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Zusammenfassung 
 

Nα-Acetylierung, eine der häufigsten eukaryontischen Proteinmodifikationen, wird von 

N-terminalen Acetyltransferasen (NATs) katalysiert. NatA, die bedeutendste NAT in 

Saccharomyces cerevisiae, besteht aus den Untereinheiten Nat1, Ard1 und Nat5, und ist am 

silencing, d.h. am Aufbau repressiver Chromatinstrukturen an Telomeren und den 

Paarungstyp-Loci HML und HMR beteiligt. Die vorliegende Arbeit demonstriert eine Rolle von 

NatA auch beim rDNA-silencing, und zeigt erstmals, dass die silencing-Faktoren Orc1 und 

Sir3 funktionell von der Nα-Acetylierung durch NatA abhängen.  

Orc1, die größte Untereinheit des origin recognition complex (ORC), wurde in vivo durch NatA 

Nα-acetyliert. Mutationen, die dies verhinderten, bewirkten eine starke telomerische 

Derepression. NatA wirkte genetisch über die ORC Bindungsstelle des HMR-E-silencers. Die 

artifizielle Bindung von Orc1 an HMR-E machte HMR-silencing NatA-unabhängig. Auch die 

synthetische Letalität von nat1∆ orc2-1 Doppelmutanten wies auf eine funktionelle Verbindung 

zwischen NatA und ORC hin. 

Als weiteres NatA-Substrat wurde Sir3 identifiziert, dessen zelluläre Lokalisierung von NAT1 

abhing. Die schwächeren silencing-Defekte der unacetylierten orc1 sir3 Doppelmutante im 

Vergleich zu nat1∆ implizierten allerdings, dass noch weitere silencing-Proteine die 

Nα-Acetylierung für ihre Funktion bedürfen. 

Weitere Ergebnisse dieser Arbeit belegen eine Funktion N-terminalen 100 Aminosäuren von 

Orc1 im silencing. Deletionen innerhalb dieses Bereichs erzeugten silencing-Defekte. Das 

Fehlen von 51 Aminosäuren vom N-Terminus von Orc1 unterbrach die Interaktion mit Sir1, 

verstärkte aber auch den silencing-Defekt von sir1∆. Dies ergibt ein Model, in dem Orc1 

neben Sir1 ein weiteres silencing-Protein rekrutiert, das zu seiner Bindung einen intakten, 

acetylierten N-Terminus von Orc1 benötigt. 

Zusammenfassend sprechen die Ergebnisse für eine Rolle der Nα-Acetylierung durch NatA 

bei der Modellierung der Chromatinstruktur. 
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Abstract 
 

Nα-acetylation, one of the most abundant eukaryotic protein modifications, is catalyzed by 

N-terminal acetyltransferases (NATs). NatA, the major NAT in Saccharomyces cerevisiae, 

consists of the subunits Nat1, Ard1 and Nat5 and is necessary for the assembly of repressive 

chromatin structures at the silent mating type loci and telomeres. This thesis shows that NatA 

also acts in rDNA repression and it provides the first direct evidence for the functional 

regulation of the silencing factors Orc1 and Sir3 by NatA-dependent Nα-acetylation. 

Orc1, the large subunit of the origin recognition complex (ORC), was Nα-acetylated in vivo by 

NatA. Mutations that abrogated this acetylation caused strong telomeric derepression. NatA 

functioned genetically through the ORC binding site of the HMR-E silencer. Direct tethering of 

Orc1 to HMR-E circumvented the requirement for NatA in silencing. The synthetic lethality of 

nat1∆ orc2-1 double mutants further supported a functional link between NatA and ORC. 

Sir3 was also indentified as a NatA substrate. Its localization to perinuclear foci was NAT1 

dependent. Unacetylated sir3 orc1 double mutants did not resemble the nat1∆ silencing 

phenotype. Thus, we suggest that further silencing components require NatA-dependent 

Nα-acetylation for their function.  

We further identified the N-terminal 100 amino acids of Orc1 to be important for silencing, 

since truncations within this region impaired silencing. The deletion of 51 amino acids from the 

Orc1 N-terminus interrupted the interaction with Sir1 and also reduced silencing in sir1∆ 

strains. We thus propose that the silencing function of Orc1 is not restricted to Sir1 

recruitment, but also comprises the interaction with another protein. The silencing function of 

this hypothesized interaction partner may depend on the Nα-acetylation and integrity of the 

N-terminus of Orc1. 

In summary, we propose that Nα-acetylation by NatA represents a protein modification that 

modulates chromatin structure in yeast. 
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1 Introduction 

1.1 N-terminal acetylation of proteins  

In eukaryotic cells, proteins undergo a number of co- and posttranslational modifications that 

extend the range of their possible molecular structure beyond the limits of the encoding amino 

acids and thus amplify their functional potential. This provides the bases for complex cellular 

mechanisms such as differentiation and gene regulation. 

Among protein modifications, the acetylation of the α-amino group at the initiating amino acid, 

referred to as N-terminal acetylation or Nα-acetylation, is a major modification type. 80-90% of 

the mammalian cytosolic proteins and 50% of those in yeast are estimated to be Nα-acetylated 

(Polevoda and Sherman 2003b). In a cotranslational process, N-terminal acetyltransferases 

(NATs) transfer an acetyl group from acetyl coenzyme A to nascent polypeptides of 20 to 50 

amino acids when they are just protruding from the ribosome (Driessen et al. 1985) (Fig. 1.1). 

In proteins with small penultimate amino acids (1.29 Å or less radii of gyration), acetylation is 

preceded by the removal of the initial methionine residue by means of specific amino 

peptidases (Bradshaw et al. 1998). Notably, Nα-acetylation is irreversible and thus functionally 

distinct from the reversible posttranslational acetylation of ε-amino groups (Nε-acetylation) of 

internal lysines in histones, transcription factors (Cheung et al. 2000b), nuclear receptors and 

import factors (Bannister et al. 2000; Soutoglou et al. 2000). 

The substrate specificity of NATs is not determined by a simple consensus motif, but rather is 

supposed to emerge from degenerate signals within the N-terminal 50 amino acids (Polevoda 

and Sherman 2003a) of the substrate. The penultimate amino acid has a profound, although 

no absolute, effect on Nα-acetylation. Proteins with methionine, alanine or serine termini are 

the most frequently acetylated, the latter two contributing more than 74% of all Nα-acetylated 

proteins in the budding yeast Saccharomyces cerevisiae (Polevoda and Sherman 2003b).  

Whereas Nα-acetylation is one of the most common protein modifications in eukaryotes, it 

occurs only rarely in prokaryotes and archea. In Escherichia coli, RimI, RimJ, and RimL 

specifically Nα-acetylate ribosomal proteins, apparently in a posttranslational manner (Tanaka 

et al. 1989). In general, Nα-acetylation in prokaryotes and archea is thought to differ 

fundamentally from the process in eukaryotes (Polevoda and Sherman 2003b). 

In eukaryotic organisms, the same system of Nα-acetylation may operate in all species, since 

sequence homologs to subunits of yeast NAT’s exist in the genomes of all model organisms, 
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e.g. Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Xenopus laevis, 

Mus musculus, and in humans (Polevoda and Sherman 2003b). Moreover, the acetylation 

patterns of Nα-acetylated proteins are very similar in yeast and mammals, suggesting that they 

are evolutionary conserved. Interestingly, Nα-acetylation is more frequent in mammals 

compared to yeast, which may point to some form of selection for this modification during 

evolution. 

Nevertheless, the number of the Nα-acetylated proteins characterized so far is limited, and 

only a few examples demonstrate the biological significance of this modification. It was 

originally suggested that Nα-acetylation generally acts as protection from degradation, but this 

hypothesis is no longer favored (Mayer et al. 1989). In the current model, the biological 

importance of Nα-acetylation varies with the particular protein. Accordingly, some proteins 

require Nα-acetylation for their function and stability, whereas others do not. Tropomyosin, for 

example, depends on Nα-acetylation for normal binding and stabilization of filamentous actin 

in yeast and vertebrate muscle cells (Urbancikova and Hitchcock-DeGregori 1994; Singer and 

Shaw 2003). In addition, Nα-acetylated rat α-melanotropin induces increased pigment-

producing effects and enhanced activity in behavioral tests compared to the unacetylated form 

(Smyth et al. 1979; O'Donohye et al. 1982). Nα-acetylation of the major coat protein gag of the 

L-A double-stranded RNA virus in S. cerevisiae is essential for the assembly of virus particles 

(Tercero and Wickner 1992). Recently, AtMAK3, a homolog of yeast Mak3 in A. thaliana, was 

found to acetylate core proteins of photosystem II, which was necessary for the formation of 

thylacoid complexes and plant growth (Pesaresi et al. 2003). Furthermore, Nα-acetylation can 

also affect the thermal stability of proteins, as observed for the NADP-specific glutamate 

dehydrogenase of Neurospora crassa (Siddig et al. 1980). 

Importantly, not only the lack of Nα-acetylation can result in various defects, but abnormal 

acetylation can likewise prevent regular protein function. In yeast, the catalytic α-amino 

groups of some 20S proteasome subunits have to be protected from Nα-acetylation to 

preserve their peptidase activity (Arendt and Hochstrasser 1999). This is realized by 

N-terminal propetides, which become removed from the subunits during proteasome 

assembly. As another example, hemoglobin Lyon-Bron displays decreased oxygen affinity 

due to Nα-acetylation, which consequently causes anemia. In this α2-globin variant, the 

penultimate amino acid is mutated from valine to alanine, which converts the protein into a 

NAT substrate (Lacan et al. 2002). 
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Altogether, these examples demonstrate the biological significance of Nα-acetylation in 

diverse organisms. In spite of this, the knowledge of mechanisms and players of this frequent 

modification to date is only marginal. 

 

1.2 Nα-acetyltransferases in S. cerevisiae 

Insight into the function of Nα-acetylation comes from the analysis of NATs in S. cerevisiae. 

Here, three NAT complexes exist that are known as NatA, NatB and NatC according to their 

substrate specificity (Tbl. 1.1). NatA accounts for the majority of Nα-acetylated proteins in 

yeast, and acetylates proteins with alanine or serine, and occasionally with glycine or 

threonine termini. The other two NATs act on the N-terminal methionine when the second 

residue either is glutamate or aspartate, asparagine or methionine (NatB substrates), or else 

isoleucine, leucine, tryptophan or phenylalanine (NatC substrates) (Polevoda and Sherman 

2003b). Interestingly, whereas all observed proteins with Met-Asp and Met-Glu N-termini were 

Nα-acetylated, only half of the potential NatC substrates were actually modified in vivo. 

In addition to the aforementioned substrate types, a special subclass of NatA substrates with 

Ser-Glu, Ser-Asp, Ala-Glu or Gly-Glu termini was designated NatD substrates (Arnold et al. 

1999). In systematic analyses for substrate specificities of NATs, these proteins were found to 

require not only NatA activity for Nα-acetylation, but also the integrity of NatB and NatC. As a 

possible interpretation, it was suggested that the acetylation of NatD proteins requires 

auxiliary factors to NatA, which in turn are substrates of the other two NATs (Polevoda et al. 

1999). 

Recently, the novel GNAT (GCN5-related N-acetyltransferase) homolog Nat4 was identified to 

specifically acetylate histones H2A and H4 (Song et al. 2003). Interestingly, this protein is well 

conserved from yeast to mammals not only in the GNAT domain, indicating a role in histone 

acetylation also for its homologs. However, mechanistic details or interaction partners of Nat4 

are currently not known. Given the importance of the charge of histones for their association 

with DNA (see below), it is surprising that nat4∆ mutants displayed no detectable phenotype, 

although each nucleosome contained four extra positive charges due to the missing Nα-

acetylation. Thus, the relevance of Nα-acetylation for histone function remains subject to 

further investigation. 

The three NAT complexes, NatA, NatB and NatC, not only differ in substrate specificity, but 

also in subunit composition. Significantly, they all contain a catalytic subunit homologous to 
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the GNAT superfamily of acetyltransferases (Tbl. 1.1). Besides NATs, this superfamily 

contains several histone acetyltransferases (HATs) and proteins involved in gene regulation 

and diverse other functions, such as detoxification and drug resistance (Neuwald and 

Landsman 1997). The members of the GNAT superfamily are characterized by a remarkably 

conserved binding motif for the donor substrate acetyl CoA and exhibit a highly consistent 

protein topology (Dyda et al. 2000). 

 
Table 1: Characteristics of the three NAT complexes in S. cerevisiae* 

 NatA NatB NatC 

Catalytic 

subunit 

Ard1 Nat3 Mak3 

Auxiliary subunit Nat1 

Nat5 

Mdm20 

 

Mak10 

Mak31 

Substrate** 

termini 

Ser 

Ala 

Gly 

Thr 

Met-Glu 

Met-Asp 

Met-Asn 

Met-Met 

Met-Ile 

Met-Leu 

Met-Trp 

Met-Phe 

Selected 

substrates 

ribosomal subunits (SU) 

S1,2,5,7, 11,14,15,16,18,20,24 

and L1,4,11,16,33,36; 19S 

proteasomal SU: Rpt4,5,6 and 

Rpn2,3,5,6,8; 20S proteasomal 

SU: Scl1, Pup3 and Pre6,8,9,10

Tropomyosin, actin,  

ribosomal SU S21 and S28, 19S 

proteasomal SU Rpt3 and Rpn11, 

20S proteasomal SU Pre1 

gag protein of L-A 

virus,  

20S proteasomal SU 

Pup2 and Pre5 

 

Deletion mutant 

phenotypes 

Slow growth; temperature and 

osmotic sensitivity; deficiency in 

utilizing non-fermentable carbon 

sources; inability to enter G0; 

inability to sporulate; 

chromosomal instability; 

derepression of silent loci 

Slow growth; temperature and 

osmotic sensitivity; deficiency in 

utilizing non-fermentable carbon 

sources; defects in vacuolar and 

mitochondrial inheritance; random 

polarity in budding; reduced mating 

efficiency; sensitivity to antimitotic 

drugs and DNA damaging agents 

Temperature 

sensitivity; 

deficiency in utilizing 

non- fermentable 

carbon sources 

Characterized 

homologs 

Homologs of Ard1: ARD1 (T. 

brucei), TE2 (human), Xat-1 (X. 

laevis); Homolog of Nat5: SAN 

(Drosophila); Homologs of Nat1: 

NATH (human), NARG1, 

tbdn-1, Tbdn100 (all mouse), 

No homologs have been 

characterized at present 

AtMAK3 (A. thaliana) 

* References are given in chapters 1.2 and 1.3. 
* * Acetylation occurs only on subclasses of proteins containing the indicated termini, except for Met-
Glu and Met-Asp. 
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In addition to the catalytic subunit, each NAT contains auxiliary components that are required 

for enzymatic activity (Polevoda and Sherman 2003b) (Tbl. 1.1). The loss of NAT activity 

generally results in multiple effects in yeast, among them temperature sensitivity and diverse 

growth defects. Mutations of NatB subunits display the most severe phenotypes, apparently 

associated with the partial loss of function of unacetylated actin and tropomyosin in these 

mutants (Polevoda and Sherman 2001; Polevoda et al. 2003). The phenotypic characteristics 

of NatC were hypothesized to stem from affected mitochondrial substrates (Tercero and 

Wickner 1992; Polevoda and Sherman 2001), whereas NatA acetylation is important for 

growth and cell cycle control. Notably, nat mutations are not lethal, suggesting that among the 

various substrates there is no essential protein depending absolutely on Nα-acetylation. The 

hitherto known substrates of the individual NATs were mainly identified in systematic analyses 

of ribosomal (Arnold et al. 1999) and proteasomal proteins (Kimura et al. 2000; Kimura et al. 

2003). Predominant methods applied were mass spectrometry and 2D protein migration 

analysis. 

 

1.3 NatA – the major Nα-acetyltransferase complex of S. cerevisiae  

NatA is the major NAT in yeast, accounting for most of the Nα-acetylated proteins. Given the 

portion of NatA targets on the total NAT substrates known to date, NatA acetylates potentially 

2500 yeast proteins. About 140 NatA substrates have been identified so far, the list including 

ribosomal and 26S proteasomal subunits as well as some abundant proteins (Polevoda and 

Sherman 2003b) (Tbl. 1.1). NatA has the most degenerate substrate specificity of all NATs. 

Approximately 90% and 30%, respectively, of the tested serine and alanine termini, and only 

one fourth of the glycine and threonine proteins tested, were actually acetylated by NatA 

(Polevoda and Sherman 2003b). 

NatA is not only the predominant, but also the best characterized NAT. The trimeric complex 

consists of the subunits Ard1, Nat1 and Nat5, which are present in a 1:1:1 stoichiometric ratio 

(Gautschi et al. 2003). Interestingly, in a tandem affinity purification (TAP) analysis, several 

other proteins, namely Asc1, Eno1, Mis1, Myo1 and YYGR090w, were co-purified with Ard1, 

and the ribosomal protein Asc1 (Inada et al. 2002) also associated with Nat1 

(http://yeast.cellzome.com/). However, the question whether these proteins were present in 

stoichiometric amounts was not answered. Therefore, it remains unclear whether Asc1 or the 

other co-purified proteins are required for NatA’s function.  

http://yeast.cellzome.com/
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According to the current model, the NatA complex resides at the ribosome, close to the 

polypeptide tunnel exit (Fig. 1.1). Nat1 (N-terminal acetyltransferase 1) mediates the stable 

interaction of NatA with the large ribosomal subunit. In addition, it can be crosslinked to 

nascent polypeptides, and is thus predicted to contact the nascent chains in order to present 

them to the catalytically active Ard1. This interaction is probably mediated by five to eight 

tetratricopeptide repeats (TPR) clustered in the first third of the 854 amino-acid protein Nat1 

(Gautschi et al. 2003). TPR motifs are evolutionarily ancient protein-protein interaction 

modules consisting of two antiparallel α-helices that generate a super-helix with an 

amphipathic channel (Blatch and Lassle 1999). TPR clusters exist in a number of functionally 

distinct proteins and are important for the function of e.g. chaperones or protein transport 

complexes (Gatto et al. 2000). In addition to TPR repeats, Nat1 contains highly charged 

regions between amino acids 550 and 670 with predicted coiled-coil structures. These are 

proposed to mediate the interaction of Nat1 to other subunits of the complex. Interestingly, a 

nuclear localization signal (NLS) is likewise predicted for Nat1 between amino acids 648-665. 

Its functional significance remains unclear, since Nat1 acts in the cytoplasm (Polevoda and 

Sherman 2003a). 

The catalytic subunit Ard1 (arrest defective) is a protein of 238 amino acids and carries the 

acetyl CoA binding GNAT domain in the N-terminal part between amino acids 3-175 (Neuwald 

and Landsman 1997). Ard1 contacts the ribosome not directly, but probably binds to Nat1 via 

a C-terminal coiled-coil (Park and Szostak 1992; Gautschi et al. 2003) (Fig. 1.1). 

Recently, the GNAT-family acetyltransferase Nat5 (also termed Rog2), another putative 

catalytic subunit, was found to be associated with NatA. Currently, it is unclear how Nat5 is 

bound. In addition, its function within the complex remains to be characterized, since nat5∆ 

mutants display no obvious phenotype (Gautschi et al. 2003). The question remains why the 

complex should contain a second catalytic subunit. Gautschi et al. (2003) propose that Nat5 

may be responsible for the Nα-acetylation of a small subset of proteins that are not involved in 

mating-type silencing or affected at elevated temperature. In an earlier study, the deletion of 

Nat5 suppressed the temperature sensitivity of the double mutants involved in ubiquitin-

dependent protein degradation, mck1 mds1 and bul1 bul2 (Andoh et al. 2000). Moreover, the 

Nat5 homolog SAN in Drosophila (Accession GI 6980078) was found to play a role in sister 

chromatid cohesion. The interaction of SAN with homologs of Nat1 and Ard1 suggests that a 

NAT complex similar to NatA exists in Drosophila (Polevoda and Sherman 2003a). 

So far, Nat1 and Ard1 homologs have been implicated in development and cellular 

proliferation of higher eukaryotes. For instance, Xat-1, a Nat1 homolog in X. laevis, was 
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isolated in a screen for stage-specific gene expression during early embryogenesis (Choi et 

al. 2001). Likewise, NARG1 and tubedown-1, two mouse Nat1 homologs, were found highly 

expressed in certain embryonic tissues (Gendron et al. 2000; Sugiura et al. 2001). In 

Trypanosoma brucei, ARD1 was essential in mammalian and insect-stage cells (Ingram et al.  

2000). 

 

ribosome

tunnel
exit

Nat1 

Ard1
Nat5

nascent 
polypeptide

AAAAAA

CoA-SH

ribosome

Ac-CoA
Ac

 
 
Fig. 1.1: The NatA complex is associated with the ribosome. 
In the current model, the non-catalytic subunit Nat1 mediates the stable contact of NatA with the 
large ribosomal subunit. Nat1 interacts with the nascent polypeptide chain that emerges from 
the tunnel exit and guides it to the catalytic subunit Ard1, which transfers an acetyl moiety from 
acetyl coenzyme A to the N-terminal amino acid of NatA substrates. The putative catalytic 
subunit Nat5 is also associated with the complex. (adapted from Gautschi et al. 2003) 
 

Interestingly, there are data suggesting that the function of at least some of the NatA 

homologs in mammals has diverged from that of their yeast counterparts. As an example, 

mouse ARD1, which is 57% homologous to the yeast protein, acetylates lysine 532 of the 

hypoxia-inducible factor HIF-1α, a protein involved in adaptation to changes in oxygen 

availability (Jeong et al. 2002). Thereby, mARD1 regulates the protein stability of HIF-1α, 

since the acetylation is critical to its proteasomal degradation. Notably, in contrast to yeast 

Ard1, mARD1 acts alone and appears not to require a complex. As a second striking 

difference, mARD1 shows ε-N-acetyltransferase activity, which is functionally distinct from Nα-

acetylation. It remains to be determined whether mARD1 can acetylate Nα-termini as well. In a 

possible scenario, mARD1 may perform both modifications in conjunction with different 
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partner proteins. Intriguingly, provided that yeast NATs are comparable to the evolutionary 

ancestors of NATs of higher organisms, the substrate shift of mammalian NAT proteins may 

serve as an example for evolutionary processes on conserved protein modifications. 

