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Chapter 1

Introduction

With the overwhelming growth of biological sequence databases, handling of these
amounts of data has increasingly become a problem. Protein sequences constitute
one such data type. The number of unique entries in all protein sequence databases
together exceeds now more than half a million. However, biological evolution lets
proteins fall into so-called families, thus imposing a natural grouping. A protein
family contains sequences that are evolutionarily related and/or share a common
three-dimensional fold. Generally, this is reflected by sequence similarity. Therefore,
one aims at organizing the set of all protein sequences into clusters based on their
sequence similarity.

Clustering a large set of sequences as opposed to dealing only with the individual
sequences offers several advantages. A frequent problem is the identification of
sequences that are similar to a new query sequence. This task can be executed
much quicker when only one comparison to an entire cluster has to be performed
rather than one comparison per database sequence. Another important application
lies in the possibility of analyzing evolutionary relationships among the sequences in
a cluster and of the species they come from. Moreover, the presence or absence of
sequences of a group of species can give useful information about their evolutionary
relationship, if their complete set of protein sequences is known. Additionally, a
clustered protein sequence database can be used for selecting candidates for protein
structure analysis. Structural Genomics tries to determine the structure of as many
interesting proteins as possible. To cover the range of all proteins, it is desirable to
choose as new candidates for structure resolution proteins not too similar to those
whose structure is already known. Based on a clustering on the sequence level one
can select proteins from clusters without a known structure.

The aim of clustering protein sequences is to get a biologically meaningful parti-
tioning. One of the simplest well-studied and computationally cheap methods to
construct a clustering of data points is single linkage clustering. Starting with the
pair of data points of least distance, one incrementally merges single data points



or already existing clusters. Such a hierarchical clustering can be viewed as a tree.
The leaves represent the individual data points, while the root of this tree corre-
sponds to just one large cluster representing the whole data set. All other layers in
between can be seen as cluster sets at different levels of similarity. However, it is
not clear which layers give a meaningful partitioning of the data. They should be
chosen so that they neither produce small trivial clusters nor form huge clusters.

Several approaches already deal with the problem of partitioning a protein sequence
database into protein families. Automatically generated cluster sets like ProtoMap
[Yona et al., 2000] or CluSTr [Kriventseva et al., 2001] typically provide a hierarchal
classification at several, somehow arbitrary, different levels of similarity. Others, like
ProClass [Huang et al., 2000] include further knowledge, e.g., from domain based
classifications, or require manual interaction.

In this thesis, we present several methods to automatically partition large protein
sequence databases. None of them requires any manual interaction.

Starting from an iterative database search method, called SYSTERS for “SYS-
TEmatic Re-Searching”, we first derive a set-theoretical clustering method (SYS-
TERS 1) which runs completely automatic without manual interaction, but requires
a static cutoff value. SYSTERS 2 changes the set-theoretical view of the data into
a graph-based approach. Here, our emphasis lies on improving the quality of the
input data, i.e., the pairwise distances of the sequences. Based on these data, a
single linkage clustering at a static cutoff is applied.

The SYSTERS 3 approach first exploits the branching structure of the single link-
age tree. It employs the self-structuring properties of the data to find a reasonable
partitioning into superfamily and family clusters without relying on an arbitrarily
chosen cutoff value. Traversing the tree from a leaf towards the root we inspect
the sizes of the merging subtrees. First, one notices relatively small increases that
correspond to very similar proteins. Later on, sequences merging in correspond to
weakly related proteins. At one point, however, we observe an enormous increase in
the size of the subtree, where a large part of the database merges in. All sequences
below this point in the tree are assumed to belong to the same superfamily. Each
superfamily typically covers several closely related protein families. They can be de-
termined by revealing the connectivity of the sequences belonging to a superfamily.
Since the single linkage tree is built using only the smallest distances connecting
subtrees, information about the connectivity within these subtrees is lost in the
hierarchy. For each superfamily, we construct a threshold graph by including only
those nodes labeled with sequences belonging to the respective superfamily. These
graphs are then split at reasonable cut sites into highly connected subclusters. The
SYSTERS 3 procedures run fully automatic without any manual interaction by the
user. By exploring the internal structure created by the data itself, this approach
is completely independent of any cutoff value.

Up to that point, the hierarchy consists of superfamily and family clusters. However,
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protein sequences are built up of smaller entities, called domains. They again can
be grouped independently of a certain order in a protein sequence. For this level we
currently rely on one of the established domain databases, i.e., the Pfam database
[Bateman et al., 2000]. To allow the user to explore protein sequence space through
the complete hierarchy, we present an interface to our cluster set on the Internet.
It is possible to enter the hierarchy at each of the layers through various entry
points and change to another layer whenever desired. Additional information like a
multiple alignment or a phylogenetic tree is given for each of the family clusters.

The SYSTERS 3 cluster set includes all publicly available protein sequences from
the Swiss-Prot (Rel. 39), TrEMBL (Rel. 13), and PIR (Rel. 65) databases. Due
to the availability of completely sequenced eukaryotic genomes, new questions can
be asked on this subset of the sequences. Thus, in the second part of the thesis
we focus on a specific biological question, namely the reconstruction of vertebrate
phylogeny. To test different hypotheses about large scale gene and/or genome
duplication events on the way to the vertebrates, one primarily depends on well-
separated vertebrate gene families having only one representative apiece in the
invertebrates. Our cluster set is based on the predicted proteins from the com-
pletely sequenced genomes of Drosophila melanogaster, Caenorhabditis elegans,
and Saccharomyces cerevisiae. In contrast to other approaches, we developed a
procedure to automatically include also still-incomplete protein sequence sets from
several other genomes, i.e., the vertebrates human, mouse, rat, lamprey, and hag-
fish, and the cephalochordate amphioxus. The resulting cluster set (called COPSE
for “Clusters of Orthologous and Paralogous SEquences”) turns out to be a useful
basis for reconstruction of vertebrate phylogeny as well as for functional annota-
tions.

1.1 Overview

Chapter 2 briefly reviews the biological background of this work. We introduce
the protein sequence databases comprising the underlying data and recall other
approaches focusing on the problem of protein sequence clustering.

Chapter 3 introduces sequence comparison methods leading to currently available
database search methods. Section 3.4 addresses our iterative SYSTERS database
search method.

Chapter 4 presents the different procedures developed for clustering large protein
sequence sets. Section 4.2 describes our set-theoretical clustering approach em-
ploying the aforementioned SYSTERS database search method. Section 4.3 pri-
marily focuses on improving the quality of the input data, i.e., the pairwise distances
of the sequences. Based on the pre-processed data, a single linkage clustering is
applied. Section 4.4 introduces the procedures on hierarchically sorting the protein
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sequences into superfamily and family clusters guided by the internal structure of
the underlying single linkage tree.
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Chapter 2

Preliminaries

2.1 Biological Background

Since we can only give a brief overview of the biological background as a prerequisite
for this work the reader should refer to, e.g., Molecular Biology of the Cell [Alberts
et al., 1994] or Protein Evolution [Patthy, 1999] for more detailed descriptions of
the biological processes involved.

2.1.1 The Central Dogma of Molecular Biology

Chromosomes are huge DNA molecules containing many genes, the basic physical
and functional units of heredity. A gene is a specific sequence of nucleotide bases;
genes carry the information required for constructing proteins. Human genes vary
widely in length, often extending over thousands of bases, but only about 10% of the
genome is known to code for protein sequences (exons). Interspersed within many
genes are intron sequences, which have no coding function. The genome is thought
to consist of other noncoding regions (such as control sequences and intergenic
regions), whose functions are not yet fully understood. All living organisms contain
multitudes of proteins.

The concept of transcribing DNA into RNA and translating RNA into protein is
known as the central dogma of molecular biology as shown in Fig. 2.1.

For the information within a gene to be expressed, a complementary pre-mRNA
strand is produced (a process called transcription) from the DNA template in the
nucleus. This pre-mRNA is further processed and modified in the nucleus into
MRNA. The mRNA is moved from the nucleus to the cellular cytoplasm, where it
serves as the template for protein synthesis. The protein-synthesizing machinery
of the cell then translates the codons into a string of amino acids.
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In the laboratory, the mRNA molecule can be isolated and used as a template to
synthesize a complementary DNA (cDNA) strand, which can, after several further
processing steps, be sequenced.

L Transcription Translation
Replication /\A /\
DNA RNA Protein

Reverse

Transcription

Figure 2.1: The central dogma of molecular biology.

2.1.2 DNA

Deoxyribonucleic Acid (DNA) molecules are built of nucleotide bases arranged along
a sugar-phosphate backbone (with deoxyribose as sugar) in a particular order (se-
quence). DNA contains four such nucleotide bases: adenosine (A) and guanosine
(G) are both purines, and thymidine (T) and cytidine (C) are pyrimidines. Two
DNA strands together form a double helix by hydrogen bonds between the bases
(see Fig. 2.2): adenine pairs with thymine, while cytosine pairs with guanine.

Long stretches of DNA build the chromosomes, storing the genetic information of
an organism. Large sections of chromosomes as well as single bases can be altered
or shifted. This leads to changes in some of the genes on them and in the protein
sequence they code for.

There are several kinds of chromosomal mutations:

e Translocations involve the exchange of large segments of DNA between two
different chromosomes.

e /nversions occur when a region of DNA changes its orientation with respect
to the rest of the chromosome.

e Sometimes large regions of a chromosome are deleted.

e Chromosomes can be sorted unequally in cell division into the two daughter
cells and one of the cells will end up with more or less of the DNA. This is
called a chromosome non-disjunction.
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Figure 2.2: The DNA double helix.
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The most important problem with chromosomal rearrangements is that the chro-
mosome may lose the ability to segregate properly during cell division, causing a
chromosomal non-disjunction. When a new cell gets less or more than its usual
share of DNA, the expression level of the corresponding genes will differ.

Point Mutations are single base pair changes:

e A nonsense mutation creates a stop codon where none previously existed.
This shortens the resulting protein, possibly lacking essential regions.

e A missense mutation triggers a change in the resulting protein sequence,
which might alter the shape or properties of the protein.

e A silent mutation has no effect on the protein sequence.

2.1.3 From DNA to RNA

RNA (Ribonucleic Acid) has the same primary structure as DNA. It consists of a
sugar-phosphate backbone, with nucleotides attached to the 1’ carbon of the sugar
(ribose). The differences between DNA and RNA are:

1. RNA has a hydroxyl group on the 2’ carbon of the ribose.

2. Instead of using the pyrimidine thymine, RNA uses another pyrimidine called
uracil (U).

3. Because of the hydroxyl group on the 2’ carbon of the ribose, RNA is too bulky
to form a stable double helix and thus exists as a single-stranded molecule.
However, regions of double helix can form where there is some base pair
complementation (U and A, G and C), resulting in hairpin loops. The RNA
molecule with its hairpin loops is said to have a secondary structure.

4. In addition, because the RNA molecule is not restricted to a rigid double
helix, it can form many different tertiary structures. Each RNA molecule, de-
pending on the sequence of its bases, can fold into a stable three-dimensional
structure.

