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Overview

Many different Bayesian network models have been suggested to recon-
struct gene expression networks from microarray data. However, little atten-
tion has been payed to the effects of small sample size and the stability of the
solution. We engage in a systematic investigation of these issues.

As a starting point for further research we introduce the κ-network. It
is a small Bayesian network model (5 nodes with three states) in which a
parameter κ controls the conditional probability distributions of the nodes.
With data sampled from this model, we evaluate the effects of different sample
sizes and of data being derived from active perturbations on the reconstruction
of the origninal network topology.

1 Introduction

A genetic network is a set of genes in which individual genes influence the activity
of other genes. The core task in identifying genetic networks is to distinguish direct
from indirect regulatory interactions. Static and dynamic Bayesian network models
have been suggested to reconstruct gene expression networks from microarray data
Friedman et al. (2000); Murphy and Mian (1999); Yoo et al. (2002).

A Bayesian network is a graph-based representation of a joint probability distribu-
tion that captures properties of conditional independence between variables. This
representation consists of two components. The first component is a directed acyclic
graph (DAG), where the nodes represent genes and arrows between nodes indicate
that one gene directly regulates the expression of another gene. The second com-
ponent describes a conditional distribution for each node given its parents in the
graph.
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2 Learning network structure

The methods to build Bayesian networks from observational data can be divided
into two classes: methods that use a scoring function to evaluate how well the
network matches the data Friedman et al. (2000); Heckerman (1997), and methods
that perform tests for conditional independence on the observations Pearl (2000);
Spirtes et al. (2000).

The biological interpretation of the graphs produced by these methods is hindered
by the fact that the representation of a joint distribution in a Bayesian network
is not unique. Many different networks with ambiguous edges can represent the
same joint distribution. Equivalent networks have the same skeleton, but edges not
participating in v-structures may change their direction (see Figure 1 for an exam-
ple). They indicate totally different gene regulation pathways but are statistically
equivalent: Even with infinitely many data we can not decide between them.

Learning an equivalence class of networks is how far we get by depending only on
passive observations. To further resolve the structure we need information about
the effect of interventions. This determines the directions of the edges between
the perturbed node and its neighbors Tian and Pearl (2001). For both approaches
biological data is easily obtainable. Microarray experiments provide a snapshot
of the activity of several thousand genes simultaneously. Gene perturbation as a
method to identify regulation pathways has a long tradition in biology.

Before working on real gene expression data we start with a simulation where we
know the true network topology and can adjust for different conditional probabilities
in the nodes. We are interested in the following topics:

• Stability of solution: is the DAG with maximal Bayes score singled out sharply,
or are there other DAGs with almost the same high score?

• How many data are needed to correctly identify the underlying structure?

• Robustness against changes in the conditional distribution of the nodes.

3 Methods and data

Software. We use the Bayes Net Toolbox for Matlab written by Kevin Murphy
Murphy (2001) which is available at http://www.ai.mit.edu/~murphyk. Some of
the functions were slightly changed and adapted. The Matlab scripts used for our
experiments can be obtained from the first author.

The κ-network. As a starting point for further research we investigate a small
network of five nodes with three possible values (downregulated=1, normal=2, up-
regulated=3). Its topology is the same as in the well-known sprinkler network (see
Figure 1).

In the design of the conditional probabilities of the nodes we introduce a parameter
κ which adjusts the distribution between a uniform distribution over the three states
and one clearly preferred state. The distribution of each node is multinomial and

http://www.ai.mit.edu/~murphyk
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Figure 1: Left: topology of the sprinkler network. Right: the equivalence class
of the sprinkler network described by a partially directed acyclic graph. It has the
same skeleton and the same v-structure as the sprinkler network and encodes three
different networks: the edges X2 → X4, X3 → X4 and X4 → X5 are fixed by the
v-structure X2 → X4 ← X3, but the edges X1 — X2 and X1 — X3 can point in
both directions. Only X2 → X1 ← X3 is forbidden because this would create a new
v-structure at X1.

can be presented as a table with 3 columns and 3pa rows, where pa is the number
of parents. The columns correspond to the three possible values of a node X and
the rows represent the possible configurations of parent nodes, e. g. for pa = 2 the
nine rows stand for the configurations (1, 1), (1, 2), . . . , (3, 3). The entry (i, j) is the
probability of X being in state i given the j-th parent configuration.

We construct the distribution tables according to the rationale “κ·signal + (1 −
κ)·noise”. For the “orphaned” node X1 this results in the table T(pa=0) shown
below. The noise term consists in a 1× 3-matrix where all entries are equal to 1

3 .

T(pa=0) = κ ·
(

0 1 0
)

+
1− κ

3
·
(

1 1 1
)

The nodes X2, X3 and X5 have a single parent node. The signal matrix propagates
the parental state. The noise term is a 3× 3-matrix abbreviated by 1

3 ( ones )3×3.