Overexpression of both Nat1 and Ard1 is required to increase the in vivo activity of NatA (Park 

and Szostak 1992). Interestingly, similarly to nat1∆, the overexpression of Nat1 results in 

chromosome loss, presumably due to a dominant negative effect on NatA integrity (Ouspenski 

et al. 1999). Deletions of NAT1 or ARD1 display the same pleiotropic phenotypes of slow 

growth, temperature sensitivity, chromosomal instability, inability to enter G0 and failure to 

sporulate as homozygous diploids (Tbl. 1.1) (Whiteway and Szostak 1985; Mullen et al. 1989). 

Importantly, NatA also functions in transcriptional repression, since nat1∆ and ard1∆ cause 

strong derepression of the HML silent mating-type locus and subtelomeric reporter genes 

(Mullen et al. 1989; Aparicio et al. 1991). This suggests that one or several proteins require 

Nαacetylation by NatA in order to function in transcriptional silencing. 

 

1.4 Chromatin and gene regulation 

Eukaryotic DNA is packed into a nucleoprotein structure called chromatin. This facilitates the 

compaction as well as the regulation of genetic information. Compaction is necessary in order 

to adapt the size of the DNA molecule to the nuclear dimensions. For instance, the human 

genome comprises about 12 000 Mbp, which corresponds to a molecule length of four meters. 

This size is scaled down to 10 µm by complex packaging mechanisms, resulting in a compact 

higher-order structure of chromatin. In addition to this spacial role, the dynamic nature of 

chromatin plays a crucial role in central genetic processes such as transcription, replication, 

recombination and repair. 

The fundamental chromatin unit is the nucleosome, which is composed of two copies each of 

the four core histones H2A, H2B, H3 and H4 and approximately 146 bp of DNA wrapped in 

two turns around the histone octamer (Luger et al. 1997) (Fig. 1.2). This complex is repeated 

every 200±40 bp, thereby creating a “pearls on a string” structure of 11 nm width. With the aid 

of additional proteins, including histone H1 in mammals (Contreras et al. 2003), the 

nucleosomal array is further packaged into a 30 nm fiber of a spiral, or solenoid, structure with 

six nucleosomes per turn. This structure has to be unfolded to allow the access of regulatory 

proteins to the DNA. Thus, the dynamic feature of chromatin is a prerequisite for various 

processes on the genetic material. 
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In eukaryotes, chromatin is organized in two types of domains, namely euchromatin and 

heterochromatin. Euchromatic domains define transcriptionally active portions of the genome, 

whereas heterochromatin is largely inactive for gene expression (Grewal and Moazed 2003). 

The repressive character of heterochromatin is accompanied by several other features, such 

as a highly ordered nucleosomal array, reduced accessibility to restriction nucleases and 

other DNA altering enzymes (Wallrath and Elgin 1995), replication late in S-phase (Ferguson 

et al. 1991) and the tendency to localize to perinuclear regions (Andrulis et al. 1998; 

Feuerbach et al. 2002). Originally, heterochromatin was defined in cytological experiments as 

chromosomal blocks that remained condensed throughout the cell cycle (Heitz 1928). 

 

 
 
 
Fig. 1.2: The basic structure of chromatin. 
The 11 nm fiber consists of DNA wrapped in two turns around histone octamers (nucleosomes) 
at intervals of about 200 bp along the DNA. Further folding creates a spiral structure, the 30nm 
fiber. Positively charged (deacetylated) histone tails (arrows) facilitate higher-order folding, 
whereas the acetylation of histone tails (bars) promotes the unfolded state corresponding to 
active chromatin. The two chromatin states are well-defined in electron micrographic images. 
(adapted from http://sgi.bls.umkc.edu/waterborg/chromat/chroma09.html) 
 

Transcriptional repression in heterochromatin occurs in a sequence-independent fashion, 

making the chromosomal context in which a gene is located crucial for its transcriptional 

activity. In this context, a phenomenon called position-effect variegation (PEV) was revealed 

by pioneering experiments in Drosophila about 70 years ago. Muller (1930) described 

radiation-induced translocations that displaced the white+ (w+) eye color gene from its normal 

euchromatic location in the vicinity of heterochromatin (Muller 1930). This resulted in a 

clonally inherited pattern of (w+) expression in some cells but not in others, thus causing a 

mosaic eye color phenotype. 

http://sgi.bls.umkc.edu/waterborg/chromat/chroma09.html
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Variegated position effects on translocated euchromatic genes are based on the ability of 

heterochromatin to spread in cis from a nucleation site into adjoining regions, which is 

probably aided by trans-interactions between different heterochromatic blocks (Wakimoto 

1998). 

Large heterochromatic blocks generally surround centromeres and telomeres of eukaryotic 

chromosomes (Perrod and Gasser 2003). Centromeres consist of large arrays of unspecific, 

often repetitive sequences in higher eukaryotes and facilitate proper sister-chromatid cohesion 

and chromosome segregation (Karpen and Allshire 1997). There is growing evidence that this 

function depends on the heterochromatic structure of centromeres, since mutations in 

heterochromatic components, like the histone lysine methyltransferase Clr4 in 

Schizosaccharomyces pombe, also interfere with chromosome segregation (Ekwall et al. 

1996). 

Heterochromatin generally stabilizes repetitive chromosomal regions by inhibition of 

recombination between homologous repeats. Besides centromeres and telomeres, this is 

especially important in mammalian genomes, which consist to a great portion of repetitive, 

non-coding sequences (Wichman et al. 1992). Presumably, over 90% of the mammalian 

genome is transcriptionally silent in differentiated tissues (Perrod and Gasser 2003). However, 

this high percentage is not only due to repetitive regions, but also reflects a role of 

heterochromatin in gene regulation during development and cellular differentiation. 

Since the heterochromatic state is stably inherited through many cell divisions, it is suitable for 

long-term inactivation of large regions of the genome. One example is the stable inactivation 

of developmental regulators, such as the homeotic gene clusters in Drosophila. These genes 

are expressed only in precise spatially restricted patterns during development and are 

silenced in other parts of the embryo by means of Polycomb-Group proteins (see below) 

(Bienz and Muller 1995; Jones et al. 2000). Another prominent example for long-term gene 

repression by heterochromatin is the X chromosome dosage compensation in female 

mammals. Here, one of the two X chromosomes is inactivated in somatic cells in order to 

ensure equivalent levels of gene expression from sex chromosomes in males and females 

(Avner and Heard 2001). 

Altogether, heterochromatic domains regulate gene expression in an epigenetic manner, 

meaning that heritable changes in gene activation occur without a corresponding change of 

the primary DNA sequence. Notably, epigenetic gene regulation is not only important to 

maintain certain expression states in differentiated cells, it also has a tremendous impact on 

processes that change global patterns of gene expression during development. For instance, 
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the genome-wide DNA-methylation status undergoes dynamic changes during early 

embryogenesis of mammals (Li 2002), and thereby influences the organization and 

compartmentalization of the genome during tissue development. The disruption of this 

patterning may result in global genomic deregulation, since the inactivation of responsible 

DNA methyltransferases causes early embryonic lethality (Okano et al. 1999). 

In contrast to heterochromatin, the less densely packaged structure of euchromatin makes it 

more accessible to proteins (Fig. 1.2). This may underlie the early time point of euchromatic 

replication during S-phase, which may in turn propagate the continuity of the open chromatin 

structure (Gilbert 2002). Accessibility is also the basis for the transcriptional activity of 

euchromatin. However, transient local chromatin remodeling processes are also required in 

euchromatin to deal with the general repressive character of nucleosomes. For instance, 

nucleosomes can occupy binding sites for transcription factors within promoter regions. In this 

case, nucleosomal repositioning is facilitated by specialized ATP-dependent chromatin 

remodeling complexes (Becker and Horz 2002). A prominent example is the SWI/SNF 

complex in yeast, which mediates the sliding of nuleosomes along the DNA template and also 

recruits further transcription-activating factors (Whitehouse et al. 1999; Krebs et al. 2000). 

 

1.5 Chromatin modifying processes 

In light of the above, the dynamic chromatin structure is a prerequisite for both global and 

local regulation of gene expression. Correspondingly, principle chromatin modulating 

mechanisms are conserved among eukaryotes, although there are differences in the 

components between the species (Moazed 2001).  

One such mechanism specific to higher eukaryotes is DNA methylation. In mammals, DNA is 

methylated predominantly at cytosines of CpG dinucleotides and occurs in temporally and 

spatially variable patterns (Bird 2002). In essence, DNA methylation induces transcriptional 

repression, either by blocking transcription activators from binding or by recruiting repressive 

chromatin-remodeling proteins such as histone deacetylases (HDACs) or histone 

methyltransferases (HMTs) (Li 2002). DNA methylation is further involved in stable X 

chromosome inactivation in female mammals, along with a non-coding RNA (Xist) (Plath et al. 

2002). Interestingly, non-coding RNA is also involved in dosage compensation in Drosophila. 

Here, rather than inactivating one X chromosome in females, the single X chromosome in 

males is hypertranscribed by the association of MSL (male-specific lethal) complexes that 

contain at least two roX RNAs (Park and Kuroda 2001). 
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Besides these mechanisms, a pivotal role in chromatin regulation in eukaryotes is played by 

histones and their posttranslational modifications. Each core histone is a small, highly basic 

protein composed of a globular histone fold domain, which interacts with the other histones of 

the nucleosome, and a N-terminal “tail” that extends outwards from the nucleosome. 

Conserved histone tails, particularly those of H3 and H4, are subject to a variety of 

posttranslational modifications (Fig. 1.3). In the current model, these modifications not only 

modulate the strength of interaction between the histones and the DNA, and thereby the 

packaging state of chromatin, but they also serve as markers for specific histone binding 

proteins that further regulate the chromatin structure. 

 

A M

MM AA AAP

SGRGKGGKGLGKGGAKRHRKVLRDNIQGITKPAIRRLAR...
1 3 5 8 12 16 20
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MMM M
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2 9 17 23 274 10 14 18 26 28 36 79

PP AAM A MM

H3

 
 
Fig. 1.3: Histone tail modifications. 
The amino termini of core histones contain diverse posttranslational modifications. The diagram 
indicates known modifications at specific residues of human histones H3 and H4. 
M = methylation, A = acetylation, P = phosphorylation. (adapted from Lachner et al. (2003)) 
 

Histone modifications identified so far include methylation, phosphorylation, ubiquitination and 

ADP ribosylation (Rea et al. 2000; Sun and Allis 2002; Garcia-Salcedo et al. 2003). Among 

these, the ε-N-acetylation of lysine residues is the most prominent modification and a 

universal epigenetic mark in eukaryotes. Different conserved HAT and HDAC complexes 

change the acetylation state of histones in a dynamic manner (Dutnall and Pillus 2001; 

Carrozza et al. 2003). Generally, histone acetylation correlates with transcriptional activity, 

whereas histone hypoacetylation is a conserved hallmark of heterochromatin. In theory, 

acetylation affects transcription by neutralizing the histone charges, which weakens histone-

DNA and internucleosomal contacts, thereby reducing chromatin compaction (Workman and 

Kingston 1998). In addition, the presence or absence of acetylation at specific lysines 

provides recognition sites for factors involved in activation or repression of gene expression. 

For example, deacetylation of lysine 16 on histone H4 (H4K16) by the NAD+-dependent 
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HDAC Sir2 facilitates the binding of the silencing proteins Sir3 and Sir4 to nucleosomes and 

the spreading of the silencing complex in S. cerevisiae (see chapter 1.6) (Hoppe et al. 2002). 

In addition, X-chromosome upregulation in males of Drosophila requires an increased level of 

H4K16 acetylation on this chromosome (Akhtar and Becker 2000).  

Another conserved histone modification is lysine methylation (Lachner and Jenuwein 2002). 

Like hypoacetylation, H3K9 methylation generally correlates with heterochromatin in higher 

eukaryotes. The responsible HMT Su(var)3-9 was identified to suppress PEV in Drosophila 

(Tschiersch et al. 1994), and its homologs in human (SUV39H1) and fission yeast (Clr4) act 

likewise in transcriptional repression (Nakayama et al. 2001; Peters et al. 2001). As in 

Drosophila, this occurs by the association of the structural heterochromatin protein HP1, 

which specifically interacts with methylated H3K9 and Su(var)3-9 via conserved chromo- and 

chromoshadow domains (Bannister et al. 2001; Yamamoto and Sonoda 2003). Similarly, 

SUV39H1 and Clr4 recruit HP1 homologs and build SUV39H1/HP1 and Clr4/Swi6 methylation 

systems (Lachner et al. 2001). 

Budding yeast also owns HMTs with a catalytic SET domain as in their metazoan 

counterparts. Moreover, methylation is equally associated with transcriptional repression, for 

instance in case of H3K4 and H3K36 methylation by Set1 and Set2, respectively (Briggs et al. 

2001; Strahl et al. 2002). Recent studies demonstrated that Set2 methylates H3K36 in the 

coding region of actively transcribed genes (Krogan et al. 2003). In addition, its interaction 

with RNA polymerase (Pol) II implicates a role for Set2 in transcription elongation. The 

involvement of HMTs in a dynamic process such as transcription is particularly interesting 

given the present model that histone methylation is an irreversible modification. 

Multiple covalent modifications occur at the same time on histone tails, and there are several 

examples for their interplay. For instance, on mammlian histone H3, the methylation of 

lysine 9 interferes with the phosphorylation of serine 10 (Rea et al. 2000), which is in turn 

synergistically coupled to the acetylation of lysines 4 and 9 (Cheung et al. 2000a; Clayton et 

al. 2000). Moreover, other findings suggest a link between two different epigenetic marks, 

namely DNA methylation and histone methylation (Tamaru et al. 2003).  

The fact that posttranslational histone modifications can influence each other either positively 

or negatively gave rise to the hypothesis that they create a combinatorial code. This specific 

histone code may induce the recruitment of a certain set of chromatin-associated proteins that 

eventually dictate the particular state of gene expression (Strahl and Allis 2000). The 

hypothesis further states that protein motifs may have evolved that recognize histone 

modifications. In line with this, several proteins associated in gene regulation or 
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heterochromatic silencing were shown to share conserved domains, such as the acetyl-lysine 

binding bromodomain or the methyl-lysine binding chromodomain (Owen et al. 2000; 

Bannister et al. 2001). The histone code may also explain why certain types of histone 

modifications, e.g. methylation, can be involved in transcriptional activation as well as 

repression. It might further have the potential to reveal the mechanisms behind the 

maintenance of epigenetic chromatin marks throughout the cell cycle. To date, this process is 

poorly understood, although some first data exist. For instance, interactions between histone 

modifying enzymes and proteins of the replication machinery, e.g. the HAT Sas2 and the 

chromatin assembly factor subunit Cac1 in yeast (Meijsing and Ehrenhofer-Murray 2001) may 

contribute to the reestablishment of a given histone code on freshly replicated DNA. As 

another example, the Drosophila Fab-7 chromosomal element, the binding site for Polycomb 

and trithorax proteins to regulate homeotic genes, could convey the maintenance of an active 

chromatin state during mitosis and meiosis, possibly with H4 hyperacetylation as a heritable 

tag of the activated element (Cavalli and Paro 1999). Still, these are only first insights into 

different aspects of the complex, yet important, field of epigenetic inheritance. 

 

1.6 Silencing in S. cerevisiae  

Silenced chromatin in S. cerevisiae is akin to heterochromatin in higher organisms and shares 

main characteristics, such as general inaccessibility of DNA, hypoacetylated nucleosomes 

and late replication (Loo and Rine 1995; Lustig 1998). In addition, the overall pathway of 

assembly of silent chromatin appears to be similar in yeast and multicellular eukaryotes, since 

silencing proteins in yeast are functionally related to heterochromatic components in 

metazoans, such as Sir1 and HP1. Similar to higher organisms, budding yeast exhibits 

histone modifications, which are in parts species specific, such as H4K12 acetylation (Lachner 

et al. 2003). In light of these similarities, silenced loci in S. cerevisiae provide an excellent 

system to study the mechanisms of heterochromatin in eukaryotes. 

In S. cerevisiae, silencing is facilitated by cis-acting elements and trans-acting proteins. There 

are three silenced loci known within the yeast genome, namely the silent mating-type loci HML 

and HMR, the rDNA array and the telomeres. Among these, the silent mating-type loci are the 

best characterized. 
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The silent mating-type loci HML and HMR 

 

Haploid yeast cells exist as either a or α mating-type, which is determined by the MAT locus 

located near the centromere of chromosome III (Fig. 1.4). In MATa cells, the MAT locus 

encodes the proteins Mata1/Mata2, and in MATα cells it encodes Matα1/Matα2, which are 

proteins that regulate the transcription of mating-type specific genes and therewith enable the 

cell to mate (Herskowitz et al. 1992). During mating, cells of opposite mating-type fuse to form 

a /α diploids, which in turn can undergo meiosis and sporulation to generate haploid progeny. 

Under certain conditions, haploid cells can switch their mating-type. This is possible, since two 

additional copies of MAT are present on the left and on the right arm of chromosome III, 

namely HML (homothallic mating left) containing α-information, and HMR (homothallic mating 

right) containing the a-information. Mating-type switches occur via specific recombination 

events between MAT and the HM loci, but are inhibited in laboratory strains due to the 

deletion of the responsible HO-endonuclease (Strathern et al. 1982). 

Given the existence of genes of both mating-types in the yeast genome, cells must ensure 

that only the MAT locus is employed in order to preserve their mating ability. Thus, the silent 

mating-type or homothallic (HM) loci are transcriptionally silenced. Silencing defects at HML or 

HMR cause the derepression of these loci and subsequently a pseudodiploid state, which 

prevents the cells from mating. Thus, the silencing state of a single HM locus can be 

determined by testing the mating ability of a strain of opposite mating-type. 

HM silencing is achieved by the presence of silencer elements on each side of the loci, the so-

called E and I silencers. These are cis-acting, regulatory elements consisting of binding sites 

for the DNA binding proteins Rap1, Abf1 and the origin recognition complex, ORC (Fig. 1.4). 

Whereas number and orders of the different binding sites vary, an ORC binding site is present 

in all silencers. 

Besides its role in silencing, the ORC complex has a well-conserved function in replication 

initiation (see chapter 1.7). However, this function appears not to play a role in silencing, since 

although its establishment requires S-phase passage, silencing does not require replication 

initiation or replication fork passage through the silencers (Kirchmaier and Rine 2001). In 

addition, the ORC binding sites do not need to be active replication origins to act in silencing. 

For example, the ORC binding sites within the HML silencers are no active origins, although 

they can serve as origins on plasmids (Sharma et al. 2001). In contrast, HMR-I and HMR-E 

are chromosomal origins of replication (Rivier et al. 1999), though the latter is inefficient. 
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Presumably, it is the tight binding of ORC to HMR-E that enhances its silencer activity but 

decreases its origin potential (Palacios DeBeer et al. 2003). 

The four HM silencers do not only vary in their composition, but they are also of different 

importance for the silencing state of the respective locus. At HML, either E or I individually are 

sufficient to maintain the silencing state (Mahoney and Broach 1989). In contrast, at HMR, E 

is essential but I is dispensable for silencing (Rivier et al. 1999). The elements of HMR-E are 

functionally redundant, meaning that the absence of at least two of them is necessary to 

cause the loss of silencing. This redundancy is lost at the synthetic HMR-E silencer, which is 

engineered of minimal binding sequences for Rap1, Abf1 and ORC (McNally and Rine 1991). 

Interestingly, all three binding proteins act individually also elsewhere in the genome without 

initiating transcriptional repression. For instance, Rap1 (Repressor/Activator Protein 1) and 

Abf1 (ARS Binding Factor 1) have essential functions as transcriptional activators of diverse 

genes (Lieb et al. 2001; Miyake et al. 2002). Thus, the ability of HM silencers to initialize 

silencing appears not just to be the sum of the silencing abilities of their single elements. It 

may rather be the combination of the elements and their close proximity that allows the 

recruitment of further silencing components, the Sir proteins, which eventually induce the 

formation of silent chromatin (Lustig 1998). 

The four Sir (silent information regulator) proteins are trans-acting silencing factors. Sir2, Sir3 

and Sir4 are the structural components of silenced chromatin and essential for silencing, but 

non-essential for growth (Rine and Herskowitz 1987). The formation of silenced chromatin is 

associated with the polymerizing Sir complex that interacts with nucleosomes and thereby 

spreads outward from its nucleation site at the silencers. The assembly of this complex is 

hypothesized to occur stepwise (Hoppe et al. 2002). At first, Sir2/Sir4 heterodimers bind via 

interactions of Sir4 with Sir1 and Rap1 to the silencer. At the same time, Sir3 binds 

independently via interactions with Rap1 and Sir4. The next step requires the enzymatic 

activity of Sir2, a NAD+-dependent histone deacetylase specific to H3K9, H3K14 and H4K16 

(Imai et al. 2000). Histone deacetylation by Sir2 facilitates the binding of Sir3 and Sir4 to 

hypoacetylated histones and the recruitment of new Sir2/Sir4 (Rusche et al. 2002). 

Repetitions of these modification/binding cycles eventually result in multimerization and 

spreading of the complex along the chromosome (Fig. 1.4). This model is based on several 

individual observations of genetic or physical interactions between the different components 

(Hecht et al. 1995; Gasser and Cockell 2001; Rusche et al. 2002). 

Sir1 is no part of the multimeric Sir complex, but is rather proposed to facilitate the 

establishment of silencing due to its ability to interact with ORC and Sir4 (Triolo and 
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Sternglanz 1996). This is supported by ChIP data of Rusche et al. (2002), who found Sir1 

located primarily to the silencers and not distributed over the whole HM loci as the other Sir’s. 

In contrast to them, Sir1 is not vital to silencing (Rusche et al. 2002). 

