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Abstract. We have developed a method to partition a set of data into clusters
by use of Hidden Markov Models. Given a number of clusters, each of which is
represented by one Hidden Markov Model, an iterative procedure finds the combi-
nation of cluster models and an assignment of data points to cluster models which
maximizes the joint likelihood of the clustering.

To reflect the non-Markovian nature of some aspects of the data we also extend
classical Hidden Markov Models to employ a non-homogeneous Markov chain, where
the non-homogeneity is dependent not on the time of the observation but rather
on a quantity derived from previous observations.

We present the method, a proof of convergence for the training procedure and
an evaluation of the method on simulated time-series data as well as on large data
sets of financial time-series from the Public Saving and Loan Banks in Germany.

1 Introduction

Grouping of data, or clustering, is a fundamental task in data analysis as
well as a prerequisite step for classification of unlabeled data. Methods for
clustering have been widely investigated [7] and can be coarsely categorized
into two classes: distance- and model-based approaches. The former base the
decision whether to group two data points on their distance, the latter assign
a data point to a cluster represented by a particular statistical model based
on its likelihood under the model.

For a number of reasons, model-based clustering is better suited for time-
series data [14]. Usually, there is no natural distance function between time-
series. A number of non-critical variances of signals — a delay, an overall
slower rate, a premature cutoff — will be overly emphasized by, say, Euclidean
distance. Capturing the essential qualitative behavior of time-series is difficult
to achieve with a distance function.

Using stochastic models to represent clusters changes the question at hand
from how close two given data points are to how likely one particular data
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point is under model. Often, the latter question is easier to answer as we will
demonstrate for our particular application. Also, one can expect a larger ro-
bustness with respect to noise in the data virtue of the stochastic model. As it
is straight-forward to generate artificial data given a model-based clustering,
an analysis of the clustering quality based on the predictive performance of
the inferred set of models becomes possible.
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Fig. 1. The general assumption regarding the nature of the data: A mixture of
realizations from unobservable abstract classes is observed. Stochastic models cor-
responding to those abstract classes should then be inferred.

Our approach of using Hidden Markov Models (HMMs) as clusters is mo-
tivated by the well known k-Means algorithm [7]. In [9] it has been realized
that an analogon of k-means can be used for model-based clustering. This has
been implemented for multi-variate Gaussians in [15]. In the k-Means algo-
rithm the median is used to represent a cluster and a clustering is computed
by an iterative application of the following steps.

1. Assign each data point to its closest median, and
2. Re-compute the median for each of the clusters.

When going over to HMMs as cluster representatives two modifications
are necessary. The criterion for the re-assignment of data points to clusters
is maximization of the likelihood of the data points. The re-computation
of clusters is done by training the cluster models with the Baum-Welch re-
estimation algorithm [1,2]. From a computational point of view the main
difference lies in the necessity of the nested iterative procedure.

The savings and loan bank application we considered implied contractual
constraints which violated the Markovian assumption inherent in classical
HMDMs. We could account for these constraints by a model extension, which
can be thought of as a HMM based on a non-homogeneous Markov chain.
However, the non-homogeneity was not conditioned on the time of the obser-
vation in the time-series but rather on a function summarizing and, hence,
dependent on previous observations. This extension required only minor mod-
ifications to the various relevant HMM algorithms such as Baum-Welch. The
clustering with the extended model provided a powerful modeling and analy-
sis framework which improved the quality of the modeling substantially when
compared with the methods previously used.
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This paper is organized as follows: After establishing notation and nec-
essary concepts in Sec. 2 we introduce the algorithm, analyze its compu-
tational complexity and discuss implementational questions in Sec. 3. The
setting of the application problem and the data used in the experimental
validation is subsequently described. This motivates the following extension
to non-homogeneous HMMs introduced in Sec. 5. Experimental results and
a discussion conclude the paper.

2 Definitions and Notation

Hidden Markov Models (HMMs) can be viewed as probabilistic functions of a
Markov chain [4,16], where each state of the chain independently can produce
emissions according to so-called emission probabilities or densities. We will
restrict ourselves to univariate emission probability densities. Extensions to
multivariates or mixtures thereof as well as discrete emissions are routine.

