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ABSTRACT
Motivation: Today, the characterization of clinical phenotypes by
gene-expression patterns is widely used in clinical research. If the
investigated phenotype is complex from the molecular point of view,
new challanges arise and these have not been adressed system-
atically. For instance, the same clinical phenotype can be caused
by various molecular disorders, such that one observes different
characteristic expression patterns in different patients.
Results: In this paper we describe a novel algorithm called Struc-
tured Analysis of Microarrays (StAM), which accounts for molecular
heterogeneity of complex clinical phenotypes. Our algorithm goes
beyond established methodology in several aspects: in addition to
the expression data, it exploits functional annotations from the Gene
Ontology database to build biologically focussed classifiers. These are
used to uncover potential molecular disease subentities and associate
them to biological processes without compromising overall prediction
accuracy.
Availability: Bioconductor compliant R package
Contact: Claudio.Lottaz@molgen.mpg.de
Supplementary information: Complete analyses are available at
http://compdiag.molgen.mpg.de/supplements/lottaz05

1 INTRODUCTION
Supervised tumor classification based on microarray data is among
the most promising clinical applications of modern genomics. It
opens perspectives for more reliable and efficient diagnosis of estab-
lished tumor entities (Bhattacharjee et al., 2001; Yeoh et al., 2002),
risk group determination (Huang et al., 2003; van’t Veer et al., 2002),
and the prediction of response to treatment (Cheok et al., 2003).

Classification in the context of microarray analysis is a well-
studied problem in statistics and machine learning. A large number
of methods have been suggested, ranging from Fisher’s classical lin-
ear discrimination to boosting and support vector machines (SVM).
Tibshirani et al. (2002) investigate a very simple nearest-centroids
approach. Classical linear discriminant analysis (LDA) and quadratic
discriminant analysis (QDA) are applied in Dudoit et al. (2002). The
LDA-like method of Golub et al. (1999) is described in more detail
in Slonim et al. (2000). Artificial neural networks are used in Khan
et al. (1999). SVMs are suggested in Ben-Dor et al. (2000), Furey
et al. (2000) and Yeoh et al. (2002). Nearest-neighbor methods are
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discussed in Dudoit et al. (2002) and classification trees, including
boosting, are applied in Ben-Dor et al. (2000), Dudoit et al. (2002),
Schoch et al. (2002) and Dettling and Bühlmann (2003). The use
of Bayesian binary regression is laid out in West et al. (2001) and
Spang et al. (2002).

In addition to predictive performance, there is also hope
that microarray studies uncover molecular disease mechanisms.
However, in many cases the molecular signatures discovered by
the algorithms are unfocused from a biological point of view. They
contain genes attributed to many different biological processes and
do not point to particular underlying molecular disease mechanisms.
In fact, they often look more like random gene lists than biologically
plausible and understandable signatures. This is because standard
classification algorithms aim for global signatures. They identify
groups of genes whose joint distribution of expression levels is
most different between two different clinical phenotypes without
considering their biological role.

Moreover, the fact that only one list of genes is determined for
all patients reflects the implicit assumption that a single molecu-
lar mechanism is responsible for a certain clinical phenotype. This
assumption is questionable, e.g. when distinguishing between recur-
rent and non-recurrent disease, it is quite possible that recurrence
has various molecular backgrounds. If this is the case, one will
expect different molecular changes in different patients. In order to
formalize this idea, we treat the two phenotypical groups (disease
and control) in a non-symmetric way. Instead of global expres-
sion signatures, we want to identify sets of genes that display
characteristic expression patterns in a subset of patients from the
disease group but not all of them. We aim for different sets of
genes, which possibly identify different subsets of patients in the
disease group. We call these patient subset-specific expression pat-
terns molecular symptoms to distinguish them from global molecular
signatures.

Another shortcoming of standard classification algorithms is that
they treat gene-expression levels as anonymous variables. However,
a lot is known about the function and the role of many genes in cer-
tain biological processes. This knowledge is stored in databases like
the Gene Ontology (GO) (The Gene Ontology Consortium, 2000).
Annotations are routinely used today when biologists analyze lists
of differentially expressed genes. In contrast to this post analysis
exploration of functional annotations, we propose using annotations
during the statistical analysis process, i.e. when computing molecular
signatures and molecular symptoms. Since gene-expression levels
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result from tightly coordinated regulatory processes, they tend to be
highly correlated. Consequently there is redundant information in
microarray data. We have often observed, that one can replace one
gene in a signature by another one with a similar expression profile
without significantly changing the predictive power of the signature
(data not shown). This opens up the possibility of replacing a non-
intuitive, biologically diverse signature by an equally good one with
a clear functional focus.

