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Abstract

The distribution of scores for differential gene expression observed in mi-
croarray experiments give rise to the assumption that the underlying score dis-
tributions of induced and non-induced genes share wide overlapping regions.
Our aim is to reconstruct this mixture not only for extremal score regions but
over the whole range of scores. We propose and evaluate a method based on
the theory of False Discovery Rates.

1 Introduction

Microarray experiments allow an insight into a tissue sample’s current state by
measuring simultaneously the abundance of mRNA transcripts of several thousands
of genes. With samples from two different classes, e.g. tissue, disease status or
treatment, we can search for genes that are differentially expressed among these
classes. From a statistical point of view we are confronted with a multiple testing
problem. We test for differences in mean gene expression of several thousands of
genes all measured from the same set of samples. Traditional multiplicity corrections
like Bonferroni or Bonferroni-Holm control the Family-wise Error Rate (FWER)
which is the probability of making at least one false positive decision. Dudoit,
Yang, Callow, and Speed (2000) give an overview of FWER controlling procedures
including methods that correct for the dependence structure in gene expression
experiments resulting from coregulation.

FWER controlling procedures are often too conservative unless we increase the
desired probability of making at least one false positive decision. However, when
we search for induced genes among thousands we can allow false positives if this
leads to a higher number of true positives and a better understanding of biologi-
cal processes. The proportion of false positives among all positives is called False
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Discovery Rate (FDR). A Bonferroni-like method to control this rate was first intro-
duced by Benjamini and Hochberg (1995). Storey (2001) points out that controlling
the FDR is only interesting when positive decisions have occured. He introduces a
procedure to control this conditional FDR which is called positive FDR. Storey and
Tibshirani (2001) suggest methods to estimate the positive FDR and conduct sim-
ulation studies under various stages of coregulation. There exist various additional
procedures to control the FWER or the FDR. Keselman, Cribbie, and Holland
(2002) and Reiner, Yekutieli, and Benjamini (2003) provide comparison studies of
selected methods where FDR, controlling methods exhibit higher power than FWER,
controlling methods.

We assign a score that measures the difference in mean gene expression to each
gene. A high score corresponds to overexpression in the first class and a low score
to underexpression in the first class. A gene showing either overexpression or un-
derexpression is called “induced”. The overall score distribution in a microarray
experiment is typically a mixture of score distributions resulting from induced and
non-induced genes. Neither these distributions nor the fraction of induced genes
are known. The distinction of induced and non-induced genes is easy if differential
regulation leads to extreme scores such that the score distribution displays clearly
separated modes for induced genes. However, in a typical setting the two distribu-
tions overlap and only the most highly induced genes can be selected with common
methods. The majority of the induced genes merge with non-induced genes in ex-
tended “twilight zones”. Classical significance testing aims for a cutoff score level,
that assures that there is no more than a small fraction (e.g. 5%) of non-induced
genes scoring higher than this level. This only describes the beginning of the twilight
zone.

In this paper, we want to locate twilight zones. More precisely, for any set of
genes with similar score, we want to estimate how many genes are induced. This
is equivalent to reconstructing the mixture at this score level. Our approach is
based on a FDR estimating method introduced by Tusher, Tibshirani, and Chu
(2001). The paper is organized as follows. We extend the common FDR in a bin-
wise manner. In a simulation study we apply the new method on various stages of
sparsity and compare the estimated to the true mixture.

2 Bin-wise False Discovery Rate

Given a microarray experiment with samples from two classes A and B, we assign a
score measuring the difference in mean gene expression to each gene. A commonly
used nonparametric score is Wilcoxon’s ranksum score. For this score, we want
to reconstruct the mixture of score distributions resulting from induced genes and
from non-induced genes. The mixture consists of the two score distributions and a
mixing parameter, i.e. the fraction of induced genes among all genes.

Classical approaches of separation, like estimating mixture models, require know-
ledge of underlying distribution functions. A method that does not need this infor-
mation can be constructed from the FDR concept. In a multiple testing situation
and a fixed rejection area, the FDR estimates the proportion of genes that are falsely
called induced among all genes called induced (Benjamini and Hochberg (1995),
Storey (2001)). If the random variable R denotes the number of positive outcomes
(genes called “induced”) and V' denotes the number of false positive outcomes then
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the FDR is defined as their expected ratio:

)% .
rpRr— LR A=, (1)
0 it R=0.

The proper definition of FDR gives rise to discussion (see Storey (2001)). It is
more intuitive not to consider the expected ratio of the two random variables but
the ratio of the expectation of V' and the (positive) observation r of R, which results
in a conditional FDR:

FDRgong = % (2)

In the following the term FDR refers to its conditional definition.