There are several different kinds of RNA:

messenger RNA (mRNA) is a copy of a gene and has a sequence complementary
to one strand of the DNA thus, after several processing steps, representing
the coding sequence of the other strand. The mRNA acts as a messenger
to carry the information stored in the DNA in the nucleus to the cytoplasm
where the ribosomes can translate it into protein.
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transfer RNA (tRNA) is a small RNA that has a very specific secondary and tertiary
structure such that it can bind an amino acid on one side, and mRNA on the
other side. It acts as an adaptor to carry the amino acid elements of a protein
to the appropriate place as coded for by the mRNA.

ribosomal RNA (rRNA) is one of the structural components of the ribosome. It
has sequence complementarity to specific regions of the mRNA. Thus, the
ribosome knows where to bind to an mRNA to start the translation into a
protein.

small nuclear RNA (snRNA) is involved in the machinery that processes RNAs as
they travel between the nucleus and the cytoplasm.

2.1.4 From RNA to Protein

Proteins are built up of 20 different amino acids (see Table A.1) that can be
arranged in any order to make a polypeptide of up to thousands of amino acids
long. Amino acids vary significantly in size and their physical and chemical properties
(see Table A.2). This variety allows proteins to function as specific enzymes that
compose a cell’'s metabolism as well as for structural elements of the cell. Each
amino acid is specified by particular combinations of three nucleotides in DNA (and
also in RNA), called a codon (see Table A.3). Within a gene, small deletions or
insertions of a number of bases not divisible by three will result in a frameshift.

The amino acids are linked linearly through peptide bonds. The order of the amino
acids is called the primary structure of the protein. Regular hydrogen-bond interac-
tions within contiguous stretches of the polypeptide chain give rise to alpha helices
and beta sheets, which constitute the protein’s secondary structure. Certain com-
binations of alpha helices and beta sheets pack together to form compactly folded
globular units, each of which is called a protein domain. Domains are usually built
up from a section of the polypeptide chain that contains between 50 and 350 amino
acids, and they seem to be the modular units from which proteins are constructed.
While small proteins may contain only a single domain, larger proteins often consist
of a number of domains, which are connected by a polypeptide chain of variable
length. The tertiary structure of a protein is the full 3-dimensional folded struc-
ture of the polypeptide chain. The quaternary structure is only present if there is
more than one polypeptide chain. The joining of two or more proteins together
gives a protein complex. The various levels of organization of proteins are shown
in Figure 2.3.
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Primary protein structure
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Figure 2.3: Primary, secondary, tertiary, and quaternary protein structure.
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2.1.5 Protein Evolution

Cells have genetic mechanisms that allow genes to be duplicated, modified, and
recombined in the course of evolution. Consequently, once a protein with use-
ful properties has evolved, its basic structure can be incorporated in many other
proteins.

Gene duplication

Proteins of different but related function in present-day organisms often have sim-
ilar amino acid sequences. Such families of proteins are believed to have evolved
from a single ancestral gene that duplicated in the course of evolution to give rise to
other genes in which mutations gradually accumulated to produce related proteins
with new functions. In many cases the amino acid sequences have highly diverged,
so that one cannot be sure of a family relationship between two proteins without
determining their three-dimensional structures. The various members of a large
protein family will often have distinct functions. Some of the amino acid changes
that make these proteins different were no doubt selected in the course of evolution
because they resulted in changes in biological activity, giving the individual family
members the different functional properties that they have today. It is not surpris-
ing, then, that cells contain whole sets of structurally related polypeptide chains
that have common ancestry but different functions.

Two or more proteins can be joined together by non-covalent interactions between
them, producing a protein complex with new binding properties. This combining of
proteins to make larger, functional protein assemblies is common. Other amino acid
changes are likely to be “neutral”, having neither a beneficial nor a damaging effect
on the basic structure and function of the protein. Since mutation is a random
process, there must also have been many deleterious changes that altered the
three-dimensional structure of these proteins sufficiently to inactivate them. Such
inactive proteins would have been lost whenever the individual organisms making
them were at enough of a disadvantage to be eliminated by natural selection.

Domain combination

An alternative way of making a new protein from existing chains is to join the cor-
responding DNA sequences to make a gene that encodes a single large polypeptide
chain — a process called domain shuffling (see Figure 2.4). Proteins in which differ-
ent parts of the polypeptide chain fold independently into separate globular domains
are believed to have evolved in this way, perhaps after existing for a prolonged period
as a protein complex formed from separate polypeptides. Many proteins have such
“multidomain” structures, and, as might be expected from evolutionary consider-
ations, the binding sites for substrate molecules frequently lie where the separate
domains are juxtaposed.
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Figure 2.4: Domain shuffling. An extensive
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Domain duplication

Another way of reutilizing an amino acid sequence is especially widespread among
long fibrous proteins such as collagen. In these cases a structure is formed from
multiple internal repeats of an ancestral amino acid sequence. Constructing new
proteins by joining preexisting genes or exons is clearly a much more efficient strat-
egy for a cell than deriving new protein sequences from scratch by random DNA
mutation.

Alternative splicing

Each exon in a eukaryotic gene encodes a portion of a protein. By differently
choosing the exons of a gene, different versions of mMRNA and ultimately, different
proteins can be produced. The mechanism of processing one pre-mRNA into a
specific mRNA is called splicing. Recent studies estimate that about 38% of human
genes undergo alternative splicing [Brett et al., 2000]. Although the human genome
is estimated to comprise only about 30,000 protein coding genes [International
Human Genome Sequencing Consortium, 2001], at least 100,000 different kinds of
proteins can be synthesized due to alternative splicing.

2.1.6 Functional Annotation by Sequence Comparison

The development of techniques for rapidly sequencing DNA molecules has made
it possible to determine the amino acid sequences of many thousands of proteins
from the nucleotide sequences of their genes. Rapidly growing protein databases
are therefore available that biologists routinely scan by computer to search for
possible sequence homologies between a newly sequenced protein and previously
studied ones. Although sequences have yet to be determined for all of the pro-
teins in eukaryotic species, it is common to find that a newly sequenced protein is
homologous to some other, known protein over part of its length, indicating that
most proteins may have descended from relatively few ancestral types.
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Protein sequence comparisons are important because similar sequences often im-
ply similar structures and thus related functions. Many years of experimentation
can be saved by discovering an amino acid sequence homology with a protein of
known function. The discovery of domain homologies can also be useful in another
way. It is much more difficult to determine the three-dimensional structure of a
protein than to determine its amino acid sequence. The conformation of a newly
sequenced protein domain can be guessed if it is homologous to a domain of a pro-
tein whose conformation has already been determined by x-ray diffraction analysis.
By assuming that the tertiary structure of the polypeptide chain will be conserved
in the two proteins despite discrepancies in amino acid sequence, one can often
sketch the structure of the new protein with reasonable accuracy. Many new pro-
tein sequences are being added to the database each year, each one increasing the
chance of finding useful homologies. Protein-sequence comparisons have therefore
become a very important tool in cell biology.

2.2 Protein Databases

The list of databases given below is far from complete, but is meant to give an
overview on some of the databases mentioned later on in this thesis.

Protein databases can mainly be sorted into the following categories:

e Protein databases contain information about single proteins, either focusing
on structural properties or the raw sequence.

e Domain databases provide the classification and information about domains
or motifs found in several distinct proteins.

e Protein family databases are focusing on the classification of full-length pro-
teins, either based on structure or on sequence information.
2.2.1 Protein Databases

Figure 2.5 shows the growth of the three major protein sequence databases from
their first release to October 2001.

Swiss-Prot and TrEMBL

Swiss-Prot [Bairoch and Apweiler, 2000] is a curated protein sequence database
which strives to provide a high level of annotation (such as the description of
the function of a protein, its domain structure, post-translational modifications,
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variants, etc.), a minimal level of redundancy and high level of integration with
other databases.

TrEMBL (Translated EMBL) [Bairoch and Apweiler, 2000] is a computer-annotated
supplement to Swiss-Prot. It consists of entries in Swiss-Prot-like format derived
from the translation of all coding sequences (CDSs) in the EMBL Nucleotide Se-
quence Database [Stoesser et al., 2001], except the CDSs already included in Swiss-
Prot.
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Figure 2.5: Growth of the Swiss-Prot, TrEMBL, and PIR protein sequence
databases. The plot starts in April 1979 with 19 sequences in the PIR database. For
better readability the number of sequences (y-axis) is shown on a logarithmic scale.
Due to manual interaction in the creation of the Swiss-Prot database, its growth
rate is significantly smaller than the one of TrEMBL. Since the TrEMBL database
contains all translated CDSs from the EMBL nucleotide database, it reflects the
actual growth of the sequence databases during the last months.

PIR

The Protein Information Resource (PIR)-International Protein Sequence Database
[Barker et al., 2001] is the largest publicly distributed and freely available pro-
tein sequence database. It is an annotated and non-redundant protein sequence
database.
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PDB

The PDB (Protein Data Bank) [Westbrook et al., 2002] is an archive of experimen-
tally determined three-dimensional structures of biological macromolecules. It con-
tains atomic coordinates, bibliographic citations, primary and secondary structure
information, as well as crystallographic structure factors and NMR experimental
data.

2.2.2 Domain Databases
Pfam

Pfam [Bateman et al,, 2000] is a collection of protein families and domains and
contains multiple protein alignments and profile-HMMs of these families. It is a
semi-automatic protein family database, which aims to be comprehensive as well
as accurate.

PROSITE

PROSITE [Hofmann et al., 1999] is a database of protein families and domains. It is
based on the observation that some regions of a protein have been better conserved
than others during evolution. By analyzing the constant and variable properties of
such regions of similar sequences, it is possible to derive a so called signature (or
pattern) for a protein family or domain. It distinguishes its members from all other
unrelated proteins. A protein signature can be used to assign a newly sequenced
protein to a specific family of proteins and thus to formulate hypotheses about its
function. PROSITE currently contains signatures specific for about a thousand
protein families or domains. Each of these signatures comes with documentation
providing background information on the structure and function of these proteins.

PRINTS

PRINTS [Attwood et al., 2000] is a compendium of protein fingerprints. A fin-
gerprint is a group of conserved motifs used to characterize a protein family; it is
refined by iterative scanning of OWL [Bleasby et al., 1994]. Usually the motifs do
not overlap, but are separated along a sequence. Fingerprints can encode protein
folds and functionalities more flexibly and powerfully than can single motifs: the
database thus provides an adjunct to PROSITE.
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ProDom

The ProDom [Corpet et al., 2000; Gouzy et al., 1997] protein domain database
consists of an automatic compilation of homologous domains. The current versions
of ProDom are built using a procedure based on recursive PSI-BLAST searches
[Gouzy et al., 1999].

SMART

SMART (a Simple Modular Architecture Research Tool) [Schultz et al., 1998]
allows the identification and annotation of genetically mobile domains and the
analysis of domain architectures. More than 500 domain families found in signaling,
extracellular and chromatin-associated proteins are detectable. These domains are
extensively annotated with respect to phylogenetic distributions, functional class,
tertiary structures and functionally important residues. Each domain found in a non-
redundant protein database as well as search parameters and taxonomic information
are stored in a relational database system. User interfaces to this database allow
searches for proteins containing specific combinations of domains in defined taxa.

