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Abstract
The functional characterization of all genes and their gene products is the main challenge of the postgenomic
era. Recent experimental and computational techniques have enabled the study of interactions among all
proteins on a large scale. In this paper, approaches will be presented to exploit interaction information for the
inference of protein structure, function, signalling pathways and ultimately entire interactomes. Interaction
networks can be modelled as graphs, showing the operation of gene function in terms of protein interactions.
Since the architecture of biological networks differs distinctly from random networks, these functional maps
contain a signal that can be used for predictive purposes. Protein function and structure can be predicted by
matching interaction patterns, without the requirement of sequence similarity. Moving on to a higher level
definition of protein function, the question arises how to decompose complex networks into meaningful
subsets. An algorithm will be demonstrated, which extracts whole signal-transduction pathways from noisy
graphs derived from text-mining the biological literature. Finally, an algorithmic strategy is formulated that
enables the proteomics community to build a reliable scaffold of the interactome in a fraction of the time
compared with uncoordinated efforts.

Introduction
One of the oldest paradigms in molecular biology is the
concept of ‘one gene – one protein – one function’.
This notion has been captured in hierarchical classification
schemes such as the EC-number or the Gene Ontology. It
has become clear that the above paradigm is far from the
whole truth. Many genes have alternative splicing variants
and various post-translational modifications, some proteins
have several binding sites and catalyse a variety of different
reactions, and the cellular processes or developmental stages
in which the proteins are involved are not accounted for
at all. The complexity of protein function is captured to a
great extent in the biological literature. However, this kind
of knowledge is inaccessible to computer algorithms in the
sense that it is unstructured information.

The post-genomic view defines protein function in the con-
text of complex networks of specific interactions. This view
of a ‘society of proteins’ has been proposed previously [1–3].
Indeed, molecular networks share important architectural
features with social networks and the world-wide web [4].
In the present study, we take the view that protein ‘function
equals interaction’. Providing interaction information for
every gene product is a clean way to assemble the jigsaw
puzzle of proteins into a functional map.

The complexity of interaction networks is captured in
mathematical terms as graphs G = (V, E). Generally, graphs
consist of a set of nodes (or vertices) V linked by either
directed or undirected edges E. In interaction networks,
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nodes represent biological entities such as domains, proteins,
complexes or protein families. The edges between these nodes
are interactions or functional associations. Each edge can be
assigned a weight. For example, the weight could represent
the strength of an interaction, such as the dissociation con-
stant KD or the amount of independent experimental evidence
for this interaction.

Like the proteome, the interactome is a dynamic structure.
In the first approximation, we will not attempt to model the
dynamics of such complex systems, albeit there are attempts
based on Boolean networks or differential equations for
smaller subsystems [5]. In the present study, we restrict
ourselves to model protein–protein interaction networks as
static graphs. Although this model glosses over many hairy
problems concerning the description of biological function,
it provides an abstract overview of cellular networks and the
resulting graphs can be subjected to algorithmic and graph-
theoretic analysis [6].

Protein classification by interaction
networks
A vast number of different experimental and computational
methods have been devised to detect protein–protein inter-
actions. The available methods capture different aspects of
a whole spectrum ranging from ‘hard’ physical interactions
through transient binding (e.g. in signal transduction) to in-
direct genetic and functional (e.g. metabolic) associations. The
common denominator of the most successful experimental
techniques is that they measure binding of a ‘bait’ protein
to a single or a whole library of ‘prey’ proteins. In contrast,
the computational methods measure a degree of association
within different ‘functional contexts’, like genes within an
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operon, domain fusion within open reading frames or co-
occurrences of gene or protein names in Medline abstracts.
Efforts are underway to integrate interaction data into pub-
licly available resources [7] (e.g. BIND, DIP, MINT, IntAct
and MIPS). Despite the huge differences between all the
computational and experimental techniques available, there
are nevertheless a number of common emerging properties
of interaction networks, namely complexity, incomplete-
ness, noise, a scale-free degree distribution and small-world
behaviour.

Experimental results represent typically binary interac-
tions. In other words, each node v ∈ V is connected to just
one other node w ∈ V, representing experimental evidence
that the protein represented by v interacts with the protein
represented by w. For interaction data derived from the same
species, it is possible to assign a finite set of protein names
L to the interacting partners represented as the set of nodes
V. The labelling function l: V → L represents our knowledge
about the ‘identity’ of proteins within the proteome. Given
this knowledge, it is straightforward to join the experi-
mental interactions through nodes with identical labels. This
method does not work across species, unless we have a way
for identifying the ‘same’ proteins in different species. This
identification is usually done by homology inferred from
sequence similarity, but any classification from the biological
domain can be used. Building a genome-wide interaction is
formally the same as any other contraction of a graph (i.e.
clustering of the nodes) and differs only in the way the
identity function l is defined.