We propose a biologically resolved computational diagnosis based
on the GO. In GO, biological terms describing biological processes
are organized in a directed acyclic graph, where each node represents
a biological process and child-terms are either members or repres-
entatives of their parent-terms. Genes are attributed to nodes based
on the knowledge the biological research community has gathered
so far. Our basic idea is as follows: we construct one classifier for
each node of the GO graph. Each of these classifiers only depends on
expression levels matching the biological aspect the node represents.
Similar to global gene selection based classifiers, we shrink the GO
graph, getting rid of branches (biological processes) that are most
likely unrelated to the investigated phenotype. The remaining nodes
represent molecular symptoms. Different biological processes may
identify different subsets of patients.

In the next section we describe the StAM algorithm in detail.
Section 3 contains an evaluation on three publicly available can-
cer related datasets. Therefore we illustrate StAM’s performance
both as a predictive classification method and as an explorat-
ory tool for the molecular stratification of the disease group and
for establishing links between complex phenotypes and biolo-
gical processes. Finally, conclusions are drawn and discussed in
Section 4.

2 STRUCTURED MICROARRAY ANALYSIS
In order to provide biologically resolved diagnosis on various levels
of granularity, we use GO’s hierarchical structure. Based on the
GO graph of biological processes, StAM generates a classifier graph
holding one classifier for each process. These classifiers only depend
on genes annotated to corresponding nodes or their descendants. For
instance, the classifier of the node ‘apoptosis’ only depends on genes
involved in apoptosis. Its diagnosis for a patient only reflects altered
gene regulation in apoptosis-related pathways. Our approach consists
of the following steps:

• generate a rooted, directed classifier graph according to the GO,

• construct leaf node classifiers based on selected expression
values using a classical machine learning method,

• propagate these results through inner nodes to the root and

• shrink the classifier graph to determine a concise set of
molecular symptoms.

2.1 Classifier structure
StAM’s classifiers exclusively predict based either on their children’s
classification results or on the expression levels of the directly attrib-
uted genes. In GO, genes can be annotated to both leaf nodes and
inner nodes. Therefore, we augment the GO graph such that genes
are annotated to leaf nodes only. If i is an inner node with genes
annotated to it, we introduce a novel leaf node i ′ to the graph, with
i as its only parent and move all genes from i to i ′.

We generate the graph described above anew for each chip type.
Thus, we can choose any GO node as the term of interest and start
our procedure with the given node as the root of the graph consid-
ering only successors in GO during graph construction. We use two
methods to remove non-informative nodes from the result: (1) Nodes
are discarded if neither they nor any of their successors have genes or
probes annotated to them. (2) A node with a single child is replaced
by its child, since results are identical (they depend on the same data).
In this manner we generate a classifier graph, specific to the chip type
used in the given study and the GO term of interest.

2.2 Leaf node classifiers
Each leaf node contains a set of associated genes. The corresponding
classifier is constructed using only expression levels of these genes. It
returns a continuous classification output scaled to numbers between
0 and 1, where 0 indicates clear evidence for the control group, one
indicates clear evidence for the disease group and intermediate values
represent the levels of uncertainty. The number of genes annotated
to a leaf node varies strongly from one node to the other. For some
nodes it is so high that classification in the leaf nodes still requires
regularization to avoid overfitting. In principle, any machine learning
method can be used here.

In our current implementation we have chosen the shrunken
centroid classification (Tibshirani et al., 2002) as the leaf node class
prediction method for its simplicity and computational efficiency.
Centroid shrinkage is determined by cross-validation node by node,
such that the lowest error rate is achieved. In order to regularize
the classifier centroid shrinkage excludes genes from the signatures.
Thus a classifier associated to the node ‘apoptosis’ is driven only
by genes involved in apoptosis, but not necessarily all of them.
The shrunken centroids method defines a continuous classification
output by logit transformed discriminant scores. A continuous clas-
sification scale smoothes the process of classification propagation
to inner nodes.

