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ABSTRACT

Motivation: Today, the characterization of clinical phenotypes by
gene-expression patterns is widely used in clinical research. If the
investigated phenotype is complex from the molecular point of view,
new challanges arise and these have not been adressed system-
atically. For instance, the same clinical phenotype can be caused
by various molecular disorders, such that one observes different
characteristic expression patterns in different patients.

Results: In this paper we describe a novel algorithm called Struc-
tured Analysis of Microarrays (StAM), which accounts for molecular
heterogeneity of complex clinical phenotypes. Our algorithm goes
beyond established methodology in several aspects: in addition to
the expression data, it exploits functional annotations from the Gene
Ontology database to build biologically focussed classifiers. These are
used to uncover potential molecular disease subentities and associate
them to biological processes without compromising overall prediction
accuracy.

Availability: Bioconductor compliant R package

Contact: Claudio.Lottaz@molgen.mpg.de

Supplementary information: Complete analyses are available at
http://compdiag.molgen.mpg.de/supplements/lottaz05

1 INTRODUCTION

Supervised tumor classification based on microarray datais among
the most promising clinical applications of modern genomics. It
opens perspectivesfor more reliable and efficient diagnosis of estab-
lished tumor entities (Bhattacharjee et al., 2001; Yeoh et al., 2002),
risk group determination (Huang et al., 2003; van't Veer et al ., 2002),
and the prediction of response to treatment (Cheok et al., 2003).
Classification in the context of microarray anaysis is a well-
studied problem in statistics and machine learning. A large number
of methods have been suggested, ranging from Fisher’'sclassical lin-
ear discrimination to boosting and support vector machines (SVM).
Tibshirani et al. (2002) investigate a very simple nearest-centroids
approach. Classical linear discriminant analysis(LDA) and quadratic
discriminant analysis (QDA) are applied in Dudoit et al. (2002). The
LDA-like method of Golub et al. (1999) is described in more detail
in Slonim et al. (2000). Artificial neural networks are used in Khan
et al. (1999). SVMs are suggested in Ben-Dor et al. (2000), Furey
et al. (2000) and Yeoh et al. (2002). Nearest-neighbor methods are
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discussed in Dudoit et al. (2002) and classification trees, including
boosting, are applied in Ben-Dor et al. (2000), Dudoit et al. (2002),
Schoch et al. (2002) and Dettling and Bihlmann (2003). The use
of Bayesian binary regression is laid out in West et al. (2001) and
Spang et al. (2002).

In addition to predictive performance, there is aso hope
that microarray studies uncover molecular disease mechanisms.
However, in many cases the molecular signatures discovered by
the algorithms are unfocused from a biological point of view. They
contain genes attributed to many different biological processes and
do not point to particular underlying molecular disease mechanisms.
In fact, they often look more like random geneliststhan biologically
plausible and understandable signatures. This is because standard
classification agorithms aim for globa signatures. They identify
groups of genes whose joint distribution of expression levels is
most different between two different clinical phenotypes without
considering their biological role.

Moreover, the fact that only one list of genes is determined for
al patients reflects the implicit assumption that a single molecu-
lar mechanism is responsible for a certain clinical phenotype. This
assumption is questionable, e.g. when distinguishing between recur-
rent and non-recurrent disease, it is quite possible that recurrence
has various molecular backgrounds. If this is the case, one will
expect different molecular changes in different patients. In order to
formalize this idea, we treat the two phenotypica groups (disease
and control) in a non-symmetric way. Instead of global expres-
sion signatures, we want to identify sets of genes that display
characteristic expression patterns in a subset of patients from the
disease group but not al of them. We aim for different sets of
genes, which possibly identify different subsets of patients in the
disease group. We call these patient subset-specific expression pat-
ternsmol ecular symptomsto distinguish them from global molecular
signatures.