Although the silencing complex spreads in both directions along the chromosome, it is 

stopped from propagation into adjacent regions that are kept transcriptionally active by DNA 

elements interposed between silenced and active chromatin domains (Dhillon and Kamakaka 

2002). Such so-called boundary elements have been identified at either side of HMR, as well 

as in subtelomeric regions, and are also known in other species (Gombert et al. 2003; Parnell 

et al. 2003). The boundary at the telomeric proximal side of HMR is a tRNA gene, which 

requires an intact transcriptional potential for its barrier capacity (Donze and Kamakaka 2001). 

This implicates that it functions passively by a stably bound protein complex (e.g. the RNA Pol 

III pre-initiation complex), which interferes physically with the spread of the silenced complex. 

Alternatively, boundaries may be active enzymatic barriers on the bases of associated HATs 

and chromatin remodeling enzymes, which oppose the propagation of hypoacetylated 

silenced chromatin (Suka et al. 2002). 
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Abb. 1.4: Mating-type loci and HM silencers. 
The mating-type loci MAT, HML and HMR are localized on chromosome III of S. cerevisiae. HML 
and HMR are repressed due to the nearby silencers E and I, which consist of binding sites for 
ORC, Rap1 and Abf1. The silencers are nucleation sites for silencing complexes, as depicted for 
HMR-E. The Sir complex interacts with nucleosomes and spreads into the HMR locus thereby 
creating a silenct chromatin structure.  
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The spread of the silencing complex from HML-I is stopped by the CHA1 promoter, which 

locates about two kb downstream of the silencer (Donze and Kamakaka 2001), whereas the 

YCL069w locus is probably the boundary of HML-E (Lieb et al. 2001). 

How does silenced chromatin inhibit transcriptional activity? Its compact structure was 

formerly proposed to prevent the access of transcription enzymes to promoters (Loo and Rine 

1994). However, more recent data suggest that silenced chromatin prevents the elongation 

step rather than the recruitment of RNA Pol II, since factors of the transcriptional machinery 

cohabitate with Sir proteins at promoters of silenced chromatin (Sekinger and Gross 2001). 

From a mechanistic point of view, chromatin silencing can be subdivided into three distinct 

processes, namely establishment, maintenance and inheritance. Establishment refers to the 

de novo generation of repression at active loci. Besides S-phase passage, this requires Sir1, 

since sir1∆ strains are mixed populations of cells whose HM loci are either completely 

repressed or completely derepressed (Pillus and Rine 1989). To maintain the silenced state 

throughout one cell cycle, structural components of the Sir complex as well as intact histone 

tails are required (Cheng and Gartenberg 2000). In addition, mutations in subunits of CAF-I 

give rise to unstable HML repression (Enomoto and Berman 1998). Thus, CAF-I may not only 

assemble newly synthesized histones onto freshly replicated DNA, but also help to 

reassociate the Sir complex. As aforementioned, inheritance refers to the propagation of 

silencing to subsequent cell cycles. It requires the silencers as epigenetic markers (Rusche et 

al. 2002). 

 

The telomeres 

 
Telomeres are protected from exonucleolytic degradation, end-to-end fusion and 

recombination by their heterochromatic structure (Grunstein 1998; Stevenson and Gottschling 

1999). In S. cerevisiae, telomeres consist of approximately 300 bp of C1-3A/TG1-3 repeats, 

which build nucleosome-free areas with multiple binding sites for Rap1 (Fig. 1.5) (Sandell and 

Zakian 1993). In the current view, Rap1 recruits Sir2/Sir4 and Sir3, which then form a complex 

in a similar mode as at the HM loci: after getting in contact with nucleosomes of the adjacent 

chromatin region, Sir3 and Sir4 interact with histone tails deacetylated by Sir2 and the 

polymerizing complex spreads inwards the chromosome thereby silencing subtelomeric genes 

(Luo et al. 2002). 

Notably, telomeric silencing occurs discontinuously and is enhanced around subtelomeric 

CoreX-elements (Fourel et al. 1999; Pryde and Louis 1999). These elements are part of all 
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chromosomes and contain an ORC binding site (ACS; ARS consensus sequence), often 

coupled with an Abf1 binding site. The silencing maximum around CoreX depends on the ACS 

and, additionally, on SIR2, SIR3 and SIR4. Notably, the deletion of SIR1 also causes partial 

derepression at native telomeres, whereas mutations in the ORC subunits ORC2 and ORC5 

have no effect (Pryde and Louis 1999). In the current model, silenced chromatin at telomeres 

is organized by interactions of telomeric Rap1-Sir complexes with Sir proteins bound to CoreX 

under formation of a loop structure, which may further stabilize the heterochromatin-like 

complex (Strahl-Bolsinger et al. 1997; Pryde and Louis 1999). 

Interestingly, Sir3 was found to be limiting for the propagation of the silencing complex 

(Renauld et al. 1993), and its overexpression extended the silent domain from 2-4 kb to up to 

16 kb away from the telomeric repeats (Hecht et al. 1996). This extension coincided with the 

spread of Sir3, whereas the amount of Sir2 and Sir4 was reduced in telomere-distal chromatin 

(Strahl-Bolsinger et al. 1997). 
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Fig. 1.5: Silent chromatin at a yeast telomere. 
The telomeric (TG1-3) repeats provide binding sites for Rap1, which recruits the Sir complex. The 
subtelomeric CoreX element contains a binding site for ORC and acts likewise as a nucleation 
site for the Sir complex. Due to interactions of the silencing proteins the telomere folds back 
and forms a loop, which further stabilizes the chromatin structure. 
 

Rap1, Sir3, Sir4 and clusters of telomeric DNA were observed to colocalize in foci at the 

nuclear periphery (Gotta et al. 1996). These foci may be tethered to the nuclear envelope 

through interactions with the nuclear pore complex (Galy et al. 2000). To date it is not clear 

whether this perinuclear position is the cause or the consequence of telomeric silencing. 

Feuerbach et al. (2002) have demonstrated a repression-dependent, physical relocation of 

telomeres from variable intranuclear positions to perinuclear silent domains (Feuerbach et al. 

2002). Hence, they hypothesized that the expression state of telomeres is determined by 

spatial positioning. In contrast, Tham and co-workers found no correlation between 
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transcriptional silencing of telomeres and their localization to the nuclear periphery (Tham et 

al. 2001) 

Telomeric silencing is usually investigated in subtelomeric reporter strains. For this purpose, 

reporter genes were inserted at artificially truncated chromosome ends that lack the CoreX 

element (Gottschling et al. 1990). In these constructs, heterochromatin spreads continuously 

from the (TG1-3) repeats towards the centromere (Renauld et al. 1993). Subtelomeric reporter 

genes are subject to epigenetic switches between transcriptional repression and expression 

(Chien et al. 1993). Since this variegation resembles position effects in Drosophila, it is 

referred to as telomeric position effect (TPE) (Gottschling et al. 1990). TPE may originate from 

a weaker establishment potential of silencing at the truncated ends due to the lack of Sir1, 

since sir1∆ does not affect the silencing of subtelomeric reporter strains (Fox et al. 1997). 

Interestingly, the conditional mutant alleles orc2-1 and orc5-1 caused silencing defects the 

truncated reporter constructs, in contrast to the missing effects at native telomeres (Fox et al. 

1997).  

The common components of silent chromatin at telomeres and the HM loci suggest a 

competition for limiting factors between them. Consistent with this idea, increased telomeric 

silencing goes along with decreased silencing at HMR (Buck and Shore 1995). 

 

The rDNA locus 

 
In the nucleolus, ribosomal DNA (rDNA) sequences are present in a tandem array of 100-200 

copies of a 9.1 kb repeat (Fig.1.6). Each repeat encodes a 5S RNA, transcribed by RNA Pol 

III, and a 35S precursor RNA, transcribed by RNA Pol I and subsequently processed to 18S, 

5.8S, and 25S RNA. The 35S coding regions are separated by nontranscribed spacers, NTS1 

and NTS2 (Smith and Boeke 1997). 

The highly repetitive nature of the rDNA array necessitates the formation of silenced 

chromatin to avoid recombination events. Consequently, only about half of the repeats are 

active at a given time point, whereas the other half is transcriptionally silent (Warner 1989). In 

addition, Pol II reporter genes inserted into the rDNA become also metastably repressed 

(Smith and Boeke 1997). Although the mechanism behind this repression is currently not well 

understood, it is known that rDNA silencing is mediated by a protein complex called RENT 

(regulator of nuceolar silencing and telophase). RENT contains the subunits Net1, Sir2, and 

Cdc14 (Shou et al. 1999), and was recently shown to localize to two distinct regions within the 

rDNA repeats (Huang and Moazed 2003). It binds to NTS1 via Fob1, which surprisingly is also 
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required for rDNA recombination (Kobayashi and Horiuchi 1996), and to NTS2 around the 

Pol I promoter. 

Each repeat also contains an ACS site in NTS2. However, only about 20% of them are active 

origins. These are clustered along the rDNA array and separated by large regions where 

replication initiation is suppressed in a SIR2-dependent manner (Pasero et al. 2002). 

Therefore, like transcription, rDNA replication is under epigenetic control. Deletions of SIR2 

shorten the life span of yeast cells, whereas its overexpression causes cells to live longer 

(Kaeberlein et al. 1999). This role of SIR2 as an anti-aging factor was found to be connected 

with its function in rDNA silencing. Loss of Sir2 results in reduced rDNA silencing and hence in 

increased recombination between the repeats, which eventually causes the accumulation of 

extrachromosomal rDNA circles (ERCs). These ERCs cause aging presumably because they 

titrate components of the replication or transcription machinery from the genomic DNA 

(Sinclair and Guarente 1997). Interestingly, calorie restriction also leads to life span extension 

on the basis of reduced rDNA recombination. Here, the activity of Sir2 may be increased due 

to the higher concentration of NAD+ in calorie restricted cells (Lin et al. 2000). 

 

 
 
Fig. 1.6: Schematic structure of the rDNA array in S. cerevisiae. 
The rDNA locus is an array of tandemly repeating units containing the coding regions for 
ribosomal RNA seperated by non-transcribed spacer regions NTS1 and NTS2. The latter holds a 
binding site for ORC. Binding sites for the silencing RENT complex are depicted by arrows. 
(adapted from Huang and Moazed (2003)) 
 

 

Althogether, the mode of rDNA silencing is different from that of HM loci and telomeres, since 

it requires only Sir2, but not the other Sir proteins. Nevertheless, all silenced loci may be 

linked by competition for limiting amounts of Sir’s. In line with this model, rDNA silencing is 

negatively regulated by the telomeres, which titrate Sir2 out of the nucleolus and sequester it 

via interactions with Sir4 (Smith et al. 1998). 
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1.7 Silencing proteins investigated in this thesis 

The following section provides additional information on those silencing proteins that were in 

the focus of this study.  

 
ORC and its largest subunit Orc1 

 

The ORC complex consists of six subunits named Orc1 to Orc6 in order of their decreasing 

mass (Li and Herskowitz 1993; Bell et al. 1995; Loo et al. 1995a). All subunits are essential for 

the conserved function of ORC as the eukaryotic replication initiator complex (Bell et al. 1993; 

Gavin et al. 1995). Homologs of ORC subunits have been found implicated in replication also 

in S. pombe, D. melanogaster, X. laevis, and human cells (Carpenter et al. 1996; Grallert and 

Nurse 1996; Landis et al. 1997; Dhar et al. 2001).  

In yeast, ORC binds to ACS sites of origin sequences, which are evenly distributed in the 

genome, and where ORC remains bound throughout the cell cycle (Tanaka et al. 1997). DNA 

binding requires the coordinate action of all ORC subunits except Orc6 (Lee and Bell 1997). In 

addition, it requires the binding, but not the hydrolysis, of ATP by Orc1 (Klemm and Bell 

2001). To initiate replication, ORC recruits a multifactor prereplicative complex (pre-RC) 

during G1. Thereby, the direct binding of ORC to Cdc6 is the first and a key step, and is 

presumably mediated by ATP-bound Orc1 (Saha et al. 1998; Mizushima et al. 2000).  

Due to their vital function, no deletion mutants of ORC subunits are available. Instead, the 

conditional mutant alleles orc2-1 and orc5-1 are frequently used for genetic analysis. Both 

mutants share phenotypes of impaired replication, including temperature sensitivity, elevated 

plasmid loss rate and reduced replication initiation. Moreover, double mutants are inviable 

(Liang et al. 1995; Loo et al. 1995a). It was furthermore demonstrated that the ORC complex 

is unstable and affected in DNA binding in these mutants (Bell et al. 1993). In addition to the 

replication defect, telomeric and HM silencing was also affected in orc2-1 and orc5-1 mutants 

(Loo et al. 1995a; Fox et al. 1997). 

In contrast, a N-terminally truncated orc1 mutant displayed no combined replication/silencing 

phenotype, but was impaired in silencing. Replication appeared unaffected, since orc1∆1-235 

could still complement an orc1∆ strain for growth and displayed only a 2-fold reduction in 

plasmid stability, compared to a 20 to 40-fold reduction in orc2-1 and orc5-1 strains (Bell et al. 

1995). In this orc1 mutant, silencing was affected at a HMR sensitized to defects in ORC 

function by the lack of the Rap1 binding site in the E silencer (HMR-E ∆RAP).  
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In the current model, the N-terminal domain of Orc1 is responsible for the silencing function of 

ORC, which is the recruitment of Sir1 to silencers (Gardner et al. 1999). Recently, an ORC 

interaction region (OIR) was identified in the C-terminal part of Sir1 to be necessary and 

sufficient for the Sir1-ORC interaction (Bose et al. 2004). However, stable silencer association 

of Sir1 required the additional interaction with Sir4, which may consequently confine Sir1-ORC 

interactions to origins within silencers. 

In the 914 amino acid protein Orc1, Sir1 binding occurs via a small non-conserved domain 

between amino acids 100 and 129 (Zhang et al. 2002). This so-called H-domain is part of the 

BAH (bromo-adjacent homology) domain, which is a conserved protein-protein interaction 

module (Callebaut et al. 1999). In addition, Orc1 has an AAA+ (ATPases associated with a 

variety of cellular activities) domain between amino acids 443 and 738. This highly conserved 

module contains ATP binding and hydrolysis-mediating Walker homology motifs (Neuwald et 

al. 1999). Hence, the AAA+ domain is essential for replication initiation by ORC, and mutations 

in this domain are lethal (Klemm and Bell 2001) 

Most likely, the role of ORC in repressive chromatin is conserved in all metazoans. In 

Drosophila, ORC was localized to heterochromatin and interacted directly with HP1, probably 

via DmOrc1 (Pak et al. 1997). Recessive lethal mutations in DmORC2 are PEV suppressors 

and disrupt the localization of HP1 to heterochromatin. Likewise, HP1 point mutations that 

diminish ORC binding, also suppress PEV. In light of these data, Pak et al. (1997) suggested 

a conserved role of ORC to target non-DNA-binding-factors, such as Sir1 in yeast and HP1 in 

Drosophila, to sites destined to be heterochromatic. 

Recently, it was demonstrated that human ORC1 directly interacted with HBO1 (histone 

acetyltransferase binding to ORC). HBO1 has HAT activity towards free and nucleosomal H3 

and H4 (Iizuka and Stillman 1999) and belongs to the same HAT family (MYST) as MOF and 

Sas2, which affects silencing in yeast (Ehrenhofer-Murray et al. 1997). Thus, although the 

ORC-HBO1 interaction may be associated with the replication role of ORC (Burke et al. 2001), 

it may alternatively be another link between ORC and heterochromatin.  

 

Sir3 

 
Sir3 is a key player in TPE and HM silencing, but not in rDNA repression (Aparicio et al. 1991; 

Smith and Boeke 1997; Stone et al. 2000). As a component of the Sir complex, Sir3 contacts 

several other silencing proteins. Direct interactions have been demonstrated between Sir3 

and Sir2, Sir4, Rap1, Abf1, Zds1, Zds2, Rad7, Sir3 itself and the N-termini of histones H3 and 
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H4 (Gasser and Cockell 2001). Physical interactions with Sir4, Rap1 and hypoacetylated 

histones occur via the C-terminal half of Sir3 (Hecht et al. 1995; Park et al. 1998; Moretti and 

Shore 2001), whereas the N-terminus of the 978 amino acid protein modulates the 

interactions. Notably, the simultaneous expression of both halves of SIR3 in trans partially 

complemented the sir3∆ mating defect, suggesting that the two domains can function 

independently (Gotta et al. 1998).  

The N-terminal 214 amino acids of Sir3 are very similar to Orc1 (50% identity, 63% similarity) 

(Bell et al. 1995) and also contain a BAH domain between amino acids 48 and 189, although 

the H-domain is missing (Zhang et al. 2002). Point mutations within the BAH domain lead to 

eso (enhancers of the sir one mutant mating defect) phenotypes (Stone et al. 2000). They 

disrupted HM silencing in sir1∆ strains and additionally disrupted TPE as single mutants. 

Interestingly, nat1∆ also enhanced the sir1∆ mating defect, and this effect was epistatic with 

some of the sir3-eso mutations.  

In line with the high degree of sequence similarity, the N-terminal domains of Sir3 and Orc1 

were functionally interchangeable for mating-type silencing when tethered to the C-terminus of 

the other protein (Bell et al. 1995). Notably, they did not substitute each other in telomeric 

silencing, pointing to distinct functions of the proteins at the telomeres (Stone et al. 2000). 

Given the potential of the Sir3 N-terminus to replace the Orc1 N-terminus in HM silencing, it 

appears paradox that Sir3 cannot interact with Sir1 because of the missing H-domain. Thus, 

Stone et al. (2000) proposed that the BAH domain of Sir3, when tethered to Orc1, may 

promote silencing in a Sir1 independent manner. 

Consistent with the view that the Sir3 N-terminus is a regulatory domain, there is evidence 

that its phosphorylation enhances TPE (Stone and Pillus 1996).  

 

Sum1-1 

 

Due to a single missense mutation in the C-terminal part, SUM1-1 is a dominant altered 

function allele, which can bypass the need for Sir proteins in HM silencing and increase 

telomeric repression in SIR wild-type strains (Laurenson and Rine 1991). 

Although SUM1-1 is a suppressor of HM silencing defects, the wild-type gene product of 

SUM1 appears not to be a direct silencing component. Instead, Sum1 acts as transcriptional 

repressor of middle sporulation genes during mitosis and vegetative growth and binds 

specifically to MSE (middle sporulation element) sites in the promoter regions of its target 

genes (Xie et al. 1999). For this, Sum1 recruits Hst1 (Homologous of Sir Two), a NAD+-
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dependent deacetylase with sequence homology to Sir2. The deletion of SUM1 had only 

minor effects on HM silencing and did not restore silencing in the absence of Sir proteins (Chi 

and Shore 1996).  

For a long time it remained unclear how the Sum1-1 mediates silencing in the absence of the 

Sir complex, which is normally essential for silencing. (Sutton et al. 2001) found that Sum1-1 

also requires Hst1 and its NAD+-dependent deacetylase activity as well as ORC for its 

silencing function. In fact, the orc1∆1-235 allele eliminated SUM1-1 mediated silencing 

(Rusche and Rine 2001). In the present model, Sum1-1 is bound by ORC (Orc1?) to the 

silencers and recruits Hst1, whose deacetylase activity leads to hypoacetylated nucleosomes 

and consequently to a condensed, silenced chromatin structure at the HM loci (Rusche and 

Rine 2001). 

 

1.8 Outline of this thesis 

The aim of this study was to determine the role of the Nα-acetyltransferase complex NatA in 

transcriptional silencing in S. cerevisiae. Deletions of the NatA subunits NAT1 or ARD1 both 

result equally in impaired HML silencing and reduced TPE, suggesting the functional 

dependence of a silencing protein on Nα-acetylation by NatA (Mullen et al. 1989; Aparicio et 

al. 1991). 

So far, some genetic interactions between NAT1 and genes that encode silencing 

components have been identified. For instance, the nat1∆ mutant displayed an 

eso-phenotype, which was not enhanced in combination with certain sir3-eso alleles. 

Likewise, overexpressed Sir1 suppressed the nat1∆ ard1∆ silencing defect at the HMR-E 

∆RAP silencer (Stone et al. 1991 and 2000). However, neither Sir3 nor Sir1 have been directly 

implicated in NatA-dependent silencing. In addition, histone H2B is a known NatA substrate 

but the deletion of its N-terminus has no effect in silencing (Kayne et al. 1988). 

To date, no significant silencing substrates of NatA have been found and the mechanism by 

which NatA is involved in silencing remains unclear. It is further not known whether NatA plays 

a role in rDNA silencing.  

In this study, we found that NatA was required for all forms of silencing in S. cerevisiae. We 

further obtained evidence that Orc1 is a NatA substrate and its Nα-acetylation is required for 

telomeric silencing. Genetically, nat1∆ functioned through the ORC binding site of the HMR-E 

silencer. The requirement for NatA in silencing could be bypassed by artificially tethering 
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Orc1, but not the other Orc proteins, to the silencer, thus suggesting that Orc1 was a 

silencing-relevant NatA target. We found Orc1 to be fully Nα-acetylated in wild-type and 

completely unacetylated in nat1∆ strains. Mutations in the penultimate residue of Orc1 that 

abrogated its ability to be acetylated by NatA caused a severe loss of telomeric silencing, as 

does the deletion of NAT1. The lack of acetylation did not affect the interaction of Orc1 with 

Sir1, since HM silencing was not impaired in the orc1 mutants and still depended on functional 

SIR1 in nat1∆ strains.  

Genetic interactions further supported a functional link between NatA and ORC in replication, 

since nat1∆ was synthetically lethal with the replication-defective orc2-1 mutation. Notably, 

unacetylated orc1 mutants grew normally suggesting that another subunit of ORC requires 

Nα-acetylation for its function in silencing. Furthermore, nat1∆ displayed synthetic lethality with 

SUM1-1. Intriguingly, this lethality was suppressed by a deletion in the N-terminus of Orc1, 

thus suggesting that Nα-acetylation regulated the interaction of Orc1 with Sum1-1. 