2.3 Propagating classification results
So far we have classifiers for the leaf nodes, next we combine them
with the classifiers in the inner nodes. We do this without breaking the
leaf node classifiers apart. There are no novel classifiers built using
merged gene sets, since this would lead to the non-intuitive signatures
that we want to avoid. Instead we suggest weighted sums of child
classification outputs to propagate the results. Thus, the root node
naturally displays the overall classification result because it depends
on the largest amount of data. Children with good classification per-
formance receive more weight than those with poor performance.
StAM chooses weights according to a performance criterion which
reflects the properties of molecular symptoms, thus punishing low
specificity more severely than lack of sensitivity.

Our performance criterion δi for node i is analogus to the deviance
used in statistical classification theory. We define a similarity meas-
ure di , using a calibration parameter β to enforce high specificity for
the price of reduced sensitivity. Let Sc and Sd represent the samples
of the control and the disease group, respectively, while ps

i denotes
the classifier output of node i and sample s. We define:

di = −2(1 − β)

|Sd |
∑

s∈Sd

log(ps
i ) + −2β

|Sc|
∑

s∈Sc

log(1 − ps
i )

for all nodes i. Given that dis are high for bad classifiers, we flip the
scale by subtracting them from the highest di observed in leaf nodes.
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Finally, in order to eliminate uninformative classifiers, we subtract a
shrinkage level � and set negative δis to zero. With NL denoting the
set of leaf nodes, set:

δi = [max
j∈NL

dj − di − �]+

where [x]+ is zero for negative x and x otherwise.
The prediction results are propagated from the leaf nodes towards

the root through the edges E in a postorder traversal of inner nodes.
Hence, StAM always computes results for all children of a given
node before it computes results for the node itself. Each edge from
parent i to child j receives a weight ωij . The weights reflect the
quality measure δj of child j and are normalized separately in each
inner node. With Ch(i) denoting the set of children of node i and
NI denoting the set of inner nodes, we can write the propagation of
results as follows:

ωij = δj∑
k∈Ch(i) δk

∀(i, j) ∈ E

ps
i =

∑

j∈Ch(i)

ωij · ps
j ∀i ∈ NI ∧ s ∈ Sd ∪ Sc.

2.4 Classifier graph shrinkage
Most nodes in the classifier graph do not contribute to a good over-
all classifier. Many biological processes are not involved with the
investigated phenotype. In addition, we want to determine a con-
cise set of molecular symptoms. We describe in this section how
StAM further simplifies the classifier graph by eliminating irrel-
evant branches. This is done in analogy to gene selection in the
shrunken centroid algorithm. Here we do not shrink weights associ-
ated to genes, but the weights associated to edges in the GO graph.
If such a weight is shrunken to zero the corresponding edge and
the subgraph below it is eliminated from the graph. StAM con-
trols the shrinkage process by choosing the above mentioned graph
shrinkage level �. We define an objective function for � con-
sidering two independent goals: good predictive performance in
the root and uncovering suboptimally classifying molecular symp-
toms for patient stratification; and for the second goal, aggressive
shrinkage is counterproductive since by focusing on best classifi-
ers it only eliminates too many inherently heterogeneous molecular
symptoms.

We propose an objective function composed of the following two
measures: the root’s performance measure (δroot) and the mean clas-
sifier redundancy. While δroot is already defined, we now focus
on what we call redundancy. When considering two nodes in the
trained classifier graph, we can define a similarity rij between
the two classifiers expressing how different their results are as
follows:

rij = −1

|S|
∑

s∈S

log
(
ps

i (1 − ps
j ) + (1 − ps

i )p
s
j

)
,

where S = Sd ∪ Sc. The mean similarity to all other nodes in the
classifier graph is the node’s redundancy ri within that graph. We
suggest to use the mean redundancy over all nodes in a shrunken
classifier graph as measure R(�) for the heterogeneity of its clas-
sifiers. Let K(�) denote the set of nodes remaining in a shrunken

classifier graph. Thus:

ri = 1

|K(�)| − 1

∑

j∈K(�)\{i}
rij

R(�) = 1

|K(�)|
∑

i∈K(�)

ri

Finally, StAM uses a calibration parameter α in the interval [0, 1]
to compute a combined score for each shrinkage level. Thereby, α is
the weight for the root’s performance measure while (1 − α) is the
weight for the classifier graph’s mean redundancy. We scale the root’s
performance measure and mean redundancy to fit in the interval [0, 1]
before computing the compound score O(�):

O(�) = α
δroot(�) − δmin

δmax − δmin
+ (1 − α)

R(�) − Rmin

Rmax − Rmin

where Rmin and Rmax are the minimum and maximum mean redund-
ancy over all �s while δmin and δmax give the range of root
performances over all �s. StAM chooses the graph shrinkage level
� to minimize O(�). When several candidates are equivalent, the
lowest shrinkage is used in order to provide a more resolved classifica-
tion result.