Another shortcoming of standard classification algorithms is that
they treat gene-expression levels as anonymous variables. However,
alot is known about the function and the role of many genesin cer-
tain biological processes. Thisknowledgeis stored in databases like
the Gene Ontology (GO) (The Gene Ontology Consortium, 2000).
Annotations are routinely used today when biologists analyze lists
of differentially expressed genes. In contrast to this post analysis
exploration of functional annotations, we propose using annotations
during the statistical analysisprocess, i.e. when computing molecular
signatures and molecular symptoms. Since gene-expression levels
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result from tightly coordinated regulatory processes, they tend to be
highly correlated. Consequently there is redundant information in
microarray data. We have often observed, that one can replace one
gene in asignature by another one with a similar expression profile
without significantly changing the predictive power of the signature
(data not shown). This opens up the possibility of replacing a non-
intuitive, biologically diverse signature by an equally good one with
aclear functional focus.

We propose abiologically resolved computational diagnosisbased
on the GO. In GO, hiological terms describing biological processes
areorganizedin adirected acyclic graph, where each node represents
abiological process and child-terms are either members or repres-
entatives of their parent-terms. Genes are attributed to nodes based
on the knowledge the biological research community has gathered
so far. Our basic ideais as follows: we construct one classifier for
each node of the GO graph. Each of these classifiersonly dependson
expression levelsmatching the biological aspect the node represents.
Similar to global gene selection based classifiers, we shrink the GO
graph, getting rid of branches (biological processes) that are most
likely unrelated to the investigated phenotype. The remaining nodes
represent molecular symptoms. Different biological processes may
identify different subsets of patients.

In the next section we describe the StAM algorithm in detail.
Section 3 contains an evaluation on three publicly available can-
cer related datasets. Therefore we illustrate StAM’s performance
both as a predictive classification method and as an explorat-
ory tool for the molecular stratification of the disease group and
for establishing links between complex phenotypes and biolo-
gical processes. Finally, conclusions are drawn and discussed in
Section 4.

2 STRUCTURED MICROARRAY ANALYSIS

In order to provide biologically resolved diagnosis on various levels
of granularity, we use GO's hierarchical structure. Based on the
GO graph of biological processes, StAM generates aclassifier graph
holding one classifier for each process. These classifiersonly depend
on genes annotated to corresponding nodes or their descendants. For
instance, the classifier of the node ‘ apoptosis' only depends on genes
involved in apoptosis. Its diagnosis for a patient only reflects altered
generegulationin apoptosis-related pathways. Our approach consists
of the following steps:

e generatearooted, directed classifier graph according to the GO,

construct leaf node classifiers based on selected expression
values using a classical machine learning method,

propagate these results through inner nodes to the root and

shrink the classifier graph to determine a concise set of
molecular symptoms.

2.1 Classifier structure

StAM’sclassifiersexclusively predict based either ontheir children’s
classification results or on the expression levels of the directly attrib-
uted genes. In GO, genes can be annotated to both leaf nodes and
inner nodes. Therefore, we augment the GO graph such that genes
are annotated to leaf nodes only. If i is an inner node with genes
annotated to it, we introduce a novel leaf node i’ to the graph, with
i asitsonly parent and move all genesfromi toi’.

We generate the graph described above anew for each chip type.
Thus, we can choose any GO node as the term of interest and start
our procedure with the given node as the root of the graph consid-
ering only successors in GO during graph construction. We use two
methodsto remove non-informative nodesfrom theresult: (1) Nodes
arediscarded if neither they nor any of their successors have genesor
probes annotated to them. (2) A node with asingle child is replaced
by itschild, sinceresultsareidentical (they depend onthe samedata).
Inthismanner we generate aclassifier graph, specific to the chip type
used in the given study and the GO term of interest.

2.2 Leaf nodeclassifiers

Each leaf node containsaset of associated genes. The corresponding
classifier isconstructed using only expression level sof these genes. It
returns a continuous classifi cation output scaled to numbers between
0 and 1, where O indicates clear evidence for the control group, one
indicatesclear evidencefor thediseasegroup and intermediate val ues
represent the levels of uncertainty. The number of genes annotated
to aleaf node varies strongly from one node to the other. For some
nodes it is so high that classification in the leaf nodes still requires
regularizationto avoid overfitting. In principle, any machinelearning
method can be used here.

