG—CpATpG (0.4). The ~ andCpG—CpATpG(0.004).

stationary GC-content for this model(s3474.

T T
CpG->CpA/TpG
G:C->A:T - T
AT->G:C ¥
transversions

T T T T

which plays a predominant role in the analysis of nucleotide

substitutions in vertebrates. The nucleotides of the ancestral 1

sequenceg (of length N) have been chosen randomly with

equal probability from the 4 nucleotides. Subsequently, the 1

ancestral sequence was synthetically aged and we applied

substitutions using a Monte Carlo algorithm as described irs

(Arndt et.al, 2002) yielding the sequeng& The resulting s

pair of sequences is then analyzed using the above procedure

to get estimates of the ratds*}. We repeated this experi-

ment 500 times and got estimates for the megfis and

standard deviatiod Ar*} of these measurements. In addi- !

tion we computed the stationary GC-content from each set of .

substitution frequencies (Arnet.al, 2002). Results of this oo ———ul T :

analysis are presented in Figure 1 where we show the mean length of time interval

and standard deviation of estimated rates for different length

of sequencesV. The transversion frequencies were choserFig. 3. A plot of the estimated frequencies for various degrees of sequence

to be 0.01, the frequency of theT—GC transition to be divergence. The dotted lines give expected values of the frequencies. The

0.03, that of the&C—A:T transition to be 0.05, and that of Ssequence length has been chosen td/be 107.

the CpG—CpA/TpG transition to be 0.4, as indicated by the

doted lines in Figure 1. This choice of frequencies mimics the

relative strength of the substitution process as they are obsewf the sequence lengfhi in Figure 2. The standard deviations

ved in the human genome. As can be seen the uncertainty oecrease withl //N. In the absence of neighbor depen-

observed substitution frequencies correlates positively witldent substitutions and for ancestral sequences with equally

the substitution frequencies and negatively with the length oprobable nucleotides the standard deviation for reverse com-

the sequences. plement symmetric frequencies can actually be calculated to
To further quantify these uncertainties and discuss theibe

dependence on various quantities we plotted the deviations . 2rag 1/2

{|7* — 7|} and the standard deviatiogé\r*} as a function Argp = < N ) ®)
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as long as all frequencies< 1. Corresponding lines are pre- estimated, even if single frequencies exceed one (the das-
sented also in Figure 2 and fit the observed deviations welhed horizontal line). If all substitution frequencies are of the
The deviation for neighbor dependent processes such as tleeder of or larger than one, the estimation of substitution fre-
procesLpG—CpATpG can be computed to be of the order quencies is not possible anymore (to the right of the dashed

of: vertical line). In this case, more or less all nucleotides under-
1/2 went one or more substitytion processes making itimpossible
Artps = (8%576) (6) to estlmaFe the frequencies of the un_olerlylng processes.
N In reality however, the nucleotides in the ancestral

sequence will not be randomly distributed with equal pro-
Note, that forr < 1 these errors stem only from the stocha- bability from the 4 nucleotides (as assumed above). On top
stic nature of the underlying substitutional process and aref that genomic sequences will show non-trivial dinucleo-
not due to approximations used during our maximum like-tide distributions, i.e. neighboring bases are not independent
lihood analysis of the sequence paﬁandﬁ as described in  and the dinucleotide frequencigss will deviate from the
the previous section. product of nucleotide frequencig, f3 (Karlin and Burge,

The deviations of the observed from the real frequencied995). Both these factors will influence the deviations bet-
{|7* — 7|} (see Figure 2) also decrease withy//N and are  ween the observed and the real substitution frequencies and
always bounded from above HyAr*}. Note, that the esti- in those cases the above formulas (5) and (6) do not hold any-
mates of substitution frequencies are very precise, althougimore. We also expect additional errors due to the presence
we used an approximation when deriving the likelihood inof unaccounted neighbor dependent processes. Depending
Eq. (4). This property does not hold true for neighbor depeneon the magnitude of the rates for such processes the errors
dent processes in general. For instance, we observe smalhn get quite significant as discussed below. To exclude the
(below 1%, data not shown) but systematic deviations ofatter type of errors one actually has to try to incorporate
the estimated substitution frequencies if we include the proadditional neighbor dependent processes and judge whether
cessApA/ TpT—CpATpG. In this case, one should also take their inclusion is actually relevant (as discussed in the next
into account the identity and dynamics of nucleotides on nexsubsection).
nearest neighbor sites and the associated neighbor dependerfor genomic applications, it is further not possible to repeat
processes. One would have to introduce higher order correthe measurements of substitution frequencies for different
tions in Eq. (4). This is true because of overlapping initialsets of sequences to get an estimate of the typical errors.
states of the neighbor dependent process, i.e ApA&isina  However, one can still get estimates on the expected stan-
triplet AAA However, such corrections do not have to be con-dard deviation from bootstrapping the available data. One
sidered for th&€pG—~CpA/TpGprocess. For a giveBpG the  has to resample the available data drawing randomly and
next nearest neighbor dependent process might only occur amith replacementV pairs of aligned ancestral and daugh-