InterPro

InterPro (Integrated Resource of Protein Families, Domains and Sites) [Apweiler
et al., 2000] is an integrated documentation resource for protein families, domains
and sites, developed initially as a means of rationalizing the complementary efforts
of the PROSITE, PRINTS, Pfam, ProDom, and SMART database projects. Each
combined InterPro entry includes functional descriptions and literature references,
and links are made back to the relevant member databases. InterPro aims to reduce
duplication of effort in the labour-intensive, rate-limiting process of annotation.

2.2.3 Protein Family Databases

The concept of protein family has a straightforward application to small and medium-
sized proteins that are built of just one domain. Large proteins, however, are often
built of several domains that are usually not homologous to one another but are of-
ten homologous to domains found in other quite different proteins. Proteins of this
kind can best be described as being built of components that come from different
families of protein domains.

Most current proteins are thought to be the descendants of no more than 1,000
ancestors. The process by which these descendants were produced involved gene
duplications followed by mutations and, for large proteins, gene fusion [Chothia,
1994].
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We will describe some approaches in clustering whole protein sequences. A review
of currently available cluster sets can be found in [Heger and Holm, 2000].

PIR

Margaret O. Dayhoff introduced the term protein superfamily in 1974 [Dayhoff,
1976; Dayhoff et al.,, 1974]. Since that time, the sequences in the PIR database
have been classified into protein superfamilies. Originally the term superfamily
meant a group of evolutionarily related proteins. It also has been used to refer
to a group of structurally or functionally related proteins not necessarily of com-
mon evolutionary origin. Due to the recognition of mosaic, multidomain proteins,
whose component domains appear to have had separate evolutionary histories, this
approach is no longer effective.

Nowadays sequence similarity is employed as the main criterion for partitioning pro-
tein sequence databases into independent non-overlapping groups [Barker et al.,
2001, 1996]. The concepts of superfamily and family have been generalized to
encompass any scheme for classifying proteins that partitions the proteins into hi-
erarchically nested sets. A superfamily is a union of families. Families are sets
within the superfamily hierarchy for which the members meet a threshold level of
relatedness. In the PIR database sequence homology domains are classified and the
terms superfamily and family are applied to these units of information. A homology
domain is a sequence region found in diverse proteins that is likely to be derived
from a common evolutionary ancestor. Homology domains differ from patterns or
motifs (that may be contained in them) in that they are demonstrably similar along
their entire extents as observed by multiple sequence comparison and alignment.
Generally they are greater than 50 residues in length. Homology domains may be
complex, that is, composed of more than one distinct domain. Complex domains
may be formed by coalescence of two or more originally independently evolving
domains; after concatenation, the domains evolve as a unit. Domains not com-
posed from other identifiable domains are called simple domains. The domain that
represents the entire protein is called the homeomorphic domain. Two proteins
belong to the same homeomorphic superfamily when they show homology over the
length of their entire sequences; hence, two members of the same homeomorphic
superfamily contain the same homology domains in the same order. Within a ho-
mology domain superfamily, more closely related domains are grouped into families.
For practical reasons domains are placed into the same protein family if they show
at least 50% sequence identity. Partitioning of the families and superfamilies is
achieved by treating homology domains containing overlapping regions indepen-
dently; in other words, complex domains and the simple domains from which they
are composed are separately classified and treated as independent entities. A ho-
mology domain is defined by constructing a multiple alignment of the proposed
homologous segments (e.g. found by a database search tool like FASTA). When
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refining and evaluating such an alignment, other information, such as the identity
and location of known functional residues, is also considered.

PIR-ALN [Srinivasarao et al., 1999a,b] is a database of curated and annotated
protein sequence alignments derived from the PIR database. Alignments fall into
the following three categories: family alignments include sequences that are less
than 55% different from each other, superfamily alignments contain sequences from
different families, and homology domain alignments contain homologous segments
from different proteins.

ProtFam [Mewes et al.,, 2000] is a curated database of homology clusters (pro-
tein superfamilies, protein families and homology domains) and part of the PIR
database.

ProClass [Huang et al., 2000] is a protein family database that organizes non-
redundant sequence entries into families defined collectively by PIR superfamilies
and PROSITE patterns. By combining global similarities and functional motifs into
a single classification scheme, it helps to reveal domain and family relationships and
classify multidomain proteins.

ProtoMap

ProtoMap [Yona et al., 2000, 1999, 1998] offers a classification of all the sequences
in the Swiss-Prot and TrEMBL database into groups of related proteins. Sev-
eral common measures of similarity between protein sequences (Smith-Waterman,
FASTA, BLAST) are combined with two different scoring matrices (BLOSUM50
and BLOSUMG62) to create an exhaustive list of neighboring sequences for each
sequence in the database. These lists induce a representation of the protein space
as a (weighted directed) graph whose nodes are the sequences. The weight of an
edge connecting two sequences represents their degree of similarity. Clusters of
related proteins correspond to strongly connected components of this graph. The
analysis starts from a very conservative classification, based on highly significant
similarities, that consists of many classes. Subsequently, classes are merged to
account for less significant similarities. The process is repeated at varying con-
fidence levels, where at each step the algorithm is applied on the classes of the
previous classification, to obtain the next one, at the more permissive threshold.
Consequently, a hierarchical organization of all proteins is obtained.

CluSTr

The CluSTr (Clusters of Swiss-Prot+TrEMBL proteins) database [Kriventseva
et al., 2001] offers an automatic classification of Swiss-Prot and TrEMBL proteins
into groups of related proteins. The clustering approach is based on two steps.
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First, a similarity matrix of “all-against-all” comparisons of the protein sequences
is built. The similarity matrix is computed using the Smith-Waterman algorithm.
A Monte-Carlo simulation, resulting in a Z-score is used to estimate the statistical
significance of similarity between potentially related proteins. Second, clusters are
built using a single linkage algorithm for different levels of protein similarity. Only
clusters which contain more than one protein are presented in the database. The
LASSAP package [Glémet and Codani, 1997] is used to calculate similarities and
to build clusters.

CLICK

The clustering algorithm CLICK (CLuster Identification via Connectivity Kernels)
[Sharan and Shamir, 2000] was originally developed for the grouping of genes with
similar expression patterns into clusters, but is applicable as well to other biological
clustering problems. The algorithm uses graph-theoretic and statistical techniques
to identify tight groups of highly similar elements (kernels), which are likely to
belong to the same true cluster. Several heuristic procedures are then used to
expand the kernels into the full clustering. CLICK has been implemented and
tested on a variety of biological datasets, ranging from gene expression, cDNA
oligo-fingerprinting to protein sequence similarity.

SCOP

The SCOP (Structural Classification of Proteins) database [Conte et al., 2000]
provides a description of the relationships of known protein structures. Proteins are
classified to reflect both structural and evolutionary relatedness. The hierarchical
classification has three levels: the first two levels (family and superfamily) describe
near and distant evolutionary relationships; the third (fold) describes geometrical
relationships. The exact position of boundaries between these levels are to some
degree subjective. The evolutionary classification is generally conservative: where
any doubt about relatedness exists, there is no division at the family and superfamily
levels.



Chapter 3

Database Searching

Searching a sequence database with a query sequence looking for homologues has
become a routine operation in molecular biology. Protein or nucleotide sequences
which share a common ancestor are said to be homologous. At some point in evolu-
tionary history, there was a single sequence, which, through processes of speciation
or gene duplication and divergence, produced the homologous sequences we see to-
day. The inference of homology is the most powerful conclusion that one can draw
from a similarity search, because homologous proteins are supposed to share similar
three-dimensional structures. In contrast, homologous proteins may have similar
structure without sharing statistically significant, or even detectable, sequence sim-
ilarity. If two proteins are not homologous, one cannot draw any conclusion about
their structural similarity, even though they may have high similarity scores. The
inference of homology can be based on sequence similarity, but the converse is not
true. Distantly related, homologous proteins need not share significant sequence
similarity. Homologous sequences are usually similar over an entire sequence or do-
main. Regions of 20-40 amino acids length that are more than 50% identical may
occur by chance. Depending on the evolutionary distance and divergence path, two
or more homologous sequences may have very few absolutely conserved residues.
However, homology is transitive: If homology has been inferred for the proteins A
and B, and for the proteins B and C, A and C must be homologous, even if they
share no significant similarity.

3.1 Sequence Comparison

To perform sequence database searches one needs at first a method to compare
sequences. Then, in a database search a given query sequence can be compared
to each of the database sequences. We will start by introducing the concept of
scoring matrices taking into account the occurrence of amino acid exchanges over
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time. They are used to score amino acid pairs. Then the basic ideas of pairwise
sequence alignments are described and further extended to the comparison of one
protein sequence against a protein sequence database.

3.1.1 Scoring Matrices

The following overview is mostly adopted from the book chapter Protein Sequence
Alignment and Database Scanning by Geoffrey Barton [Barton, 1996]:

Possibly the most widely used scheme for scoring amino acid pairs is that developed
by Dayhoff and co-workers [Dayhoff et al., 1978]. The system arose out of a general
model for the evolution of proteins. Dayhoff and co-workers examined alignments
of very similar sequences where the likelihood of a particular mutation (e.g., A
— D) being the result of a set of successive mutations (e.g., A = x =y —
D) was low. Since relatively few families were considered, the resulting matrix of
accepted point mutations included a large number of entries equal to 0 or 1. A
complete picture of the mutation process including those amino acids which did not
change was determined by calculating the average ratio of the number of changes
a particular amino acid type underwent to the total number of amino acids of that
type present in the database. This was combined with the point mutation data to
give the mutation probability matrix (M). Each element M, ; in the matrix gives
the probability of the amino acid in column / mutating to the amino acid in row j
after a particular evolutionary time, given in PAM (Percentage of Accepted point
Mutations). The mutation probability matrix is specific for a particular evolutionary
distance, but may be used to generate matrices for greater evolutionary distances
by multiplying it repeatedly by itself. When used for the comparison of protein
sequences, the mutation probability matrix is usually normalized by dividing each
element M, ; by the relative frequency of mutation of the amino acid j. This
operation results in the symmetrical relatedness odds matrix with each element
giving the probability of amino acid replacement per occurrence of j per occurrence
of /. The logarithm of each element is taken to allow probabilities to be summed
over a series of amino acids rather than requiring multiplication. The resulting
matrix is the log-odds matrix which is frequently referred to as Dayhoff’s matrix.
It is often used at a distance of close to 256 PAM since this lies near to the limit
of detection of distant relationships where approximately 80% of the amino acid
positions are observed to have changed.

The 1978 family of Dayhoff matrices was derived from a comparatively small set
of sequences. Many of the 190 possible substitutions were not observed at all and
so suitable weights were determined indirectly.

An alternative approach has been developed by Henikoff and Henikoff using local
multiple alignments of more distantly related sequences [Henikoff and Henikoff,
1992]. First a database of multiple alignments without gaps for short regions
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of related sequences was derived. Within each alignment in the database, the
sequences were clustered into groups where the sequences are similar at some
threshold value of percentage identity. Substitution frequencies for all pairs of
amino acids were then calculated between the groups and this used to calculate a
log odds BLOSUM (blocks substitution) matrix. Different matrices are obtained by
varying the clustering threshold. For example, the BLOSUM 80 matrix was derived
using a threshold of 80% identity.