Furthermore, we found that the N-terminal 100 amino acid region of Orc1 was dispensable for 

growth, but had a function in silencing. Increasing deletions within this region disrupted 

silencing at the synthetic HMR locus and telomeres, and also reduced the α-factor sensitivity 

of the mutants. In contrast to earlier proposals (Zhang et al. 2002), we found that the 

N-terminal 50 amino acids of Orc1 were required for the interaction with Sir1, since the two-

hybrid interaction with Sir1 was interrupted in the orc1∆1-51 mutant. However, this mutant 

further affected silencing in sir1∆. Therefore, we suggest that the N-terminal 100 amino acids 

of Orc1 are not only required for Sir1 interaction, but also for the recuitment of another, yet 

unknown silencing factor. 

Furthermore, we present evidence that Sir3 is also Nα-acetylated by NatA. Since previous 

work (Stone et al. 2000) showed that the mutation of the penultimate amino acid of Sir3 

causes silencing defects, we likewise propose that Sir3’s silencing function is regulated by 

NatA-dependent Nα-acetylation and we further demonstrate that the localization of Sir3 to 

perinuclear foci depends on NAT1.  

In addition, we report on a screen for a multicopy suppressor of the nat1∆ mating defect. This 

unbiased approach proved to be ineffective, since we isolated only indirect suppressors of the 

mating defect, but not of the HM silencing defect of nat1∆. 

In summary, our data further specify the role of NatA in transcriptional silencing. For the first 

time, we provide evidence of the functional dependence of two silencing proteins, Orc1 and 

Sir3, on Nα-acetylation by NatA. We propose a model, by which Nα-acetylation regulates the 
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binding of silencing factors to the N-terminus of Orc1 and Sir3 to recruit hetrochromatic factors 

and establish repression. Thus, Nα-acetylation represents a protein modification that 

modulates chromatin function in S. cerevisiae.  
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2 Materials and Methods 

 

2.1 Materials 

2.1.1 E. coli strains  

TOP10 F- mcrA ∆(mrr-hsdRMS-mcrBC) φ80lacZ∆M15 ∆lacX74 recA1 ara∆139 
∆(ara-leu)7697 galU galK rpsL (StrR) endA1 nupG 

  (chemically or electro-competent; Invitrogen) 
DH5α F- φ80dlacZ∆M15 ∆(lacZYA-argF) U169 recA1 endA1 hsdR17(rk

-, mk
+) phoA 

supE44λ- thi-1 gyrA96 relA1 (chemically competent; Gibco) 
 

2.1.2 Yeast strains 

Table 2.1: Yeast strains used in this study. 
Strain Genotype Source* 

AEY1 MATα ade2-1 ura3-1 his3-11,15 leu2-3,112 trp1-1  can1-100 
(=W303-1B) 

 

AEY2 MATa ade2-1 ura3-1 his3-11,15 leu2-3,112 trp1-1 can1-100 
(=W303-1A) 

 

AEY5 MATα HMR SS ∆I  
AEY24 MATa orc2-1 rho° J. Rine 
AEY71 MATα HMR-E ∆300-256 (∆ABF) A. Brand 
AEY80 MATa nat1-5::LEU2 R. Sternglanz 
AEY81 MATα HMR-E ∆331-324 (∆RAP) A. Brand 
AEY84 MATα HMR-E ∆352-358 (∆ACS) A. Brand 
AEY1017 MATα TEL VII-L::URA3 J. Berman 
AEY1224 MATa SUM1-1 D. Shore 
AEY1227 MATα nat1-5::LEU2  
AEY1273 MATα HMR SS ∆I nat1∆ ::LEU2  
AEY1275 MATα HMR SS ∆I 5xGal4-RAP-ABF  
AEY1276 MATα HMR SS ∆I 5xGal4-RAP-ABF nat1∆::LEU2  
AEY2144 MATα HMR-E ∆331-324 (∆RAP) nat1∆::LEU2  
AEY2146 MATα HMR-E ∆352-358 (∆ACS) nat1∆::LEU2  
AEY2148 MATα HMR-E ∆300-256 (∆ABF) nat1∆::LEU2  
AEY2371 MATα TEL VII-L::URA3 nat1∆::LEU2  
AEY2947 AEY1276 sir1∆ ::kanMX  
AEY3008 MATα sum1∆::URA3 nat1∆::LEU2  
AEY3068 MATa ORC1-HA-URA3  
AEY3070 MATa nat1-5::LEU2 ORC1-HA-URA3  
AEY3134 MATa ADE2 lys2∆  nat1∆ ::LEU2  
AEY3161 MATa orc2-1 nat1∆ ::LEU2 pRS316-ORC2  
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Table 2.1 (continued) 
Strain  Genotype  Source* 
   
AEY2864 MATα ade2-1 ura3-1 his3-11,15 leu2-3,112 trp1-1 can1-100 

(=W303-1B) HMR SS abf1- ∆I orc1∆::HIS5-GFP pAE405 
 

AEY2866 MATα ade2-1 ura3-1 his3-11,15 leu2-3,112 trp1-1 can1-100 
(=W303-1B) HMR SS ∆I orc1∆::HIS5-GFP pAE405 

 

AEY2867 MATa ade2-1 ura3-1 his3-11,15 leu2-3,112 trp1-1 can1-100 
(=W303-1A) HMR SS ∆I orc1∆::HIS5-GFP pAE405 

 

AEY2877 AEY2866 orc1∆1-10::LEU2 without pAE405  
AEY2879 AEY2866 orc1∆1-51::LEU2 without pAE405  
AEY2880 AEY2866 orc1∆1-100::LEU2 without pAE405  
AEY2883 AEY2864 orc1∆1-10::LEU2 without pAE405  
AEY2887 AEY2867 orc1∆1-10::LEU2 without pAE405  
AEY2888 AEY2867 orc1∆1-51::LEU2 without pAE405  
AEY2889 AEY2867 orc1∆1-100::LEU2 without pAE405  
AEY2903 AEY2866 orc1-A2V::LEU2 without pAE405  
AEY2904 AEY2864 orc1∆1-51::LEU2 without pAE405  
AEY2905 AEY2864 orc1∆1-100::LEU2 without pAE405  
AEY2907 AEY2866 orc1∆1-28::LEU2 without pAE405  
AEY2908 AEY2864 orc1∆1-28::LEU2 without pAE405  
AEY2910 AEY2864 orc1∆29-51::LEU2 without pAE405  
AEY2911 AEY2867 orc1∆29-51::LEU2 without pAE405  
AEY2912 AEY2867 nat1∆ ::kanMX  
AEY2913 AEY2867 orc1-A2V::LEU2 without pAE405  
AEY2916 AEY2866 nat1∆ ::kanMX  
AEY2937 AEY2867 orc1∆1-28::LEU2 without pAE405  
AEY3000 AEY2867 sir1∆::kanMX  
AEY3002 AEY2888 sir1∆::kanMX (transformant #1)  
AEY3003 AEY2888 sir1∆::kanMX (transformant #2)  
AEY3031 AEY2887 TEL VII-L::URA3  
AEY3032 AEY2888 TEL VII-L::URA3  
AEY3034 AEY2889 TEL VII-L::URA3  
AEY3036 AEY2911 TEL VII-L::URA3  
AEY3038 AEY2913 TEL VII-L::URA3  
AEY3040 AEY2937 TEL VII-L::URA3  
AEY3102 AEY2867 orc1-A2P::LEU2 without pAE405  
AEY3103 AEY2866 orc1-A2P::LEU2 without pAE405  
AEY3105 AEY3102 TEL VII-L::URA3  
AEY3144 AEY2867 sir3-A2T::TRP1  
AEY3145 AEY2866 sir3-A2T::TRP1  
AEY3147 AEY3102 sir3-A2T::TRP1  
AEY3148 AEY2913 sir3-A2T::TRP1  
AEY3149 AEY3103 sir3-A2T::TRP1  
AEY3151 AEY2903 sir3-A2T::TRP1  
AEY743 MATa ade2∆::hisG ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 

orc1∆::TRP1 HIS3::HMR-URA3P-ADE2-E pSPB162 (pURA3 
ORC1) 

S. Bell 

AEY2333 AEY743 orc1∆1-51::LEU2 without pSPB162  
AEY2335 AEY743 orc1∆1-100::LEU2 without pSPB162  
AEY2587 AEY743 orc1∆1-10::LEU2 without pSPB162  
AEY2589 AEY743 orc1∆1-28::LEU2 without pSPB162  
AEY2721 AEY743 orc1-A2V::LEU2 without pSPB162  
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Table 2.1 (continued) 
Strain  Genotype Source* 
   
AEY2760 AEY743 orc1∆29-51::LEU2 without pSPB162  
AEY3101 AEY743 orc1-A2P::LEU2 without pSPB162  
AEY3109 AEY743 nat1∆::LEU2  
AEY1558 MATa leu2 trp1 ura3-52 prc1-407 pep4-3 prb1-112 E.W. Jones 
AEY2719 AEY1558 ORC1(1-250)-TAP::URA3  
AEY2758 AEY1558 nat1∆::kanMX orc1(1-250)-TAP::URA3  
AEY3107 AEY1558 orc1-A2P(1-250)-TAP::URA3  
AEY3110 AEY1558 orc1-A2V(1-250)-TAP::URA3  
AEY3171 AEY1558 SIR3(1-235)-TAP::URA3  
AEY3173 AEY1558 nat1∆::kanMX SIR3(1-235)-TAP::URA3  
AEY160 MATα his3∆200 leu2∆1 ura3-167 trp1∆633 met15 ∆1 

RDN::Ty1::MET15 
J. Boeke 

AEY2786 AEY160 nat1∆::kanMX  
AH109 MATa ade2-101 trp1-901 his3-∆200 leu2-3 met- 

MATCHMAKER Two Hybrid strain with reporter genes ADE2, 
HIS3, lacZ, MEL1 

Clontech 

AEY3028 AH109 pAE951 pAE952  
AEY3099 AH109 pAE966 pAE952  
* Unless indicated otherwise, strains were constructed during the course of this study or were from the 
laboratory strain collection. Groups of strains between horizontal lines are isogenic. 
 

2.1.3 Growth conditions and media 

E.coli strains used for plasmid amplification were cultured according to standard procedures 
(Sambrook et al. 1989) at 37°C in Luria Bertani (LB) medium supplemented with either 
100 µg/ml ampicillin or 50 µg/ml kanamycin. S. cerevisiae strains were cultured according to 
standard procedures (Guthrie and Fink 2002) either in complete (YPD) or minimal (YM) 
medium supplemented as appropriate with 20 µg/ml adenine, uracil, tryptophan, histidine and 
methionine or 30 µg/ml leucine and lysine. Strains were grown at 30°C, unless otherwise 
noted. 
 
Media 
LB  10 g/l caseinpeptone, 5 g/l yeast extract, 5 g/l NaCl 
SOC 2 g/l tryptone, 500 mg/l yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 

10 mM MgSO4, 20 mM glucose 
YPD  10 g/l yeast extract, 20 g/l peptone, 2 g/l glucose 
YM  6.7 g/l yeast nitrogen base w/o amino acids, 2 g/l glucose 
CA  YM medium with 40 g/l casamino acids 
5-FOA 14 g/l yeast nitrogen base w/o amino acids, 4 g/l glucose, 2 g/l 5-FOA, 

40 mg/l uracil 
Lead medium 0.3% peptone, 0.5% yeast extract, 4% glucose, 0.02% (w/v) ammonium 

acetate, 0.1% Pb(NO3)2 
Sporulation medium  19 g/l KAc, 0.675 mM ZnAc 
(For plates, 20 g/l agar was added to liquid media.) 
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2.1.4 Plasmid constructions 

Plasmids used in this study are listed in Table 2.2. Cloning strategies and selection markers 
for bacteria and yeast are added in brackets. Cloning details are described in chapter 2.2.2. 
 

Table 2.2: Plasmids used in this study. 
Plasmid Description / Construction / Markers* Source** 
YEp24 2µ-based genomic library (Amp, URA) (Carlson and 

Botstein 1982) 
pAE100 pRS316 ADH1P - GAL4(1-147)-SIR1 (CEN; Amp; URA) J. Rine 
pAE108 pRH98-1 GPDP – GAL4(1-147)-ORC2 (CEN; Amp, URA) J. Rine 
pAE109 pRH98-1 GPDP – GAL4(1-147)-ORC5 J. Rine 
pAE303 YCp50 NAT1 (CEN; Amp, URA) J. Rine 
pAE405 pRS316 ORC1 (BamHI-XhoI ORC1-fragment of pAE246)  
pAE408 pTT64 GAL4(1-147)-ORC1(5-267) (CEN; Amp, HIS) R. Sternglanz 
pAE516 pRH98-1 GPDP – GAL4(1-147)-ORC6  

(ORC6-ORF BglII-SalI PCR fragment cloned into BamHI-SalI cut 
pRH98-1) 

 

pAE580 pRS316 SIR3-GFP  D. Shore 
pAE595 pRH98-1 GPDP – GAL4(1-147)-ORC3 

(ORC3-ORF amplified from pAE338; cloned as BamHI-SalI fragment into 
BamHI-SalI cut pRH98-1) 

 

pAE597 pRH98-1 GPDP – GAL4(1-147)-ORC4 
(ORC4-ORF amplified from pAE349; cloned as BamHI-SalI fragment into 
BamHI-SalI cut pRH98-1) 

 

pAE866 pRH98-3 ORC1  
(ORC1-ORF amplified from pAE 246; cloned as BamHI-SalI fragment into 
BamHI-SalI cut pRH98-3) (2µ; Amp, URA) 

 

pAE877 pRS306 ORC1(1-250)-TAP 
ORC1(1-250)-TAP amplified by PCR sewing; cloned as BamHI-SalI 
fragment into BamHI-SalI cut pRS306 (integrating; Amp, URA)  

 

pAE951 pGADT7 ORC1 (2µ; Amp; LEU) B. Stillman 
pAE952 pGBKT7 SIR1(346-678) (2µ; Kan, TRP) B. Stillman 
pAE953 pGADT7 Clontech 
pAE964 YEplac112 SSB1 

(SSB1 as BamHI-PstI fragment from pAE963; cloned into BamHI-PstI cut 
YEplac112) (2µ; Amp, TRP) 

 

pAE966 pGADT7 ORC1(52-235) 
ORC1(52-235) amplified from pAE246; subcloned into pCR-Blunt II-
TOPO; cut out as EcoRI fragment and cloned into EcoRI cut pAE953 

 

pAE989 pRS306 orc1-A2P(1-250)-TAP 
orc1-A2P(1-250) as BamHI-HindIII fragment from pAE971; cloned into 
BamHI-HindIII cut pAE877 

 

pAE990 pRS306 orc1-A2V(1-250)-TAP 
orc1-A2V(1-250) as BamHI-HindIII fragment from pAE881; cloned into 
BamHI-HindIII cut pAE877 

 

pAE1001 YIplac204 sir3-A2T(1-504) 
sir3-A2T as KpnI-HindIII fragment from pAE997; cloned into KpnI-HindIII 
cut YIplac204 (integrating, Amp, TRP) 

 

pAE1007 pRS306 SIR3(1-235)-TAP 
sir3(1-235)TAP amplified by PRC sewing; cloned as BamHI-SalI 
fragment into BamHI-SalI cut pRS306 

 

* Amp = ampicillinR, Kan = kanamycinR, URA = URA3, HIS = HIS3, LEU = LEU2, TRP = TRP1 
** Unless indicated otherwise, plasmids were constructed during the course of this study or were taken 
from the laboratory plasmid collection. 
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2.1.5 Oligonucleotides 

PCR primers were designed using sequence data of the Saccharomyces Genome Database 
(http://www.yeastgenome.org/). For cloning of PCR fragments, restriction sites were inserted 
into primer ends. All oligonucleotides used in this study were synthesized by metabion GmbH.  
 

2.1.6 Buffers  

Tris-glycine buffer 25 mM Tris, 192 mM glycine, 0.1% SDS 
Blot buffer  25 mM Tris, 192 mM glycine, 10% methanol  
TBS-T   20 mM Tris pH 7.5, 500 mM NaCl, 0.05% Tween20 
SDS sample buffer 50 mM Tris pH 6.8, 100 mM dithiothreitol; 2% SDS, 0.1% bromphenol 

blue, 10% glycerol 
Zymolyase buffer 1 M sorbitol, 0.1 M NaCitrate; 60 mM EDTA pH 8.0; 5 mg/ml zymolyase 

(Seikagaku corp., Tokyo) 
Zymolyase solution 1.2 M sorbitol, 0.1 M KPO4 pH 7.5, 400 µg/ml zymolyase 
Buffer A  20 mM Tris pH 8.0, 10 mM KCl, 1.5 mM MgCl2, 0.5 mM DTT, 1 pill 

Complete (Roche) (protease inhibitor cocktail) ad 50 ml buffer 
IPP150   10mM Tris-Cl pH 8.0, 150mM NaCl   
TEV cleavage buffer 10mM Tris-Cl pH 8.0, 150mM NaCl, 0.5 mM EDTA, 1 mM DTT 
IPP150 Calmodulin binding buffer 10 mM β-mercaptoethanol, 10 mM Tris-Cl pH 8.0, 

150 mM NaCl, 1 mM MgAcetate, 1 mM imidazole, 2 mM CaCl2 
IPP150 Calmodulin elution buffer 10 mM β-mercaptoethanol, 10 mM Tris-Cl pH 8.0, 150 

mM NaCl, 1 mM MgAcetate, 1 mM imidazole, 2 mM EGTA 
 
 

2.2 Methods 

2.2.1 Yeast strain construction 

Strains used in this study were generated either by direct deletion or by chromosomal 
integration of the gene of interest. Alternatively, strains were derived from crosses between 
strains from the laboratory stock. 
 
 
Crossing, sporulation and the dissection of asci 
For crosses, some cell material of the 2 parental strains grown over night was smeared 
together in a drop of water. After 8 h of incubation at 30°C (23°C for ts strains) on a YPD 
plate, the smear was streaked out on selective medium to isolate diploids. 
To induce sporulation, the diploids were plated on sporulation plates and incubated at 30°C 
for 2-3 d or at 23°C for 3-4 d. For dissection, a loopful of asci was incubated in 10 µl 
zymolyase buffer for 6-10 min at RT. The reaction was stopped by adding 250 µl H2O. 
Ascospores were subsequently dissected using a micromanipulator (Narishige) connected to 

http://www.yeastgenome.org/
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a Zeiss Axioscope FS microscope. Plates were incubated at 30°C or 23°C for 2-5 d. Marker 
segregation was followed by standard genetic techniques (Guthrie and Fink, 2002). 
The suppression of the nat1∆ SUM1-1 synthetic lethality by orc1∆1-235 was determined as 
follows: Strain JRY7176 (Rusche and Rine 2001) was transformed with an URA3-SIR2 
plasmid in order to give the strain mating ability and to create diploids with AEY3134. The 
URA3-SIR2 plasmid was then lost from the diploid by counter-selection on 5-FOA containing 
media. The diploid was sporulated, tetrads were dissected and segregants were analyzed for 
their genotype. Segregants that were Trp+ and Leu+, genotypically were orc1∆::TRP1 and also 
LEU2::orc1∆1 235, because orc1∆ alone is lethal. To select segregants among these with 
nat1∆::LEU2, the fact was exploited that SIR2 and NAT1 are neighboring genes within the 
yeast genome, making recombination between them highly unlikely. Thus, His- segregants 
from the cross by interference were also nat1∆::LEU2. Ten such segregants were chosen, 
proteins extracted and submitted to SDS-PAGE and Western blotting with α-myc antibody to 
determine their SUM1-1 status. Several segregants were identified that showed a strong 
signal, and they were presumed to have the genotype orc1∆::TRP1 LEU2::orc1∆1-235 
nat1∆::LEU2 7myc-SUM1-1.  
 
 
Gene disruption 
Endogenous ORC1 was disrupted in a diploid strain carrying pAE405 and the two HMR alleles 
HMR SS ∆I and HMR SS abf1-∆I (AEY2729) using the PCR-mediated knockout technique. In 
brief, the complete open reading frame of ORC1 plus 200 bp of upstream sequence was 
replaced by a fragment containing SpHIS5-GFP amplified from pAE913. Haploid orc1∆ strains 
were obtained by sporulation and tetrad dissection. NAT1 and SIR1 were disrupted by 
replacing them with the kanMX cassette using the PCR knockout strategy according to the 
guidelines for EUROFAN (Wach et al. 1994). 
For both deletion protocols, integrants were selected for by standard genetic techniques and 
the correct integration was verified by PCR. 
 
 
Chromosomal integrations 
For orc1-A2V, orc1-A2P and the orc1 N-terminal deletion strains, mutant orc1 alleles were 
created by site-directed mutagenesis and cloned into an integrative plasmid (pAE785). These 
constructs were KpnI-linearized and introduced into the LEU2 locus of AEY2866, AEY2867 
and AEY743, followed by elimination of pAE405 on 5-FOA medium. Endogenous ORC1 was 
HA-tagged in strains AEY3068 and AEY3070 by duplicative integration using XbaI-linearized 
pSB991(pRS306-ORC1-HA/C; S.Bell). sir3-A2T strains were constructed by integrative 
transformation of PstI-linearized pAE1001, which carries a KpnI/HindIII fragment of sir3-A2T 
from pLP189 (Stone et al. 2000). Chromosomal integrations of the TAP-tagged versions of 
ORC1 and SIR3 into the URA3 locus of AEY1558 and AEY2706 were achieved by 
transforming the strains with the NcoI-linearized plasmids pAE877, pAE989, pAE990 and 
pAE1007. Integrants were selected using standard genetic techniques and were verified by 
Western blotting. Telomeric URA3 was inserted into the appropriate strains by transforming 
SalI/EcoRI-linearized pVII-L URA3-TEL (Gottschling et al. 1990).  
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2.2.2 Molecular cloning techniques 

Standard molecular cloning techniques were performed according to (Sambrook et al. 1989). 
Chemicals, kits and enzymes were purchased by NEB, Invitrogen, Qiagen, Roche, Bio-Rad, 
Promega and Stratagene, and were applied according to the guidelines.  
 