a neighboringCpG which in contrast teApA's cannot over-  ter nucleotides (keeping the information of the ancestral base
lap with the givenCpG Hence correlations to the ne®pG  identity to the left and to the right) and generate a list of
are even smaller, which makes the estimation of substitutiomountsN («; asas — -32+) which then will be used to maxi-
frequencies neglecting such correlations very precise. In thmize the likelihood and estimate the substitution frequencies
absence of any neighbor dependent process there is no appes described above. One repeats this resampling procedure
ximation involved to compute the likelihood in Eq. (4) and M times and from thel/ estimates of the substitution fre-
therefore estimates will be asymptotically exactfor— co.  quencies and stationary GC-content calculates their standard

The above formulas for the standard deviation, Egs. (5) andeviation, which gives the statistical error due to the limited
(6), lose their validity if any one of the frequencies is of the amount of sequence data. We found that= 500 samples
order of one. However, the standard deviations are still decreare sufficient to estimate those errors (data not shown).
asing with increasing sequence length. In Figure 3 we present . . "
estinglated frequenciges f?om sequegces of vgarious degrees %f4 Extending the model to include additional
divergence. The substitution rates have been chosen in the  Proce€sses
ratios 1:3:5:40 for the transversions, #thd —G Ctransition, Next we address how one can extend a given substitution
the GC—AT transition, and theCpG—CpA/TpG process. model and include additional neighbor dependent proces-
On the horizontal axis we plot the length of the time intervalses to maximize the potential of such a model to describe
the ancestral sequenced (of length= 107) has been aged. the observed data. With the inclusion of additional neigh-
The dotted lines give the real substitution frequencies, whiclbor dependent processes, the likelihood of a médgl will
are the products of the corresponding rates and the lengih any case be greater than the one of the original model
of the time interval. As long as not all substitution frequen-{r}. This is the case because the models are nested and one
cies are greater than one (to the left of the dashed verticdlas an additional parameter to explain the given data. To
line in Figure 3) the substitution frequencies can faithfully test whether the inclusion of a new parameter is justified,
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we employ the likelihood ratio test for nested models. Letassumed to have evolved neutrally and therefore the substitu-
A = Ly /L,y be the likelihood ratio, ther-2log A has an  tion process is reverse complement symmetric. Results are
asymptotic chi-square distribution with degrees of freedonpresented in Table 1. In the first column of data we give
equal to the difference in the numbers of free parameters adstimations for the 6 neighbor independent single nucleotide
the two models, which in our case is one (Ewens and Gransubstitutions. We subsequently tested 48 possible extension
2001). of this simple substitution model by one additional neighbor
In practice, we extend a given substitution model in turn bydependent substitution process together with its reverse com-
each of thel x 4 x 3 x 2 = 96 possible neighbor dependent plement symmetric process (Note that in this case only 48
processes. Out of those extended models, we choose the begtensions have to be considered). As expected (and shown
one, i.e. the one with the highest likelihodd, . Since the in the second column in Table 1) ti&Gmethylation dea-
best is chosen out of a finite set of possibilities, we have tanination processGpG—CpATpG) turns out give the best
account for multiple testing and use a Bonferroni correctionimprovement with—2log A = 7.7 - 105, which is clearly
Hence we require that2log A > 15 to have significance on above the threshold df5. The substitution frequency of this
the 5% level. We confirmed this conservative threshold alsoprocess is about 45 times higher than that of a transversion.
by simulations using sequences that have been syntheticalfxtending the model from 6 to 7 parameters and including

mutated according to a known model. the CpG—CpA/TpG process, mostly affects the estimate for
theGC—A:T transition, which decreases about a factor three.
3 RESULTS Please also note that subsequently the estimation of the sta-

tionary GC-content from those rates rises from 21% for the
6 parameter model to 34% for the 7 parameter model. This
Table 1. Estimates for substitution frequencies for nested models of reveals that estimates of substitution frequencies and the sta-
nucleotide substitution in human AluSx repeats. Given are the substi- tionary nucleotide composition are very much affected by the
tution frequencies per bp in the time span after the insertion of the AluSx underlying substitution model. Substantial deviations can be
repeats into the human genome. In the last row we note-thég A - ]
) - ; . observed when the substitution model does not include all
where is the likelihood ratio of the model and the one with one less .
parameter in the column to the left. relevant process, as it is thg case for the_6 parameter model
for nucleotide substitutions in the human lineage.
In principle there can be even more neighbor dependent
processes we have to account for. According to our method,

6 param. 7 param. 8param. 9 param.

model model model model . .