3.1.2 Pairwise Sequence Alignment

A sequence alignment is a scheme of writing one sequence above another sequence,
where the residues in one vertical column (position, site) are deemed to have a
common evolutionary origin. If the same letter occurs in both sequences then this
position has been conserved in evolution. If the letters differ it is assumed that the
two derive from an ancestral letter (which could be one of the two or neither). A
letter or a stretch of letters may be paired up with dashes (corresponding to gaps)
in the other sequence to signify an insertion or deletion. Since an insertion in one
sequence can always be seen as a deletion in the other, one frequently uses the
term indel.

The following example shows a pairwise alignment of the two partial sequences
RDISLVKNAGI and RNILVSDAKNVGI:

.RDISLV---KN

AGI
.RNI-LVSDAKNUVGI
Dynamic programming forms the core of many sequence analysis tools. It finds
optimal solutions to problems by combining optimal solutions to subproblems. It
is applicable when the subproblems are not independent. There may be several
solutions that achieve the optimal result. The mathematical basis of dynamic
programming was given by Richard Bellman [Bellman, 1957]. Several methods
were independently devised during the late 1960’'s and early 1970’s for use in the

fields of speech processing and computer science.

Global Alignment (Needleman-Wunsch Algorithm)

Needleman and Wunsch [Needleman and Wunsch, 1970] introduced the dynamic
programming principle into the field of protein sequence comparison. Their algo-
rithm aligns two sequences over their entire length, which works best with closely
related sequences. The score of an alignment is equal to the sum of the matches
taken from a scoring matrix. The algorithm calculates the best global alignment of
the sequences with respect to the scoring function by exploring all possible align-
ments.
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Local Alignment (Smith-Waterman Algorithm)

The Smith-Waterman algorithm [Smith and Waterman, 1981] employs the dynamic
programming principle for computing pairwise local alignments. A local alignment
searches for regions of local similarity between two sequences and need not include
the entire length of the sequences. Local alignment methods are very useful for
scanning databases or for other circumstances where one needs to find matches
between small regions of sequences, for example between protein domains. An
implementation of the Smith-Waterman algorithm to search a sequence database
with a single query sequence is SSEARCH [Pearson, 1991]. The program LALIGN
[Huang and Miller, 1991] compares two sequences for local similarity and shows
the local sequence alignments.

3.1.3 Local Alignment Statistics

A significance question arises when comparing two sequences that are not clearly
similar, but can locally be aligned in a promising way. In such a case a significance
test can help to decide whether this alignment would be expected between related
sequences or would just as likely be found if the sequences were not related. In
database searches a so called E-value (short for Expectation value) is given for each
local alignment of the query sequence with a database sequence (also called HSP,
which is short for high scoring pair).

From Karlin and Altschul [Altschul and Gish, 1996; Karlin and Altschul, 1990], the
principal equation to compute the expectation value is:

E=KxNsxexp(—XxS)

where E is the expected number of chance occurrences of an HSP having a score
of at least S. N is the product of the query and database sequence lengths, or
the size of the search space. K and A are Karlin-Altschul parameters. A\ may be
thought of as the expected increase in reliability of an alignment associated with
a unit increase in alignment score. Reliability in this case is expressed in units of
nats, with one nat being equivalent to 1/log(2) (roughly 1.44) bits.

In contrast to the random sequence model used by Karlin-Altschul statistics, bio-
logical sequences are often short in length. An HSP may involve a relatively large
fraction of the query or database sequence, which reduces the effective size of the
2-dimensional search space defined by the two sequences. To obtain more accu-
rate significance estimates, the BLAST programs compute effective lengths for the
query and database sequences that are their real lengths minus the expected length
of the HSP, where the expected length for an HSP is computed from its score. An
effective length for the query or database sequence is not permitted to go below 1.
Thus, the effective length of either the query or the database sequence is computed
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according to the following:

A*é,l)

Lenofr = max(Len oy — v

where H is the relative entropy of the target and background residue frequencies.
The relative entropy of two probability distributions measures in some sense the
dissimilarity between them. H may be thought of as the information expected to
be obtained from each pair of aligned residues in a real alignment in comparison to
a random alignment.

The E-value of an HSP in a database search can be computed now as follows:

E = QueryLen g* DBLen gr* exp(—X * S + log K)

Thus, the lower the E-value, the more significant the score is. Typically, HSPs with
an E-value lower than 1e-20 are assumed to be relevant, while those with an E-
value being higher than 0.01 are assumed to be unrelated. Values in between belong
to the so called twilight zone, and a clear statement about relatedness cannot be
made for them.

3.2 “Simple” Database Search Methods

Programs like BLAST or FASTA compare one query sequence against a database
of sequences. They output a list of similar sequences ranked by significance of
the match. These programs are now nearly universally used for approximate local
alignment and local similarity.

3.2.1 FASTA

FASTA [Pearson et al., 1997; Pearson, 1997, 1995; Pearson and Lipman, 1988]
is a heuristic method based on the standard dynamic programming algorithm for
pairwise local (weighted) alignment. In database searching it is applied to the
query sequence and each database sequence and reports the best pairwise local
alignments.

3.2.2 BLAST

The BLAST (Basic Local Alignment Search Tool) [Altschul et al., 1990] algorithm
is a heuristic search method which approximates the results that would be obtained
by a dynamic programming algorithm. The method detects weak but biologically
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significant sequence similarities and may report several (possibly overlapping) pair-
wise local alignments.

The algorithm works as follows:

Compiling a list of high scoring neighborhood words: The list consists of all words
of length W (W-mers; typically, W = 3 in protein sequence search) that
score at least T when aligned with the query and scored with a substitution
matrix. Thus, a query word may be represented by no words in the list or by
many.

Scanning the database for hits: Search the database for all occurrences of the W-
mers by using a deterministic finite automaton or finite state machine [Mealy,
1955].

Extending hits: Extending a hit to find a high scoring segment pair (HSP) with
a score of at least S is straightforward. The process of extension in one
direction is terminated when a segment pair is reached whose score falls a
certain distance below the best score found for shorter extensions.

3.2.3 Gapped BLAST

A new criterion for triggering the extension of word hits, combined with a new
heuristic for generating gapped alignments, yields a gapped BLAST [Altschul et al.,
1997] program that runs at approximately three times the speed of the original
BLAST. The main differences to the previous BLAST program are:

e For increased speed, the criterion for extending word pairs has been modified.
The new “two-hit” method requires the existence of two non-overlapping
word pairs on the same diagonal within a distance A of one another before
an extension is invoked. To achieve comparable sensitivity, the threshold
parameter T must be lowered, yielding more hits than previously. However,
because only a small fraction of these hits are extended, the average amount
of computation required decreases.

e The ability to generate gapped alignments has been added. With this ability
in hand, it becomes necessary only to find one rather than all the ungapped
alignments subsumed in a significant result. This allows the T parameter to
be raised, increasing the speed of the initial database scan. The new gapped
alignment algorithm uses dynamic programming to extend a central pair of
aligned residues in both directions.
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3.3 “Advanced” Database Search Methods

In addition to the traditional database search tools for comparing a single sequence
against a sequence database, several other more advanced database search tools
emerged during the last years. They apply further knowledge about the query
sequence (e.g., a known motif) or the database (e.g., family based multiple align-
ments, profiles, or phylogenetic trees) to the search process, knowledge which
is either provided by the user or produced while searching (e.g., by iterating the
search). We will give only a brief overview of those methods which are mentioned
later on in the thesis. For information about other methods like Hidden Markov
Models [Krogh et al., 1994; Eddy, 1996] or “treesearch” [Rehmsmeier and Vingron,
2001], we refer the reader to the respective literature.

3.3.1 Profile Analysis

Profile analysis [Gribskov and Veretnik, 1996; Gribskov et al., 1987] is a method
for detecting distantly related proteins by sequence comparison. The comparison
is not only based on a distance matrix but also the results of structural studies
and information implicit in the alignment of the sequences of the protein family.
This information is expressed in a position-specific scoring table (profile), which
is created from a group of sequences previously aligned by structural or sequence
similarity. The columns of a profile correspond to aligned positions, and the rows
correspond to each of the 20 possible amino acid residues. Matrix values give the
likelihood of each amino acid at the corresponding position in the alignment. The
similarity of a query sequence to the group of aligned sequences can be tested by
comparing the query to the profile using dynamic programming algorithms. The
profile method differs in two major respects from other methods:

e Any number of known sequences can be used to construct the profile, allowing
more information to be used in the testing of the query than is possible with
pairwise alignment methods.

e The profile has two additional rows that specify position specific weights of
gap penalties: one for gap opening and the other for gap extension.

3.3.2 PSI-BLAST

PSI-BLAST (Position-Specific Iterative BLAST) [Altschul et al., 1997] is an iter-
ative search method using the BLAST algorithm. First a single protein sequence
is compared to a protein database. Then a multiple alignment of the database
matches is constructed, and a profile is built, which is then used in the next search.
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The process may be repeated, if desired with new sequences found in each cycle
used to refine the profile.

3.3.3 SSMAL

SSMAL (Shuffling Similarities with Multiple ALignments) [Nicodeme, 1998] is a
method for searching protein sequences against multiple alignment databases such
as ProDom. The approach is based on alignment graphs built on a distinction
between well-conserved and weakly-conserved regions. The biological intuition un-
derlying this approach relies upon the hypothesis that the variable subsequences
composing weakly conserved regions of a multiple alignment have fewer structural
constraints. They may mutate around a skeleton built over the well-conserved parts
of a multiple alignment. An alignment of a single sequence with a multiple align-
ment must therefore match the consensus of the multiple alignment in the strongly
conserved regions, while it may match any of the sequences of the multiple align-
ment in the weakly conserved regions. The software is based on BLAST (Section
3.2.2).

3.4 SYSTERS Database Searching

We take up the idea of iterating a database search (c.f. PSI-BLAST, Section
3.3.2) to design an algorithm that identifies clusters of protein sequences related
to a query in a conservative, reliable and yet informative way. Our procedure is
called SYSTERS for “SYSTEmatic Re-Searching”. We use it to identify a set of
similar sequences without ranking them.

3.4.1 Searching Algorithm

SYSTERS is an algorithm that iterates traditional protein sequence database search-
es in a specific way in order to delineate a set of related protein sequences for a
given one. We use the term seed to denote the sequence for which we want to
extract its related sequences from a database and the term cluster to denote the
set of sequences related to this seed. SYSTERS starts with a database search, e.g.
BLAST or FASTA, using the seed sequence as a query. A search accepts all hits
that are highly significant, e.g., choosing a cutoff E-value of 1073°. This “positive”
set of sequences is called pos_set and is included in the cluster. The lowest scoring
sequence from the pos_set not yet a member of the cluster is used as query for
the next database search. The procedure is iterated until either all non-accepted
sequences are below the cutoff, or until the current pos_set has no overlap with
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the pos_set of the seed search. The pos_set of the seed search is used as a refer-
ence and called ref_set. Note that this procedure does not rank hits. Algorithm 1
describes the SYSTERS procedure precisely.

Algorithm 1 SYSTERS
Input: Sequence (seed) and E-value (cutoff)
Output: Set of sequences (cluster)

1. cluster < ()

2: query < seed

3: while query is defined do

4:  search database with query

5. pos_set < all hits having an E-value better than or equal to cutoff

6: if query = seed then

7: ref_set <— pos_set

8: endif

9:  query < undefined

10:  if (Ix € pos_set with x ¢ cluster) and (pos_set N ref_set # ()) then

11: query < lowest scoring sequence in pos_set which is not element of cluster
12: cluster < cluster U pos_set

13:  end if

14: end while

Figure 3.1 gives a graphical representation of the two termination criteria of this
procedure.

