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ABSTRACT
Motivation: Neighbor dependent substitution processes
generated specific pattern of dinucleotide frequencies in
the genomes of most organisms. The CpG-methylation-
deamination process is, for example, a prominent process
in vertebrates (CpG-effect). Such processes, often with
unknown mechanistic origins, need to be incorporated into
realistic models of nucleotide substitutions.
Results: Based on a general framework of nucleotide sub-
stitutions we develop a method that is able to identify the
most relevant neighbor dependent substitution processes,
estimate their relative frequencies, and judge their import-
ance to be included into the modeling. Starting from a model
for neighbor independent nucleotide substitution we succes-
sively add neighbor dependent substitution processes in the
order of their ability to increase the likelihood of the model
describing given data. The analysis of neighbor dependent
nucleotide substitutions based on repetitive elements found in
the genomes of human, zebrafish and fruit fly is presented.
Availability: A web server to perform the presented analysis
is publicly available at: http://evogen.molgen.mpg.de/server/
substitution-analysis.
Contact: arndt@molgen.mpg.de

1 INTRODUCTION
The mutation rate of a nucleotide can be drastically affec-
ted by the identity of the neighboring nucleotides in the
genome. A well-known and studied example of this fact is the
increased mutation of cytosine to thymine inCpGdinucleoti-
des in vertebrates (Coulondreet.al., 1978; Razin and Riggs,
1980). This process is triggered by the methylation of cyto-
sine in CpG followed by deamination, and mutation from
CpGto TpGor CpA (on the reverse strand). Due to this pro-
cess the number ofCpG is decreased while the number of
TpG andCpA is increased with respect to what is expected
from independently evolving nucleotides. Most of the deviant
dinucleotide odds ratios (dinucleotide frequencies normali-
zed for the base composition) in the human genome can be
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explained by the presence of theCpG methylation deami-
nation process (Arndtet.al., 2002). Biochemical studies in
the 1970s already compared these odds ratios for different
genomes and different fractions of genomic DNA (Russell
et.al., 1976; Russell and Subak-Sharpe, 1977) and concluded
that these ratios are a remarkably stable property of geno-
mes. Subsequently, Karlin and coworkers (Karlin and Burge,
1995; Karlin and Mŕazek, 1997; Karlinet.al., 1997) elabo-
rated and expanded upon these observations, showing that
the pattern of dinucleotide abundance constitutes a genomic
signature in the sense that it is stable across different parts
of a genome and is generally similar between related orga-
nisms. Since this signature is also present in non-coding and
intergenic DNA, it is tempting to study neighbor dependent
mutation and fixation processes (which we refer to as the sub-
stitution process henceforth) to understand the evolution of
neutral DNA. However, to pursue this line of research, it is
necessary to establish accurate and yet computationally trac-
table models of nucleotide evolution, beyond the familiar and
widely-used single-nucleotide substitution models (see e.g.
(Lio and Goldman, 1998) for a review).

Recently a mathematical and computational framework to
include such neighbor dependent substitution processes has
been introduced (Arndtet.al., 2002) and was successfully
applied to model theCpGmethylation deamination process
in vertebrates (Arndtet.al., 2003). Other extensions of single
nucleotide substitution models, which generalize the4 × 4
substitution matrix for single nucleotides to a16×16 one for
dinucleotides, have also been considered (Siepel and Haus-
sler, 2004; Lunter and Hein, 2004). As those, the framework
of Arndt et.al. (2002) allows the inclusion of any type of
neighbor dependent process and these models allow one to
make a quantitative analysis of neighbor dependent processes
as well as to get reliable estimates of other properties e.g. the
stationary GC-content. Here we will extend this framework
to includemultiple neighbor dependent substitution proces-
ses and infer their relevance without prior knowledge of the
underlying biomolecular processes, which are often not fully
understood or characterized.
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The rest of the paper is organized as follows. In the next
section we will describe details of our method. A public web
server at http://evogen.molgen.mpg.de/server/substitution-
analysis is provided for readers who want to analyze their
own sequences. First applications of such an analysis will
be presented in the results section where we study neighbor
dependent substitutions in human (Homo sapiens), zebrafish
(Danio rerio) and fruit fly (Drosophila melanogaster). In all
these studies, we compare repetitive elements found in the
genomes of the above species with their respective ancestral
Master sequence, which can easily be reconstructed from all
identified copies. All copies accumulated nucleotide substi-
tutions, which we first try to model by including only single
nucleotide substitutions without any neighbor dependencies.
Subsequently, we ask which neighbor dependent substitu-
tion process could be added to better describe the observed
data. Our strategy is to capture most of the observed data by
single nucleotide substitutions (independent of the neighbo-
ring bases) and then include neighbor dependent substitutions
one by oneto generate successively better models with the
least number of parameters. Neighbor dependent processes
are added in the order of their ability to describe the obser-
ved data better. Naturally, the addition of any further process
(together with one rate parameter) into a model will incre-
ase the likelihood of this model to describe the observed
data. In order not to over-fit the data we use a likelihood
ratio test to judge whether the addition of further process
is justified. Compared to other approaches, the strength of
our approach is to generate a model with fewer parameters
that nevertheless captures the essential neighbor dependent
substitution processes. This prevents over-fitting the model
to given data and eases the computational demand for the
quantitative estimation of the parameters.