The observed number r of positive outcomes depends on the choice of rejection
rules. Typically, genes which score above or below given thresholds are called in-
duced. This means rejection areas correspond to extremal scores. For example, if
the choice of a threshold yields a FDR of 0.05, we expect 5% falsely called induced
genes among the set of genes exceeding the threshold. In addition we expect 95% of
the rejected genes to be truly induced. Thus we can reconstruct the mixture score
distribution of induced and non-induced genes for an extremal rejection area. Note
that the FDR is not a property of a single score level, but a property of the whole
list of rejected genes.

Although extremal rejection areas are natural and intuitive in a multiple test
setting, non extremal rejection areas are the basis of our method. We define rejection
areas such that genes are called induced if they fall into a specific score interval (bin).
Clearly the concept of FDRs is flexible enough to calculate a bin-wise FDR, which
leads to an estimate of the fraction of induced genes in a certain bin. Hence for this
bin the FDR reconstructs the mixture. Putting together results from many bin-wise
FDRs we obtain the global reconstruction of the mixture score distribution.

The FDR estimator as given in Tusher et al. (2001) is based upon class permu-
tation: For each permutation the number of scores exceeding a given threshold is
calculated. Their median number is divided by the total number of rejected genes.
This ratio multiplied by an estimate of the overall fraction of non-induced genes
is the estimated FDR. The procedure can be interpreted as an empirical Bayes
approach, where the estimated fraction is the prior probability that a gene is non-
induced. The commonly used estimate for this prior probability as given in Tusher
et al. (2001) is the number of observed scores contained in a quantile interval of all
permutation scores, say between the 25% and 75% quantile, divided by its expected
number, here 50% of all genes. To estimate a probability its upper bound is set to
1. In case of large twilight zones the interval above contains many induced genes
and the method overestimates the overall amount of non-induced genes.

To obtain a bin-wise FDR we divide the range of scores into bins and define each
bin separately as a rejection area, i.e. a gene is called induced if its score is contained
within the bin. The estimator of the overall probability of non-induced genes is kept
as described above. For each bin we obtain an estimated percentage of non-induced
genes and by subtracting it from 1, we also get an estimated percentage of induced
genes. Hence, we reconstruct the mixture for this bin. Putting these results together
yields a separation of two previously mixed score distributions. Of course the two
distributions are discrete due to the binning and hence only approximations of the
true score distributions. Table 1 contains the estimation algorithm in detail.
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Table 1: Bin-wise FDR algorithm.

1. For each gene g calculate the observed Wilcoxon ranksum score W,
and k permutation scores ng (i = 1,...,k) using class permuta-
tion.

2. Choose an appropriate binning procedure and divide the range of
scores into b disjoint bins B; (j =1,...,b).

3. Calculate lower and upper quartiles ¢ o5 and ¢ .75 of all permutation
scores. Estimate the prior probability my that a gene is non-induced

as: #{g: W, € [q.257CI.75]}) '

= in 1

o = < " 0.5 - number of genes

4. For each bin B; estimate the bin-wise false discovery rate F'DR;
as:

linp o+ Wo € B

#{9: W, € Bj}

F /D?%j estimates the percentage of non-induced genes and 1—F mj
estimates the percentage of induced genes in bin B;.

3 Simulation study

We use simulated data to evaluate the performance of our method. The simulation
is constructed such that we obtain log expression values for samples in two classes
where a subset of genes is induced in one class. The advantage of simulated data is
the knowledge of the true score distributions. We evaluate our method by comparing
the estimated to the true binned mixture at several levels of sparsity.

Simulated data should reflect two characteristic features of real data: 1) Each
gene has a characteristic gene profile across samples and 2) groups of genes are
correlated because they act in pathways, a property Storey and Tibshirani (2001)
called “clumpy dependence”. The first criterion is obtained by randomly drawing a
master expression value for each gene from a lognormal distribution with parameters
Hiogn = 1.5 and o9y, = 0.3. For each gene in each sample we add an individual
standard normal error term. The clumpy dependence is simulated as in Storey and
Tibshirani (2001): We randomly divide the genes into blocks of 50 and add the
same standard normal error term to all genes in a block.

No gene is induced so far. We simulate induced genes by randomly selecting a
percentage m of genes and adding individual mean offset terms p for all samples
in the first class. The parameter m gives the proportion of induced genes and is
connected to the prior probability mg in Table 1 via @ = 1 — mp. The mean offset
terms p are normally distributed according to N(u,o) with o = 0.2. Table 2
contains all simulation parameters.

We choose the induction offset p to be small (1 = 0.5) and intermediate (p =
0.7). The higher it is, the less overlapping are the score distributions. With a high
offset © = 1, the induced scores form a small “hill” easily separable by eye from
the bulk of non-induced genes (cp Figure 1 left). With decreasing u the problem
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Table 2: Simulation parameters.