In our current implementation we have chosen the shrunken
centroid classification (Tibshirani et al., 2002) as the leaf node class
prediction method for its simplicity and computational efficiency.
Centroid shrinkage is determined by cross-validation node by node,
such that the lowest error rate is achieved. In order to regularize
the classifier centroid shrinkage excludes genes from the signatures.
Thus a classifier associated to the node ‘apoptosis’ is driven only
by genes involved in apoptosis, but not necessarily al of them.
The shrunken centroids method defines a continuous classification
output by logit transformed discriminant scores. A continuous clas-
sification scale smoothes the process of classification propagation
to inner nodes.

2.3 Propagating classification results

So far we have classifiers for the leaf nodes, next we combine them
withtheclassifiersintheinner nodes. We do thiswithout breaking the
leaf node classifiers apart. There are no novel classifiers built using
merged genesets, sincethiswouldlead to the non-intuitive signatures
that we want to avoid. Instead we suggest weighted sums of child
classification outputs to propagate the results. Thus, the root node
naturally displaysthe overall classification result because it depends
on the largest amount of data. Children with good classification per-
formance receive more weight than those with poor performance.
StAM chooses weights according to a performance criterion which
reflects the properties of molecular symptoms, thus punishing low
specificity more severely than lack of sensitivity.

Our performancecriterion §; for node isanaogusto thedeviance
used in statistical classification theory. We define a similarity meas-
ured;, using acalibration parameter 8 to enforce high specificity for
the price of reduced sensitivity. Let S and Sy represent the samples
of the control and the disease group, respectively, while p denotes
the classifier output of node i and sample s. We define:

4=21-P > log(p)) + |52/|3 > “log(1 - py)

|Sd| seSq seS;

for all nodesi. Given that d;s are high for bad classifiers, weflip the
scale by subtracting them from the highest d; observed in leaf nodes.
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Finaly, in order to eliminate uninformative classifiers, we subtract a
shrinkage level A and set negative §;sto zero. With Ny denoting the
set of |eaf nodes, set:

= [maxdj —d; — A]+
JENL

where [x]* is zero for negative x and x otherwise.

The prediction results are propagated from the leaf nodes towards
the root through the edges E in a postorder traversal of inner nodes.
Hence, StAM aways computes results for al children of a given
node before it computes results for the node itself. Each edge from
parent i to child j receives a weight w;;. The weights reflect the
quality measure §; of child j and are normalized separately in each
inner node. With Ch(i) denoting the set of children of node i and
N denoting the set of inner nodes, we can write the propagation of
results as follows:

d; ..
Wi = =———— V(@i,j)e E
ZkeCh(i) Sk
pf: Zwi-i.p; Vie Nt As e S;US,..
J€Ch(i)

24 Classifier graph shrinkage

Most nodes in the classifier graph do not contribute to a good over-
all classifier. Many biological processes are not involved with the
investigated phenotype. In addition, we want to determine a con-
cise set of molecular symptoms. We describe in this section how
StAM further simplifies the classifier graph by eliminating irrel-
evant branches. This is done in analogy to gene selection in the
shrunken centroid algorithm. Here we do not shrink weights associ-
ated to genes, but the weights associated to edges in the GO graph.
If such a weight is shrunken to zero the corresponding edge and
the subgraph below it is eliminated from the graph. StAM con-
trols the shrinkage process by choosing the above mentioned graph
shrinkage level A. We define an objective function for A con-
sidering two independent goals: good predictive performance in
the root and uncovering suboptimally classifying molecular symp-
toms for patient stratification; and for the second goal, aggressive
shrinkage is counterproductive since by focusing on best classifi-
ersit only eliminates too many inherently heterogeneous molecular
symptoms.