2 METHOD
2.1 The substitution model
In total there are 12 distinct neighbor independent substitu-
tion processes of a single nucleotides by another; four of
them are so-called transitions that interchange a purine with
a purine or a pyrimidine with a pyrimidine. The remaining
eight processes are the so-called transversions that inter-
change a purine with a pyrimidine and vice versa. The rates
of these processes,α → β, will be denotedrαβ , where
α, β ∈ {A, C, G, T} denote a nucleotide. In addition to these
12 processes, we want to consider also neighbor dependent
processes of the kindκλ → κσ andκλ → σλ, whereκλ,
κσ, andσλ denote dinucleotides, and either the right or left
base of a dinucleotide changes, respectively. There might be
several of those processes present in our model, their rates
will be denoted byrκλκσ or rκλσλ . We do not consider the
very rare processes where both nucleotides of a dinucleotide
change at the same time. In vertebrates, the most important
neighbor dependent process to consider is the substitution

of cytosine inCpG resulting inTpG or CpA. Especially in
mammals, its rate is about 40 times higher than this of a
transversion (Arndtet.al., 2003). This process is triggered
by the methylation and subsequent deamination of cytosine
in CpGpairs. It is commonly (and erroneously) assumed that
this process only affectsCpGdinucleotides. However, this is
not the case as it has been shown (Arndtet.al., 2002).

Our substitution model is defined by the set of substitu-
tion processes, which include all neighbor independent single
nucleotide changes and additional neighbor dependent pro-
cesses. All these processes carry one rate parameterr giving
the number of substitutions per bp and time. Further, the
length of the time span,dt, the respective substitution pro-
cesses act on some sequence has to be specified. In our
application, this time would be the time,T , between the
insertion of the repetitive element into the genome and its
observation today. Since we have the freedom to rescale time
and measure it in units ofT , the time spandt = 1 and
with this choice the substitution rates are in fact equal to the
substitution frequencies giving the number of nucleotide sub-
stitutions per bp. In the simplest case our model includes
neighbor independent processes only and is parameterized
by 12 substitution frequencies. For each additional neighbor
dependent process we need to add one additional parameter.
The set of all these substitution frequencies will be denoted
by {r}. The number of parameters can actually be reduced
by a factor of two when one considers substitutions for neu-
trally evolving DNA. In this case we cannot distinguish the
two strands of the DNA and therefore the substitution rates
are reverse complement symmetric, e.g. the rate for the sub-
stitution C→A is equal to the rate for the substitutionG→T
(in the following we will denote this process byC:G→A:T,
for the rates we haverCA = rGT).

In order to facilitate the subsequent maximum likelihood
analysis we need to compute the probability,P{r}(·β2 ·
|α1α2α3), that the baseα2 flanked byα1 to the left and by
α3 to the right, changes into the baseβ2 for given neighbor
dependent substitution frequencies{r}. This probability can
easily calculated by numerically solving the time evolution of
the probability to find three basesp(αβγ; t) at timet, which
is given by the Master equation and can be written as the
following set of differential equations:

∂

∂t
p(αβγ; t) =∑

ε∈{A,C,G,T}

[rεα p(εβγ; t) + rεβ p(αεγ; t) + rεγ p(αβε; t)]