0 quer
1
d </

query 2 query 2 query 3

y 3
see seed

Figure 3.1: Graphical representation of the two termination criteria of the SYS-
TERS procedure (x: accepted sequence; o: not accepted sequence; S: seed).

Sequences are depicted as points in a space where a family forms a cloud. The first
search identifies sequences within a given radius around the seed query. The next
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search chooses a more distantly related sequence as its query and draws another
circle. This procedure continues as long as there are sequences within the circle
which are not yet incorporated to the cluster, and as long as the circles still overlap
with the one of the seed sequence. The iteration in the left part of Figure 3.1
stopped because there is no non-accepted sequence within the circle of query 3
which could be used for a next iteration. On the right, the circle of query 3 shows
no overlap with the circle of the seed. The hits of this query are “too far away”
from the seed and therefore regarded as not suitable for further searches. Thus,
the main advantage of SYSTERS lies in the fact that homologies are not all scored
in relation to one sequence. The set of sequences to be identified supplies other
queries that allow clear identification of other parts of a cluster of sequences. Note,
however, that the image in the Euclidean plane is highly simplified and does not
adequately represent relationships among protein sequences.

In terms of speed, most SYSTERS runs require two to three calls to a fast searching
routine like BLAST or FASTA on the average, depending on the size of the cluster
that a query is a member of. SYSTERS is therefore still very fast.

3.4.2 Description of Clusters

Generally, sequences that do not share domains with sequences from other families
pose no difficulty to SYSTERS. For example, searching the Swiss-Prot database
(Release 34) [Bairoch and Apweiler, 2000] with the Methionyl-tRNA synthetase
sequence from yeast (SYMC_YEAST) identifies exactly all of the other met tRNA
synthetase sequences in the database. There is a multitude of similar examples
where exactly the sequences with the same Swiss-Prot description line are found.
One would expect common domains between multidomain proteins from differ-
ent families to create more of a problem. The homeobox is a domain shared by
many different proteins. In one test we used the human engrailed homeobox gene
sequence (HME1_HUMAN) as a seed for SYSTERS. The resulting cluster iden-
tified all homeobox protein sequences from Swiss-Prot that contained the word
“engrailed” in their annotation with the exception of two entries. These two were
annotated “engrailed-like” and one of them was a fragment of only 60 amino acids
length. In Figure 3.2 we compare the SYSTERS result to the search output gen-
erated by a rigorous Smith-Waterman alignment of the seed to the database.

Many of these comparisons were studied in order to determine the minimum sig-
nificance level in the Smith-Waterman search where cluster members were identi-
fied, and also which higher-scoring sequences were not included in the SYSTERS
clusters. The statistical significances assigned by the SSEARCH program give an
impression of how easy or difficult identification of these homologues can be. In
the particular case the lowest member sequence has a significance of only 0.00014
while several sequences of higher significance have been rejected. In other instances,
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SYSTERS correctly retrieved sequences only down to a very stringent significance

level.

21210388 residues in 59021 sequences
statistics extrapolated from 20000 to 58445 sequences
15508 scores better than 63 saved

BLOSUM50 matrix, gap
scan time: 0:21:40
The best scores are:

penalties: -12,-2

s-w Z-score E(59021)

SYSTERS-
Member

SPR|Q05925 |HMEL_HUMAN HOMEOBOX PROTEIN ENGRAILED-1 (391) 2681 1586.7 0 X engrailed

SPR|P09065 |HMEL_MOUSE HOMEOBOX PROTEIN ENGRAILED-1 (401) 2409 1427.4 0 X engrailed

SPR|Q05916 |HME1_CHICK HOMEOBOX PROTEIN ENGRAILED-1 (333) 1461 873.6 0 X engrailed
SPR|P19622|HME2_HUMAN HOMEOBOX PROTEIN ENGRAILED-2 (332) 909 550.6 4.3e-24 X engrailed

SPR|P09066 |HME2_MOUSE HOMEOBOX PROTEIN ENGRAILED-2 (324) 892 540.8 1.5e-23 X engrailed

SPR|Q05917 |HME2_CHICK HOMEOBOX PROTEIN ENGRAILED-2 (288) 838 509.8 8e-22 X engrailed

SPR|P31538 |HMEB_XENLA HOMEOBOX PROTEIN ENGRAILED-1 (171) 833 509.7 8.2e-22 X engrailed / fragment
SPR|P52729 |HMEC_XENLA HOMEOBOX PROTEIN ENGRAILED-2 (265) 738 451.7 1.4e-18 X engrailed
SPR|P09015|HME2_BRARE HOMEOBOX PROTEIN ENGRAILED-2 (265) 729 446.5 2.7e-18 X engrailed

SPR|P52730 |HMED_XENLA HOMEOBOX PROTEIN ENGRAILED-2 (265) 727 445.3 3.1e-18 X engrailed
SPR|P31533|HME3_BRARE HOMEOBOX PROTEIN ENGRAILED-3 (261) 706 433.1 1.5e-17 X engrailed

SPR|Q04896 |HME1_BRARE HOMEOBOX PROTEIN ENGRAILED-1 (231) 701 430.8 2e-17 X engrailed
SPR|P02836 | HMEN_DROME SEGMENTATION POLARITY PROTEI (552) 642 391.6 3.1e-15 X engrailed

SPR|P05527 |HMIN_DROME INVECTED PROTEIN. (576) 632 385.6 6.7e-15 X engrailed

SPR|P09145 |HMEN_DROVI SEGMENTATION POLARITY PROTEI (584) 608 371.4 4.le-14 X engrailed

SPR|P27609 |HMEN_BOMMO SEGMENTATION POLARITY PROTEI (372) 586 361.0 1.6e-13 X engrailed

SPR|P27610 |HMIN_BOMMO INVECTED PROTEIN. (476) 573 352.1 4.9e-13 X engrailed

SPR|Q05640 |HMEN_ARTSF HOMEOBOX PROTEIN ENGRAILED. (349) 558 344.9 1.2e-12 X engrailed
SPR|P09532|HMEN_TRIGR HOMEOBOX PROTEIN ENGRAILED ( (154) 464 294.3 8.1e-10 X engrailed / fragment
SPR|P14150 |HMEN_SCHAM HOMEOBOX PROTEIN ENGRAILED ( ( 93) 451 289.4 1.5e-09 X engrailed / fragment
SPR|P09076 |HME3_APIME HOMEOBOX PROTEIN E30 (FRAGME (109) 447 286.2 2.3e-09 X engrailed / fragment
SPR|P09075 |HME6_APIME HOMEOBOX PROTEIN E60 (FRAGME (109) 432 277.4 7e-09 X engrailed / fragment
SPR|P23397 |HMEN_HELTR HOMEOBOX PROTEIN HT-EN (FRAG ( 98) 417 269.2 2e-08 X engrailed / fragment
SPR|P31537 |HMEA_XENLA HOMEOBOX PROTEIN ENGRAILED-1 ( 60) 367 242.6 6.2e-07 X engrailed / fragment
SPR|P34326|HM16_CAEEL HOMEOBOX PROTEIN ENGRAILED-L (240) 372 238.1 1.1e-06 engrailed-like
SPR|P50219|HB9_HUMAN HOMEOBOX PROTEIN HBY. (401) 345 219.6 1.2e-05

SPR|P31535|HMEA_MYXGL HOMEOBOX PROTEIN ENGRAILED-L ( 60) 316 212.7 2.8e-05 X engrailed-like / fragment
SPR|P17277 |HXA4_CHICK HOMEOBOX PROTEIN HOX-A4 (CHO (309) 328 211.0 3.5e-05

SPR|P06798 |HXA4_MOUSE HOMEOBOX PROTEIN HOX-A4 (HOX (326) 327 210.1 4e-05

SPR|P22544 |HM1D_DROAN HOMEOBOX PROTEIN OM(1D). (606) 330 208.6 4.8e-05

SPR|P31536|HMEB_MYXGL HOMEOBOX PROTEIN ENGRAILED-L ( 60) 302 204.6 8.1e-05 engrailed-like / fragment
SPR|P18488|HMES_DROME EMPTY SPIRACLES HOMEOTIC PRO (497) 315 200.9 0.00013

SPR|P31534 |HMEN_LAMPL HOMEOBOX PROTEIN ENGRAILED-L ( 60) 295 200.5 0.00014 X engrailed-like / fragment
SPR|P31310|HXAA_MOUSE HOMEOBOX PROTEIN HOX-A10 (HO (399) 305 196.2 0.00024

SPR|P09077 | SCR_DROME HOMEOTIC SEX COMBS REDUCED PR (415) 299 192.5 0.00038

SPR|P31314|HX11_HUMAN HOMEOBOX PROTEIN HOX-11 (TCL (330) 296 191.9 0.00041

SPR|Q00056 |HXA4_HUMAN HOMEOBOX PROTEIN HOX-A4 (HOX (320) 294 190.9 0.00046

SPR|P50223 | HMXX_CHICK HOMEOBOX PROTEIN GHOX-7 (CHO (288) 289 188.6 0.00063

SPR|P28357 |HXD9_MOUSE HOMEOBOX PROTEIN HOX-D9 (HOX (339) 289 187.7 0.0007

SPR|P28356 | HXD9_HUMAN HOMEOBOX PROTEIN HOX-D9 (HOX (342) 285 185.3 0.00095

SPR|P28360 |HMX1_HUMAN HOMEOBOX PROTEIN MSX-1 (HOX- (297) 279 182.5 0.0014

Library scan: 0:21:40 total CPU time: 0:21:40 SYSTERS CPU time: 0:01:25

Figure 3.2: Comparison of the SYSTERS result to a Smith-Waterman search out-
put for the human engrailed homeobox gene sequence (HME1_HUMAN) searched
against the Swiss-Prot database.

3.4.3 Consistency of Cluster Identification

While the SYSTERS clusters in the above examples all make sense, establish-
ing their biological validity is a process which is difficult to automate. Auto-
matic schemes for checking database search sensitivity are usually based on domain
databases, e.g., on PROSITE [Hofmann et al., 1999] assignments of certain mo-
tifs. These allow the user to decide automatically whether a sequence identified in
the search contains the same motif as the query or not. As seen from the examples
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in the prior section, SYSTERS clusters tend to agree with the annotation in Swiss-
Prot. This information is not standardized and thus difficult to use for automatic
validation. In particular, there may be description lines stating that a sequence is
a “hypothetical protein” or that the information was derived by similarity.

Instead of using database annotations for validation of the clustering we introduce
a new, formal criterion for the quality of SYSTERS searches. The focus of this
criterion is the internal consistency of a search. If one SYSTERS seed identifies
a certain cluster, then every other cluster member, when used as a seed should
identify the same cluster, or at least a very similar cluster. To check this criterion
we ran SYSTERS searches seeded by all sequences in a database. Thus, we obtain
as many clusters as there are sequences in the database. The resulting, very large
set of SYSTERS clusters provides the information to check internal consistency.