 
Transformation of DNA in E. coli and S. cerevisiae 
DNA was transformed into competent E. coli cells (TOP10 or DH5α) according to the protocol 
of the manufacturers. Competent yeast cells were created and transformed as described by 
(Klebe et al. 1983) and (Ito et al. 1983). 
 
 
Preparation of genomic and plasmid DNA  
Plasmid DNA was extracted from E. coli by the alkaline lysis procedure (Sambrook et al. 
1989), and further purification using the Qiagen plasmid kits. Plasmids were isolated from 
yeast strains according to the protocol of Jaques Paysan: 1.5 ml yeast culture grown to 
saturation were pelleted and resuspended in 200 µl zymolyase solution. After 2 hours of 
incubation at 37°C, plasmids were isolated by alkaline lysis with the Qiagen plasmid kit 
starting with 400 µl of buffer 2. Genomic DNA from yeast was prepared as described in 
(Hoffman and Winston 1987). 
 
 
PCR reactions 
As a standard PCR protocol, reactions were carried out in 50 µl volume containing 2.5 U Taq-
Polymerase (Promega) or 0.5 U VENT Polymerase (NEB), 5 µl of the respective 10x 
polymerase buffer, 30 pmol of each of the two primers and 0.2 mM of each dNTP. Mg2+ions 
and template DNA was added in variable concentrations (by default 1.5 mM Mg2+ and 100 pg 
DNA). Standard amplification reaction: 5’ 95°C, 23 – 30 cycles [30’’ 95°C, 30’’ annealing 
temperature (according to the primers), elongation time (according to the fragment length) at 
72°C], 5’ 72°C. As benchmark, 1’ was given for the elongation of 1 kb sequence.  
ORC1(1-250)-TAP (and likewise orc1-A2P-TAP, orc1-A2V-TAP and sir3(1-235)-TAP) fusions 
were created by PCR sewing in two steps: Fragments of the TAP-tag and the respective 
fusion protein, which were overlapping at the projected fusion site were amplified separately. 
In a second PCR, the two overlapping fragments were joined using the outer primers of the 
first reaction. The obtained fragments contained restriction sites at their ends (added by the 
primer) and were directly digested and cloned into the integrative vector pRS306. In other 
cases, PRC fragments with primer based restriction sites at their 5’ and 3’ ends were at first 
subcloned into the pCR-Blunt II TOPO vector (Invitrogen) and then excised and inserted into 
their ultimate plasmid. N-terminal deletion alleles of ORC1 were also created by PRC sewing. 
Thereby, the deletion region was excised from the ORC1-ORF by amplification and 
subsequent joining of the surrounding sequences. The fused PCR fragment contained the 
deletion and primer based restriction sites at the 5’ and 3’ ends, and was cloned into an 
integrative plasmid (pAE785). 
 
 
Site-directed mutagenesis 
In order to create orc1-A2P and orc1-A2V alleles, point mutations were introduced into the 
second codon of ORC1 using the Quick Change® site-directed mutagenesis strategy 
(Stratagene). In brief, the ORC1 encoding plasmid pAE246 was amplified with complementing 
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primer pairs, whose sequences included the point mutation. Newly synthesized plasmids were 
selected for by DpnI digestion, which is specific to the methylated parental templates, and 
were verified by sequencing. For subsequent genomic integration of the mutant alleles, NdeI-
NcoI fragments of the mutagenized plasmids were exchanged for the NdeI-NcoI fragment of 
an integrative plasmid containing orc1∆1-100 (pAE787). 
Sequencing of DNA 
Sequencing PCR reactions were performed according to the ABI PRISM® Big DyeTM 
Terminator Cycle Sequencing protocol. The reaction mix contained 1 µl BD Terminator mix, 1-
8 µl template DNA, 2 mM primer, ad 10 µl H2O. The cycling profile was: 1’ 96°C, 35 cycles 
[20’’ 96°C, 10’’ annealing temperature, 4’ 60°C]. The reaction was then precipitated and 
submitted for sequencing to the service group of the institute. 
 
 

2.2.3 Silencing assays 

Mating assays 
Mating assays were performed using AEY264 (MATa his4) and AEY265 (MATα his4) as 
mating-type tester strains. For qualitative mating assays (patch-mating), strains were grown 
on plates over night and replica-plated with a lawn of the respective tester strain on YM 
medium, which was selective for diploids. After 2-4 d of incubation, the yield of diploids 
indicated the mating efficiency of the strain. Quantitative mating assays were performed as 
described (Ehrenhofer-Murray et al. 1997). 
 
 
MET15 colony color silencing assays 
Silencing of the MET15 reporter gene integrated at the rDNA locus was monitored on lead 
containing plates (Smith et al. 1999). On this medium, strains that silence the reporter gene 
become darkly pigmented, whereas strains expressing the gene are white. Photographs were 
taken after 5 d using a Leica stereoscopic microscope equipped with a Sony DXC-9100p CCD 
color video camera.  
 
 
URA3 silencing assays 
Silencing of the TEL-VIIL::URA3 (Gottschling et al. 1990) gene was measured by the ability of 
strains to grow on plates containing 5-fluoroorotic acid (5-FOA), which is counter-selective for 
URA3 expressing cells (Guthrie and Fink 2002). Test strains were scraped from fresh plates, 
resuspended in 0.5 ml sterile water and diluted to an OD600 of 0.3. 6-fold serial dilutions 
thereof were spotted with a cell spotter on plates containing 5-FOA and incubated for 2-3 d at 
30°C. As a control for cell viability, the serial dilutions were also spotted onto supplemented 
minimal medium. 
 
 
HMR::ADE2 silencing 
Silencing of the ADE2 gene inserted at the HMR locus was measured by the ability of strains 
to grow on medium lacking adenine. For this, serial dilutions of the strains were applied as 
described for the URA3 silencing assays. 
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α-factor response assays 
The α-factor response of MATa HMLα strains was measured by spreading them on YPD 
plates containing 40 µg/ml α-factor and segregating 100 individual cells per strain using a 
micromanipulator. After 17 h of incubation at 23°C, cells were scored according to their 
response to α-factor. Schmoo: Individual cells that formed a mating projection and remained 
arrested. Schmoo cluster: Individual cells that formed multiple mating projections and 
eventually divided at least once. Colony: Cells that formed colonies of round cells and thus did 
not respond to α-factor.  
 

2.2.4 Two-hybrid assay 

The yeast two-hybrid assay was carried out using the MATCHMAKER system (Clontech). A 
pGBKT7 plasmid encoding Sir1(346-678) (Triolo and Sternglanz 1996) was used as bait. 
Orc1(1-235) and Orc1(52-235) were cloned into pGADT7 as prey. The Sir1(346-678) and 
Orc1(1-235) plasmids, as well as the AH109 tester strain, are courtesy of B. Stillman. Two-
hybrid interactions were tested in strains cotransformed with bait and prey by plating them in 
serial dilutions on YM medium lacking adenine and histidine, respectively, followed by 2-3 d of 
incubation at 30°C. The dilution protocol is described with the URA3 silencing assays.  
 

2.2.5 Immunofluorescence on yeast cells 

Cells carrying the sequence of a Sir3-GFP fusion protein under the control of the natural SIR3 
promoter on a CEN-based plasmid (pAE580) were grown to logarithmic phase in liquid 
selective medium. 1 ml of cell culture was spun down, washed once with distilled water, and 
then resuspended in 500 µl of water. DNA was stained by adding 1 µl of Hoechst (1µg/ml). 
Images were captured with a fluorescence microscope (Axioplan 2, Zeiss) using the FITC filter 
for GFP. 
 

2.2.6 Biochemical techniques 

Yeast protein extract preparation 
For Western blotting, crude extracts were prepared according to a protocol from Sigrid 
Schaper. Strains were grown in selective liquid medium to midlog phase (OD600 = 0.5-1). For 
each probe, 1.5 ODs of cells were harvested and centrifuged for 2’ at 6500 rpm on a table-top 
centrifuge. The pellet was resuspended in 30 µl of buffer A (modified from TAP protocol). After 
the addition of 70 µl of SDS sample buffer and acid washed glass beads, cells were broken by 
vortexing at full speed for 1’, 5’ boiling at 95-100°C, cooling down at RT, and again vortexing 
for 1’. 15-20 µl of these probes were applied on SDS gels, alternatively, they were stored at –
80°C. 
For TAP and IEF experiments, protein extracts were prepared according to the TAP protocol 
(Rigaut et al. 1999). 2 l of cell culture grown in YPD medium at 30°C to an OD600 of 1.5-2 were 
spun at 5000 rpm for 20’ at 4°C, washed with cold water, spun again, resuspended in 50 ml in 
a Falcon tube and spun at 3000 rpm for 15’ at 4°C. The pellet was frozen in –80°C (without 
shock freezing in liquid nitrogen). For protein extract preparation, the pellet was resuspended 
at RT in one volume of buffer A, and then kept at 4°C. Cells were broken in 3 French press 
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passages. Then, 0.2 mM KCl was added and  the suspension was ultracentrifuged at 21,000 
rpm for 30’ in a Sw40Ti or 70 Ti rotor (Beckman). The supernatant was centrifuged at 34,000 
rpm for 2 h at 4°C. The protein concentration of the obtained extract was determined with the 
method of Bradford (Bradford 1976), and aliquots were frozen in 17% glycerol in liquid 
nitrogen and kept at –80°C. 
 
 
SDS page and Immunoblot 
Proteins were separated by SDS-PAGE in Tris-glycine buffer according to standard methods 
(Sambrook et al. 1989). They were then transferred to nitrocellulose by blotting with the 
BIO-RAD Tank Transfer System according to the manufacturers guidelines. Mostly, the blot 
occurred for 2 h at 70V in blot buffer. The nitrocellulose membrane (Pharmacia) was 
subsequently blocked for 1 h at RT in 5% milk/ TBS-T. After an overnight incubation at 4°C 
with the primary antibody in 5% milk/ TBS-T, the blot was washed twice for 10’ each with TBS-
T. Next, the blot was incubated with the appropriate secondary antibody in 5% milk/ TBS-T for 
1 h at RT. After washing 3 times for 10’ with TBS-T, the SuperSignal West Pico 
Chemiluminescent Substrate (Pierce) was used for immunochemical detection. 
Antibodies used were PAP (Peroxidase anti-peroxidase) (Sigma P2026), α-HA (Sigma), 
α-myc (Invitrogen), α-Tub27 (Babco), and α-Orc1 (Santa Cruz Biotechnology). 
 
 
Isoelectric focusing 
Proteins were separated by IEF-PAGE using precast ready gels (pH 3-10) from BIO-RAD. 
Gels were run according to the suppliers instructions for 1h at 100V, 2 h at 250V, and 30’ at 
500V using the Pharmacia Power Supply EPS 3500 XL. For immunoblotting, gels were 
equilibrated in blot buffer for 2 h, and then immuno-blotted like SDS gels. The theoretical pI 
was calculated using (http://us.expasy.org/tools/pi_tool.html).  
 
 
Tandem affinity purification (TAP) 
TAP-tagged proteins were purified according to the TAP protocol of the Séraphin laboratory 
(http://www-db.embl-heidelberg.de/jss/servlet/de.embl.bk.wwwTools.GroupLeftEMBL/External
Info/seraphin/TAP.html), except for omitting of NP40. To prepare a sample for subsequent 
MALDI-TOF analysis, protein extract of a 4 l cell culture was applied. The TAP tag consists of 
a calmodulin binding peptide (CBP) and Staphylococcus aureus protein A, separated by a 
tobacco etch virus (TEV) cleavage site. Therefore, the purification occurred in three steps. 
Firstly, 250 µl of IgG agarose beads (Sigma A2909), washed beforehand with 15 ml of IPP150 
buffer, were added to 10 ml of protein extract together with 100 µl of 1 M Tris-Cl pH 8.0 and 
incubated under rotation for 2 h at 4°C in a Poly-Prep® chromatography column (BIO-RAD). 
Then, the solution was removed through the column and the remaining beads were washed 
with 30 ml IPP150 and 10 ml TEV cleavage buffer. Next, 100 units of TEV protease 
(Invitrogen) were added in 1 ml TEV cleavage buffer, and the protein was eluated from the 
beads during 2 h of rotation at 16°C. The eluate (1 ml) was recovered from the column under 
addition of 200 µl TEV cleavage buffer, and supplied with 3 ml calmodulin binding buffer and 
3 µl 1 M CaCl2. The mix was added to the second affinity column with 250 µl of a calmodulin 
beads suspension, washed beforehand with 7.5 ml of IPP150 calomdulin binding buffer, and 
rotated for 1 h at 4°C. After removal of the solution, the beads were washed with 30 ml of 
IPP 150 calomdulin binding buffer and eluted with 1 ml of IPP150 calmodulin elution buffer 
containing EGTA. For precipitation, 5 volumes of ice-cold acetone were added and the sample 
was incubated at –20°C for 20’. After 30’ centrifugation at full speed in a table-top centrifuge at 

http://us.expasy.org/tools/pi_tool.html
http://www%1Edb.embl%1Eheidelberg.de/jss/servlet/de.embl.bk.wwwTools.GroupLeftEMBL/ExternalInfo/seraphin/TAP.html
http://www%1Edb.embl%1Eheidelberg.de/jss/servlet/de.embl.bk.wwwTools.GroupLeftEMBL/ExternalInfo/seraphin/TAP.html
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4°C, the supernatant was removed and the protein pellet was resuspended in 20 µl SDS 
sample buffer for application on a SDS gel. 
 
 
In-gel digestion and peptide mass fingerprinting 
TAP-purified Orc1 was separated from a 10% acrylamide gel and visualized by Coomassie 
G-250 staining. The protein band was excised and divided into two probes. The probes were 
cleaved in situ as described previously (Shevchenko et al. 1996) using either AspN (37°C) or 
GluC (25°C) protease (both Roche, Mannheim) at a final concentration of 11.7 ng/µl or 
25 ng/µl, respectively. The reduction and carbamidomethylation step was omitted. 
The digest supernatant (0.5 µl) was applied on a fast-evaporation nitrocellulose/ 
α-cyano-4-hydroxycinnamic acid layer (Vorm et al. 1994) and analyzed by MALDI-TOF mass 
spectrometry using a Bruker Reflex mass spectrometer (Bruker Daltonics, Bremen) in the 
reflector mode equipped with pulsed-ion extraction and a nitrogen laser (337nm). For selected 
peptides, the amino acid sequence was determined by analysis of fragment ions generated by 
post-source decay (Chaurand et al. 1999) using the FASTTM method (Bruker).  
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3 Results 

3.1 Nat1 was required for repression of the HM loci, telomeres and the rDNA locus 

The deletion of NAT1 was previously described to cause pronounced derepression at the 

natural HML locus and at marker genes inserted in subtelomeric regions (Fig. 3.1A, 3.1C) 

(Mullen et al. 1989) (Aparicio et al. 1991). In contrast, due to functional redundancy within the 

HMR-E silencer, wild-type HMR is not affected by nat1∆ unless it is weakened by the deletion 

of the Rap1 binding site (Stone et al. 1991). To further evaluate the role of NatA in silencing, 

we tested its effect on the synthetic HMR-E silencer (HMR SS ∆I). This silencer variant 

consists solely of minimal binding sites for ORC, Rap1 and Abf1 and lacks much of the 

functional redundancy of natural HMR (McNally and Rine 1991). Significantly, nat1∆ caused 

complete derepression at HMR SS ∆I, as monitored by the loss of mating ability due to the 

coexpression of a information in the MATα strain (Fig. 3.1A). This supported the notion that 

NatA had a function at HMR that was masked by the functional redundancy of the natural 

HMR. 

 

 
 
Abb. 3.1: NatA activity was required for HM, telomeric and rDNA silencing. 
(A) The deletion of NAT1 resulted in derepression of HML and HMR SS ∆I, as measured by the 
reduced mating ability of MATa and MATα strains, respectively. Patch-mating assays were 
performed with MATa strains AEY2 (WT) and AEY80 (nat1∆), and MATα HMR SS ∆I strains AEY5 
(WT) and AEY1273 (nat1∆). (B) Silencing of MET15 inserted into the rDNA locus was impaired by 
nat1∆, as indicated by the brighter colony color of strain AEY 2786 (nat1∆) compared to AEY160 
(WT) on lead indicator medium. (C) Silencing of URA3 inserted near the left telomere of 
chromosome VII depended on functional NatA. Serial dilutions of strains AEY1017 (WT) and 
AEY2371 (nat1∆) were assayed on 5-FOA containing medium counterselecting for URA3-
expressing cells. 
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We next asked whether NatA also functioned in rDNA silencing. To this end, we tested the 

effect of nat1∆ on the expression of a MET15 reporter gene integrated at the rDNA locus, 

whose expression can be monitored on lead indicator medium (Smith and Boeke 1997). nat1∆ 

strains showed a brighter colony color than wild-type strains on this medium, indicating that 

MET15 was derepressed by nat1∆ (Fig. 3.1B). 

Together, NatA functioned in all forms of silencing in S. cerevisiae, suggesting that one or 

more silencing factor(s) common to all three silenced regions is the target of NatA.  

 

3.2 Orc1 required Nα-acetylation by NatA for its function in telomeric silencing 

3.2.1 Tethering of Orc1 or Sir1 to the silencer bypassed the requirement for NatA in 
silencing 

The involvement of NatA in all three classes of silencing in yeast indicated that one or more 

silencing factors common to all silenced loci depended upon Nα-acetylation for proper 

function. In order to narrow down the number of potential candidates, we sought to genetically 

characterize the precise role of nat1∆ in silencing. We first asked through which of the HMR-E 

silencer elements nat1∆ functioned. For these experiments, we exploited the fact that 

derepression at natural HMR requires the loss of at least two of the three silencer elements 

ORC, RAP1 and ABF1. This can be achieved either by deleting the binding site in cis, or by 

mutating the respective protein in trans. We reasoned that measuring the effect of nat1∆ on 

individual cis deletions would indicate which trans factor it affected. Interestingly, silencing 

was completely abrogated in nat1∆ strains with HMR-E lacking the Rap1 binding site, thereby 

suggesting ORC or Abf1, but not Rap1, as NatA targets (Fig. 3.2A). In contrast, nat1∆ did not 

cause significant derepression when the ORC or Abf1 binding sites were deleted, showing 

that NatA functioned via these elements (Fig. 3.2A). Since the Abf1 binding site plays a minor 

role in silencing and the penultimate amino acid of Abf1 is an aspartate, which makes it 

unlikely to be a NatA substrate, we focused on ORC and asked whether it was a target of 

NatA. 

We therefore sought to dissect through which of the six ORC subunits NatA functioned in 

silencing. For these experiments, we took advantage of the fact that silencing at HMR can be 

achieved by replacing the ORC binding site of the synthetic HMR-E silencer by unrelated Gal4 

binding sites and expressing fusions of the ORC subunits or of Sir1 to the Gal4-DNA binding 
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domain (Fox et al. 1997). This so-called tethered silencing approach circumvents the 

functional complexity of silencing and allowed us to dissect the contributions of the individual 

ORC subunits to NAT1-dependent silencing. Tethering of Gal4-Sir1 bypasses the requirement 

for ORC in silencing (Fox et al. 1997), which supports the notion that ORC recruits Sir1 to the 

silencer. Importantly, Gal4-Sir1 mediated silencing was independent of NAT1 (Fig. 3.2B), 

indicating that NatA functioned upstream of Sir1, and hence through ORC, in silencing. 

 

 
 
Fig. 3.2: The silencing function of NatA was genetically linked to ORC1. 
(A) The deletion of the binding site for Rap1, but not for ORC or Abf1, from HMR-E disrupted 
HMR silencing in nat1∆ mutants. HMR silencing was tested by the α-mating ability of wild-type 
and nat1∆ strains with HMR-E lacking the binding site for ORC (AEY84, AEY2146), Rap1 (AEY81, 
AEY2144) and Abf1 (AEY71, AEY2148). Results from quantitative mating assays are given 
relative to a value of 1.0 for AEY2. (B) Tethered silencing by Orc1, but not the other ORC 
subunits was independent of NAT1 and required SIR1. In MATα strains AEY1275 (WT), AEY1276 
(nat1∆) and AEY 2947 (nat1∆ sir1∆), the ORC binding site of the synthetic HMR-E silencer was 
replaced by five Gal4-binding sites (HMR SS ∆I, 5xGal4-RAP-ABF). The strains carried plasmids 
encoding the Gal4 DNA binding domain fused N-terminally to Orc1 (5-267aa) (pAE408), Orc2 
(pAE108), Orc3 (pAE595), Orc4 (pAE597), Orc5 (pAE109), Orc6 (pAE516) and Sir1 (pAE100) and 
were tested for HMR silencing in patch-mating assays. 
 

We next tested whether the tethering of individual ORC subunits required NAT1 to establish 

silencing. The rationale of these experiments was that if N-terminal acetylation were required 

for an ORC subunit, direct tethering of this subunit to the silencer by an N-terminal fusion to 

Gal4 would relieve its requirement for NatA. Significantly, we found that tethered silencing of 
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all subunits except the Orc1 N-terminus (amino acids 5 to 267) was disrupted in nat1∆ strains 

(Fig. 3.2B), whereas tethered Orc1 was able to provide silencing in the absence of NAT1. 

Interestingly, this silencing still depended upon Sir1, since the NatA independent Gal4-Orc1 

mediated silencing was abrogated in a sir1∆ strain (Fig. 3.2B). These observations indicated 

that Orc1 needed the N-terminal acetylation in order to fulfill its function in silencing and that 

the acetylation did not affect Orc1’s ability to interact with Sir1. Consistent with this, Orc1 

carries an alanine at the penultimate position, making it a likely candidate for Nα-acetylation by 

NatA.  