We propose an objective function composed of the following two
measures. the root’s performance measure (8ro0t) and the mean clas-
sifier redundancy. While 8,00t is aready defined, we now focus
on what we call redundancy. When considering two nodes in the
trained classifier graph, we can define a similarity r;; between
the two classifiers expressing how different their results are as
follows:

_1 , ,
=15 > log (pi (1= p}) + (L= p))p}),

seS§

where § = S; U S.. The mean similarity to al other nodes in the
classifier graph is the node's redundancy r; within that graph. We
suggest to use the mean redundancy over al nodes in a shrunken
classifier graph as measure R(A) for the heterogeneity of its clas-
sifiers. Let K (A) denote the set of nodes remaining in a shrunken

classifier graph. Thus:

1
Ty P S

JEK (M\{i}

1
R =k PR

ieK(A)

Finally, StAM uses a calibration parameter « in theinterval [0, 1]
to compute acombined score for each shrinkage level. Thereby, « is
the weight for the root’s performance measure while (1 — «) isthe
weight for theclassifier graph’smean redundancy. Wescaletheroot's
performance measureand mean redundancy tofitintheinterval [0, 1]
before computing the compound score O (A):

O(A) =a5root(A) — Smin + (1_0[)

Smax — Smin

R(A) — Rnin

Rmax — Rmin

where Rmin and Rmax are the minimum and maximum mean redund-
ancy over al As while §yin and dmax Qive the range of root
performances over al As. StAM chooses the graph shrinkage level
A to minimize O(A). When several candidates are equivalent, the
lowest shrinkageisusedin order to provideamoreresol ved classifica-
tion result.

2.5 Calibration of parameters

In our method, the user specifiestwo calibration parameters: the spe-
cificity versus sensitivity parameter 8 and the performance versus
redundancy parameter «. Both parameters can be chosen freely
withintheinterval [0, 1]. However, usersshould bear inmind thefol-
lowing considerations when doing so. The root performance weight
o expresses the desired trade-off between prediction accuracy and
heterogeneity of molecular symptoms. Setting « to 1 focuseson clas-
sification performance only, while setting « to 0 aims to determine
amost heterogeneous classifier graph.

Although the parameter 8 is meant to overstate specificity inten-
tionally, there is a trade-off between classification performance and
discovery of molecular symptoms. The specificity weight can be
chosen morefreely in easy classification tasks, while heavily unbal-
anced analysisis mostly meaninglessin difficult classification tasks.
We usually start out with 8 set to the prevalence of the control group,
thus expecting the best prediction results. When the prediction task
provesto be simple enough, we attempt a more unbalanced analysis.
QOur current implementation can compute classifier graphs for sev-
era Bsin one run. Therefore, we usually compute severa variants
right from the start, e.g. by setting 8 to the values 0.75, 0.9, 0.95 and
0.99 in addition to the control group’s prevalence.

2.6 Implementation

StAM isimplemented in R (R Devel opment Core Team, 2004) based
on Bioconductor packages (Gentleman et al., 2004). We rely on
the pamr package (Tibshirani et al., 2002) as implementation of the
shrunken centroids classifier. We al so use Bioconductor’s meta-data
packages on chip annotations and the GO. For the layout and illus-
tration of the classifier graph on StAM’s result pages, the Graphviz
software package is used (Gansner and North, 2000). StAM isitself
apart of Bioconductor release 1.5.

The results are written on interlinked HTML pages. The links
alow navigation along the edges of the classifier graph. The pages
contain classification results and performance evaluation for each
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node aswell asoverall information about cross-validation, the model
fit and predictions of test samples. For inner nodes, the weights of
the children are provided while in leaf nodes the genes used by the
shrunken centroid classifiers are given. The user can further explore
term definitions and probeset annotations through external links to
the GO and the Affymetrix website.

3 EVALUATION ON CANCER RELATED DATA

We suggest structured analysis of microarrays for different applica-
tions. In addition to predictive performance we also aim for making
underlying disease mechanisms transparent. We do this by identi-
fying molecular symptoms associated to subsets of patients in the
disease group. Molecular symptoms are always restricted to well
defined biological processes. Patients who are positive for amolecu-
lar symptom display abnormal gene expression in the corresponding
process. Not all patients in the disease group are positive for every
identified molecular symptom, but some patients can be positive for
more than one of them. Using patterns of absence and presence of
molecular symptoms, we definean additional molecular stratification
of patients.

We have evaluated our approach on three publicly available data-
sets from cancer-related microarray studies. Here we only discuss
a subset of the obtained results. The reader can find a complete
collection of our analyses and a detailed description of our data
preprocessing protocol on a supplementary website.