No. of genes: 1000
No. of samples per class: 30
No. of permutations: 5000
No. of bins: 20
Prior percentage : 5, 15, 25, 50%
Mean induction offset u: 0.5, 0.7

0.006
0.006

Density
0.004
0.004

0.002
Density

0.002

0.000
0.000
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Figure 1: Densities of 10000 Wilcoxon scores derived from simulation
models with 7 = 0.05, ;= 1 (left) and 7 = 0.15, p = 0.5 (right).

becomes more interesting: The induced scores approach the mode of the overall
score distribution. They are hidden in a twilight zone only recognizable as a subtle
elevation in the otherwise symmetrical score distribution (cp Figure 1 right with
u=0.5).

The borders of the 20 bins are not chosen equidistantly but such that each bin
contains approximately 5% of the genes: We compare the observed scores to each
set of permutation scores and find a suitable division. The final borders are then
given as the median borders of all comparisons. Therefore, the binning depends
on the parameter combination but is fixed for each set of observed scores and their
corresponding permutation scores.

Each parameter combination is repeated 20 times, resulting in 20 estimates of
the proportion of non-induced genes for every bin. In simulations, we know which
genes are induced and can therefore know the 20 true proportions for every bin. For
each simulation we calculate the mean squared difference between the estimated and
the true proportions over all bins and finally combine the 20 simulations by taking
the average (and standard deviation). The result is one averaged error value for each
parameter combination (,u). Table 3 shows the averaged mean squared estimation
errors and their standard deviations. There is no observable dependence between
estimation error and induction offset p. That means, the estimator’s performance
does not degrade when twilight zones occur. The errors increase slightly with in-
creasing proportion m but are not distinguishable with respect to their standard
deviations.

An example of a reconstructed mixture is shown in Figure 2. Each step in the
stairplot corresponds to a bin. The height of each step denotes the percentage of
non-induced genes in that bin. The dashed black line gives the mean true percentage
and the solid green line the mean estimated percentage, both averaged over simula-
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Table 3: Mean and standard deviation (in parentheses) of mean squared
estimation errors.

™ =05 p=0.7

5% 0179 (.0046) .0212 (.0065)
15% .0220 (.0086) .0257 (.0085)
25% 0236 (.0062) .0210 (.0071)
50% .0446 (.0142) .0305 (.0093)
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Figure 2: Stairplot of reconstructed mixture from 20 simulations with
m = 15%, u = 0.5. Dashed black line gives mean true percentage of
non-induced genes, solid green line gives corresponding estimate. Each
step denotes a bin.

tions and truncated at 100%. In this case with rather wide twilight zone (u = 0.5)
the bin-wise FDR performs well but overestimates the true percentage slightly in
a score range between 950 and 1000. The overestimation is due to the estimator’s
conservative character because it underestimates the percentage of induced genes.
The underestimation increases with increasing twilight zones. Figure 3 shows re-
constructed mixtures for a model with 50% induced genes for the hard problem
# = 0.5 and the intermediate problem p = 0.7. For p = 0.5 the bin-wise FDR
reconstructs the percentage curve in shape but underestimates the percentage of
induced genes for every bin. This is due to the strong underestimation of m, here
7 ~ 41%. As mentioned above the problem arises in case of weak induction. With
higher induction (¢ = 0.7) the estimator as given in Table 1 performs well, here
7~ 49% (cp Figure 3).

4 Discussion

In case of weak induction the scores for differential gene expression of induced
genes are hidden among scores of non-induced genes in rather wide twilight zones.
The situation of overlapping score distributions can be observed in real microarray
experiments. We cannot assign the labels “induced” or “non-induced” to genes in a
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Figure 3: Stairplots of reconstructed mixtures from 20 simulations with
m = 50%, p = 0.5 (left) and p = 0.7 (right). For explanations see
Figure 2.

twilight zone but can estimate the probability that a gene is induced given its score
is contained within that zone.

We introduced the bin-wise FDR method to separate two overlapping score
distributions by estimating their proportions after binning and evaluated its per-
formance in a simulation study. The estimator performs well and does not degrade
with respect to its mean estimation error when the two distributions share a wide
overlapping region. Our estimator is based upon the FDR estimator given in Tusher
et al. (2001) which involves an estimator for the prior probability that a gene is non-
induced. This estimator is sufficient in cases of high induction but overestimates the
probability of non-induced genes when many genes are only slightly induced. The
improvement of the prior estimation as well as the application to real microarray
data are topics of future research.

The bin-wise FDR results in a discretized estimation of mixture probabilities
due to the chosen binning. We can yield smoother estimates by narrowing down
the bin width or taking advantage of other distributional features like empirical
distribution functions or empirical quantiles. However, an appropriate model for
the null distribution, i.e. score distribution of non-induced genes, is needed. Again,
we may use permutations to overcome this problem.
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