+
∑
εε′

rεε′αβ p(εε′γ; t) +
∑
εε′

rεε′βγ p(αεε′; t), (1)
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where the rate parameters with the equal initial and final state,
rαα andrαβαβ , are defined by

rαα = −
∑
ε 6=α

rαε, rαβαβ = −
∑

(εε′) 6=(αβ)

rαβεε′ ,

and rates of neighbor dependent substitution processes not
included into the model are take to be zero. The above
definitions guarantee the conservation of the total probabi-
lity,

∑
αβγ ∂p(αβγ; t)/∂t = 0, since the total influx is

balanced by an appropriate outflux of probability. The first
three terms on the r.h.s. in Eq. (1) describe single nucleo-
tide substitutions on the three sites whereas the last two sums
(which are summed over all pairs of nucleotides) represent
the neighbor dependent processes at the sites(1, 2) and(2, 3),
respectively. To describe the evolution of three nucleotides
α1α2α3, these differential equations have to be solved for
initial conditions of the form

p(αβγ; t = 0) =
{

1 if (αβγ) = (α1α2α3)
0 otherwise.

(2)

After numerically iterating the above differential equations
using the Runge-Kutta algorithm (Presset.al., 1992) we get
the above transition probability as

P{r}(·β2 · |α1α2α3) =
∑
β1β3

p(β1β2β3; t = 1) . (3)

The above iteration has to be carried out 64 times for all
possible combinations of initial basesα1α2α3. After each
iteration 4 of the transition probabilitiesP{r}(·β · |α1α2α3)
with β = A,C,G, or T can be computed. Note, that the above
set of differential equations describes the time evolution of
only three nucleotides. It can easily extended to describe
systems of lengthN > 3, in which case one has to solve
for 4N functionsp(α1α2 . . . αN ; t).

2.2 Estimation of substitution frequencies
To estimate the above mentioned substitution frequencies
from real sequence data we need to compare a pair of ance-
stral sequence~α = α1α2 . . . αN and daughter sequence
~β = β1β2 . . . βN , where the daughter sequence repres-
ents the state of the ancestral sequence after the substitution
processes acted upon it for some time. Note that we do
not assume any other properties regarding the nucleotide or
dinucleotide distributions of the sequences. Especially, the
two sequences do not need to be in their stationary state with
respect to the substitution model. In practice, these pairs of
ancestral and daughter sequences can be obtained in various
ways. One very fruitful approach is to take alignments of
repetitive sequences, which can be found in various genomes
due to the activity of retroviruses. Such repetitive elements
have entered these genomes during short periods in evolu-
tion. Hence all copies of such elements in a genome have
been subject to nucleotide substitutions for the same time

and accumulated corresponding amounts of changes. Various
such repetitive elements and their respective alignment to
the once active master (which is taken to be the ancestral
sequence (Arndtet.al., 2003)) can be identified using the
RepeatMasker, http://www.repeatmasker.org.

The log likelihood that a sequence~β evolved from a master
sequence~α under a given substitution model parameterized
by the substitution frequencies{r} is given by

log L{r} = log P{r}(~β|~α)

≈ log
L−1∏
i=2

P{r}(·βi · |αi−1αiαi+1)

=
∑

α1α2α3β2

N(α1α2α3 → ·β2·)×

log P{r}(·β2 · |α1α2α3), (4)

whereP{r}(~β|~α) is the probability of the evolution of the

sequence~α into ~β. This probability can be approximated very
well by the product in the second line, due to the fact that
the correlations induced by the substitutional processes are
very short ranged (Arndtet.al., 2002). We therefore take into
account the identities of bases and the dynamics on the nea-
rest neighbors to the left and to the right, and neglect those
on the next nearest neighbors and beyond. For most app-
lications this approximation turns out to be sufficient since
estimated substitution frequencies deviate less than 1% from
their actual values (see below). Note that this approximation
is even exact in the absence of neighbor dependent substitu-
tion processes. The numbersN(α1α2α3 → ·β2·) denotes the
counts of observations of a base substitution fromα2 (flanked
by α1 to the left andα3 to the right) toβ2.

To estimate the substitution frequencies{r?} for a given
pair of ~α and ~β or given numbersN(α1α2α3 → ·β2·) we
maximize the above likelihood by adjusting the substitution
frequencies. This can easily be done using Powell’s method
(Presset.al., 1992) while taking care of boundary conditions
(Box, 1966), i.e. the positivity of the substitution frequencies.