3.1 Datasetsand GO annotations

The first dataset we used was generated in a breast cancer study
(Huang et al., 2003). The authors investigate lymph node metastatic
status and relapse in 37 and 52 breast cancer patients respectively.
The second dataset stems from a lung cancer study (Bhattacharjee
et al., 2001). Gene-expression profiles from 186 lung cancer and
17 normal biopsies have been analyzed by hierarchical and probabil-
istic clustering. The authors claim to have discovered distinct groups
of adenocarcinomaswith corresponding marker geneswhich are ret-
rospectively correlated to long term outcome. Finally, we also use
thedataset on pediatric acutelymphocyticleukemia(ALL) published
in Yeoh et al. (2002). This study contains gene-expression profiles
of 327 patients of various ALL subtypes. Yeoh et al. report on an
attempt to ease stratification of ALL patients according to relapse
risk in order to tailor treatment intensity.

All mentioned studies have been performed using the HG-
U95Av2 Affymetrix GeneChip technology. This microarray holds
12625 probesets designed based on the EST clusters from UniGene
(Schuler, 1997) version 95. For mapping these probesetsto GO nodes
we have used the Bioconductor meta-data packages version 1.5.1
built on March 3 and 4 2004. While generating our annotations we
focussed on GO'’s hiological process ontology. We have determined
8172 successors of GO:0008150 in the biological process branch of
the GO. Of these 1359 have 8679 probesets directly annotated and
are held together by 845 inner nodes in our classifier graph. Thus
our method has access to 68.7% of the microarray data distributed
across 2204 GO terms to achieve the results described below.

3.2 Prediction accuracy

In this section we confirm that StAM’s classification performanceis
comparable to the state-of-the-art classification methods. However,
our performance is compromised by the fact that certain probesets
are not associated to any GO node and therefore not used in StAM.

Table 1. Performance comparison of StAM to PAM and SVMs

Classification Task Error Rates

Study Groups SVM PAM StAM

St Jude Hyperdip.: 64 7.6% 7.3% 5.8%

ALL1 Study Other: 263 (100/53)  (8617/707)  (732/7)
BCR/ABL: 15 1.2% 4.9% 3.1%
Other: 312 (100/70)  (15/16) (383/6)
E2A/PBX1: 27 0.0% 0.6% 0.6%
Other: 300 (100/64)  (2/6) (419/4)
MLL: 20 0.3% 4.6% 2.1%
Other: 307 (100/59)  (81/51) (599/6)
TEL/AML1: 79 1.2% 2.4% 1.8%
Other: 2248 (100/61)  (35/38) (1275/12)
T-ALL: 43 0.0% 0.0% 0.3%
B-ALL: 284 (100/48)  (3/6) (913/21)

Harvard Lung  Adeno: 139 9.9% 9.4% 8.9%

Cancer Study  Other: 64 (100/64)  (3575/498)  (1992/23)
Adeno: 139 3.8% 1.9% 1.9%
Normal: 17 (100/58)  (3/4) (1209/23)
Carcinoid: 20 0.5% 0.0% 0.5%
Others: 183 (200/51) (VD) (1730/25)
Normal: 17 2.0% 1.0% 2.0%
Other: 186 (100/64)  (3/4) (504/39)
Squamous: 21 3.9% 3.0% 4.9%
Other: 182 (100/148)  (2/3) (834/18)
Squamous: 21 0.0% 2.6% 0.0%
Normal: 17 (100/64)  (4/5) (583/25)

Duke Breast Relapse: 18 25.0% 23.1% 21.2%

Cancer Study Remission: 34 (100/55)  (7V41) (363/8)
Highrisk: 18 32.4% 45.9% 45.9%
Low risk: 19 (100/78)  (67/53) (312/2)

Error rates determined in 10-fold cross-validation on public datasets from cancer related
microarray studies.

Although we do not claim that our approach outperforms state-of-
the-art classifiers, we evaluate its classification power compared to
ordinary PAM (shrunken centroids) and SVMs in order to validate
its usefulnessin clinical diagnosis.