Definition 1 (Hidden Markov Model). Let O = (Oq,...) be a sequence
over an alphabet Y. A Hidden Markov Model A is fully determined by the
following parameters:

S;, the states i =1,..., N,

m;, the probability of starting in state .S;,

a;;, the transition probability from state S; to S;, and

b;(w), the emission probability density of a symbol w € X' in state S;.

The obvious stochasticity constraints on the parameters apply. A more thor-
ough and very readable introduction to HMMs can be found in [17], respec-
tively in one of several books [14,10,5,3]. The problem we will address can be
formally defined as follows.

Definition 2 (HMM Cluster Problem). Given a set O := {O1,0?,...,
O™} of n sequences, not necessarily of equal length, and a fixed integer K <
n. Compute a partition C = (C1, Cs,..., Ck) of O and HMMs Ay, ..., g
as to maximize the objective function

K
rey=1I II L©1m). (1)

k=1 O"GC;C

Here, L(O%|\x) denotes the likelihood function, i.e. the probability density
for generating sequence O by model Ag:

L(O%|\) := P(O%|\g). (2)

It has been implicitely discovered before, e.g. [20], that the problem of
computing a k-means clustering can be formulated as a joint likelihood max-
imization problem.
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3 The clustering algorithm

Adapting the general outline of the k-means algorithm, we propose the follow-
ing maximum likelihood algorithm to solve a HMM Cluster Problem, given
K initial HMMs AJ, ..., A%

1. Tteration (¢t € {1,2,...}):
(a) Generate a new partitioning of the sequences by assigning each se-
quence O; to the model k for which the likelihood L(O;|AL ") is max-

imal.
(b) Calculate new parameters \},..., A} using the re-estimation algo-
rithm for each model with their start parameters )\tfl, ceey )\th and

their assigned sequences.
2. Stop, if the improvement of the objective function (1) is below a given
threshold, €, the grouping of the sequences does not change or a given
iteration number is reached.

As there is a one-to-one correspondence between clusters and models we
will use the terms interchangeably in the following.

Convergence

The nested iteration scheme does indeed converge to a local maximum. How
to avoid the usual practical problems with local maximization is described
later.

Theorem 1. The objective function (1) of the maximum likelihood algorithm
18 non-decreasing.

Proof: Given the partitioning C! after the iteration ¢, the corresponding
trained model parameters A, and the logarithm of objective function (1),
log f(C). Then,

K

log f(C') =Y Y log L(O'|A})
k=10ieC}
K

> Y max log L(O|\)

k=10teC}

IN

M= TMM=

> log L(O°|A})
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> log L(O'A)
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=log f(C"),
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and thus f(C') < f(C**1). The last inequality above follows as the likeli-
hood of a single model is non-decreasing in re-estimation [17], i.e. L(O[\}) <
L(O|\ETY).

UJ

Complexity

Given n sequences with maximal length T and K models with at most N
states (and univariate density functions), the computational complexity, in
slight abuse of the usual notation, of the re-estimation of the K models in
step 1(b) is O(I. n'T N?), where I, is an upper bound, typically dependent on
the size of the input, for the number of iterations in the applied re-estimation
algorithm. Assigning all sequences to the model with the highest likelihood
needs O(n K T N?) steps. Therefore, the complexity of the complete cluster-
ing algorithm is O(I. nT N? (K +1,.)), where I is another bounding constant
for the outer iteration. The bounds I, and I, seem both artificial and unjustly
taken constant in the input. However, in practical HMM training over-fitting
is often a more pressing problem than getting stuck in optima which are lo-
cal but not global. This is routinely dealt with by limiting the number of
Baum-Welch steps, which supports taking at least I, constant.

Implementation

The relevant data structures and algorithms are freely available in a C-library,
the GHMM [13], licensed under the Library Gnu General Public License
(LGPL). The software has been compiled and used on a wide range of hard-
ware as well as operation systems. It is currently in use at a number of
different institutions for other problem domains.