2.5 Calibration of parameters
In our method, the user specifies two calibration parameters: the spe-
cificity versus sensitivity parameter β and the performance versus
redundancy parameter α. Both parameters can be chosen freely
within the interval [0, 1]. However, users should bear in mind the fol-
lowing considerations when doing so. The root performance weight
α expresses the desired trade-off between prediction accuracy and
heterogeneity of molecular symptoms. Setting α to 1 focuses on clas-
sification performance only, while setting α to 0 aims to determine
a most heterogeneous classifier graph.

Although the parameter β is meant to overstate specificity inten-
tionally, there is a trade-off between classification performance and
discovery of molecular symptoms. The specificity weight can be
chosen more freely in easy classification tasks, while heavily unbal-
anced analysis is mostly meaningless in difficult classification tasks.
We usually start out with β set to the prevalence of the control group,
thus expecting the best prediction results. When the prediction task
proves to be simple enough, we attempt a more unbalanced analysis.
Our current implementation can compute classifier graphs for sev-
eral βs in one run. Therefore, we usually compute several variants
right from the start, e.g. by setting β to the values 0.75, 0.9, 0.95 and
0.99 in addition to the control group’s prevalence.

2.6 Implementation
StAM is implemented in R (R Development Core Team, 2004) based
on Bioconductor packages (Gentleman et al., 2004). We rely on
the pamr package (Tibshirani et al., 2002) as implementation of the
shrunken centroids classifier. We also use Bioconductor’s meta-data
packages on chip annotations and the GO. For the layout and illus-
tration of the classifier graph on StAM’s result pages, the Graphviz
software package is used (Gansner and North, 2000). StAM is itself
a part of Bioconductor release 1.5.

The results are written on interlinked HTML pages. The links
allow navigation along the edges of the classifier graph. The pages
contain classification results and performance evaluation for each
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node as well as overall information about cross-validation, the model
fit and predictions of test samples. For inner nodes, the weights of
the children are provided while in leaf nodes the genes used by the
shrunken centroid classifiers are given. The user can further explore
term definitions and probeset annotations through external links to
the GO and the Affymetrix website.

3 EVALUATION ON CANCER RELATED DATA
We suggest structured analysis of microarrays for different applica-
tions. In addition to predictive performance we also aim for making
underlying disease mechanisms transparent. We do this by identi-
fying molecular symptoms associated to subsets of patients in the
disease group. Molecular symptoms are always restricted to well
defined biological processes. Patients who are positive for a molecu-
lar symptom display abnormal gene expression in the corresponding
process. Not all patients in the disease group are positive for every
identified molecular symptom, but some patients can be positive for
more than one of them. Using patterns of absence and presence of
molecular symptoms, we define an additional molecular stratification
of patients.

We have evaluated our approach on three publicly available data-
sets from cancer-related microarray studies. Here we only discuss
a subset of the obtained results. The reader can find a complete
collection of our analyses and a detailed description of our data
preprocessing protocol on a supplementary website.

3.1 Datasets and GO annotations
The first dataset we used was generated in a breast cancer study
(Huang et al., 2003). The authors investigate lymph node metastatic
status and relapse in 37 and 52 breast cancer patients respectively.
The second dataset stems from a lung cancer study (Bhattacharjee
et al., 2001). Gene-expression profiles from 186 lung cancer and
17 normal biopsies have been analyzed by hierarchical and probabil-
istic clustering. The authors claim to have discovered distinct groups
of adenocarcinomas with corresponding marker genes which are ret-
rospectively correlated to long term outcome. Finally, we also use
the dataset on pediatric acute lymphocytic leukemia (ALL) published
in Yeoh et al. (2002). This study contains gene-expression profiles
of 327 patients of various ALL subtypes. Yeoh et al. report on an
attempt to ease stratification of ALL patients according to relapse
risk in order to tailor treatment intensity.