We use the phrase complete cluster set to denote the set of SYSTERS clusters
for all queries from a database. For every sequence in the database we compute
the following quantities: first, we identify the set-theoretic union and set-theoretic
intersection of all clusters in the complete cluster set that contain the given se-
quence. We use U(s) to denote the cardinality of the union of clusters containing
sequence s and /(s) to denote the cardinality of the intersection of clusters con-
taining sequence s. lIdeally, all members of a family would identify the family in
exactly the same way, i.e., produce the same SYSTERS cluster. If this were the
case, then for each of a cluster’s sequences, the union and the intersection of the
clusters containing a sequence from this family would coincide and thus their car-
dinalities would agree. However, if a sequence constitutes a false positive for a
specific search, then it is contained not only in the cluster for its own biological
family, but also in one or more other clusters where it appeared erroneously. Thus,
for a false positive U(s) will be greater than /(s). On the other hand, suppose
a sequence is a false negative in some search. Then one or more of the clusters
that try to describe the biological family will lack this sequence. As a consequence,
the union and intersection of clusters containing other family members will differ.
For such a sequence, the union will exceed the intersection by at least the false
negative. Figure 3.3 gives a graphical representation of the interpretation of U(s)
and /(s).

This criterion of internal consistency was systematically tested by performing SYS-
TERS searches with the Swiss-Prot Rel. 34 and the PIR1 databases Rel. 51 [Barker
et al., 2001]. This release of PIR1 contains 13,489 sequences. Figure 3.4 shows a
3-dimensional histogram of the number of sequences at their respective values of
U(s) and I(s) for all PIR1 database entries. The sequences for which SYSTERS
is perfectly consistent (U(s) = /(s)) are on the main diagonal. The sum of the
heights of the bars on the main diagonal is 9,659, which represents 71.6% of the
sequences. The highest peak on the main diagonal represents 2,694 single sequence
clusters. Next, there is a bar with 1,148 sequences contained in clusters of two
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sequences, etc. Off the main diagonal, one finds the sequences for which SYS-
TERS is inconsistent. The remote peak corresponds to the globin family. Their
identification is nearly perfect since the peak of height around 395 is very close
to the main diagonal. In summary, we observe a surprising degree of consistency
in SYSTERS searches, with 59.0% (34,828 sequences) of the 59,021 Swiss-Prot
sequences and 71.6% of the 13,489 PIR1 sequences having equally large union and
intersection of the clusters containing the sequence.

s U((s) I(s) s U(s) I(s)
A 5 =5 E 4 =14
B 5 =25 G 4 >3
C 5=5 H 4 >3
F 5 =25 K 4 >3
D 8>1 P 1 =1
L 4 = 4 _ _
M 4 = 4 E is a false negative
N 3 ®

D is a false positive P builds a Single Sequence Cluster

Figure 3.3: Examples of the interpretation of U(s) and /(s). For each sequence s
we compute U(s) (the cardinality of the union of clusters containing sequence s)
and /(s) (the cardinality of the intersection of clusters containing sequence s).
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Figure 3.4: 3-dimensional representation of U(s), /(s) and the corresponding num-
ber of sequences for all PIR1 database entries. Perfectly clustered sequences are
on the main diagonal (U(s) = I(s)). The insert is a zoom into the left part of the
histogram (U(s) < 50). The highest peak, indicated by an arrow, has a height of
2,694.



Chapter 4

Sequence Clustering

In this Chapter we will first introduce the basic terminologies used in clustering.
Afterwards we describe our SYSTERS clustering methods. The set-theoretical
approach (SYSTERS 1) is performed on the complete cluster set generated by
searching a database with each of its sequences (c.f. Section 3.4). Since this
method is mainly based on a traditional database search tool like BLAST, the
underlying pairwise distances are often asymmetric. Thus, the emphasis of the
SYSTERS 2 approach is on recalculating symmetric pairwise values. Based on
these values, the former set-theoretical view of the data can be changed to a
graph-based approach, i.e. a single linkage clustering. The crucial point in the single
linkage clustering is the choice of a suitable threshold. However, the SYSTERS 3
approach employs the self-structuring properties of the data to find a reasonable
partitioning into superfamily and family clusters without relying on an arbitrarily
chosen threshold.

4.1 Preliminaries

The general goal of clustering a set of objects is to find a natural grouping of
the objects into disjoint subsets (called clusters). Once we describe the clustering
problem as one of finding natural groupings, the first question is how to measure the
similarity between objects. The most obvious measure of similarity (or dissimilarity)
between two objects is the distance between them. Thus, one computes a matrix
of distances between all pairs of objects. If the distance is a good measure of
similarity, then one would expect similar (less distant) objects to fall into the same
cluster (homogeneity), while dissimilar ones are to be found in different clusters
(separation).

Let £ be a set of n objects E;, i € {1,...,n}. The basic data used in this chapter
consists of a similarity measure S : £ x & — IR. Let t be a threshold value. E;
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and E; are said to be similar if S(E;, Ej) > t. This defines an nxn similarity matrix
M = [S,'j] with

1 ifS(ELE) >t
Y10 otherwise.

Furthermore, this matrix induces a similarity graph (also called threshold graph),
dual to M, in which nodes correspond to objects, and an edge joins node / and
node j if and only if s;; = 1.

A detailed description of the following clustering methods can be found, e.g., in
[Duda et al., 2001], [Cormack, 1971], or [Jardine and Sibson, 1968].

Single Linkage Clustering

Single linkage clustering, also known as Nearest Neighbor Clustering [Sokal and
Sneath, 1973] can be described as follows: Two objects E;, E; belong to the same

cluster if there exists a chain of objects Ex, E;, ..., E4, E, such that S(E;, Ex),
S(Ex,Ej), ..., S(Eq, E/), S(E. Ej) are all greater than the threshold t with
S(E,',Ek), S(Ek,E/), C e, S(Eq,Er), S(E,,Ej) € IR and E,’, Ej, Ek, E/, C e,
Eq E, €&

This clustering corresponds to the connected components of the similarity graph.
The “defect” of the single link method is that it clusters together objects linked by
chains of intermediates.

Complete Linkage Clustering

Complete linkage clustering, also known as Furthest Neighbor Clustering [Sokal and
Sneath, 1973] can be described as follows: Two objects E;, E; belong to the same
cluster if S(E;, E;) is greater than the threshold t.

With the complete linkage clustering, all objects in a cluster must be similar to one
another, and no object can be in more than one cluster. If one drops the second re-
quirement, than this clustering corresponds to the maximal complete subgraphs (or
cliques) of the similarity graph. The complete linkage strategy produces compact
clusters without chaining.

Average Linkage Clustering

The so called “group average” and “centroid sorting methods” are average linkage
clustering methods. They can be seen as intermediate in effect between single and
complete linkage clustering. The various methods attempt to avoid the chaining
effect of single linkage clustering by picking out clusters which are in some sense
more homogeneous than those obtained by the single linkage method.
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Hierarchical Clustering

Up to this point, the methods have formed disjoint clusters. However, often clus-
ters can have subclusters, these can have subsubclusters, and so on. A hierarchical
clustering system creates a tree structure, where sibling clusters partition the ob-
jects covered by their common parent. Any two clusters in the hierarchy are either
disjoint or nested. This can be combined with each of the aforementioned clustering
methods.

Hierarchical clustering procedures themselves can be divided according to two dis-
tinct approaches:

e Divisive (top-down, splitting) procedures start with all of the objects in one
cluster and form the hierarchy by successively splitting clusters.

e Agglomerative (bottom-up, clumping) procedures start with n singleton clus-
ters and form the hierarchy by successively merging clusters until the desired
number of clusters is reached.

Algorithm 2 describes the agglomerative hierarchical clustering procedure. The
algorithm starts with n singleton clusters and merges successively the two nearest
clusters until the desired number of clusters (¢) is reached. If ¢ = 1, then one can
produce a tree with this procedure.

Algorithm 2 Agglomerative hierarchical clustering
Input: n sequences E;,i € {1,...,n}, and the desired number of clusters ¢ < n
Output: Set of ¢ clusters C
c<n
forall i€ {1,...,n} do
G ={Ei}
end for
while ¢ > ¢ do
c+—c—1
find nearest clusters C; and C;
merge C; and C;
end while

e L T

Figure 4.1 illustrates the relationship between hierarchical clustering, similarity
graphs at different threshold values, and the corresponding cluster sets.
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Figure 4.1: Relationship between hierarchical clustering, similarity graphs at differ-
ent threshold values t; and t,, and the corresponding cluster sets.

4.2 SYSTERS 1 (set-theoretical clustering)

The set-theoretical clustering approach uses the set of SYSTERS clusters gen-
erated by searching a database with each of its sequences (c.f. Section 3.4) to
derive a clustering of an entire database. Here, by “clustering” we do not mean a
hierarchical clustering but rather a biologically meaningful partitioning of the data.
The main obstacle to the application of traditional clustering procedures is the do-
main structure of proteins. In contrast to these methods, our method attempts to
cluster together full-length sequences that share global similarity. It does so while
at the same time maintaining a clear distinction between different clusters. It is
based on set operations instead of pairwise distances or graphs.

4.2.1 Clustering Method

We start by generating a cluster for each sequence in the database using the SYS-
TERS database search method. For every sequence we compute the set-theoretic
union and set-theoretic intersection of all clusters containing this sequence as done
in Section 3.4.3. The first observation is that a cluster all of whose members
have identical union and intersection is already perfectly defined. It does not have
any overlap with any other cluster, and each of its member sequences identifies the
cluster in the exact same way. These perfect clusters may of course be trivial in the
sense that they contain only one sequence. Even in this case, though, one knows in
particular that the union of clusters containing it is a one-element set. This implies
that there are no other clusters that contain this one sequence. In the case of the
Swiss-Prot database, 34,828 sequences have equally large union and intersection
of the clusters containing the sequence. 14,362 of these sequences build perfect,
single sequence clusters (24.3% of all sequences). Further 4,710 perfect clusters
contain 19,463 sequences (33.0%) altogether. Only 1,003 sequences (1.7%) with
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union and intersection of equal cardinality are not elements of perfect clusters.

Since a perfect cluster is disjoint from any other cluster, one may consider this part
of the database as perfectly sorted into clusters. Among the remaining clusters,
accounting for 25,196 sequences (42.7%), there exist inclusions and overlaps. The
inclusion of one cluster in another is typically the consequence of false negatives in
a search. When the same cluster is identified using another seed, the (formerly)
false negative may be found and, if this happens, the cluster resulting from the
second search will contain the first cluster. Consequently, one wishes to use the
larger cluster for the partitioning. However, there may be another cluster containing
this one, and so on. Therefore, one needs to check for chains of inclusions among
clusters. Only the final, largest cluster in such a chain is a candidate for our
database clustering. However, this set of maximal clusters falls into two groups
again. One group, the nested maximal clusters, are those maximal clusters that
are disjoint from any other maximal cluster. The final, residual group of clusters
are maximal clusters that overlap with other maximal clusters. These we call the
overlapping maximal clusters.