The evaluation is performed in a nested cross-validation scheme
where the same cross-validation subsets are used for al three
methods. Nested cross-validation meansthat there is an outer cross-
validation loop for model evaluation and an inner loop for model
selection. The samples are divided into & = 10 sets and one by one
each of these setsisleft out for evaluation. With the remaining 9/10
of the data we optimize the StAM classifiers, again using cross-
validation of only these 9/10 samples. The samples left out in the
outer loop are not used at al in any of StAM’s model selection
steps, including shrinkage determination in the leaf nodes, propaga-
tion weight calculation and graph shrinkage. This ensures that the
evaluation results do not suffer from the well known overoptimism
described in Ambroise and McLachlan (2002).

For StAM we have performed classification using the method
described in Section 2 with annotations from the biological pro-
cess branch of GO as described in Section 3.1. For PAM we have
used the default parameters of the corresponding R package (ver-
sion 1.12.1). The evaluation for the SVM has been performed using
the implementation from the €1071 R package (version 1.3-16,

1974



Microarray analysis of complex phenotypes

GO:0042221
G0:0009582

GO:0009605 ”
G0:0000581

G0:0006935 )#—(_ GO:0006935a

G0:0009416
G0:0009583

G0:0007601

.GO 0007601a

G0:0016310

G0:0006796

G0:0008152

GO:0006139 nucleobase, nucleoside, nucleotide
and nucleic acid metabolism
GO:0006350 transcription

G0:0006139

G0:0006810

G0:0007582
GO:0009987

G0:0008150

G0:0007165

G0:0006350

GO:0006468 GO:0006468a

G0:0006464

G0:0019538
G0:0009058 G0:0009059

G0:0045449

GO:0006355 B EEEE GO:0006355a

G0:0006351

G0:0006812 G0:0006812a

GO:0006811a

GO:0009059 macromolecule biosynthesis
G0O:0009314 response to radiation
GO:0009416 response to light

GO:0006351 transcription, DNA-dependent GO:0007154 cell communication GO:0009581 perception of external stimulus
GO0O:0006355 regulation of transcription, GO:0007165 signal transduction GO:0009582 perception of abiotic stimulus
DNA-dependent GO:0007267 cell-cell signaling GO:0009583 perception of light
GO:0006412 protein biosynthesis GO:0007582 physiological process GO:0009605 response to external stimulus
GO:0006445 regulation of translation GO:0007596 blood coagulation GO:0009628 response to abiotic stimulus
GO:0006464 protein modification GO:0007599 hemostasis GO:0009987 cellular process

GO:0006468 protein amino acid phosphorylat. GO:0007600 sensory perception G0O:0016310 phosphorylation

GO:0006796 phosphate metabolism GO:0007601 vision G0O:0019538 protein metabolism
GO:0006810 transport GO:0008150 biological process G0O:0042221 response to chemical substance
GO:0006811 ion transport GO:0008151 cell growth and/or maintenance GO:0043037 translation

GO:0006812 cation transport GO:0008152 metabolism G0O:0045449 regulation of transcription

GO:0006935 chemotaxis GO:0009058 biosynthesis GO:0050817 coagulation

Fig. 1. Union of classifier graphs for relapse prediction (white nodes) and detection of metastatic lymph nodes (black nodes) in breast cancer patients.

Gray nodes occur in both classifier graphs.

a libsvm interface available at http://www.cise.ntu.edu.tw/cjlin/
libsvm (Chang and Lin, 2004)) selecting 100 features based on the
SAM score (Tusher et al., 2001). Table 1 summarizes the results for
aseriesof classification tasks on the three datasets mentioned above.

From Table 1 we see that StAM outperforms both reference
methods in three of the tasks, while it is worse than these in only
two cases. StAM yields either an equal result as one of the other
methodsor its performanceisbetween the referencemethodsfor nine
moreclassification problems. Thisresult confirmsthat StAM delivers
competitive classification results compared with the state-of-the-art
classification methodol ogy.