Initialization

A suitable model topology, i.e. the number of states and the allowed transi-
tions (the non-zero transition probabilities), and the number of initial models
should be motivated by the application. Note that the topology remains un-
changed during the training process.

Since the clustering algorithm will only converge to a local maximum the
choice of the model’s start parameters will have an impact on the maximum
computed. The simplest approach is to set all parameter to random values
subject to stochasticity constraints. This can easily lead to an very uneven,
w.r.t. cluster size, assignment of sequences to models, as some random model
might have near zero probabilities of producing any sequences in the set at
all. Alternatively, one can initially train one HMM with all sequences, and
subsequently use K copies of that model as the input for the clustering, af-
ter adding small random perturbations to the parameters of the K copies
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individually. Training can be thought of in this case as seeing a divergence of
clusters. In any case, one has to pay attention that in the first iteration step
each sequence can be build from at least one model — i.e., the likelihood of
the set of sequences may not be zero. If there is only a very limited amount
of training data available, pseudo-counts or, more rigorously, Dirichlet pri-
ors [19] as background distributions in a Bayesian setting can be employed
to dispatch with this over-fitting problem effectively.

4 Application to loan bank data

To evaluate the proposed clustering method on real data, we use financial
time-series data obtained from the public saving and loan banks in Germany
for an ongoing co-operative research project [11]. The fundamental concept
behind saving and loan banks is to combine a period of saving money, usually
until some threshold D has been reached, which is the prerequisite for taking
out a loan, which then has to be re-payed in fixed installments. Contractual
details vary widely, but manual inspection suggested a number of prototypical
contract histories making clustering appear feasible.

Each of the data points corresponds to an individual saving and loan
contract. It consists of a time-series of feature vectors recorded in yearly
intervals. Depending on the respective bank, there might be as many as 3
million data points available.

There are about 40 individual quantities recorded in one feature vector.
Out of those, we mainly consider the relative savings amount (RSA). The
RSA quantifies the amount of money saved over the last period of twelve
months relative, in percent, to the total volume of the loan. It is the most
important feature of the time-series, since it is the dominant factor for the
further development of the contract, and hence the other recorded quantities,
except demographical data etc., depend on it directly or indirectly. Model-
ing all 40 quantities can be easily accommodated in the HMM-Clustering
framework we propose.

In the RSA time-series data a number of typical patterns can be observed,
which correspond to different types of behavior. This motivates a theoretical
interest in classifying and clustering this data. From a practical point of
view, the clustering process is highly relevant as it is the first step towards
simulation of the whole collection of contracts. Simulation is used for liquidity
forecasting and hence as the basis for executive decisions such as investment
strategies or contract design.

The observed time-series exhibit global patterns that correspond to cer-
tain deterministic constraints imposed by the terms and regulations of loan
banking (e.g. the threshold D which specifies the end of the saving period).
For a good model it is necessary that generated sequences also obey those
constraints. In the next section we demonstrate how this non-Markovian be-
havior can be accounted for in HMM modeling.



Model-based clustering with HMMs 7

5 Model extensions

The basic idea of our Model extension is to allow transition probabilities to
vary, similarly to time inhomogeneous Markov chains. However, in our case
the transition probabilities do not depend on time but rather on the partial
sequence observed so far. As an example we consider a sequence of savings
which, when summed, exceed the threshold D. In most cases the sequence
will enter a state corresponding to amortizations instead of remaining in a
saving phase state in the next time step.

13

Fig. 2. Graph of an extended HMM with L = 3 conditional transition classes.

To accomplish this for generated sequences we extend the transition Ma-
trix A = (a;,;) to a set of matrices, cf. Fig2:

A= (Ay,... AL).

Suppose the model is in state ¢ at time ¢ and we already observed the partial
sequence (Oq,...,0;). The current transition matrix A; is determined by the
function

1= f(O1,...,0).
As a simple example we used the following step-function

t

t
f(O1,...,0;) =LY O;],where0 < ¥ O, < 1.
T=1

=1

Further extensions of f can be found in [22]. In [12] it is demonstrated
how to modify the usual Baum-Welch reestimation formulas to be applicable
to this model extension.