Obviously, neither the nested maximal clusters overlap each other nor can a nested
maximal cluster overlap with a perfect cluster. For the Swiss-Prot database there
are 735 nested maximal clusters comprising 13,337 sequences (22.6%). As an
example, Table 4.1 shows the inner structure of a nested maximal cluster in its
set-membership matrix for such a cluster and all the clusters it contains. A column
of the matrix corresponds to the cluster found with the seed named on top, and a
row lists all clusters containing each sequence. For example, consider the family of
engrailed homeobox genes already discussed in Section 3.4. In the final clustering
27 engrailed or engrailed-like genes form one nested maximal cluster while one
fragment (P31536) builds a single sequence cluster. Seven sequences, when used as
seed, identify the cluster that is also the nested maximal cluster, and the remaining
20 sequences in the SYSTERS search identify a smaller subset.

Perfect and nested maximal clusters together comprise 80% of the database se-
quences. The remaining 1,383 overlapping maximal clusters account for the missing
11,859 sequences. Since overlapping maximal clusters do not constitute a parti-
tioning of the data, we sort them into connected components, where two clusters
are in the same component if they are linked by overlaps. Thus, a first cluster in
this connected component might overlap another one which in turn overlaps a third
one, and so on. The overlapping maximal clusters for the Swiss-Prot database fall
into 147 connected components. The connected components are precisely those
cases where SYSTERS cannot delineate separate clusters. Typical members of this
group were kinases and proteins that contain a kinase domain or coiled-coil con-
taining proteins like myosin. The largest of these connected components comprises
4,000 sequences contained in 683 overlapping maximal clusters. Several other con-
nected components were trivial in the sense that the overlap between the clusters
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XXXXXXXXXXXXXKXXXX X XXXXXXXX 2

XXXXXXXX XXX XXXXXXXX
XXX XXX XXX XXX XXX XXX XX
XXXXXXXX XXX XXXXXXXX
XXX XXX XXX X XXX XXX XXX
XXXXXXXX XXX XXXXXXXX
XXX XXX XXX X XXX XXX XXX
XXXXXXXX XXX XXXXXXXX
XXX XXX XXX X XXX XXX XXX
XXXXXXXX XXX XXXXXXXX
XXX XXX XXX X XXX XXX XXX
XXXXXXXX XXX XXXXXXXX
XXX XXX XX XX XXX XXX XXX
XXX XXX XX XX XXX XXX XXX
XXX XXX XX XXX XXXXXXX
XXX XXX XXX XXX XXX XXX

X

Table 4.1: Set-membership matrix for all engrailed homeobox gene sequences con-
tained in the Swiss-Prot database and clustered together by SYSTERS. Columns
represent the clusters found with the seed mentioned on top. Rows show all clusters
where the sequence on the left is a member of.

contained most of the sequences in the connected component. Table 4.2 shows
the overlapping maximal clusters for all proteins containing the word “chaperone”
in their description line as an example. The last two sequences are not members
of the connected component; each of them builds a single sequence cluster. For
such cases of connected components we choose the union of the clusters in the
connected component as a new cluster to use instead.

From the above description of the set-theoretic features of the complete cluster
set we extract the SYSTERS based clustering procedure (see Algorithm 3) for a
protein sequence database. In this description perfect clusters are generated in one
step together with the nested maximal clusters. Overlapping maximal clusters are
grouped into connected components.
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Algorithm 3 SYSTERS 1 (set-theoretical clustering)

Input: n sequences
Output: Set of clusters

1: for all sequences do
2. apply Algorithm 1 to compute SYSTERS cluster
3: end for
{Extract a subset of clusters that partition the database:}
4: For all identical clusters eliminate all but one.
5: repeat
6: For any two clusters where one includes the other, eliminate the smaller one.
7: until no inclusions are left
8. Compute the connected components of the overlapping maximal clusters.
Accession- Cluster
number 1 2 3 45 Identifier Description
P31607 |X X X X X FIMC_ECOLI _ CHAPERONE PROTEIN FIMC PRECURSOR.
P37923 |X X X X X FIMC_SALTY CHAPERONE PROTEIN FIMC PRECURSOR.
P46008 |X X X X X FOCC_ECOLI CHAPERONE PROTEIN FOCC PRECURSOR.
P53516 |X X X X X AFAB_ECOLI CHAPERONE PROTEIN AFAB PRECURSOR.
P46004 |X X X X X AGGD_ECOLI CHAPERONE PROTEIN AGGD PRECURSOR.
P43661 |X X X X X LPFB_SALTY CHAPERONE PROTEIN LPFB PRECURSOR.
P21646 |X X X X X MRKB_KLEPN CHAPERONE PROTEIN MRKB PRECURSOR.
P42914 |X X X X X YRAILECOLI  HYPOTHETICAL 25.7 KD FIMBRIAL CHAPERONE
IN AGAI-MTR INTERGENIC REGION PRECURSOR.
P35757 |X X X X HFB1_HAEIN CHAPERONE PROTEIN HIFB PRECURSOR.
P45991 |X X X X HFB2_HAEIN CHAPERONE PROTEIN HIFB PRECURSOR.
P15319 |X X X X PAPD_ECOLI CHAPERONE PROTEIN PAPD PRECURSOR.
P53520 |X X X X PMFD_PROMI CHAPERONE PROTEIN PMFD PRECURSOR.
P33409 |X X X X FIMB_BORPE CHAPERONE PROTEIN FIMB/FHAD PRECURSOR.
P33407 |X X X X MYFB_YEREN CHAPERONE PROTEIN MYFB PRECURSOR.
P46738 |X X X X NFAE_.ECOLI CHAPERONE PROTEIN NFAE PRECURSOR.
P31523 |X X X X PSAB_YERPE CHAPERONE PROTEIN PSAB PRECURSOR.
P33387 |X X X X SEFB_SALEN CHAPERONE PROTEIN SEFB PRECURSOR.
P26926 |X X X X CAFM_YERPE CHAPERONE PROTEIN CAF1M PRECURSOR
(CAPSULE PROTEIN FRACTION 1).
P15483 |X X X X CS31_.ECOLI  CHAPERONE PROTEIN CS3-1 PRECURSOR.
P53518 |X X X CSC1_.ECOLI CHAPERONE PROTEIN CSSC PRECURSOR.
P33128 |X X X ECPD_ECOLI CHAPERONE PROTEIN ECPD PRECURSOR.
P33342 |X X X YEHC_ECOLI HYPOTHETICAL 26.6 KD FIMBRIAL CHAPERONE
IN MRP 5'REGION PRECURSOR.
P42183 |X X PRSD_ECOLI CHAPERONE PROTEIN PRSD (FRAGMENT).
P53519 X X CSC2_ECOLI CHAPERONE PROTEIN CSSC PRECURSOR.
P25401 X X FAEE_ECOLI CHAPERONE PROTEIN FAEE PRECURSOR.
P25402 X X FANE_ECOLI CHAPERONE PROTEIN FANE PRECURSOR.
Q05433 X X CLPE_ECOLI CHAPERONE PROTEIN CLPE PRECURSOR.
P40876 YCBF_ECOLI HYPOTHETICAL FIMBRIAL CHAPERONE IN
PEPN-PYRD INTERGENIC REGION (FRAGMENT).
P28722 YHCA_ECOLI HYPOTHETICAL 253 KD FIMBRIAL CHAPERONE

IN GLTF-NANT INTERGENIC REGION PRECURSOR.

Table 4.2: Set-membership matrix for all chaperone protein sequences contained

in the Swiss-Prot database.
resolved.

Identical clusters are already merged and inclusions
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4.2.2 Clustering Results

The algorithm for database clustering was applied to the Swiss-Prot database Rel.
34 [Bairoch and Apweiler, 2000]. The run time for the database clustering is
dominated by the BLAST runs performed for the SYSTERS searches. The results
are compressed and stored for further working. Then, based on the BLAST output,
the complete cluster set of SYSTERS clusters is derived by a script written in Perl.
A program written in C** using the LEDA library [Mehlhorn and Naher, 1995] then
executes the above procedure extracting the database clustering. It is worth noting
that the test for overlaps among clusters does not involve comparing each cluster
with each other one. Instead, it suffices to build a list of sequences annotated with
the clusters that each is a member of. Then the test for overlaps will require time
linear in the number of sequences instead of quadratic in the number of clusters.
No decisions by the user are necessary during the entire process.

The set-theoretical basis of this approach was adopted for constructing the Picasso
cluster set [Heger and Holm, 2001] .

4.3 SYSTERS 2 (single linkage clustering)

Since the set-theoretical SYSTERS 1 method is based on simple BLAST searches,
the underlying pairwise database search results are often asymmetric. To avoid this
problem originating in the BLAST heuristic, we extend the initial searching step to
result in symmetric pairwise scores and E-values. Based on the symmetric pairwise
values we change the methodology to a more graph-theoretic view of the data.
Since the data does not reflect a perfect cluster structure as would be necessary
for a complete linkage clustering, clusters cannot simply be defined as cliques in a
graph. Not only is it computationally intractable to find maximal cliques, the clique
structure is inappropriate for several reasons originating in the sequence data itself:

Multidomain Sequences: The majority of larger proteins are composed of multiple
domains. By several mechanisms (c.f. Section 2.1.5) chimeras with all sorts of
domain combinations may be created. Such multidomain sequences cause problems
in the clustering by linking together protein families based on local similarity of one
or more highly conserved domains, but not along the entire sequences.

Fragmental Sequences: Only a part of a whole sequence is covered due to in-
complete sequencing often accompanied by sequencing errors. These sequences
show either a weak similarity to a subset of the members of a protein family, since
they do not cover the complete sequence, or they show similarity to members of
different protein families, thus covering a domain which is an integral part of these
proteins.

To this end, we implemented a single linkage clustering approach, although we run
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into the problem of chaining as shown in Fig. 4.2. We cannot avoid these effects in
a single linkage clustering, but we can point to these cases again by classifying the
resulting clusters into perfect, nested, and overlapping depending on their internal
structure.

Protein A

Protein B
Protein C

Figure 4.2: Chain of multidomain sequences in single linkage clustering. In this
simplified picture of three protein sequences the sequences A and B share a domain
and the sequences B and C share a domain, but the sequences A and C do not.
Doing a single linkage clustering based on the sequence similarities results in the
chain shown on the right. Although sequence A and sequence C show no sequence
similarity they end up in the same cluster.

4.3.1 Pre-processing

Sequences which are nearly identical (99% identity) to other sequences over at
least 95% of their entire length are considered redundant, and are removed from
the initial sequence set. These sequences are included again to the resulting cluster
set, i.e. to the respective cluster their identical counterpart ended up in, since they
may contain additional information in their annotations. Sequences which are too
short to give a significant hit in a database search are also removed initially and
added again to the cluster set as single sequence clusters. As a bound, we used a
sequence length of 10 amino acids for complete sequences and of 50 for sequences
annotated as fragmental. Regions of low complexity were masked prior to the
database searches using the seg program with standard parameters [Wootton and
Federhen, 1996].

Sequence Searching

Due to its heuristic strategy, BLAST database searches behave asymmetrically:
the score and E-value of sequence A finding sequence B in the database and those
of sequence B finding sequence A can differ significantly.