The numbersin parenthesesin Table 1 give the number of features
selected for PAM and SVM as well as the number of GO categor-
ies to which these features are annotated (biological process only).
The figures confirm our observation that many signatures are com-
posed of genesfrom many biological processes with little biological
focus. The corresponding figures given for StAM give the number
of leaf nodes in the structured classifier and the number of features
selected. StAM often uses many genes, but explicitly attributesthem
to few molecular symptoms. For the vast majority of cases even
the global StAM signatures are more focused than in non-structured
methods. However, even when the global signature is not focused,
the molecular symptoms are by definition.

3.3 Uncovering disease mechanisms

In addition to predictive performance, we also aim to make under-
lying disease mechanisms transparent. We do this by identifying
molecular symptomsinvolved intheinvestigated disease. In thissec-
tion we illustrate the explorative detection of disease mechanisms;
classification performance is of secondary interest.

Huang et al. (2003) claim that athough the lymph node meta-
static status in breast cancer is a commonly accepted risk indicator
for relapse, different biological mechanisms appear to be involved.
To provide evidence for this claim, two classifiers are trained on
separate datasets: one to predict disease outcome in terms of recur-
rence and the other oneto characterize metastatic lymph node status.
Huang et al. observe that the signatures of the two classifiers overlap
invery few genes and thus conjecture that different biological mech-
anisms are involved in metastasis development and breast cancer
relapse. We confirm and further characterize these findings using
structured analysis.

When using StAM exploratively, we do not split the dataset into
test and training set. For thetwo classification tasksrel apse prediction
and lymph node metastasis detection, wetrain classifier graphsusing
al available samples. The models generated for the two tasks are
shown in Figure 1. Only gray nodes occur in both classifiers and
may, therefore, point to common biological mechanisms.
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Prediction of MLL
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Fig. 2. Structured analysis of 327 acute lymphocytic leukemia patients. Molecular symptoms specific for MLL are shown. They are filtered by minimum

specificity.

The structured classifier to detect metastatic lymph nodesis based
on 15 GO nodes while the classifier graph for the relapse predictor
holds 39 nodes (@« = 0.7,8 = 0.9). They share only four nodes,
most of which are high level nodes and no leaf nodes are shared.
The risk-assessment classifier relies on data annotated to the terms
‘protein amino acid phosphorylation’ and ‘DNA dependent regu-
lation of transcription’. On the other hand prediction of relapse is
based on data from ‘blood coagulation’, ‘cation transport’, ‘reg-
ulation of trandation’, ‘vision’ and ‘chemotaxis’. This illustrates
an advantage of structured analysis of microarrays. While classical
methods for detecting global signatures return an unstructured list
of genes, StAM directly determines biological aspects involved in
addition to the corresponding genes. For each of the leaf nodes
remaining in the shrunken classifier graph, StAM provides a list
of genes relevant for classification and potentially useful for further
investigation.

3.4 Patient stratification

Through the identified molecular symptoms associated to subsets
of patients in the disease group, we obtain an additional molecu-
lar stratification of patients according to patterns of absence and
presence of such symptoms. To illustrate this use of StAM we ran-
domly split our data into training and test set. Figure 2 shows an
example for StAM-based patient stratification on the MLL subtype
of acute lymphocytic leukemia (ALL) investigated in Yeoh et al.
(2002). A group of 20 MLL patients has been included in the study.

We have trained StAM for detection of MLL on 217 of the available
samples including 14 MLL cases with 8 set to 0.94, the control
prevalence. We set the shrinkage level manually to obtain a reason-
able number of nodes in the classifier graph. The 110 test samples
are classified without error in the root node.

Figure 2 is focused on the 20 MLL samples in the dataset. In
the center of the figure the probability computed by classifiers in
the classifier graph for each sample are shown as color code (see
right hand side of the figure). In the image, rows correspond to GO-
classifiersand columnsreflect samples. The samplesfrom thetest set
are marked with capital letters on the x-axis. Clustering this image
in both directions brings similar classifiers and samples together.
The graph to the left of Figure 2 shows the GO relations between
the classifiers. The sensitivities and specificities given between the
GO structure and the image are computed on the test set only. In
Figure 2, bright regions represent presence, black regions absence
of molecular symptoms.