Genome sequencing projects are producing huge numbers
of hypothetical proteins of unknown function and structure.
The usual way of assigning a putative function or struc-
ture to these hypothetical proteins is based on homology
between the query protein and another, experimentally char-
acterized protein. Unfortunately, a large proportion of hypo-
thetical proteins cannot be linked by sequence similarity to
any known protein family. Non-homology methods have
therefore been proposed, based on comparison between the
interactions of a query protein with those of previously
classified proteins.

GBA (guilt-by-association) implies that a query protein
affiliates with the consensus among its neighbours [8]. Ima-
gine colouring the interaction graph according to attributes;
GBA works on the assumption that large islands of uniform
colour will emerge. This makes sense for predicting attributes
such as subcellular localization, since proteins in the same
compartment have a good chance of interacting with each
other. However, there are biologically relevant entities where
interactions involve proteins with very different attributes.
For example, the successive steps of a metabolic pathway
may involve different enzyme activities. To address prediction
problems of this latter type, the actual topology of the
overall network is an important piece of information. In
contrast with the GBA principle, our EMBED method
determines the identity of the query protein by matching
the interaction patterns in terms of the ‘spectrum’ of types of
neighbours (Figure 1). The principle of EMBED has been

Figure 1 Generating interaction networks

Proteins are represented by circles (nodes) and interactions by lines

(edges). The raw data gives binary interactions (left). The ‘same’

nodes are merged. ‘Sameness’ may be defined by protein names

or a classification from the biological domain, leading to abstraction

(middle). Unknown query proteins can be classified by matching their

interaction patterns to the background information represented by a

large interaction network. The gray node is the only one that has the

same set of neighbours as the query on the right.

used successfully for structure assignment [9] and function
assignment [10].

Automatic reconstruction of
signalling pathways
In the following application, an interaction network is
generated by tapping into the vast amount of information
available from Medline abstracts. We use a statistical ap-
proach [11] to compute protein–protein associations from
Medline abstracts. Unlike most other experimental data sets,
the statistical associations have the advantageous property
that they form a weighted graph. In other words, every
association comes with a measure representing the signi-
ficance of the association. This, in turn, is a crude measure
reflecting the reproducibility and hence the strength of the
underlying physical or genetic interactions.

Densely interlinked clusters of proteins with similar func-
tion can be detected in interaction graphs and are called
‘functional modules’. Signalling cascades, on the other hand,
have a more ‘linear’ architecture. Signalling cascades are
constructed from a variety of different proteins with the
purpose of carrying the information conveyed by external
stimuli to the nucleus and triggering the appropriate cellular
responses. We search our interaction graph for paths that
connect the end points of such signalling pathways [6]. The
path starts at a given receptor and ends at any of a given set of
transcription factors. Owing to ubiquitous weak associations,
there is always a short-cut between any two proteins in a
small-world network. However, biological pathways rarely
coincide with the shortest path. We have demonstrated
that a simple algorithm, where the information is routed
along the most reliable edges in the network, selects paths
that are remarkably similar to known signalling pathways.
This algorithm copes with noise and the small-world char-
acteristics of the network without any preprocessing of the
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data, such as removal of edges below a certain threshold or
elimination of highly connected hubs (e.g. [12]). Furthermore,
the algorithm is free of any assumption on the length of a
pathway, the absolute number of nodes to be incorporated
in the pathway or about any intermediates (though known
intermediates can be easily incorporated in the search). Since
the algorithm implements a greedy strategy, it is robust, fast
and delivers reproducible results (unless new trends upset the
Medline data set).

Empirically, the algorithm seems to get the topological
order of the signalling cascades roughly right (Figure 2). The
method presented here is based on precomputed statistical
associations from Medline abstracts, so it does not really
find new associations or interactions. The scope is hence
limited, by definition, to the published results (abstracts) –
on well-studied pathways – and does not cover hypothetical
proteins. In principle, however, the algorithm would work on
any weighted graph, if appropriate weights can be generated
[13,14]. We note that path searching algorithms have applic-
ations in various problem domains, e.g. sequence alignment
[15].

Unravelling unknown interaction networks
Experimental high throughput techniques (such as yeast-
two-hybrid and tandem-affinity purification MS) allow us,
with some degree of error, to determine the neighbourhood
of a given protein within the interaction network. Currently,
we have a complete list of proteins from sequencing of many
organisms, but only very limited information is available on
the interactome. The vast majority of protein–protein inter-
actions either remain to be experimentally determined or have
not been made available in a public database yet. How can
we complete the coverage of interaction space with minimal
effort in terms of the required number of experiments? To
address this question, we modelled the required resources
by assuming cost and time to be in a constant proportional
relationship to the number of performed pull-down experi-
ments, which is equivalent to the number of proteins used
as bait [16]. We are well aware that this simplification
leaves out a lot of experimental details, but it leads to a
concise model of the overall process of information gain in
proteomics.