All mentioned studies have been performed using the HG-
U95Av2 Affymetrix GeneChip technology. This microarray holds
12625 probesets designed based on the EST clusters from UniGene
(Schuler, 1997) version 95. For mapping these probesets to GO nodes
we have used the Bioconductor meta-data packages version 1.5.1
built on March 3 and 4 2004. While generating our annotations we
focussed on GO’s biological process ontology. We have determined
8172 successors of GO:0008150 in the biological process branch of
the GO. Of these 1359 have 8679 probesets directly annotated and
are held together by 845 inner nodes in our classifier graph. Thus
our method has access to 68.7% of the microarray data distributed
across 2204 GO terms to achieve the results described below.

3.2 Prediction accuracy
In this section we confirm that StAM’s classification performance is
comparable to the state-of-the-art classification methods. However,
our performance is compromised by the fact that certain probesets
are not associated to any GO node and therefore not used in StAM.

Table 1. Performance comparison of StAM to PAM and SVMs

Classification Task Error Rates
Study Groups SVM PAM StAM

St Jude Hyperdip.: 64 7.6% 7.3% 5.8%
ALL1 Study Other: 263 (100/53) (8617/707) (732/7)

BCR/ABL: 15 1.2% 4.9% 3.1%
Other: 312 (100/70) (15/16) (383/6)
E2A/PBX1: 27 0.0% 0.6% 0.6%
Other: 300 (100/64) (2/6) (419/4)
MLL: 20 0.3% 4.6% 2.1%
Other: 307 (100/59) (81/51) (599/6)
TEL/AML1: 79 1.2% 2.4% 1.8%
Other: 2248 (100/61) (35/38) (1275/12)
T-ALL: 43 0.0% 0.0% 0.3%
B-ALL: 284 (100/48) (3/6) (913/21)

Harvard Lung Adeno: 139 9.9% 9.4% 8.9%
Cancer Study Other: 64 (100/64) (3575/498) (1992/23)

Adeno: 139 3.8% 1.9% 1.9%
Normal: 17 (100/58) (3/4) (1209/23)
Carcinoid: 20 0.5% 0.0% 0.5%
Others: 183 (100/51) (1/1) (1730/25)
Normal: 17 2.0% 1.0% 2.0%
Other: 186 (100/64) (3/4) (504/39)
Squamous: 21 3.9% 3.0% 4.9%
Other: 182 (100/48) (2/3) (834/18)
Squamous: 21 0.0% 2.6% 0.0%
Normal: 17 (100/64) (4/5) (583/25)

Duke Breast Relapse: 18 25.0% 23.1% 21.2%
Cancer Study Remission: 34 (100/55) (71/41) (363/8)

High risk: 18 32.4% 45.9% 45.9%
Low risk: 19 (100/78) (67/53) (312/2)

Error rates determined in 10-fold cross-validation on public datasets from cancer related
microarray studies.

Although we do not claim that our approach outperforms state-of-
the-art classifiers, we evaluate its classification power compared to
ordinary PAM (shrunken centroids) and SVMs in order to validate
its usefulness in clinical diagnosis.

The evaluation is performed in a nested cross-validation scheme
where the same cross-validation subsets are used for all three
methods. Nested cross-validation means that there is an outer cross-
validation loop for model evaluation and an inner loop for model
selection. The samples are divided into k = 10 sets and one by one
each of these sets is left out for evaluation. With the remaining 9/10
of the data we optimize the StAM classifiers, again using cross-
validation of only these 9/10 samples. The samples left out in the
outer loop are not used at all in any of StAM’s model selection
steps, including shrinkage determination in the leaf nodes, propaga-
tion weight calculation and graph shrinkage. This ensures that the
evaluation results do not suffer from the well known overoptimism
described in Ambroise and McLachlan (2002).

For StAM we have performed classification using the method
described in Section 2 with annotations from the biological pro-
cess branch of GO as described in Section 3.1. For PAM we have
used the default parameters of the corresponding R package (ver-
sion 1.12.1). The evaluation for the SVM has been performed using
the implementation from the e1071 R package (version 1.3-16,
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Fig. 1. Union of classifier graphs for relapse prediction (white nodes) and detection of metastatic lymph nodes (black nodes) in breast cancer patients.
Gray nodes occur in both classifier graphs.

a libsvm interface available at http://www.cise.ntu.edu.tw/cjlin/
libsvm (Chang and Lin, 2004)) selecting 100 features based on the
SAM score (Tusher et al., 2001). Table 1 summarizes the results for
a series of classification tasks on the three datasets mentioned above.