We can group patients according to patterns of molecular symp-
toms. For instance, rows 2-6 in Figure 2 represent a molecular
symptom related to apoptosis, which is present in all test samples
except for sample G. Only in test samples A, B and C we observe
the symptom driven by genes involved in antimicrobial humoral
response. Effectsin genes usualy involved in skeletal development
are observed in test samples A and B only, while samples B and C
show untypical patterns for ALL in cell motility. Samples B and G
have particular expression in synaptic transmission.
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Table 2. Stability of classifier graphs

Classification Task Nodesin CV-graphs

Study Task CVa M= M=7 M_19

Leukemia Hyperdip. 27 24 22 18
BCR/ABL a4 24 19 15
E2A/PBX1 28 18 10 10
MLL 46 33 17 17
TEL/AML1 74 45 32 31
T-ALL 89 78 75 75

Lung cancer Adeno: 126 80 78 70
Adeno/normal 105 83 77 76
Carcinoid 132 89 81 77
Normal 220 136 119 110
Squamous 94 72 66 37
sguamous/normal 124 85 74 74

Breast Cancer Relapse 123 40 30 11
High risk: 28 15 9 9

For tasks described in Table 1, count nodes occuring in any cross-validation run (C Va).
Further columnsindicate how many nodes of thefinal graph occur inany (M-1), at least
in7 (Ms7) andinall (M_10) cross-validation runs.

We have checked the stability of the classifier graph discussed here
by comparing the results of its 10 cross-validation runs. Of these 127
nodes are in the classifier graph for at least one cross-validation run
and 78 of these are present in all classifier graphs. From the overall
model shown in Figure 2, 84 nodes occur in at least seven cross-
validation models. In Table 2 we show results of similar analyseson
all classification tasks discussed in Section 3.2. From these results,
we conjecture that the molecular symptoms identified in StAM are
fairly stable. They allow to resolve a patient’s diagnosis according
to their presence or absence and thus characterize patient subgroups
which may be of clinical relevance.

4 DISCUSSION

In this paper, we present an approach to integrate biological annota
tion into statistical class prediction analysis of microarray data in
an apriori fashion. We use the functional annotation collected in
the GO database to construct structured classifiers. Class predic-
tions are computed for each term in the GO which is related to the
disease. Our method allows for biologically resolved diagnosis of
patients. It is thus able to diagnose complex clinical phenotypes,
where different patients who show the phenotype may display differ-
ent molecular characteristics. Our method can be generalized easily
beyond the common two class problem, although the interpreta-
tion of molecular symptoms may be difficult in the multiple class
context.

A simpler approach to use GO annotations a priori in class pre-
diction would be to collect genes for each term including genes of
successor terms and generate a classifier for each of these just aswe
do for leaf nodes. We did not further develop thisideafor threereas-
ons: First, thisapproach generatesincreasingly unfocused signatures
for high level terms. Second, our approach is computationally more
efficient, since no training for inner nodes is needed. And finally,
we show that the weighting of terms has the potential to improve
classification accuracy. In seven cases considered in Section 3.2,

StAM outperformstheordinary shrunken centroidsapproach (PAM),
whilein only four cases PAM achieves|ower error ratesthan StAM.

We evaluate our method using three cancer related publicly avail-
able datasets. Thereby, we show that StAM achieves competitive
prediction performance compared to state-of-the-art classification
methods like SVMs. In addition StAM provides molecular dis-
ease group stratification according to biologicaly focused gene
expression patterns, molecular symptoms, by exploiting functional
annotations during the statistical analysis. Thisisin contrast to most
of the previous approaches, which use functional annotation only in
an aposteriori manner to interpret gene lists. We also see our work
orthogonal to the approach suggested in Pavlidis et al. (2002) who
use functional annotations for testing groups of genes and not in a
diagnostic setting like we do.

In summary, structured analysis of microarrays has the poten-
tia to uncover previously unknown molecular disease subentities.
Moreover, the novel notion of molecular symptom may allow us
to characterize new subgroups of patients. We see perspectives for
further development in the exploitation of additional or aternative
sources of biological annotation such as KEGG (Kanehisa, 1996)
or Transpath (Schacherer et al., 2001). Improvement in prediction
accuracy may also beachieved by using other classifiersinleaf nodes
or by anovel method to generate the overall prediction.
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