T(pa=1) = κ ·

 1 0 0
0 1 0
0 0 1

 +
1− κ

3
· ( ones )3×3

Node X4 has two parents. If both parents agree in their state, its value is propagated
in the signal matrix; if they do not agree, the signal is split equally over the two
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parental states.

T(pa=2) = κ ·



1 0 0
1
2

1
2 0

1
2 0 1

2
1
2

1
2 0

0 1 0
0 1

2
1
2

1
2 0 1

2
0 1

2
1
2

0 0 1


+

1− κ

3
· ( ones )9×3

By varying the parameter κ we can adjust the conditional distributions continuously
between a uniform distribution over the states (κ = 0: pure noise) to a deterministic
propagation of parental states (κ = 1: pure signal).

Network size. An obvious shortcoming of this model is the small number of nodes.
Real-world gene regulation networks are of course much bigger. But on the other
hand, the small number of nodes allows an exhaustive search through all possible
DAGs and we can do without heuristic search methods. Scoring all possible DAGs
provides the “gold standard” with which to compare other learning strategies. We
investigate how our ability to recover the true structure changes with varying κ and
how much information is gained by interventional data.

Changing the conditional distribution of the nodes. We vary κ over the inter-
val [0, .9] in steps of 1/10. We omit the pathological setting κ = 1, because without
any random effects all the nodes are in the same state and thus the learned graph
will be completely connected. For each value of κ we sample from the corresponding
network two different datasets of equal size. The first data are observations without
intervention. The second data are gathered after perturbing the network at each
node in turn. The dataset sizes are 100, 50 and 25 observations in the first dataset,
which correspond to 20, 10 and 5 interventions per node in the second dataset.

Bayesian structure learning. From this data we infer a network structure by
scoring all possible network topologies according to their posterior probability Heck-
erman (1997). The highest scoring DAG is chosen as the best representation of the
relations between the data samples. Using interventional data only a single DAG
achieves the maximal score. Without interventions we can only learn equivalence
classes of DAGs. Thus, depending on dataset size more than one DAG can be found
with maximal score.

Quality of learned networks. From the inferred topologies we calculate the
relative frequencies of edges. This results in a 5× 5-matrix L, where 0 ≤ Lij ≤ 1 is
the relative frequency of the edge from Xi to Xj . This matrix is compared to the
adjacency matrix A of the true topology by the formula:

d(A,L) =
∑
ij

|Aij − Lij |

Repetitions. We repeat the process of data sampling and Bayesian learning 5
times for each dataset size and take the mean Md of the five values of d(A,L) as a
final result.
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4 Results

The score distribution. A number of 5 nodes is small enough to allow a scoring
of all possible network structures. Thus, we can get an overview of the whole
score distribution. Figure 2 shows the sorted scores for all possible 29281 DAGs
with 5 nodes for κ = .6 and 5 interventions per node. For other values of κ and
different numbers of observations the plot looks almost the same. What we learn
from Figure 2 is that the maximal score is singled out sharply. We do not see a
plateau of score values, where many DAGs achieve almost the same high score.
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Figure 2: Left: The sorted likelihoods for all possible 29281 DAGs with 5 nodes
(κ = .6, 5 interventions per node). Right: the 50 highest scoring DAGs - a zoom
into the right end of the distribution.

For learning without interventions the general shape of the score distribution re-
sembles Figure 2 with the difference, that the maximum value is achieved by more
than one DAG. In this case, the actual number of DAGs depends on the dataset
size. If a sufficient amount of data is supplied (several hundreds!), all three DAGs
in the equivalence class of the sprinkler network are found (and no others). With
less data, the number of maximal scoring DAGs varies in our experiments from two
to five.

The effect of interventions. In Figure 3 the average number of false edges Md

is plotted for values of κ from 0 to .9 and datasets of size 25, 50 and 100. In
each plot there are two lines: the dashed (red) line is the result of learning from
passive observations only, while the solid (green) line results form learning with
interventional data (5, 10, 20 interventions per node).

We see that for very noisy data learning from interventional data has no advantage
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over learning from observations only (dashed and solid line agree very well for small
values of κ). In the case of only 25 samples the two curves are almost the same over a
wide range of κ-values. With increasing κ learning from interventional data becomes
more efficient. With diminishing noise the interventions add more knowledge about
the directions of the edges.

5 Discussion

We argue that incorporating interventional data not only leads to a higher number
of correctly identified edges, but also reduces the required number of samples. But
still big datasets are needed to learn the structure of even a small network like the
κ-network.

From our experiments one message can be learned for the reconstruction of genetic
networks: aim at small networks only and improve your accuracy by using data
from gene perturbation experiments.
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Figure 3: The average number of falsely predicted edges for increasing values of κ
derived on datasets of size 25, 50 and 100. The dashed line is the result of learning
from obervations only, while the solid line results form learning with interventional
data. In all three plot, the dashed line stays constantly at a high error level of 5-6
false edges. For small values of κ the solid line is at the same level but drops with
increasing κ. This is very clear in the lower plots, but even in the upper ones the
solid line is never significantly higher than the dashed line.
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