 

3.2.2 Orc1 was N-terminally acetylated by NatA 

Since the above genetic experiments strongly suggested Orc1 as a silencing-relevant 

substrate of NatA, we directly tested whether Orc1 was N-terminally acetylated in a NatA 

dependent fashion. For this purpose, a fusion of the first 250 amino acids of Orc1 to the 

Tandem Affinity Purification (TAP) tag (Orc1-TAP) was introduced into wild-type and nat1∆ 

strains. The TAP tag allows the fast and simple purification of large amounts of the tagged 

protein by three successive steps: affinity chromatography on IgG agarose is followed by 

tobacco etch virus (TEV) protease cleavage and purification with calmodulin-coated beads 

(applied below) (Rigaut et al. 1999). 

Since Nα-acetylation shifts the isoelectric point (pI) of a given protein towards a more acidic 

pH (Kimura et al. 2000), we used isoelectric focussing gels to determine whether nat1∆ 

altered the pI of Orc1-TAP. Significantly, Orc1-TAP migrated at a more basic pI when isolated 

from a nat1∆ strain as compared to a wild-type strain (Fig. 3.3A), suggesting that Orc1 was 

acetylated by NatA.  

It has previously been proposed that NATs can also provide ε-N-acetylation (Polevoda and 

Sherman 2003a). Therefore, to test whether the IEF band shift corresponded to Nα-acetylation 

of Orc1, we used mass spectrometry to measure differences in acetylation in N-terminal 

peptides derived from Orc1-TAP that was isolated from wild-type or nat1∆ strains. Acetylation 

extends the mass of NAT substrates by 42 Dalton (Da), which is the size of the bound acetyl 

group (Polevoda and Sherman 2001). Orc1-TAP samples purified with the TAP protocol from 

wild-type or nat1∆ strains were digested individually with AspN and GluC endopeptidases in 

order to obtain N-terminal peptides of a suitable size. We obtained a set of two different 

protein solutions of the wild-type and the nat1∆ derived samples, which were examined in 
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independent experiments. In the subsequent analysis, the measured mass of the N-terminal 

peptide from the wild-type and the nat1∆ probe was compared to the calculated value on the 

basis of the amino acid sequence (Fig. 3.3B). 

In the AspN as well as the GluC cleaved sample, the measured mass of the wild-type N-

terminal peptide was larger by 42 Da than the calculated value (Fig. 3.3C). However, in both 

cases this size increase was not found in the nat1∆ strain (Fig. 3.3D). Furthermore, neither the 

wild-type nor the nat1∆ strain-derived N-terminal fragments matched the calculated mass of a 

peptide containing the initial methionine (Fig.3.4A). This supported the notion that the initiator 

methionine was removed from proteins with alanine at the penultimate position. 

The mass 560.47 of the AspN-cleaved nat1∆ probe was assigned to the N-terminal peptide 

AKTLK. To further verify this assignment, the peptide was sequenced by Post-Source Decay 

MALDI analysis (Chaurand et al. 1999) (Fig. 3.4B). Here, the peptide was degraded into 

fragments containing different numbers of amino acid residues and the fragment spectrum 

was recorded. The joined fragment data resulted in the sequence of the complete peptide 

AKTLK and thus confirmed it to be the unmodified form of the N-terminal peptide of Orc1. 

In summary, the mass spectrometric data demonstrated that Orc1 was N-terminally acetylated 

in the presence of Nat1 and not acetylated in its absence, strongly suggesting that is was a 

direct target of NatA. 

Mass spectrometry was performed by Christoph Weise (FU Berlin). 

 

3.2.3 Unacetylated orc1 mutants displayed telomeric derepression 

We next asked whether the observed N-terminal acetylation of Orc1 was of significance for its 

silencing function. To this aim, we generated orc1 alleles in which the penultimate amino acid 

was changed from alanine to valine or proline, and tested their effect on silencing. Proline as 

well as valine promote the cleavage of the initiator methionine, but prevent N-terminal 

acetylation (Huang et al. 1987). In order to test whether the respective mutants were 

acetylated or not, we tested the isoelectric properties of the TAP variants Orc1-A2P and 

Orc1-A2V that were constructed analogous to wild-type Orc1-TAP. Significantly, the 

isolelectric point of Orc1-A2P-TAP and Orc1-A2V-TAP was at a more basic pH than wild-type 

Orc1, although the calculated pI was roughly the same for all Orc1 versions (Fig. 3.3A). The 

shift was comparable to that of wild-type Orc1-TAP in the nat1∆ background, showing that the 

mutations to valine or proline had abrogated the ability of Orc1 to be acetylated by NatA.  
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We then asked whether these mutations had an impact on telomeric silencing, since the 

deletion of NAT1 strongly affects silencing of subtelomeric genes (Fig. 3.1C). 

 

 
 
Fig. 3.3: Orc1 was N-terminally acetylated by NatA. 
(A) The isoelectric point (pI) of the Orc1 N-terminus shifted to a more basic pH either by the 
deletion of NAT1 or by the mutation of the penultimate residue alanine to valine or proline. 
Whole cell protein extracts of strains AEY2719 (WT), AEY2758 (nat1∆), AEY3107 (orc1-A2P) and 
AEY3110 (orc1-A2V) were applied to IEF and SDS gels. TAP-tagged Orc1 (amino acids 1-250) 
was detected in subsequent immunoblots using the PAP antibody. The faster migrating band in 
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the SDS gel was identified as Orc1 by MALDI-TOF analysis and probably is a proteolytic 
fragment. (B) Theoretical molecular mass of N-terminal peptides of Orc1 generated by 
proteolysis with AspN or GluC endopeptidase. The molecular mass as calculated using 
(http://us.expasy.org/tools/peptide-mass.html) increases by 42 Da due to Nα-acetylation. (C) 
MALDI time-of-flight mass spectra of Orc1-TAP derived from a wild-type, but not from a nat1∆ 
strain, identified the mass of an acetylated N-terminal peptide of Orc1. Orc1-TAP was purified 
for MALDI-TOF analysis from AEY2719 (WT) and AEY2758 (nat1∆). Data obtained from the AspN 
and GluC cleaved samples were consistent for each strain with minimal differences to the 
theoretical value due to the precision of measurements. (D) The MALDI-TOF spectrum of Orc1-
TAP from the nat1∆ strain, but not from wild-type strain, contained the mass of an unacetylated 
N-terminal Orc1 peptide. Analysis was performed as in Fig. 3.3C.  
 

 
Fig. 3.4: The N-terminal peptide of Orc1, whose identity was verified by fragmentation, lacked 
the initial methionine. 
(A) A mass corresponding to the Orc1 N-terminal peptide including the initial methionine was 
detected neither in the wild-type nor in the nat1∆ derived probe. MALDI-TOF spectra of AspN 
cleaved Orc1-TAP were obtained as in Fig. 3.3C. The result was confirmed by the data of the 
GluC cleaved samples (not shown). (B) The sequence of the nat1∆-derived 560.47 Da peptide 
corresponded to the N-terminus of Orc1. The peptide was sequenced by fragmentation in post-
source decay MALDI analysis. The detected N-terminal sequence ions AK (b2=200), AKT 
(b3=301), AKTL (b4=414), and C-terminal sequence ions K (y1=147), LK (y2=260), TLK (y3=361) 
and KTLK (y4=489) added up to the amino acid sequence AKTLK of the Orc1 N-terminus.  
 

http://us.expasy.org/tools/peptide-mass.html
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For this purpose, we monitored the repression of an URA3 reporter gene inserted in the 

subtelomeric region of chromosome VII-L (Gottschling et al. 1990). Comparable to nat1∆, 

orc1-A2P and orc1-A2V caused a strong derepression of the subtelomeric URA3 reporter as 

indicated by diminished growth on URA3-counterselective 5-FOA medium (Fig. 3.5A). This 

showed that the loss of N-terminal acetylation of Orc1 compromised its function in telomeric 

silencing 

 

 
 
Fig. 3.5: Nα-acetylation of Orc1 was essential for telomeric silencing. 
(A) A URA3 gene inserted near the left telomere of chromosome VII was derepressed in 
unacetylated orc1-A2P and orc1-A2V mutants. In these mutants as well as in the nat1∆ mutant, 
the telomeric effect was not suppressed by the overexpression of SSB1. URA3 expression was 
tested in serial dilution assays of strains AEY1017 (ORC1), AEY3038 (orc1-A2V), AEY3105 
(orc1-A2P), and AEY2371 (nat1∆) on 5-FOA containing medium. For SSB1 overexpression, 
strains were transformed with pAE964. (B) The loss of Nα-acetylation of Orc1 did not impair 
silencing of HML and HMR SS ∆I. Patch-mating assays were performed to test HML silencing 
using MATa strains AEY2867 (ORC1), AEY3102 (orc1-A2P), AEY2913 (orc1-A2V), and AEY2912 
(nat1∆), and to test HMR SS ∆I silencing using MATα strains AEY2866 (ORC1), AEY3103 (orc1-
A2P), AEY2903 (orc1-A2V), and AEY2916 (nat1∆). (C) nat1∆, but not unacetylated orc1, caused 
the slight derepression of ADE2 inserted at the HMR locus. Serial dilutions of strains AEY743 
(WT), AEY3101 (orc1-A2P), AEY2721 (orc1-A2V) and AEY3109 (nat1∆) were grown on medium 
lacking adenine. 
 

We next tested whether this defect was suppressed by SSB1 overexpression. In the nat1∆ 

mutant, defective HML silencing and temperature sensitivity were suppressed by 

overexpression of the gene encoding the ribosome-bound chaperone Ssb1 (Gautschi et al. 

2003). This Hsp70 homolog (and the 99% identical Ssb2), like NatA, is located close to the 

tunnel exit of the large ribosomal subunit and cross-links to a variety of nascent polypeptides 
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(Pfund et al. 1998). Since Ssb1 is assumed to prevent misfolding of newly synthesized 

proteins, its ability to suppress nat1∆ defects suggested that the nat1∆ phenotype derives 

from disturbed protein folding rather than decreased protein stability. As shown in Fig. 3.5A, 

telomeric silencing was not increased upon SSB1 overexpression in the unacetylated orc1 

mutants or in the nat1∆ strain. 

Though we do not understand why SSB1 overexpression does not suppress the telomeric 

silencing defect of nat1∆, it prompts the presumption that this silencing defect may not be the 

result of impaired protein folding of Orc1. 

 

3.2.4 HM silencing was not affected by the lack of N-terminal acetylation of Orc1 

We next tested whether HM silencing was also impaired by the lack of N-terminal acetylation 

of Orc1. However, in contrast to the strong defect caused by nat1∆, no effect was detectable 

in the orc1-A2P and orc1-A2V mutants at HML and the synthetic HMR SS ∆I (Fig. 3.5B). In 

addition, the mutants showed no derepression of the sensitive ADE2 reporter inserted at 

HMR, whereas nat1∆ caused a slight effect in this context (Fig. 3.5C). One possible 

explanation for this result is that HM silencing is more robust than telomeric silencing and thus 

is less sensitive to the orc1 mutations. Furthermore, this suggested that more NatA silencing 

targets exist in HM silencing.  

 

3.2.5 Nα-acetylation was not required for the protein stability of Orc1  

Among the known NAT substrates, some require the Nα-acetylation for protein stability. For 

example, there is evidence that the half-life of non-acetylated α-MSH in rabbit plasma is one-

third of that of the acetylated form (Rudman et al. 1983). 

In order to test whether Nα-acetylation was required for the protein stability of Orc1, we 

compared the abundance of HA-tagged Orc1 in wild-type and nat1∆ strains by Western Blot 

analysis. Since similar amounts of Orc1 were present in whole cell protein extracts of both 

strains (Fig. 3.6), we concluded that it was not destabilized by the loss of Nα-acetylation. This 

result was consistent with the observation of (Mayer et al. 1989) that Nα-acetylation has no 

general protection function, since it does not prevent proteins from degradation by the 

ubiquitin system. 
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Fig. 3.6: Orc1 was present in equal amounts in a wild-type and a nat1∆ strain. 
Whole cell protein extracts of strains AEY3068 (NAT1) and AEY3070 (nat1∆) expressing HA-
tagged ORC1 were loaded on a SDS gel as samples of 22 µg (lanes 1 and 4), 11µg (lanes 2 and 
5), and 5.5µg (lanes 3 and 6) protein. HA-tagged Orc1 was detected in a subsequent Western 
blot using an α-HA antibody. 
 

3.2.6 NatA activity, but not Nα-acetylation of Orc1, was required for replication 

Since the ORC complex functions as the eukaryotic replication initiator, we further asked 

whether Nα-acetylation of Orc1 was relevant for its replication function. We therefore tested 

orc1-A2P and orc1-A2V strains for temperature sensitivity, a phenotype that is associated with 

replication defects in orc2-1 and orc5-1 mutants (Loo et al. 1995a). Both unacetylated orc1 

mutants grew as well as wild-type strains and were not temperature sensitive, suggesting that 

replication was not affected (Fig. 3.7A). Therefore, the temperature sensitivity of the nat1∆ 

strain appeared to be based on other defects than the missing Nα-acetylation of Orc1. 

In order to further evaluate functional links between NatA and the ORC complex, we next 

investigated genetic interactions between nat1∆ and orc2-1. Interestingly, we found that 

nat1∆ orc2-1 double mutants were unable to survive. In crosses between nat1∆ and orc2-1 

strains, double mutant segregants did not grow up except for a few cases, where pinprick 

colonies appeared after prolonged incubation, but which were unable to form colonies when 

restreaked (Fig. 3.7B). In addition, the viability of orc2-1 nat1∆ double mutants was dependent 

on the presence of an Orc2 encoding plasmid (Fig. 3.7C). Since orc2-1 affects replication, our 

results suggested that nat1∆ compromised replication even further such that the double 

mutants were unable to replicate. In summary, we found that the replication function of the 

ORC complex, but not of its subunit Orc1, was genetically linked to NatA activity. 
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Fig. 3.7: nat1∆ affected the replication function of the ORC complex independently of Orc1. 
(A) Unacetylated orc1 mutants were not temperature-sensitive and thereby differed from nat1∆. 
Serial dilutions of strains AEY2866 (ORC1), AEY 3103 (orc1-A2P), AEY2903 (orc1-A2V) and 
AEY2916 (nat1∆) were grown for two days on complete medium at the indicated temperatures. 
(B) orc2-1 nat1∆ double mutants were not viable. orc2-1 and orc2-1 nat1∆ segregants from an 
orc2-1 nat1∆ double heterozygous cross (AEY24 crossed with AEY1227) were grown for five 
days on complete medium at 23°C. (C) Viability of the orc2-1 nat1∆ double mutant was rescued 
by plasmid-borne ORC2. AEY3161 (orc2-1 nat1∆ pURA3-ORC2) transformed either with pJR1818  
(pHIS3-ORC2) (Fox et al. 1997) or with pRS313 (vector) was tested for ORC2 dependence by 
counterselection for pURA3-ORC2 on 5-FOA medium. 
Figures B and C are courtesy of Ann Ehrenhofer-Murray. 
 

3.2.7 Synthetic lethality between nat1∆ and SUM1-1 was suppressed by orc1∆1-235 

We next sought to determine the role of NatA in SIR independent, SUM1-1 dependent 

silencing. However, in a set of genetic crosses in which nat1∆ and SUM1-1 segregated, we 

observed synthetic lethality between nat1∆ and SUM1-1 (Fig. 3.8). The segregation of the 

unmarked SUM1-1 mutation was determined by following sum1∆::URA3 in the segregants 

from sum1∆::URA3/ SUM1-1 heterozygous diploids. Interestingly, nat1∆ was not synthetically 

lethal with sum1∆ (data not shown), suggesting that the lethality was due to novel properties 

of the mutant Sum1-1 protein. 

Since Sum1-1 has been shown to interact with the N-terminus of Orc1 and because NatA 

acetylates this very N-terminus, we hypothesized that the lethality may be connected to the 

lack of Orc1 acetylation. The ability of Sum1-1 to function in silencing is abrogated by the 

deletion of amino acids 1 to 235 of Orc1 (Rusche and Rine 2001). Hence, we tested whether 

this deletion also abrogated the synthetic lethality of SUM1-1 with nat1∆. 
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Fig. 3.8: SUM1-1 nat1∆ double mutants were inviable. 
SUM1-1 nat1∆ segregants of tetrads dissected from a cross between SUM1-1 (AEY1224) and 
nat1∆ (AEY3008) are marked by arrows. Figure is courtesy of A. Ehrenhofer-Murray. 
 

Significantly, strains with orc1∆1-235 as the sole source of Orc1 that were both nat1∆ and 

SUM1-1 were readily recovered from a cross and showed normal growth characteristics (data 

not shown; see Materials and Methods for experimental details). Thus, the synthetic lethality 

of nat1∆ with SUM1-1 was abrogated by deletion of the N-terminus of Orc1.  

Data from 3.2.6 and 3.2.7 are courtesy of Ann Ehrenhofer-Murray. 

 

3.3 N-terminal deletions of Orc1 caused silencing defects distinct from those of nat1∆  

3.3.1 HMR silencing was disrupted in N-terminally truncated orc1 mutants 

In previous studies, the silencing function of Orc1 has been shown to depend on the 

N-terminal region of 235 amino acids, which is capable of binding to Sir1 (Bell et al. 1995). 

Zhang and colleagues (2002) specified the Sir1 interacting domain of Orc1 to lie within amino 

acids 100 and 129. Since mutations of the penultimate amino acid of Orc1 affected telomeric 

silencing in our studies, we wished to determine the functional relevance of the N-terminal 100 

amino acids of Orc1. To this end, we constructed a series of orc1 mutants with N-terminal 

deletions of increasing size. Strains with orc1∆1-10, orc1∆1-28, orc1∆1-51 and orc1∆1-100 as 

the sole source of Orc1 were obtained by inserting the respective mutant allele into the LEU2 

locus of a strain whose endogenous ORC1 gene was disrupted. 

Silencing in these mutants was first tested at different sensitized HMR versions. ADE2 

inserted at HMR was silenced in orc1∆1-10 and orc1∆1-28 mutants, but was expressed upon 

the deletion of 51 or 100 residues from the Orc1 N-terminus (Fig. 3.9A). The phenotypic 

difference between orc1∆1-28 and orc1∆1-51 caused us to examine whether the region 

between 28 and 52 amino acids was of special significance for the silencing function of Orc1. 
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Indeed, as shown in Fig. 3.9A, the deletion of this region resulted in complete derepression of 

HMR::ADE2.  

Silencing was next tested at HMR carrying either a synthetic silencer (HMR SS ∆I) or a 

silencer variant further sensitized by the deletion of the Abf1 binding site (HMR SS abf1- ∆I). 

Both silencers were affected by the deletion of 28 amino acids or more of the Orc1 N-terminus 

(Fig. 3.9B). In addition, deleting the region of amino acids 29 to 51 also interrupted silencing at 

HMR SS abf1- ∆I. 

In contrast to the HMR variants, HML silencing was not affected by any of the N-terminal Orc1 

deletions (Fig. 3.9B). We expect that the more robust wild-type HMR silencers are likewise not 

affected. This would be in agreement with the observation of Bell et al. (1995) that deleting the 

N-terminal 235 amino acids of Orc1 does not affect the mating ability (and thus the natural HM 

silencers) of an otherwise wild-type strain. 

 

 
 
Fig. 3.9: N-terminal truncations of Orc1 impaired HMR silencing. 
(A) ADE2 inserted at the HMR locus was derepressed when the N-terminus of Orc1 was 
shortened by 51 or 100 amino acids and when the region between 29 and 51 amino acids was 
deleted. Serial dilutions of strains AEY743 (WT), AEY2587 (∆1-10), AEY2589 (∆1-28), AEY2333 
(∆1-51), AEY2335 (∆1-100) and AEY2760 (∆29-51) were grown on medium lacking adenine to test 
ADE2 expression. (B) In contrast to HML silencers, synthetic HMR silencer variants were 
affected by the deletion of the N-terminal 28, 51 or 100 amino acids of Orc1, and the region 
between amino acids 29 and 51. Patch-mating assays were performed to test silencing at 
HMR SS ∆I and HMR SS abf1-∆I using MATα strains AEY2866 and 2864 (WT), AEY2877 and 2883 
(∆1-10), AEY2907 and 2908 (∆1-28), AEY2879 and 2904 (∆1-51), AEY2880 and 2905 (∆1-100) and 
AEY2910 (∆29-51). HML silencing was tested in patch-mating assays of MATa strains AEY2867 
(WT), AEY2887 (∆1-10), AEY2937 (∆1-28), AEY2888 (∆1-51), AEY2889 (∆1-100) and AEY2911 
(∆29-51).  
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3.3.2 Alpha-factor sensitivity was reduced in N-terminally truncated orc1 mutants 

Response to α-mating pheromone (α-factor) is required for the mating ability of haploid MATa 

cells and is normally characterized by arrest in late G1 and the formation of mating projections 

(so-called shmoos). Derepression of HML, however, generates an a/α-diploid phenotype and 

therefore α-factor resistance of haploid MATa cells, as indicated by continued divisions in the 

presence of α-factor. Thus, α-factor sensitivity of MATa cells can serve as a measure of the 

silencing status of HML (Pillus and Rine 1989). 

α-factor response tests are a more sensitive way than the usual patch-mating assays to 

investigate HML silencing, and we therefore employed this method here to measure HML 

silencing in the N-terminally truncated orc1 mutants. To this end, we examined the 

morphology of at least 300 individual cells of each orc1 strain after 18 hours of growth on 

α-factor containing medium. As for wild-type cells, almost all cells carrying Orc1 lacking 10 or 

28 amino acids of the N-terminus formed shmoos, indicating repression of HML (Fig. 3.10).  
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Fig. 3.10: α-factor response was abrogated by nat1∆ and diminished in orc1 mutants lacking 51 
or 100 amino acids of the N-terminus or the region of amino acids 29 to 51. 
100 cells per strain were analyzed individually after 18 hours of exposure to α-factor. The ability 
to respond to α-factor was measured by the formation of one mating projection per cell 
(shmoo), whereas α-factor resistance was indicated by budding and subsequent colony 
formation. Structures emerging from alternated shmooing and budding are referred to as shmoo 
clusters. Results of at least three individual experiments per strain are given with respective 
standard deviations. MATa strains used were depicted in figures 3.5(B) and 3.9(B). 
 