the second process that needs to be included to improve the
AT-CG 0012 0012 0011 0.007 model |rs the.sgbsntutlon oEpG-Cp0GpG(—2log ) =
ATTA 0.010 0.011 0.011 0.011 1.3 - 10°). This is anotheCpGbased process and probably
CG-GC 0.016 0.016 0.012 0.012 also triggered by the methylation of cytosine. The substitu-
CG—AT 0.015 0.014 0.014 0.014 tion frequency obtained is about 30 times smaller than this of
AT—-GC 0.036 0.036 0.036 0.036 the CpG—CpA/TpG process. Nevertheless it is nearly three
CG-TA 0.158 0.059 0.060 0.060 : ; . .

times larger than the corresponding single-nucleotide trans-
CpG—CpATpG - 0.618 0.627 0.624 version frequency. The third process to be included is the
CpG~CpaGpG - 0.029 0029 substitutionTpT/ApA—TpG/CpA (—2log A = 9.6 - 10%).
TpT/ApA—TpG/ICpA - 0.013

P _ PAZIPEEP ' The instability of theTpT dinucleotide does not come as a

stationary GC-content  0.213 0341~ 0340 0.339 surprise here, since two consecutive thymine nucleotides tend
—2log A - 7.710°  1.310° 9.610* to form a thymine photodimet <> T. This process is one

of the major lesions formed in DNA during exposure to UV
light (Douki et.al, 1997).

As a first test, we applied the above method to iden- Next we turn to the analysis of the DANA repeats in

tify and measure neighbor dependent substitution process&€Prafish banio rerio). Results are presented in Table 2.

acting on the human genome. We took as input 33400d\dain we start with a model just comprising single nucleo-
copies (comprising about 9 Mbp) of the AluSx SINEs thattide transversions and transitions. As observed in human the

have been found in a genome-wide search of the humaﬁansitions occur more often than transversions and there is a

genome (release v20.34c.1 at ensembl.org from April 1sStrongAT bias in the single nucleotide substitutions. After
2004) together with individual alignments to ancestral Maste2ccounting for th&pGprocess the ratio of transversions to

AluSx found in RepBase (Jurka, 2000). These elements gigansitions is roughly 1:3:5 as it is observed for the human
lineage. Zebrafish being a vertebrate also utilizes methyla-

tion as an additional process to regulate gene expression. As

1 Note thatf,"® x?(z) dz = 0.99989 > 1 — 0.05/96 a consequence we observe a higher mutability ofGp&
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dinucleotide due to the deamination process also in zebrafishTable 3. Estimates for substitution frequencies for nested models of
However the substitution frequency for tﬁ@G—»CpA{TpG nucleotid_e substitution in DNAREPDM transposable element from
process is in zebrafish only about 8 times higher than this P'S0PNia melanogaster

of a transversion suggesting that the degree of methylation
is generally lower than in human. The reduced frequency 6 param. 7 param. 8param. 9 param.
for the CpGdeamination process found for fish is also con- model  model  model  model
sistent with previous studies which found an elevaf

deamination frequency in the human lineage only after the AT—=CG 0.038 0.038 0.038 0.038
i diation (Arndit al. 2003 AT-TA 0.052 0.045 0.045 0.045
mammalian radiation (Arndit.al, ). CGLGC 0034 0034 0034 0034
CG—AT 0.074 0.074 0.074 0.074
) o ) AT—-GC 0.052 0.052 0.052 0.047
Table 2 Est|mat_es_for' substitution frequenme's for_ nested models of CGoTA 0.108 0.108 0.098 0.098
nucleotide substitution in DANA repeats frobanio rerio.
TpA—TpT/ApA - 0.029 0.028 0.028
TpC/IGpA—TpT/APA - - 0.036 0.035
6 param. 7 param. 8param. 9 param. GpT/ApC—GpC - - - 0.021
model model model model
stationary GC-content  0.330 0.330 0.328 0.326
AT—CG 0.024 0.025 0.026 0.026 —2log A - 853 592 40
AT—TA 0.041 0.041 0.041 0.041
CG—GC 0.037 0.036 0.036 0.023
CG-AT 0.029 0.029 0.028 0.028
AT—GC 0.073 0.074 0.046 0.046
CG-TA 0.151 0.111 0.105 0.107 dependent processes besides the well-kn@p@ methyla-
CpG—CpATpG . 0.274 0.331 0.328 tion deamination process (Arndt.al, 2002). We could also
CpATpG—CpG - - 0.100 0.097 show that theCpGmethylation deamination is the predomi-
CpG—~CpdGpG - - - 0.096 nant substitution process in zebrafish, while it does not play
stationary GC-content  0.349 0.374 0.335 0.337 a role in fruit fly. We exemplified our method using sequence
data from one particular subfamily of repeats from these three
—2log A - 29105 1.610° 1.110° .
organisms. In the case of the human genome a much more

thorough analysis on various families of repeats have been

presented in (Arndét.al, 2003). A similar study, which also

would have to include also neighbor dependent substitutions,
We also investigated non-vertebrate sequence data. As dor other species will further broaden our knowledge about

example, we present here the analysis of the DNARBRL  the molecular processes that are responsible for nucleotide

repeat inDrosophila melanogastefTable 3). The need to mutations and their fixation.
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