2.3 Uncertainty of estimates for finite sequence
length

Due to the stochastic nature of the substitution process and
due to the fact that always only a finite amount of sequence
data is available to estimate the substitution frequencies{r?},
estimated frequencies will show deviations from the real
substitution frequencies. In general we do not know or can-
not infer these real frequencies otherwise. In order to be
able to analyze the uncertainty of frequency estimates from
finite sequences we synthetically (in silico) generate pairs of
ancestral and daughter sequences using known substitution
processes and rates{r̂}. In the following section we include
just one neighbor dependent substitution process, namely
theCpG-methylation deamination process,CpG→CpA/TpG,
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Fig. 1. Plot of the estimated frequencies and their standard deviation
(from 500 measurements) for randomly drawn sequences of various length.
The daughter sequences have been synthetically aged using the following
processes (with frequency as indicated by the dotted lines): transversions
(0.01),A:T→G:C (0.03),G:C→A:T (0.05), andCpG→CpA/TpG (0.4). The
stationary GC-content for this model is0.3474.

which plays a predominant role in the analysis of nucleotide
substitutions in vertebrates. The nucleotides of the ancestral
sequences~α (of lengthN ) have been chosen randomly with
equal probability from the 4 nucleotides. Subsequently, the
ancestral sequence was synthetically aged and we applied
substitutions using a Monte Carlo algorithm as described in
(Arndt et.al., 2002) yielding the sequence~β. The resulting
pair of sequences is then analyzed using the above procedure
to get estimates of the rates{r?}. We repeated this experi-
ment 500 times and got estimates for the means{r̄∗} and
standard deviation{∆r∗} of these measurements. In addi-
tion we computed the stationary GC-content from each set of
substitution frequencies (Arndtet.al., 2002). Results of this
analysis are presented in Figure 1 where we show the mean
and standard deviation of estimated rates for different length
of sequencesN . The transversion frequencies were chosen
to be 0.01, the frequency of theA:T→G:C transition to be
0.03, that of theG:C→A:T transition to be 0.05, and that of
theCpG→CpA/TpG transition to be 0.4, as indicated by the
doted lines in Figure 1. This choice of frequencies mimics the
relative strength of the substitution process as they are obser-
ved in the human genome. As can be seen the uncertainty of
observed substitution frequencies correlates positively with
the substitution frequencies and negatively with the length of
the sequences.

To further quantify these uncertainties and discuss their
dependence on various quantities we plotted the deviations
{|r̄∗ − r̂|} and the standard deviations{∆r∗} as a function
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Fig. 2. Plot of the deviations of the estimated frequencies{|r̄∗− r̂|} (open
symbols) and the standard deviation{∆r∗} (closed symbols) from 500 mea-
surements for randomly drawn sequences of various lengths. The daughter
sequences have been synthetically aged using the following processes (with
frequency): transversions (0.0001),A:T→G:C (0.0003),G:C→A:T (0.0005),
andCpG→CpA/TpG (0.004).
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Fig. 3. A plot of the estimated frequencies for various degrees of sequence
divergence. The dotted lines give expected values of the frequencies. The
sequence length has been chosen to beN = 107.

of the sequence lengthN in Figure 2. The standard deviations
decrease with1/

√
N . In the absence of neighbor depen-

dent substitutions and for ancestral sequences with equally
probable nucleotides the standard deviation for reverse com-
plement symmetric frequencies can actually be calculated to
be

∆r∗αβ =
(

2rαβ

N

)1/2

(5)
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as long as all frequenciesr � 1. Corresponding lines are pre-
sented also in Figure 2 and fit the observed deviations well.
The deviation for neighbor dependent processes such as the
processCpG→CpA/TpGcan be computed to be of the order
of:

∆r∗αβγδ =
(

8rαβγδ

N

)1/2

(6)

Note, that forr � 1 these errors stem only from the stocha-
stic nature of the underlying substitutional process and are
not due to approximations used during our maximum like-
lihood analysis of the sequence pairs~α and~β as described in
the previous section.