6 Experimental Results

We tested our training algorithm with data sets containing up to 50,000
time series from savings and loan bank data. In a first step we restricted
our model to the saving period. Several different model topologies with vary-
ing number of states were examined, as well as variations on the number
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Fig. 3. Two different model types for the savings period: a simple left-right-model
and a fully connected model topology. Note that the top one can only generate
sequences up to length Tmax, while the length distribution for sequences generated
by the bottom model is a mixture of exponentials.

of HMMs and transition matrices (not shown). Optimal and stable results
were achieved with a simple left-right model with N = 13 states and self-
transitions, cf. Fig. 3. The number of HMM clusters was K = 9 and the
number of transition matrices was L = 6. This model parameters are used
for the results in this section.

The first quantity to be examined was the sum of the relative savings
amount (SRSA) per sequence. Fig. 4 displays the SRSA of the real data and
the prediction of three different models: the currently used k-means model [6],
the naive HMM approach and our extended model of section 5. The SRSA of
the real data is 0.0 until approximately 37 %, reaches a sharp maximum at
39 % and has a long tail until 80 %. Note that the contracts require a savings
amount of at least 40 % including interest.

Observe, that the k-means prediction has a much too sharp maximum
and consequently a much too small variance due to the fixed time lengths of
the k-means prototypes. The naive HMM approach achieves the maximum
with high accuracy, but results in a much too broad length distribution. This
can be avoided when using our extended model, where both the maximum
and the variance are met.

A more complex model: further events in loan banking

Fig. 5 shows one of the model topologies we investigated with regard to
its capability in modeling the complete course of loan bank contracts. The
three periods saving, allocation, and repayment correspond to three distinct
groups of model states. The states displayed as squares represent certain
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Fig.4. Sum of relative savings amount (SRSA) for real data, generated data
(HMMs and extended HMMs) and weighted k-means prototypes. The horizontal
error bars show mean and standard deviation for the observed data.
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Fig. 5. Graph of an HMM for modeling the three phases of a loan banking contract.

important discrete events such as canceling the contract. The emission prob-
ability function of these states is characterized by a very small initial vari-
ance and an initial mean value which is used to represent the corresponding
event. Furthermore, the emission parameters of these special states are never
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changed during training.

Another view is given in Fig. 6. Here the capability of extending truncated
real sequences is displayed. The predicted data were generated by two differ-
ent models (of same size and topology) which were trained on two different
sets of sequences. The training sets are: pred1 containing all contracts for the
year 1985 and pred2 containing contracts regardless of the contract year.

The truncated set consists of all contracts for the year 1986 and the se-
quences were truncated in 1992 and extended by the above mentioned models
until a an end-state (e. g. a state with no outgoing transitions) was reached.

Fig. 6 shows the yearly savings amount (YSA) and the yearly amorti-
zations (YAM) summed over all sequences of the two generated sets (pred1,
pred2) und of the real data (real, not truncated here). The YSA data is closely
approximated by both predictions. For the YAM graph the prediction using
the training set pred! is more accurate.
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Fig. 6. Real and predicted yearly savings amount (YSA) and amortizations (YAM)
for two different training scenarios. Prediction starts 1993.

7 Conclusion and Outlook

We presented a new algorithm for clustering data, which performed well for
the task of generating statistical models for prediction of loan bank customer
collectives. The generated clusters represent groups of customers with similar
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behavior. The prediction quality exceeds the previously used k-means based
approach.

HMMs lend themselves to various extensions [8,21]. Therefore, we were
able to incorporate many other relevant loan-bank parameters into our cur-
rent model. These can then be estimated with one homogeneous statistical
training algorithm, instead of using a collection of individual heuristics. We
expect an even higher overall prediction accuracy and a further reduction
of human intervention when applied to this and other application problems.
These results will be described elsewhere [12,22]. The clustering approach is
general in its applicability: An analysis of gene expression data from experi-
mental genetics is forthcoming [18].

On a more pragmatic note: HMMs can be easily visualized, cf. Fig. 5.
This visualization is a crucial aid in effectively communicating peculiarities
of models to experts from the problem domain, who otherwise might not be
able to fully participate in the modeling process.
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