From Table 1 we see that StAM outperforms both reference
methods in three of the tasks, while it is worse than these in only
two cases. StAM yields either an equal result as one of the other
methods or its performance is between the reference methods for nine
more classification problems. This result confirms that StAM delivers
competitive classification results compared with the state-of-the-art
classification methodology.

The numbers in parentheses in Table 1 give the number of features
selected for PAM and SVM as well as the number of GO categor-
ies to which these features are annotated (biological process only).
The figures confirm our observation that many signatures are com-
posed of genes from many biological processes with little biological
focus. The corresponding figures given for StAM give the number
of leaf nodes in the structured classifier and the number of features
selected. StAM often uses many genes, but explicitly attributes them
to few molecular symptoms. For the vast majority of cases even
the global StAM signatures are more focused than in non-structured
methods. However, even when the global signature is not focused,
the molecular symptoms are by definition.

3.3 Uncovering disease mechanisms
In addition to predictive performance, we also aim to make under-
lying disease mechanisms transparent. We do this by identifying
molecular symptoms involved in the investigated disease. In this sec-
tion we illustrate the explorative detection of disease mechanisms;
classification performance is of secondary interest.

Huang et al. (2003) claim that although the lymph node meta-
static status in breast cancer is a commonly accepted risk indicator
for relapse, different biological mechanisms appear to be involved.
To provide evidence for this claim, two classifiers are trained on
separate datasets: one to predict disease outcome in terms of recur-
rence and the other one to characterize metastatic lymph node status.
Huang et al. observe that the signatures of the two classifiers overlap
in very few genes and thus conjecture that different biological mech-
anisms are involved in metastasis development and breast cancer
relapse. We confirm and further characterize these findings using
structured analysis.

When using StAM exploratively, we do not split the dataset into
test and training set. For the two classification tasks relapse prediction
and lymph node metastasis detection, we train classifier graphs using
all available samples. The models generated for the two tasks are
shown in Figure 1. Only gray nodes occur in both classifiers and
may, therefore, point to common biological mechanisms.
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Fig. 2. Structured analysis of 327 acute lymphocytic leukemia patients. Molecular symptoms specific for MLL are shown. They are filtered by minimum
specificity.

The structured classifier to detect metastatic lymph nodes is based
on 15 GO nodes while the classifier graph for the relapse predictor
holds 39 nodes (α = 0.7, β = 0.9). They share only four nodes,
most of which are high level nodes and no leaf nodes are shared.
The risk-assessment classifier relies on data annotated to the terms
‘protein amino acid phosphorylation’ and ‘DNA dependent regu-
lation of transcription’. On the other hand prediction of relapse is
based on data from ‘blood coagulation’, ‘cation transport’, ‘reg-
ulation of translation’, ‘vision’ and ‘chemotaxis’. This illustrates
an advantage of structured analysis of microarrays. While classical
methods for detecting global signatures return an unstructured list
of genes, StAM directly determines biological aspects involved in
addition to the corresponding genes. For each of the leaf nodes
remaining in the shrunken classifier graph, StAM provides a list
of genes relevant for classification and potentially useful for further
investigation.

3.4 Patient stratification
Through the identified molecular symptoms associated to subsets
of patients in the disease group, we obtain an additional molecu-
lar stratification of patients according to patterns of absence and
presence of such symptoms. To illustrate this use of StAM we ran-
domly split our data into training and test set. Figure 2 shows an
example for StAM-based patient stratification on the MLL subtype
of acute lymphocytic leukemia (ALL) investigated in Yeoh et al.
(2002). A group of 20 MLL patients has been included in the study.

We have trained StAM for detection of MLL on 217 of the available
samples including 14 MLL cases with β set to 0.94, the control
prevalence. We set the shrinkage level manually to obtain a reason-
able number of nodes in the classifier graph. The 110 test samples
are classified without error in the root node.

Figure 2 is focused on the 20 MLL samples in the dataset. In
the center of the figure the probability computed by classifiers in
the classifier graph for each sample are shown as color code (see
right hand side of the figure). In the image, rows correspond to GO-
classifiers and columns reflect samples. The samples from the test set
are marked with capital letters on the x-axis. Clustering this image
in both directions brings similar classifiers and samples together.
The graph to the left of Figure 2 shows the GO relations between
the classifiers. The sensitivities and specificities given between the
GO structure and the image are computed on the test set only. In
Figure 2, bright regions represent presence, black regions absence
of molecular symptoms.