The deviations of the observed from the real frequencies
{|r̄∗ − r̂|} (see Figure 2) also decrease with1/

√
N and are

always bounded from above by{∆r∗}. Note, that the esti-
mates of substitution frequencies are very precise, although
we used an approximation when deriving the likelihood in
Eq. (4). This property does not hold true for neighbor depen-
dent processes in general. For instance, we observe small
(below 1%, data not shown) but systematic deviations of
the estimated substitution frequencies if we include the pro-
cessApA/TpT→CpA/TpG. In this case, one should also take
into account the identity and dynamics of nucleotides on next
nearest neighbor sites and the associated neighbor dependent
processes. One would have to introduce higher order correc-
tions in Eq. (4). This is true because of overlapping initial
states of the neighbor dependent process, i.e. twoApA’s in a
triplet AAA. However, such corrections do not have to be con-
sidered for theCpG→CpA/TpGprocess. For a givenCpG, the
next nearest neighbor dependent process might only occur on
a neighboringCpG, which in contrast toApA’s cannot over-
lap with the givenCpG. Hence correlations to the nextCpG
are even smaller, which makes the estimation of substitution
frequencies neglecting such correlations very precise. In the
absence of any neighbor dependent process there is no appro-
ximation involved to compute the likelihood in Eq. (4) and
therefore estimates will be asymptotically exact forN →∞.

The above formulas for the standard deviation, Eqs. (5) and
(6), lose their validity if any one of the frequencies is of the
order of one. However, the standard deviations are still decre-
asing with increasing sequence length. In Figure 3 we present
estimated frequencies from sequences of various degrees of
divergence. The substitution rates have been chosen in the
ratios 1:3:5:40 for the transversions, theA:T→G:C transition,
the G:C→A:T transition, and theCpG→CpA/TpG process.
On the horizontal axis we plot the length of the time interval
the ancestral sequenced (of lengthN = 107) has been aged.
The dotted lines give the real substitution frequencies, which
are the products of the corresponding rates and the length
of the time interval. As long as not all substitution frequen-
cies are greater than one (to the left of the dashed vertical
line in Figure 3) the substitution frequencies can faithfully

estimated, even if single frequencies exceed one (the das-
hed horizontal line). If all substitution frequencies are of the
order of or larger than one, the estimation of substitution fre-
quencies is not possible anymore (to the right of the dashed
vertical line). In this case, more or less all nucleotides under-
went one or more substitution processes making it impossible
to estimate the frequencies of the underlying processes.

In reality however, the nucleotides in the ancestral
sequence will not be randomly distributed with equal pro-
bability from the 4 nucleotides (as assumed above). On top
of that genomic sequences will show non-trivial dinucleo-
tide distributions, i.e. neighboring bases are not independent
and the dinucleotide frequenciesfαβ will deviate from the
product of nucleotide frequenciesfαfβ (Karlin and Burge,
1995). Both these factors will influence the deviations bet-
ween the observed and the real substitution frequencies and
in those cases the above formulas (5) and (6) do not hold any-
more. We also expect additional errors due to the presence
of unaccounted neighbor dependent processes. Depending
on the magnitude of the rates for such processes the errors
can get quite significant as discussed below. To exclude the
latter type of errors one actually has to try to incorporate
additional neighbor dependent processes and judge whether
their inclusion is actually relevant (as discussed in the next
subsection).

For genomic applications, it is further not possible to repeat
the measurements of substitution frequencies for different
sets of sequences to get an estimate of the typical errors.
However, one can still get estimates on the expected stan-
dard deviation from bootstrapping the available data. One
has to resample the available data drawing randomly and
with replacementN pairs of aligned ancestral and daugh-
ter nucleotides (keeping the information of the ancestral base
identity to the left and to the right) and generate a list of
countsN(α1α2α3 → ·β2·) which then will be used to maxi-
mize the likelihood and estimate the substitution frequencies
as described above. One repeats this resampling procedure
M times and from theM estimates of the substitution fre-
quencies and stationary GC-content calculates their standard
deviation, which gives the statistical error due to the limited
amount of sequence data. We found thatM = 500 samples
are sufficient to estimate those errors (data not shown).

2.4 Extending the model to include additional
processes

Next we address how one can extend a given substitution
model and include additional neighbor dependent proces-
ses to maximize the potential of such a model to describe
the observed data. With the inclusion of additional neigh-
bor dependent processes, the likelihood of a model{r′} will
in any case be greater than the one of the original model
{r}. This is the case because the models are nested and one
has an additional parameter to explain the given data. To
test whether the inclusion of a new parameter is justified,
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we employ the likelihood ratio test for nested models. Let
λ = L{r}/L{r′} be the likelihood ratio, then−2 log λ has an
asymptotic chi-square distribution with degrees of freedom
equal to the difference in the numbers of free parameters of
the two models, which in our case is one (Ewens and Grant,
2001).