Interestingly, shmoos were also generated by all of the unacetylated orc1-A2P and orc1-A2V 

cells, suggesting tight HML repression in these mutants. However, α-factor sensitivity was 

reduced by the deletion of the N-terminal 51 or 100 amino acids or the region between amino 

acids 29 and 51 of Orc1. In these strains, the shmooing fraction was smaller, whereas a 
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significant number of cells continued dividing and eventually formed colonies. Interestingly, 

another portion of these mutants formed shmoo-clusters. Here, shmoo formation alternated 

with cell divisions, indicating unstable repression of HML (Enomoto and Berman 1998). 

In summary, the α-factor response tests revealed that HML silencing was affected by 

increasing truncations of the N-terminus of Orc1. As expected, the deletion of NAT1 resulted 

in complete α-factor resistance, due to strong HML derepression, which was in contrast to the 

strong α-factor-response of orc1-A2P and orc1-A2V mutants indicative of full HML repression. 

 

3.3.3 N-terminal truncations of Orc1 enhanced the α-factor resistance of sir1∆ 

sir1∆ strains have a characteristic α-factor response phenotype, namely a mixed population of 

genetically identical cells, with one portion completely repressed and the other completely 

derepressed at HML. Thus, SIR1 was proposed to function in establishment rather than 

maintenance of transcriptional repression (Pillus and Rine 1989). The finding that the ORC 

binding site of HM silencers is likewise involved in the establishment of silencing (Sussel et al. 

1993) is in accordance with the model that Sir1 is recruited to the silencer by Orc1. 
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Fig. 3.11: Deletion of 51 amino acids from the Orc1 N-terminus enhanced the α-factor 
response defect of sir1∆ mutants. 
The ability to respond to α-factor was tested as described in Fig. 3.10 using MATa strains 
AEY2867 (WT), AEY2888 (∆1-51), AEY3000 (sir1∆), AEY3002 (orc1 ∆1-51 sir1∆ #1) and AEY3003 
(orc1 ∆1-51 sir1∆ #2). 
 

We sought to determine whether the truncation of the very N-terminus of Orc1 would enhance 

the α-factor response defect in sir1∆ cells. To this aim, we combined the deletion of SIR1 with 
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the orc1∆1-51 mutation, which had affected each of the above-tested silencers. Significantly, 

in two individual double mutants, we found an increased portion of colony-forming cells (Fig. 

3.11), indicating further derepression of HML. Thus, the silencing defect of sir1∆ was 

enhanced by the deletion of the N-terminal 50 amino acids of Orc1. This effect is surprising in 

light of the current view that Orc1’s sole function in silencing is to recruit Sir1. It rather 

suggests that Orc1 has a broader task. 

 

3.3.4 Telomeric silencing was affected by N-terminal truncations of Orc1 

We next asked whether truncations within the N-terminal 100 amino acids of Orc1 had an 

impact on telomeric silencing. To this aim, we investigated the expression of a subtelomeric 

URA3 reporter gene in the different orc1 N-terminal mutants. The deletion of 28, 51 or 100 

amino acids from the N-terminus, as well as the removal of amino acids 29 to 51, increased 

the expression of URA3, as indicated by diminished growth of these mutants on 

counterselective 5-FOA medium (Fig. 3.12). This was the first evidence for a function of the 

Orc1 N-terminus in telomeric silencing. 

 

 
 
Fig. 3.12: N-terminal truncations of 28, 51 and 100 amino acids, as well as removing the region 
of amino acids 29 to 51 of Orc1, reduced telomeric silencing. 
Silencing of URA3 inserted near the left telomere of chromosome VII was tested in serial dilution 
assays of strains AEY1017 (WT), AEY3031 (∆1-10), AEY3040 (∆1-28), AEY3032 (∆1-51), AEY3034 
(∆1-100) and AEY3036 (∆29-51) on 5-FOA containing medium counterselecting for URA3 
expressing cells. 
 

Interestingly, this phenotype was weaker than that of the N-terminally unacetylated orc1 

mutants. This is surprising given that both mutations should abolish the Nα-acetylation of 

Orc1. In contrast, this result suggests that the N-terminal deletions suppress the defect 

caused by missing Nα-acetylation, implicating that the two types of mutations have different 

consequences for telomeric silencing. 
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3.3.5 Replication was not disturbed by N-terminal truncations of Orc1 

As shown above, the lack of Nα-acetylation of Orc1 appeared to have no impact on its 

replication function, since unacetylated mutants grew as well as wild-type strains (Fig. 3.7A). 

To determine whether this was also the case for the N-terminal deletion mutants of Orc1, we 

tested their growth at different temperatures.  

 

 
 
Fig.3.13: N-terminal deletions of up to 100 amino acids of Orc1 did not affect the temperature 
sensitivity of the respective mutants. 
Strains AEY743 (WT), AEY2587 (∆1-10), AEY2589 (∆1-28), AEY2333 (∆1-51), AEY2335 (∆1-100) 
and AEY2760 (∆29-51) were grown for two days on complete medium at the indicated 
temperatures.  
 

Significantly, none of the mutants displayed a growth defect or temperature sensitivity (Fig. 

3.13), suggesting that the first 100 amino acids of Orc1 were dispensable for its function in 

replication. This result agreed with the notion of Bell et al. (1995) that the N-terminal 235 

amino acids of Orc1 have no function in replication, since their deletion causes only a slight 

reduction of plasmid stability. 

 

3.3.6 The N-terminal 51 amino acids of Orc1 were required for its two-hybrid 
interaction with Sir1 

The N-terminus of Orc1 (amino acids 5-235) interacts with the C-terminus of Sir1 (amino acids 

346-678) in a two-hybrid assay (Triolo and Sternglanz 1996; Gardner et al. 1999). This 

interaction was interrupted when the region of amino acids 100-129 of Orc1 was substituted 

with the corresponding region of human Orc1, but remained intact when amino acids 21 to 35 

were replaced by four alanines (Zhang et al. 2002). The latter observation implicated that the 

part before amino acids 100-129 was dispensable for Orc1 to interact with Sir1.  
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Fig. 3.14: Deletion of the N-terminal 51 amino acids abrogated the ability of Orc1 to interact 
with Sir1 in a two-hybrid assay. 
(A) The reporter genes ADE2 and HIS3 were induced in two-hybrid strain AH109 by 
simultaneous expression of Gal4BD-Sir1(346-678) and Gal4AD-Orc1(1-235), but not 
Gal4AD-Orc1(52-235). The bait-vector pAE952 was co-transformed with a prey-vector containing 
either no insert (pAE953), full-length Orc1 (pAE951) or Orc1(52-235) (pAE966). Two-hybrid 
interaction was tested by monitoring the expression of HIS3 and ADE2 in serial dilution assays 
on media lacking histidine or adenine, respectively. (B) The prey protein of Orc1(52-235) was as 
abundant as that of Orc1(1-235) in the two-hybrid strains AEY3028 (Orc1(1-235)) and AEY3099 
(Orc1(52-235)). A SDS gel of whole cell extracts was analyzed by Western blotting with 
antibodies against the HA epitope that was part of the prey vector. 
 

We therefore tested whether the deletion of the N-terminal 50 amino acids of Orc1, which 

affected silencing in our experiments, would disrupt the two-hybrid interaction with Sir1. 

Using Sir1(346-678) as bait and Orc1(1-235) as prey, the two-hybrid reporter genes HIS3 and 

ADE2 were only expressed when Orc1 contained its N-terminal 50 amino acids (Fig. 3.14A). 

To eliminate the possibility that the missing interaction was due to a lower availability of 

mutant Orc1, we measured its abundance in a Western blot. Here, equal levels of Orc1(1-235) 

and Orc1(52-235) prey protein were detected in the respective two-hybrid strains (Fig. 3.14B). 

Although the loss of physical interaction between Sir1 and Orc1(52-235) has to be confirmed 

in vivo, for example by Co-Immunoprecipitation, the disrupted two-hybrid interaction was a 

first indication that the N-terminal 51 amino acid region of Orc1 is required for its binding to 

Sir1. 

 

3.4 Sir3 was a substrate of NatA 

3.4.1 Sir3 was Nα-acetylated by NatA 

In a previous study, (Stone et al. 2000) observed decreased telomeric silencing and an 

enhanced sir1∆ mating defect when the penultimate alanine of Sir3 was exchanged for a 

threonine. This sir3-A2T mutation was epistatic to nat1∆, and suggested that Nα-acetylation 

was required for the silencing function of Sir3. We therefore tested Sir3 directly for 
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Nα-acetylation by isoelectric focusing, in analogy to our experiments with Orc1. The isoelectric 

point of a TAP-tagged N-terminal peptide of Sir3 (amino acids 1 to 235) was more acidic in a 

wild-type strain than in a nat1∆ strain (Fig. 3.15A), suggesting that Sir3 was Nα-acetylated by 

NatA. 

 

 
Fig. 3.15: Sir3 was acetylated by NatA. 
(A) The isoelectric point of the Sir3 N-terminus became more basic upon the deletion of NAT1. 
Whole cell extracts of strains AEY3171 (WT) and AEY3173 (nat1∆) expressing TAP-tagged Sir3 
peptides (amino acids 1-235) were analyzed as described in Fig. 3.3A. (B) The silencing defect at 
the synthetic HMR silencer caused by the mutated penultimate amino acid of Sir3 was not 
enhanced by missing Nα-acetylation of Orc1. HML silencing was assayed in patch mating 
assays of MATa strains AEY3144 (sir3-A2T), AEY3147 (orc1-A2P sir3-A2T), AEY3148 
(orc1-A2V sir3-A2T) and AEY2912 (nat1∆). Likewise, synthetic HMR silencing was tested in 
MATα strains AEY3145 (sir3-A2T), AEY3149 (orc1-A2P sir3-A2T), AEY3151 (orc1-A2V sir3-A2T), 
and AEY2916 (nat1∆). 
 

Since the unacetylated forms of both Orc1 and Sir3 singly had a less pronounced silencing 

defect than nat1∆, we asked whether their combination would enhance the effect on silencing. 

However, orc1-A2P sir3-A2T and orc1-A2V sir3-A2T double mutants showed the same 

amount of HM derepression as sir3-A2T alone, suggesting that NatA had other targets whose 

function was required for HM silencing (Fig. 3.15B). 

3.4.2 NatA activity was required to localize Sir3 to perinuclear foci  

NatA is required for silencing of subtelomeric reporter genes (Fig. 3.1C) (Aparicio et al. 1991), 

and the lack of Nα-acetylation of Orc1 and Sir3 resulted in derepression of subtelomeric URA3 

(Fig. 3.5) (Stone et al. 2000). While the insertion of reporter genes generates truncated 

versions of these telomeres (Gottschling et al. 1990), Sir3 is also required for silencing in a 

native telomeric context (Vega-Palas et al. 1997; Venditti et al. 1999). Normally, Sir3 

colocalizes with Rap1 and Sir4 in perinuclear foci (Grunstein 1998) whose structural integrity 

was proposed to be a prerequisite for telomeric silencing (Cockell et al. 1995).  
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In order to determine whether NatA played a role in chromatin organization of native 

telomeres, we investigated the localization of GFP-tagged Sir3 in wild-type and nat1∆ strains. 

Interestingly, whereas GFP signals in wild-type cells showed the expected perinuclear foci, 

Sir3 became distributed throughout the nucleus in the absence of NAT1 (Fig. 3.16). 

 

 
 
Fig. 3.16: The association of GFP-tagged Sir3 with telomeric foci was abrogated in nat1∆ cells. 
Strains AEY160 (WT) and AEY2786 (nat1∆) transformed with pAE580 were examined by 
fluorescent microscopy using a FITC filter. Bar, 2 µm. 
 

This suggested that the structure of native chromosomal ends depended on NatA activity. 

Since GFP was fused to the C-terminus of Sir3, it was probably still Nα-acetylated in the wild-

type and unacetylated in the nat1∆ strain. Thus, it is conceivable, that the missing 

Nα-acetylation caused Sir3 to detach from the perinuclear foci, rather then it was an indirect 

effect. However, this question was not answered in our experiment and requires further 

investigation. 

 

3.5 A genetic screen for multicopy suppressors of the nat1∆ silencing defect 

3.5.1  Screening for restored silencing of HMR SS ∆I in a nat1∆ strain 

The silencing phenotype of unacetylated orc1 sir3 double mutants suggested that the function 

of NatA in silencing comprises more than these two substrates. In order to identify more 

silencing components that require Nα-acetylation by NatA, we performed a genetic screen for 

multi-copy suppressors of the nat1∆ silencing defect. This unbiased approach had the 
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advantage that NatA substrates with so far unknown implication in silencing could be 

discovered. 

Our experiment based on the assumption that the malfunction of a silencing component 

provoked by missing Nα-acetylation might be compensated for by its overexpression. It should 

therefore be possible to identify such a NatA substrate by screening for genes that, when 

overexpressed, are capable of restoring HM silencing in a nat1∆ strain. For the screen, we 

used a MATα strain with a synthetic HMR silencer (HMR SS ∆I), which was a complete 

non-mater due to the deletion of NAT1 (Fig. 3.1A). In this background, multicopy suppressors 

of nat1∆ should be easily detectable by restored mating of the respective transformants. As a 

positive control, we expected to isolate NAT1, which should suppress its own deletion 

phenotype. 

We transformed the strain with a 2µ-based genomic library (YEp24) (Carlson and Botstein 

1982) and tested the mating ability of 30.000 transformants by replica-plating the colonies on 

MATa tester plates. The 90 maters identified were verified by repeated patch-mating assays 

and only those with reproducible results were further tested. Also, candidates that were 

assigned to be identical according to the restriction pattern of their plasmid were rejected from 

further tests. Since many of the originally identified maters did not give reproducible results, 

only 15 candidates remained. Their plasmids were isolated and retransformed into the 

HMR SS ∆I nat1∆ strain to confirm their suppression potential. Furthermore, the mating ability 

of the candidate strains was tested after loss of the URA3 marked library plasmids on 5-FOA 

medium. Interestingly, candidate strain number 23 displayed good mating in the absence of 

the plasmid (Tbl. 3.1), suggesting that its mating ability was reestablished by (an) additional 

chromosomal mutation(s) rather than the overexpression a suppressor gene. The 

retransformed plasmids of six out of the 15 candidates could induce mating. The inserts of 

these plasmids were sequenced and subsequently blasted using the Saccharomyces genome 

database (http://www.yeastgenome.org/) to determine the encoded chromosomal region. 

Among them were two different NAT1 containing clones (72 (Tbl. 3.1) and 89 (data not 

shown)), implicating that the tested number of transformants was sufficient to cover all open 

reading frames of the genome with the screen. 

 

http://www.yeastgenome.org/
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3.5.2 Overexpression of SSF2 suppressed the nat1∆ mating defect 

Each of the remaining four candidate clones encoded a gene whose function has been linked 

to mating in earlier studies. On candidate clone 22, RVS161 (reduced viability upon 

starvation), encodes a protein with a direct role in cell fusion during mating (Brizzio et al. 

1998). RGA1 (rho-type GTPase-activating protein) (on candidate clone 80) was shown to act 

as a negative regulator of the pheromone response pathway by controlling the activity of 

Cdc42, a p21 GTPase required for polarity establishment and bud emergence (Stevenson et 

al. 1995). The overexpression of SSF2 (suppresor of Sterile Four) (candidate clone 83) was 

shown to increase the mating efficiency in an earlier study (Yu and Hirsch 1995), and acts 

directly in RNA processing (J. Hirsch; personal communication). NPL3 (nuclear protein 

localization) (candidate clone 84) is also involved in processing and nuclear-cytoplasmatic 

transport of RNA and is required for silencing of the mating-type loci (Loo et al. 1995b). 

However, as Npl3 does not act directly at HMR-E, this effect was proposed to be indirect. 

 

Table 3.1: Positive candidates from a screen for multi-copy suppressors of the nat1∆ mating 
defect in the MATα HMR SS ∆I strain AEY1273.  

 
 

In order to confirm the four genes as multicopy suppressors of nat1∆, they were cloned in 

2µ-based pRS426 vectors and transformed individually into the HMR SS ∆I nat1∆ strain used 

above. Notably, only SSF2 restored mating, suggesting that RVS161, RGA1 and NPL3 were 

not responsible for the suppressing effect of the library plasmid they were derived from. 
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However, further subcloning of these plasmids did not reveal any of the other encoded ORFs 

to be responsible for the suppressing effect. Thus, it appeared that for unknown reasons 

RVS161, RGA1 and NPL3 acted as suppressors of nat1∆ specifically in the context of the 

library vectors. 

All four candidate suppressor genes were potential NatA substrates according to their 

penultimate amino acid, and therefore their dependence on Nα-acetylation might have been 

suppressed by overexpression. However, they appeared to improve mating by processes 

distinct from HMR SS ∆I silencing, and therefore their suppressing effect on the nat1∆ 

phenotype was indirect. 

In summary, our screen identified one gene, SSF2, as a multi-copy suppressor of the nat1∆ 

mating defect. Since the suppression phenotype of SSF2 appeared to be indirect, the screen 

failed to identify a NatA substrate directly involved in HM silencing. 

 

3.5.3 Overexpression of ORC1 did not suppress the mating defect caused by nat1∆ 

We next tested whether overexpression of ORC1, which we had earlier identified as a NatA 

substrate, would suppress the mating defect of the nat1∆ mutant. For this, ORC1 was placed 

in a 2µ-based plasmid under control of the strong constitutive GPD-promoter to ensure 

overexpression. This construct was biologically active, since it restored HMR silencing in the 

orc1∆1-51 mutant (Fig. 3.17A). Moreover, ORC1 was overexpressed efficiently in the MATα 

HMR SS ∆I nat1∆ strain, which was used before in the screen for multicopy suppressors (Fig. 

3.17B). However, the mating defect of this strain was not suppressed by ORC1 

overexpression (Fig. 3.17C). 

Interestingly, overexpression of SIR3, which we had also identified as NatA substrate, also 

failed to suppress the nat1∆ mating defect in an earlier study (Stone et al. 1991). 
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Fig. 3.17: The mating defect of nat1∆ was not rescued by overexpressed ORC1. 
(A) ORC1 expressed under control of the GPD-promoter on a 2µ-based plasmid rescued the 
silencing defect of orc1∆1-51 at HMR::ADE2. Strain AEY2333 (orc1∆1-51) was transformed with 
pAE866 (p2µ GPDp-ORC1) and grown in serial dilutions on medium lacking adenine. Strain 
AEY743 (WT) was tested in parallel for comparison. (B) In strain AEY1273 (-2µ GPDp-ORC1), 
more Orc1 protein was abundant upon transformation with the overexpressing construct 
pAE866 (+ 2µ GPDp-ORC1). Equal amounts of protein from whole cell extracts were applied to a 
SDS gel and subsequently to Western blot analysis using antibodies against Orc1 and β 
tubuline (as loading control). (C) Overexpression of ORC1 did not increase silencing of the 
synthetic HMR silencer in a nat1∆ background. HMR silencing was determined by the mating 
ability of MATα-strain AEY1273 (HMR SS ∆I nat1∆) transformed with pRS316 (vector), pAE303 
(NAT1) or pAE866 (2µ GPDp-ORC1). 
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4 Discussion 

 

Nα-acetylation, a frequent protein modification in eukaryotes, occurs in the yeast S. cerevisiae 

mostly by the Nα-acetyltransferase complex NatA. Previous work had revealed a role for NatA 

in transcriptional silencing of heterochromatin-like regions in the yeast genome, although the 

mechanism by which NatA functions in silencing had remained unclear. 

In this work, we used different approaches to find silencing components that require 

Nα-acetylation by NatA, and both tested silencing proteins directly for Nα-acetylation and 

screened genetically for suppressors of the nat1∆ phenotype. With Orc1 and Sir3, we 

identified two NatA substrates with a direct role in silencing, whose function is partially 

impaired by the loss of Nα-acetylation. However, as inferred from their double mutant 

phenotype, NatA’s role in silencing likely comprises the Nα-acetylation of more components. 

Interestingly, the subunits of NatA are conserved in higher organisms. Since only preliminary 

data exist on their function to date, future research is required to reveal their role in cellular 

processes of complex organisms. For this challenge, the identification of NatA functions in 

yeast provides a useful basis. 

 

4.1 Relevance of Nα -acetylation for Orc1 

In this study, we gained genetic and biochemical evidence that Orc1, the biggest subunit of 

the ORC complex, is a substrate of NatA. Furthermore, we found that Nα-acetylation of Orc1 

was essential for its function in telomeric silencing. 

Why was telomeric but not HM silencing affected by the lack of Nα-acetylation of Orc1? One 

possible reason is that the semistable manner of telomeric repression makes it more sensitive 

than stable HM silencing to orc1 mutations. The semistability has been proposed to originate 

in reduced silencing establishment at telomeres, resulting in the variegated expression of 

subtelomeric genes (Chien et al. 1993). Another possible explanation for the specific telomeric 

effect is a difference in structure of the silencing complexes at HM loci and chromosomal 

ends. Thus, Nα-acetylation might be of different relevance for the role of Orc1 at the different 

silenced loci. 

How does Nα-acetylation affect Orc1’s silencing function? So far, the recruitment of Sir1 to the 

HM silencers has been considered the exclusive task of Orc1 in silencing. However, genetic 
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data indicate that Orc1 has additional silencing functions at the telomeres. Foremost, 

telomeric silencing completely depends upon ORC while being unaffected by the deletion of 

Sir1 (Fox et al. 1997). 