We can group patients according to patterns of molecular symp-
toms. For instance, rows 2–6 in Figure 2 represent a molecular
symptom related to apoptosis, which is present in all test samples
except for sample G. Only in test samples A, B and C we observe
the symptom driven by genes involved in antimicrobial humoral
response. Effects in genes usually involved in skeletal development
are observed in test samples A and B only, while samples B and C
show untypical patterns for ALL in cell motility. Samples B and G
have particular expression in synaptic transmission.
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Table 2. Stability of classifier graphs

Classification Task Nodes in CV-graphs
Study Task CVall M≥1 M≥7 M=10

Leukemia Hyperdip. 27 24 22 18
BCR/ABL 44 24 19 15
E2A/PBX1 28 18 10 10
MLL 46 33 17 17
TEL/AML1 74 45 32 31
T-ALL 89 78 75 75

Lung cancer Adeno: 126 80 78 70
Adeno/normal 105 83 77 76
Carcinoid 132 89 81 77
Normal 220 136 119 110
Squamous 94 72 66 37
squamous/normal 124 85 74 74

Breast Cancer Relapse 123 40 30 11
High risk: 28 15 9 9

For tasks described in Table 1, count nodes occuring in any cross-validation run (CVall).
Further columns indicate how many nodes of the final graph occur in any (M≥1), at least
in 7 (M≥7) and in all (M=10) cross-validation runs.

We have checked the stability of the classifier graph discussed here
by comparing the results of its 10 cross-validation runs. Of these 127
nodes are in the classifier graph for at least one cross-validation run
and 78 of these are present in all classifier graphs. From the overall
model shown in Figure 2, 84 nodes occur in at least seven cross-
validation models. In Table 2 we show results of similar analyses on
all classification tasks discussed in Section 3.2. From these results,
we conjecture that the molecular symptoms identified in StAM are
fairly stable. They allow to resolve a patient’s diagnosis according
to their presence or absence and thus characterize patient subgroups
which may be of clinical relevance.

4 DISCUSSION
In this paper, we present an approach to integrate biological annota-
tion into statistical class prediction analysis of microarray data in
an apriori fashion. We use the functional annotation collected in
the GO database to construct structured classifiers. Class predic-
tions are computed for each term in the GO which is related to the
disease. Our method allows for biologically resolved diagnosis of
patients. It is thus able to diagnose complex clinical phenotypes,
where different patients who show the phenotype may display differ-
ent molecular characteristics. Our method can be generalized easily
beyond the common two class problem, although the interpreta-
tion of molecular symptoms may be difficult in the multiple class
context.

A simpler approach to use GO annotations a priori in class pre-
diction would be to collect genes for each term including genes of
successor terms and generate a classifier for each of these just as we
do for leaf nodes. We did not further develop this idea for three reas-
ons: First, this approach generates increasingly unfocused signatures
for high level terms. Second, our approach is computationally more
efficient, since no training for inner nodes is needed. And finally,
we show that the weighting of terms has the potential to improve
classification accuracy. In seven cases considered in Section 3.2,

StAM outperforms the ordinary shrunken centroids approach (PAM),
while in only four cases PAM achieves lower error rates than StAM.

We evaluate our method using three cancer related publicly avail-
able datasets. Thereby, we show that StAM achieves competitive
prediction performance compared to state-of-the-art classification
methods like SVMs. In addition StAM provides molecular dis-
ease group stratification according to biologically focused gene
expression patterns, molecular symptoms, by exploiting functional
annotations during the statistical analysis. This is in contrast to most
of the previous approaches, which use functional annotation only in
an aposteriori manner to interpret gene lists. We also see our work
orthogonal to the approach suggested in Pavlidis et al. (2002) who
use functional annotations for testing groups of genes and not in a
diagnostic setting like we do.

In summary, structured analysis of microarrays has the poten-
tial to uncover previously unknown molecular disease subentities.
Moreover, the novel notion of molecular symptom may allow us
to characterize new subgroups of patients. We see perspectives for
further development in the exploitation of additional or alternative
sources of biological annotation such as KEGG (Kanehisa, 1996)
or Transpath (Schacherer et al., 2001). Improvement in prediction
accuracy may also be achieved by using other classifiers in leaf nodes
or by a novel method to generate the overall prediction.
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