In practice, we extend a given substitution model in turn by
each of the4× 4× 3× 2 = 96 possible neighbor dependent
processes. Out of those extended models, we choose the best
one, i.e. the one with the highest likelihoodL{r′}. Since the
best is chosen out of a finite set of possibilities, we have to
account for multiple testing and use a Bonferroni correction.
Hence we require that−2 log λ > 15 to have significance on
the 5% level1. We confirmed this conservative threshold also
by simulations using sequences that have been synthetically
mutated according to a known model.

3 RESULTS

Table 1. Estimates for substitution frequencies for nested models of
nucleotide substitution in human AluSx repeats. Given are the substi-
tution frequencies per bp in the time span after the insertion of the AluSx
repeats into the human genome. In the last row we note the−2 log λ
whereλ is the likelihood ratio of the model and the one with one less
parameter in the column to the left.

6 param. 7 param. 8 param. 9 param.
model model model model

A:T→C:G 0.012 0.012 0.011 0.007
A:T→T:A 0.010 0.011 0.011 0.011
C:G→G:C 0.016 0.016 0.012 0.012
C:G→A:T 0.015 0.014 0.014 0.014
A:T→G:C 0.036 0.036 0.036 0.036
C:G→T:A 0.158 0.059 0.060 0.060

CpG→CpA/TpG - 0.618 0.627 0.624
CpG→CpC/GpG - - 0.029 0.029
TpT/ApA→TpG/CpA - - - 0.013

stationary GC-content 0.213 0.341 0.340 0.339

−2 log λ - 7.7·106 1.3·105 9.6·104

As a first test, we applied the above method to iden-
tify and measure neighbor dependent substitution processes
acting on the human genome. We took as input 334000
copies (comprising about 9 Mbp) of the AluSx SINEs that
have been found in a genome-wide search of the human
genome (release v20.34c.1 at ensembl.org from April 1st,
2004) together with individual alignments to ancestral Master
AluSx found in RepBase (Jurka, 2000). These elements are

1 Note that
R 15
0 χ2

1(x) dx = 0.99989 > 1 − 0.05/96

assumed to have evolved neutrally and therefore the substitu-
tion process is reverse complement symmetric. Results are
presented in Table 1. In the first column of data we give
estimations for the 6 neighbor independent single nucleotide
substitutions. We subsequently tested 48 possible extension
of this simple substitution model by one additional neighbor
dependent substitution process together with its reverse com-
plement symmetric process (Note that in this case only 48
extensions have to be considered). As expected (and shown
in the second column in Table 1) theCpGmethylation dea-
mination process (CpG→CpA/TpG) turns out give the best
improvement with−2 log λ = 7.7 · 106, which is clearly
above the threshold of15. The substitution frequency of this
process is about 45 times higher than that of a transversion.
Extending the model from 6 to 7 parameters and including
theCpG→CpA/TpG process, mostly affects the estimate for
theG:C→A:T transition, which decreases about a factor three.
Please also note that subsequently the estimation of the sta-
tionary GC-content from those rates rises from 21% for the
6 parameter model to 34% for the 7 parameter model. This
reveals that estimates of substitution frequencies and the sta-
tionary nucleotide composition are very much affected by the
underlying substitution model. Substantial deviations can be
observed when the substitution model does not include all
relevant process, as it is the case for the 6 parameter model
for nucleotide substitutions in the human lineage.

In principle there can be even more neighbor dependent
processes we have to account for. According to our method,
the second process that needs to be included to improve the
model is the substitution ofCpG→CpC/GpG (−2 log λ =
1.3 · 105). This is anotherCpGbased process and probably
also triggered by the methylation of cytosine. The substitu-
tion frequency obtained is about 30 times smaller than this of
the CpG→CpA/TpG process. Nevertheless it is nearly three
times larger than the corresponding single-nucleotide trans-
version frequency. The third process to be included is the
substitutionTpT/ApA→TpG/CpA (−2 log λ = 9.6 · 104).
The instability of theTpT dinucleotide does not come as a
surprise here, since two consecutive thymine nucleotides tend
to form a thymine photodimerT <> T. This process is one
of the major lesions formed in DNA during exposure to UV
light (Douki et.al., 1997).