Several lines of evidence suggest that Nα-acetylation of Orc1, although being required for 

telomeric silencing, has no impact on Orc1’s ability to interact with Sir1: Firstly, Orc1-tethered 

silencing in a nat1∆ strain was still dependent on Sir1. Secondly, in a two-hybrid assay, Sir1 

interacted with Orc1(5-235), whose N-terminus was blocked to acetylation in that it was 

N-terminally fused to the Gal4 activation domain. Thirdly, unacetylated orc1 mutants were fully 

sensitive to α-factor and did not resemble the typical establishment-defective α-factor 

response phenotype of sir1∆ mutants. Finally, the observation that Nα-acetylation is not 

required by Orc1 for Sir1 binding is in agreement with the observation that SIR1 

overexpression suppressed the nat1∆ silencing defect at HML (Stone et al. 1991). 

Thus, our data propose a novel function of Orc1 in silencing that is in addition to Sir1 

recruitment. We hypothesize that the Orc1 amino terminus interacts with an as yet unidentified 

silencing protein that functions primarily in telomeric silencing, and that this interaction 

requires Nα-acetylation of Orc1 by NatA. Crystallographic data show that the extreme 

N-terminus of Orc1 is exposed on the surface of the protein in a structure distinct from the Sir1 

interaction domain (Zhang et al. 2002) (Fig. 4.1), thus rendering it a potential interaction 

module for another protein. The novel interaction partner may specifically recognize the N-

terminus of Orc1 in its acetylated form. Precedence for modification dependent protein 

interactions comes from bromodomain and chromodomain proteins that preferentially bind 

specific acetylated or methylated histone residues, respectively (Jenuwein and Allis 2001).  

Further evidence for the hypothesis that Nα-acetylation regulates interactions between Orc1 

and other proteins comes from our observation of a synthetic lethal interaction between nat1∆ 

and SUM1-1, but not sum1∆. Interestingly, the SUM1-1 mutation confers to the Sum1-1 

protein the ability to interact with ORC, but retains the ability to interact with the histone 

deacetylase Hst1. Thus, Sum1-1 binds to the silencers via ORC, recruits Hst1 to the HM 

silencers and establishes Sir2 independent silencing at the HM loci (Rusche and Rine 2001). 

The binding of Sum1-1 to ORC is abrogated by deletion of the amino-terminal 235 amino 

acids of Orc1, suggesting that Sum1-1 interacts with the Orc1 N-terminus. Interestingly, the 

slow growth rate of SUM1-1 mutants was suppressed by additional orc mutations in an earlier 

study, which implicated that Sum1-1 interferes with DNA replication through ORC (Rusche 

and Rine 2001). Therefore, one interpretation of the inviability of nat1∆ SUM1-1 strains is that 

Sum1-1 interacts better (i.e. stronger and at more genomic locations) with Orc1 in its 
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unacetylated form, and that this inhibits replication initiation, which is ORC’s essential 

function. This hypothesis is supported by the observation that the SUM1-1 nat1∆ synthetic 

lethality was abrogated by the deletion of the amino-terminal 235 amino acids of Orc1. Thus, 

we postulate that Nα-acetylation of Orc1 regulates its ability to interact with Sum1-1 as well as 

with other proteins.  

N-terminal protein acetylation has been hypothesized initially to protect proteins from 

degradation (Jornvall 1975; Hershko et al. 1984). However, several observations indicate that 

this does not hold true for the influence of NatA on silencing. First, we found that the level of 

Orc1 protein was indistinguishable between wild-type and nat1∆ strains. Second, the effect of 

nat1∆ on HML silencing and temperature sensitivity was suppressed by overexpression of the 

ribosome-bound chaperone Ssb1 (Gautschi et al. 2003), suggesting that nat1∆ caused a 

defect in protein folding rather than stability. However, SSB1 overexpression did not suppress 

the telomeric silencing defect of nat1∆ and the orc1 N-terminal mutants, thus supporting the 

notion that acetylated Orc1 specifically recruits a novel protein to establish silencing rather 

than affecting Orc1 folding.  

Interestingly, Nα-acetylation affects Orc1’s function in silencing, but not its function in 

replication initiation. Together with our observation that N-terminal truncations of up to 100 

amino acids from Orc1 have no effect on growth, this confirms the earlier hypothesis of Bell et 

al. (1995) that the N-terminus of Orc1 has no function in replication. Notably, in contrast to 

Orc1 acetylation, NatA activity has an impact on ORC’s replication function, because 

nat1∆ orc2-1 double mutants were inviable. This suggested that other ORC subunits, or other 

replication factors, may be Nα-acetylated by NatA, and that this acetylation may impinge upon 

their ability to initiate replication, perhaps by affecting their ability to interact with other 

replication proteins. 

Future experiments are required to validate our model of a protein interaction specific to 

Nα-acetylated Orc1. One possible approach to identify such an interacting protein is a 

two-hybrid screen with Orc1 fused C-terminally to the Gal4 binding domain as bait. Those 

prey proteins that bind to Orc1 in a wild-type but not in a nat1∆ strain are good candidates for 

novel interaction partners of Nα-acetylated Orc1. If these interactions can be confirmed by 

in vitro and in vivo binding studies, it will be further interesting to determine whether mutations 

of the candidates mimic the phenotype of the unacetylated orc1 mutants. 

Another future task is to specify the role of NatA in replication. Here, one obvious question is 

the Nα-acetylation of ORC subunits other than Orc1. As judged their penultimate amino acid, 

Orc3, Orc4 and Orc6 are potential NatA substrates whose Nα-acetylation can be investigated 
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in vivo. Additional candidates for NatA targets in replication are the cell-cycle genes, which 

also display genetic interactions to ORC alleles (Loo et al. 1995). 

Since both Orc1 and the subunits of NatA are evolutionarily conserved, it will be further 

interesting to test if Nα-acetylation plays a role in the function of Orc1 homologs in higher 

organisms.  

 

4.2 Function of the N-terminal 100 amino acid domain of Orc1  

In this study, we found that N-terminal deletions of 50, 100, and in some cases only 28 amino 

acids from the N-terminus of Orc1 disturbed silencing at the HM loci and telomeres. Since this 

phenotype differed clearly from that of the missing Nα-acetylation, different facets of Orc1’s 

function in silencing appear to be affected by the two types of mutations.  

The N-terminal 100 amino acids of Orc1 belong to the BAH domain. This domain is found also 

in a number of other chromatin-associated proteins, such as mammalian DNA (cytosine-5) 

methyltransferases, components of the RISC chromatin-remodeling complex and histone 

deacetylase complexes (Callebaut et al. 1999), and was thus proposed to function as a 

protein-protein interacting module involved in transcriptional regulation and chromatin-

mediated gene silencing. 

By sequence homology analysis, the BAH domain of Orc1 had been originally located to 

amino acids 48 to189 (Callebaut et al. 1999). Crystallographic data of Zhang et al. (2002) 

redefined the region between amino acids 10 and 190 as the BAH core domain, whose 

secondary structure is mainly composed of β-strands (Fig. 4.1). In addition, the so-called 

H-domain, a small, non-conserved helical subdomain between amino acids 100 and 129 (β6 

and β7), was identified to be necessary and sufficient for the interaction with Sir1. This 

interaction is supported by the core domain, since a number of amino acid interactions 

stabilize the position of the H-domain with respect to the core (Zhang et al. 2002). Notably, 

almost all of the amino acids participating in these interactions lie between amino acids 100 

and 190, and the loop between amino acids 21 and 35 (connecting β1 and β2) was 

dispensable for Sir1 binding. This suggested that the region before amino acid 100 was not 

important for the function of the BAH domain. In contrast to this notion, we found that the two-

hybrid interaction of Orc1 with Sir1 required the first 50 amino acids of Orc1, implicating that 

this region was also relevant for the BAH function. 
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Nevertheless, our data propose that the orc1 N-terminal deletion mutants had further defects 

than the loss of Sir1 binding. Strikingly, truncated orc1 mutants did not resemble the α-factor 

response phenotype of sir1∆, and instead formed shmoo clusters, which indicate defects in 

the maintenance of silent chromatin rather than its establishment (Enomoto and Berman 

1998). In contrast to that, an orc1 mutant missing the H-domain responded to α-factor 

similarly to sir1∆ (Zhang et al. 2002). Since the deletion of the N-terminal 50 amino acids of 

Orc1 further decreased the α-factor sensitivity of sir1∆, we propose that the orc1 mutation 

caused a structural defect at the HML silencer, in addition to ineffective reestablishment of 

silencing due to the loss of SIR1. This structural defect might be based on the loss an 

interacting partner of Orc1 that is distinct from Sir1. This hypothesis is further supported by the 

telomeric phenotype of the orc1 truncation mutants, which was earlier characterized as a Sir1 

independent effect. 

 

 
 
Fig. 4.1: The crystal structure of the N-terminal domain of Orc1. 
(A) Ribbon presentation. (B) Topology diagram showing the fold of the structure and deletion 
sites of the orc1 mutants investigated in this study. The BAH core structure is colored blue, the 
H-domain is shown in magenta, N- and C-terminal helices are shown in red. (adapted from 
Zhang et al. 2002) 
 

Altogether, our data suggest that deletions within the first 100 amino acids of Orc1 not only 

have a destabilizing effect on the interaction with Sir1, but also impair the interaction of Orc1 



 Discussion  

 68

with (a) further silencing partner(s). We hypothesize that this protein requires Nα-acetylation 

as well as an intact N-terminal structure of Orc1 for its binding (Fig. 4.2). 

Interestingly, the deletion of the region between amino acids 28 and 52 of Orc1 also affected 

silencing, in contrast to the removal of amino acids 21 to 35 (Zhang et al. 2002). The telomeric 

phenotype of this mutant points to a special role of this region in the binding of the 

hypothesized silencing factor, which we propose to act in particular at the telomeres.  

Why did the deletion of 10 amino acids from the N-terminus of Orc1 not effect silencing? 

Whereas the BAH domain should be still functional in this mutant, Nα-acetylation by NatA is 

expected to be interrupted. However, the penultimate amino acid tryptophan makes it to a 

possible substrate for the Nα-acetyltransferase NatC. Thus, one conceivable scenario is that 

the Nα-acetylation of Orc1(∆1-10) by NatC still enables it to interact with the hypothesized 

silencing factor and therefore to function like full-length Orc1. This could be tested in an IEF 

gel with Orc1(∆1-10) probes derived from wild-type and natC mutant strains.  

According to our model, the region comprising the first 100 amino acids of Orc1 has a dual 

function in silencing: supporting the interaction of the H-domain with Sir1 and providing the 

binding site for a further interacting factor. Further studies will be required to test our 

hypothesis. For example Co-IPs could test Sir1 binding to the truncated Orc1 versions, and 

ChIP assays can be used to test its association to silencers in the mutant strains. Moreover, it 

has to be specified what regions of Orc1 are required for the binding of new interacting 

partners.  

Notably, the BAH domain is conserved in all known Orc1 homologs, posing the question of 

whether this motif mediates a role of Orc1 in transcripitional repression also in higher 

eukaryotes. Significantly, Orc1 is associated with heterochromatin in Drosophila, where its 

N-terminus interacts physically with HP1, a central component of heterochromatin. In addition, 

the amino terminus of Xenopus Orc1 likewise interacts with HP1 homologs (Pak et al. 1997). 

Although it is not known at present whether the BAH module plays a direct role in this 

interaction, these data strongly suggest that not only the replication initiator function, but also 

the silencing function of ORC is evolutionary conserved. 
 



 Discussion  

 69

 
 
Fig. 4.2: Model of protein interactions at the N-terminus of Orc1. 
In addition to Sir1, the Orc1 N-terminus interacts with another, yet unknown protein. This 
protein requires the Nα-acetylation of Orc1 for binding and is specifically recruited in the context 
of telomeric silent chromatin, when Sir1 is absent. In contrast, Sir1 is recruited via the H-domain 
of Orc1 specifically to the HM silencers. This binding does not require the Nα-acetylation of 
Orc1, but it depends on the integrity of the N-terminal region of 100 amino acids. 
 

4.3 A model of the role of NatA in silencing 

In this study, we sought to reveal by which mechanism NatA functions at silenced loci. We 

identified Orc1 as a NatA substrate, and showed that its Nα-acetylation was required 

particularly for telomeric silencing. Summarizing our data, we propose a novel silencing factor 

to bind to Orc1 in its Nα-acetylated form. 

In light of the high similarity of between Orc1 and Sir3 N-termini, it is interesting that we also 

found Sir3 to be Nα-acetylated by NatA. One possibility is that acetylated Orc1 and Sir3 both 

interact with the same hypothesized silencing factor, which is in agreement with the 

observation that double orc1 sir3 unacetylated mutants showed no additional silencing effects. 

However, these double mutants showed weaker derepression at the HM loci than nat1∆, 

suggesting that further targets of NatA exist that require Nα-acetylation for their silencing 

function. 

We therefore propose a model, in which the effect of nat1∆ at the HM loci is the sum of 

several proteins lacking acetylation, among them Orc1 and Sir3. The cumulative effect on 

these proteins causes Sir3 and perhaps other Sir proteins to lose their ability to bind silenced 

chromatin, and thus causes derepression. Significantly, missing Nα-acetylation caused only a 

partial loss of function in the two substrates here identified. In unacetylated Orc1, Sir1 

recruitment was not affected, and unacetylated Sir3 did not completely disrupt silencing as 

seen in the sir3 null mutant (Rine and Herskowitz 1987). 

Interestingly, the N-terminus of Sir3 interacts in two-hybrid assays with Abf1 (Gasser and 

Cockell 2001), and it is well conceivable that this interaction depends on Nα-acetylation of 
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Sir3. This may provide an explanation for the missing effect of nat1∆ at HMR-E lacking the 

Abf1 binding site. 

It would be in line with our model if some of the NatA targets in silencing acted not directly at 

the silenced loci, but rather would influence silencing indirectly by regulating silencing factors. 

To date, there exist only preliminary data on the regulation of members of the silencing 

complex. One example for such a regulation is the Sir3 hyperphosphorylation in response to 

mating pheromone, heat shock and starvation, which increases silencing (Stone and Pillus 

1996). This modification requires an activated MAP kinase cascade, although the detailed 

mechanism of Sir3 regulation remains unclear (Ai et al. 2002; Ray et al. 2003). 

How can further NatA substrates that require Nα-acetylation for their silencing function be 

identified? Besides testing individual silencing components for Nα-acetylation, genetic screens 

provide one possibility to reveal new genes linked to the silencing function of NatA. In light of 

the results of the multicopy-suppressor screen performed in this study, it is important to strictly 

focus the screen on those NatA substrates that act in silencing. In other words, when mating 

ability is used as a sensor for HM silencing, no genes involved in other aspects of mating 

should be isolated. This could be realized, for instance, by screening for mutants which 

reestablish silencing in a nat1∆ background. In addition, the screen has to be sensitive 

enough to detect slightest improvements of HM silencing, since single components have to be 

isolated out of an orchestra of components that constitute the nat1∆ phenotype. 

To complete the picture of NatA’s silencing function, it is also necessary to uncover its 

involvement at the other silenced loci. Silencing of subtelomeric reporter genes was 

completely disrupted by the deletion of NAT1, and unacetylated orc1 and sir3 mutants 

displayed the same effect (Stone et al. 2000). At the moment it is not clear, whether the 

Nα-acetylation of Orc1 and Sir3 alone constitutes the role of NatA at telomeres. Further 

experiments will be required to determine the structural integrity of the perinuclear foci in 

unacetylated orc1 and sir3 mutants and whether the association of other components, such as 

Rap1, is likewise affected. 

In this study, we present evidence that NatA also has a function in rDNA silencing. Future 

work has to reveal which silencing components at the rDNA require Nα-acetylation. 

Interestingly, both NatA substrates identified here are capable of binding to the rDNA array. 

Although Sir3 is not required for the repression of rDNA reporter genes (Bryk et al. 1997; 

Smith and Boeke 1997), it locates in the nucleolus of aging cells (Kennedy et al. 1997). 

Notably, the N-terminus of Sir3 was shown to contain efficient information for nucleolar 

targeting (Gotta et al. 1998). Given its high homology to the N-terminus of Orc1, both proteins 



 Discussion  

 71

might be recruited to the rDNA locus by the same mechanism, and a role of the already 

hypothesized common interaction partner in this process is conceivable. Alternatively, ORC 

can bind to the rDNA array via the ACS sites that are part of the NTS2 of each repeat (Huang 

and Moazed 2003). In order to verify a role of Nα-acetylated Orc1 and Sir3 in rDNA silencing, 

the unacetylated mutants need to be tested for a rDNA phenotype. An interesting observation 

with regard to the mechanism of NatA’s role in rDNA silencing was that GFP-tagged Sir2 was 

still located in the nucleolus of nat1∆ cells (data not shown). This indicated that the integrity of 

the silencing-mediating RENT complex was not dependent on NatA.  

 

4.4 Nα-acetylation as a conserved eukaryotic protein modification 

In this study, we provide evidence that Nα-acetylation participates in the regulation of 

chromatin structure in yeast, since the silencing proteins Orc1 and Sir3 depended on this 

modification to function properly. Thus, we propose that Nα-acetylation can be classified as a 

chromatin regulatory mechanism comparable to acetylation or methylation of ε-N-lysines. 

However, in contrast to ε-N-acetylation, which readily can be removed by deacetylases 

(Dutnall and Pillus 2001), Nα-acetylation is irreversible, and Nα-deacetylases are hitherto 

unknown. This raises the question of how the modification can be removed in order to alter 

protein function upon demand. One possibility is that amino-terminal proteolysis may remove 

Nα-acetylation, as is proposed for histone methylation, which also is irreversible (Jenuwein 

and Allis 2001). Regulated ubiquitin-based protein processing (Palombella et al. 1994) is a 

conceivable mechanism for the purpose, since the mutation of a putative ubiquitin-specific 

protease was demonstrated to specifically enhance PEV in Drosophila (Henchoz et al. 1996). 

Another possibility is the removal of the Nα-acetylated amino acid. Interestingly, acylamino 

acid-releasing enzymes (AARE) have been identified in eukaryotes and an archeon (Ishikawa 

et al. 1998; Yamauchi et al. 2003), which catalyze the amino-terminal hydrolysis of 

Nα-acylpeptides to release Nα-acetylated amino acids. Although AAREs act specifically on 

short nascent chains of 2-5 amino acids (Krishna and Wold 1992), related enzymes might 

perform this reaction on Nα-acetylated proteins. A further alternative to modulate the function 

of Nα-acetylated silencing proteins may be their removal from chromatin, much like preexisting 

histone modifications are eliminated by histone replacement during replication. Interestingly, 

methylated H3 histones are postulated to be exchanged during transcription for the 
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unmethylated histone variant H3.3, which promotes the generation of active chromatin 

(Jenuwein and Allis 2001; Ahmad and Henikoff 2002). 

We have not investigated whether any of these several theoretical mechanisms regulate the 

silencing activity of Orc1 or Sir3. In light of our data, we suggest that Nα-acetylation may 

provide a stable, long-term epigenetic mark for maintaining chromatin states. 

Intriguingly, Nα-acetylation can be found in all kingdoms of life and especially in eukaryotes. 

The high level of evolutionary conservation suggests that this protein modification is capable 

of acting in fundamental cellular processes. In higher organisms, homologs of the NatA 

subunits have been linked to developmental and differentiation processes. Mouse mNAT1 is 

expressed in the developing brain and is regulated by physiological levels of functional 

N-methyl-D-aspartate (NMDA) receptor in developing neurons (Sugiura et al. 2001). The 

mNAT1 homolog tubedown-1 is expressed highly in developing tissues and down-regulated 

upon differentiation (Gendron et al. 2000). Furthermore, a tubedown-1 variant, Tbdn100, was 

isolated in a transcription regulatory complex, suggesting that it may be a transcriptional 

co-regulator (Willis et al. 2002). Interestingly, the human homolog NATH also shows high 

expression in parts of the human brain and is overexpressed in malignant cells, for instance in 

papillary thyroid carcinomas and several leukemia and carcinoma cell lines (Fluge et al. 

2002). It therefore has been hypothesized that NatA overexpression might simply correlate 

with high transcriptional activity. Even though this may be the case, overdosed Nα-acetylation 

itself could result in deregulated gene expression and tumorgenesis, as overexpression of 

NAT1 impaired the stability of chromosomes in yeast (Ouspenski et al. 1999). In light of our 

findings, it is tempting to speculate that NatA acetylation regulates cell proliferation by 

modifying ORC function in replication or in the control of gene expression. Thus, it will be 

interesting to identify chromatin factors in higher eukaryotes whose function depend on 

Nα-acetylation by NatA. 

The implication of NatA homologs in cellular differentiation processes provokes the important 

question whether Nα-acetylation plays a role in carcinogenesis. Interestingly, inappropriate 

regulation of chromatin structure (Singh et al. 2000) and notably mutated histone acetylating 

and deacetylating enzymes (Borrow et al. 1996; Vaziri et al. 2001) have been revealed to be 

tumor generating factors. In this respect, to enlighten the work of human Nα-acetylating 

complexes is a challenging future task, which can be facilitated by a comprehensive 

knowledge of the mechanisms in yeast. 
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aa amino acid 

a.i. arbitrary intensity 

ACS ARS consensus sequence 

ARS autonomous replication sequence 

BAH bromo-adjacent homology 

bp base pair 

ChIP Chromatin Immunoprecipitation 

Co-IP Co-Immunoprecipitation 

Da Dalton 

Gal4AD Gal4 activation domain 

Gal4BD Gal4 binding domain 

HA hemagglutinin A 

HAT histone acetyltransferase 

HDAC histone deacetylase 

HM homothallic mating (HML und HMR) 

HML homothallic mating left 

HMR homothallic mating right 

HDAC histone methyltransferase 

IEF isoelectric focusing 

IgG Immune globulin G 

MALDI-TOF matrix-assisted laser desorption/ionization time of flight 

MAT mating-type locus 

NAT N-terminal acetyltransferase 

OD optical density 

ORC origin recognition complex 

ORF open reading frame 

PEV position effect variegation 

pI isoelectric point 

rpm rounds per minute 

RT room temperature 

SDS sodium dodecyl sulfate 

Sir silent information regulator 

TAP tandem affinity purification 

TPE telomere position effect 

ts temperature sensitive 

WT wild-type 
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