To simulate the discovery of an unknown interaction
network, we use real interaction data sets (for yeast) that
are explored from scratch by virtual pull-down experiments.
Although no complete data set of interactions is available for
a single organism yet, all observations indicate that protein
interaction networks are scale-free. Since any randomly
selected subset of edges from a scale-free network again
follows a power-law distribution, and all interaction data
sets available represent different subsets of the overall inter-
actome, we conclude that interaction space as a whole has the
same distribution shape as any major subset. That interaction
networks of higher organisms, like human, are scale-free as
well, seems to be the most reasonable assumption at this point.
Thus the simulation results for incomplete interactomes

Figure 2 Reconstruction of signalling pathways

(A) The known pheromone signalling pathway [17]. (B) Thick lines

indicate the ‘backbone’ linking a cell-surface receptor (Ste2) to a

transcription factor (Cln1). The backbone follows the most reliable edges

in a yeast interaction network based on statistical associations in Medline

abstracts. The thin lines link ‘associated factors’ to the backbone. These

nodes are generally connected to the backbone proteins.

should hold also for the real-life exploration of unknown
interaction networks.

Coverage of interaction space translates to edge coverage
in graphs. In the present study, edge coverage means to select
a subset of nodes such that every edge is connected to, or
covered by, at least one node in this subset. There are many
different solutions for finding a set of nodes covering all edges
(interactions) within the same graph (interaction network).
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Figure 3 Performance of the ‘pay-as-you-go’ strategy compared

with random ordering of baits or a theoretically optimal,

degree-guided strategy

The coverage of interaction space is cast as a problem of edge covering in

graphs. A virtual pull-down experiment reveals the edges going out from

a selected ‘bait’ node. Edges ‘seen’ have been covered at least in one

direction (A). Edges ‘confirmed’ have been covered in both directions

(B). An efficient strategy selects ‘baits’ in such an order that as much of

the graph is covered as early as possible.

A subset of highly connected nodes covers a larger portion
of the network compared with another subset of the same
size consisting of nodes that are less connected. In biological
terms, a pull-down experiment reveals the adjacent edges
(interacting proteins) of one node (the bait). Consequently,
a minimum edge-covering set would allow us to map the
interactome with the minimal experimental effort (minimal
number of baits). The disadvantage here is that the problem
of finding the minimum edge-covering set has been shown to
be NP-complete and hence cannot be computed efficiently
even on a graph of known topology. In the biological setting,

matters are complicated further because the topology of the
interactome graph is initially unknown.

The information gain from pull-down experiments is deter-
mined by the strategy applied to order the baits. Owing to a
scale-free distribution, fast coverage is obtained by initially
focusing on the hubs in the network. Unfortunately, locating
hubs requires prior global information about the network
one is trying to unravel. We have shown that a novel ‘pay-
as-you-go’ strategy finds its way to highly connected nodes
near-optimally using only local information that is collected
on-the-fly in successive pull-down experiments. Using the
‘pay-as-you-go’ strategy, 90% of the human interactome
can be seen in 10 000 pull-down experiments with 50% of
the interactions confirmed in both directions. The small-
world property ensures a short path between any two nodes
and accounts for the quick convergence towards the hubs
in the network, independent of the starting point. A scale-
free distribution allows our strategy to estimate the number
of interactions based on partial information and select the
next bait. Remarkably, the pay-as-you-go strategy already
achieves near optimal coverage in confirming interactions
even in the absence of a reliable measure of interaction
degree. Apart from being able to cover the interaction space
efficiently without any prior knowledge, the real strength of
the method lies in its ability to generate confirmed interaction
information close to the greedy confirmed strategy (Figure 3).
Given the limitations of present experimental techniques, an
interaction has to be repeatedly detected (at least twice) before
it can be regarded as safe knowledge.

This work exploits the properties of scale-free networks to
tackle otherwise computationally hard problems effectively
and by computationally relatively simple means. The ‘pay-
as-you-go’ strategy gives no performance advantage in ‘edges
seen’ in fully randomized networks, but using the right-hand
side of the degree distribution in picking baits confers an
advantage already in random networks for ‘edges confirmed’
[6]. An interesting corollary is that if the fitness value of an
interaction network depended on ‘edges confirmed’, it would
spontaneously evolve from a random network to a scale-free
network, which has the highest computational capacity.

Conclusions
The publication of several large-scale interaction data sets in
recent years has been accompanied by the emergence and
proliferation of new algorithms for interaction networks.
Algorithms exploiting interaction data have to deal with the
problems of noise, incompleteness and complexity. Inter-
action patterns can be used in protein classification to
narrow down the scope of hypotheses before experimental
verification. Modules or pathways abstracted from inter-
action networks may help researchers to look beyond the
boundaries of a single protein and consider the surrounding
functional context. But perhaps the main impact of the work
reviewed in this paper lies not so much in any precise
prediction of novel biological facts, as in guiding experiments
and drawing attention to interesting parallel relationships
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between mathematical abstractions and the architecture of
biological systems.
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