Next we turn to the analysis of the DANA repeats in
zebrafish (Danio rerio). Results are presented in Table 2.
Again we start with a model just comprising single nucleo-
tide transversions and transitions. As observed in human the
transitions occur more often than transversions and there is a
strongA:T bias in the single nucleotide substitutions. After
accounting for theCpG-process the ratio of transversions to
transitions is roughly 1:3:5 as it is observed for the human
lineage. Zebrafish being a vertebrate also utilizes methyla-
tion as an additional process to regulate gene expression. As
a consequence we observe a higher mutability of theCpG
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dinucleotide due to the deamination process also in zebrafish.
However the substitution frequency for theCpG→CpA/TpG
process is in zebrafish only about 8 times higher than this
of a transversion suggesting that the degree of methylation
is generally lower than in human. The reduced frequency
for the CpGdeamination process found for fish is also con-
sistent with previous studies which found an elevatedCpG
deamination frequency in the human lineage only after the
mammalian radiation (Arndtet.al., 2003).

Table 2. Estimates for substitution frequencies for nested models of
nucleotide substitution in DANA repeats fromDanio rerio.

6 param. 7 param. 8 param. 9 param.
model model model model

A:T→C:G 0.024 0.025 0.026 0.026
A:T→T:A 0.041 0.041 0.041 0.041
C:G→G:C 0.037 0.036 0.036 0.023
C:G→A:T 0.029 0.029 0.028 0.028
A:T→G:C 0.073 0.074 0.046 0.046
C:G→T:A 0.151 0.111 0.105 0.107

CpG→CpA/TpG - 0.274 0.331 0.328
CpA/TpG→CpG - - 0.100 0.097
CpG→CpC/GpG - - - 0.096

stationary GC-content 0.349 0.374 0.335 0.337

−2 log λ - 2.9·105 1.6·105 1.1·105

We also investigated non-vertebrate sequence data. As an
example, we present here the analysis of the DNAREP1DM
repeat inDrosophila melanogaster(Table 3). The need to
include neighbor dependent process is in this case clearly not
as strong as for vertebrate genomes. The values of−2 log λ
are 3 orders of magnitude smaller but still above the thres-
hold of our method. The first such process is the substitution
TpA→TpT/ApA. Although the corresponding substitution
frequency is lower than all the single nucleotide transiti-
ons and transversions, the dinucleotide frequencies in the
stationary state deviate up to 10% from their neutral expec-
tation under a neighbor independent substitution model (data
not shown). Therefore even processes with a small contri-
bution to the overall substitutions have a large influence on
the observed patterns of dinucleotide frequencies or genomic
signatures and therefore may very well be solely responsible
for the generation of such pattern in different species.

4 CONCLUSION
We presented a framework to identify the existence and mea-
sure the rates of neighbor dependent nucleotide substitution
processes. We discussed the extension of models of nucleo-
tide substitutions in human and included more neighbor

Table 3. Estimates for substitution frequencies for nested models of
nucleotide substitution in DNAREP1DM transposable element from
Drosophila melanogaster.

6 param. 7 param. 8 param. 9 param.
model model model model

A:T→C:G 0.038 0.038 0.038 0.038
A:T→T:A 0.052 0.045 0.045 0.045
C:G→G:C 0.034 0.034 0.034 0.034
C:G→A:T 0.074 0.074 0.074 0.074
A:T→G:C 0.052 0.052 0.052 0.047
C:G→T:A 0.108 0.108 0.098 0.098

TpA→TpT/ApA - 0.029 0.028 0.028
TpC/GpA→TpT/ApA - - 0.036 0.035
GpT/ApC→GpC - - - 0.021

stationary GC-content 0.330 0.330 0.328 0.326

−2 log λ - 853 592 40

dependent processes besides the well-knownCpGmethyla-
tion deamination process (Arndtet.al., 2002). We could also
show that theCpGmethylation deamination is the predomi-
nant substitution process in zebrafish, while it does not play
a role in fruit fly. We exemplified our method using sequence
data from one particular subfamily of repeats from these three
organisms. In the case of the human genome a much more
thorough analysis on various families of repeats have been
presented in (Arndtet.al., 2003). A similar study, which also
would have to include also neighbor dependent substitutions,
for other species will further broaden our knowledge about
the molecular processes that are responsible for nucleotide
mutations and their fixation.
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