Asymmetric scores in BLAST searches arise from

e the choice of the search tuples (neighborhood words, c.f. Section 3.2.3)
e the extension of the pairwise alignment at a potential hit location
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Figure 4.3 shows an example of an asymmetric pairwise local alignment produced
by BLAST searches depending on the query sequence. We searched the Swiss-
Prot database with the Arabidopsis thaliana sequence 022899 (putative pre-mRNA
splicing factor ATP-dependent RNA helicase; Length: 729 amino acids) using
gapped BLAST with standard parameters (Scoring matrix: BLOSUM®62, gap open
penalty: -11, gap extension penalty: -1). Among others we get as a result a related
sequence from Mouse (O70133; ATP-dependent RNA helicase A; Length: 1,380
amino acids). The score of the local pairwise alignment is 646. Doing the reverse
search results in a score of 558, while a pairwise alignment of these sequences using
LALIGN [Huang and Miller, 1991] with the same parameters results in a score of
669.

One possible solution to this problem is the use of a database search tool which does
not use a heuristic for the pairwise alignment (like Smith-Waterman SSEARCH).
A problem with computing all pairwise scores and E-values is computation time.
Given two sequences of length /; and h, respectively, the computation of a local
pairwise alignment takes time proportional to /; x L. This applied to all pairs of
sequences in a database will result in a time complexity of O(N?) for the all-against-
all comparison, with N being the sum of the lengths of all sequences. This is too
much if N is of realistic size in a database of several thousand sequences.

We therefore decided to use the faster database search tool BLAST, but to re-
compute the pairwise alignments using the LALIGN program for each entry in the
resulting list of potential database hits identified by BLAST. Having a pairwise
alignment score, we can recalculate the E-value as described in Section 3.1.3 with
the following formulae:

QueryLen g = max(QueryLen o — X *S/H, 1) (4.1)
DBLen ofr = max(DBLen oy — A% S/H, 1) (4.2)
E = QuerylLen g+ DBLen g exp(—=A * S + log K) (4.3)

Aside from the score S, the calculation of the E-value E as shown in formula 4.3
depends on the length of the query sequence (QueryLen) and the total length of all
sequences in the database (DBLen). Having two sequences involved in a pairwise
sequence alignment of differing lengths, we can calculate two E-values, which are
likely to differ if the sequences significantly differ in length. The other parameters
(X, H and K) used in the formulae above are calculated in each database search
and can be taken directly from the search output. For the subsequent clustering
step only the lower (better) E-value produced by the shorter sequence is used.
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LALIGN pairwise local alignment of sequence 022899 and sequence O70133:

ILEKRRDLPVWLQKDDFLNTLNSNQTLILVGETGSGKTTQIPQFVLDAVVADNSDKGRKWLVGCTQPRRVAAMSVSRRVADEMDVSIGEEVGYSIRFEDCTSS-RTMLKYLTDGMLLREA
VLQERELLPVKKFEAEILEAISSNSVVIIRGATGCGKTTQVPQYILDDFI--QNDRAAECNIVVTQPRRISAVAVAERVAYERGEEPGKSCGYSVRFESILPRPHASIMFCTVGVLLRKL

MADPLLERYKVIILDEAHERTLATDVLFGLLKEVLRNRPDLKLVVMSATLEAEKFQEYFSGAPLMKVPGRLHPVEIFYTQE. PERD
EAG--IRGISHVIVDEIHERDINTDFLLVVLRDVVLAYPEVRIVLMSATIDTTMFCEYFFNCPIIEVYGRTFPVQEYFLEDCIQMTQF IPPPKDKKKKDKEDDGGEDDDANCNLICGDEY

-VLEAAIRTVVQIHMCEPPGDILVFLTGEEEIEDACRKINKEVSNLGDQVGPVKVVPLYSTLPPAMQQKIFDPAPVPLTEGGPAGRKIVVSTNIAETSLTID
GPETKLSMSQLNEKETPFELIEALLKYIETLNV---PGAVLVFLPGWNLIYTMQKHLENN-SHFGSH--RYQILPLHSQIPREEQRKVFDPVPDGVT-————-- KVILSTNIAETSITIN

GIVYVIDPGFAKQKVYNPRIRVESLLVSPISKASAHQRSGRAGRTRPGKCFRLYTEKSFNNDLQPQTYPEILRSNLANTVLTLKKLGIDDLVHF--DFMDPPAPETLMRALEVLNYLGAL
DVVYVIDSCKQKVKLFTAHNNMTNYATVWASKTNLEQRKGRAGRVRPGFCFHLCSRARFDR-LETHMTPEMFRTPLHEIALSIKLLRLGGIGQFLAKAIEPPPLDAIIEAEHTLRELDAL
DANDELTPLGRILAKLPIEPRFGKMMIMGCIFYVGDAVCTISAATCFPEPFI--SEGKRLGYIHRNFAGNRFSDHVALLSVFQAWDDARMSGEEAEIRFCEQKRLNMATLRMTWEAKVQL
VRIM--SRFNLKMCSTDENSR---DYYVNIRKAMLA-GYFMQVAHLERTGHYLTVKD-NQVVHLHPSNC 022899
KEILINSGFPEDCLLTQVFTNTGPDNNLDVVISLLAFGVYPNVCYHKEKRKILTTEGRNALIHKSSVNC 070133

BLAST pairwise local alignment of sequence 022899 (query) and sequence O70133:

DDEGNLTKTGEIMSEFPLDPQMSKMLIVSPEFNCSNEILSVSAMLSVPNCFVRPREAQKAADEAKARFGHIDGDHLTLLNVYHAY——-KQNNEDP4—-FCFENFVNNRAMKSADNVRQQL

ILEKRRDLPVWLQKDDFLNTLNSNQTLILVGETGSGKTTQIPQFVLDAVVADNSDKGRKWLVGCTQPRRVAAMSVSRRVADEMDVSIGEEVGYSIRFEDCTSS-RTMLKYLTDGMLLREA
VLQERELLPVKKFEAEILEAISSNSVVIIRGATGCGKTTQVPQYILDDFI--QNDRAAECNIVVTQPRRISAVAVAERVAYERGEEPGKSCGYSVRFESILPRPHASIMFCTVGVLLRKL

MADPLLERYKVIILDEAHERTLATDVLFGLLKEVLRNRPDLKLVVMSATLEAEKFQEYFSGAPLMKVPGRLHPVEIFYTQE. PERD:!
EAG--IRGISHVIVDEIHERDINTDFLLVVLRDVVLAYPEVRIVLMSATIDTTMFCEYFFNCPIIEVYGRTFPVQEYFLEDCIQMTQF IPPPKDKKKKDKEDDGGEDDDANCNLICGDEY

——————————————————— YLEAAIRTVVQIHMCEPPGDILVFLTGEEEIEDACRKINKEVSNLGDQVGPVKVVPLYSTLPPAMQQKIFDPAPVPLTEGGPAGRKIVVSTNIAETSLTID
GPETKLSMSQLNEKETPFELIEALLKYIETLNV---PGAVLVFLPGWNLIYTMQKHLENN-SHFGSH--RYQILPLHSQIPREEQRKVFDPVPDGVT—- —KVILSTNIAETSITIN

GIVYVIDPGFAKQKVYNPRIRVESLLVSPISKASAHQRSGRAGRTRPGKCFRLYTEKSFNNDLQPQTYPEILRSNLANTVLTLKKLGIDDLVHF--DFMDPPAPETLMRALEVLNYLGAL
DVVYVIDSCKQKVKLFTAHNNMTNYATVWASKTNLEQRKGRAGRVRPGFCFHLCSRARFDR-LETHMTPEMFRTPLHEIALSIKLLRLGGIGQFLAKAIEPPPLDAIIEAEHTLRELDAL

DDEGNLTKTGEIMSEFPLDPQMSKMLIVSPEFNCSNEILSVSAMLSVPNCFVRPREAQKAADEAKARFGHIDGDHLTLLNVYHAY---KQNNEDP -NWCFENFVNNRAMKSADNVRQQL
DANDELTPLGRILAKLPIEPRFGKMMIMGCIFYVGDAVCTISAATCFPEPFI--SEGKRLGYIHRNFAGNRFSDHVALLSVFQAWDDARMSGEEAEIRFCEQKRLNMATLRMTWEAKVQL

YVNIRKAMLA-GYFMQVA-HLERTGHYLTVKDNQVVHLHPSNC 022899
DNNLDVVISLLAFGVYPNVCYHKEKRKILTTEGRNALIHKSSVNC 070133

BLAST pairwise local alignment of sequence O70133 (query) and sequence 022899:

VRIM--SRFNLKMCSTD!
KEILINSGFPEDCLLTQ

ILEKRRDLPVWLQKDDFLNTLNSNQTLILVGETGSGKTTQIPQFVLDAVVADNSDKGRKWLVGCTQPRRVAAMSVSRRVADEMDVSIGEEVGYSIRFEDCTSS-RTMLKYLTDGMLLREA
VLQERELLPVKKFEAEILEAISSNSVVIIRGATGCGKTTQVPQYILDDFI--QNDRAAECNIVVTQPRRISAVAVAERVAYERGEEPGKSCGYSVRFESILPRPHASIMFCTVGVLLRKL

MADPLLERYKVIILDEAHERTLATDVLFGLLKEVLRNRPD[----LKLVVMSATLEAEKF———-—-—-————-———| QEYFSGAPLMKV
EAG--IRGISHVIVDEIHERDINTDFLLVVLRDVVLAYPEVRIVLMSATIDTTMFCEYFFNCPIIEVYGRTFPVQEYFLEDCIQMTQF IPPPKDKKKKDKEDDGGEDDDANCNLICGDEY

—-PGRLHPVEIFYTQEPERDYLEAAIRTVVQIHMCEPPGDILVFLTGEEEIEDACRKINKEVSNLGDQVGPVKVVPLYSTLPPAMQQK IFDPAPVPLTEGGPAGRKIVVSTNIAETSLTID
GPETKLSMSQLNEKETPFELIEALLKYIETLNV---PGAVLVFLPGWNLIYTMQKHLENN-SHFGSH--RYQILPLHSQIPREEQRKVFDPVPDGVT------- KVILSTNIAETSITIN

GIVYVIDPGFAKQKVYNPRIRVESLLVSPISKASAHQRSGRAGRTRPGKCFRLYTEKSFNNDLQPQTYPEILRSNLANTVLTLKKLGIDDLVHF--DFMDPPAPETLMRALEVLNYLGAL
DVVYVIDSCKQKVKLFTAHNNMTNYATVWASKTNLEQRKGRAGRVRPGFCFHLCSRARFDR-LETHMTPEMFRTPLHEIALSIKLLRLGGIGQFLAKAIEPPPLDAIIEAEHTLRELDAL

DDEGNLTKTGEIMSEFPLDPQMSKMLIVSPEFNCSNEILSVSAMLSVPNCFVRPREAQKAADEAKARFGHIDGDHLTLLNVYHAY---KQNNEDP +-NWCFENFVNNRAMKSADNVRQQL
DANDELTPLGRILAKLPIEPRFGKMMIMGCIFYVGDAVCTISAATCFPEPFI--SEGKRLGYIHRNFAGNRFSDHVALLSVFQAWDDARMSGEEAEIRFCEQKRLNMATLRMTWEAKVQL

DYYVNIRKAMLA-GYFMQVA-HLERTGHYLTVKDNQVVHLHPSNC 022899
DNNLDVVISLLAFGVYPNVCYHKEKRKILTTEGRNALIHKSSVNC 070133

VRIM--SRFNLKMCSTD:!
KEILINSGFPEDCLLTQ

Figure 4.3: Asymmetric pairwise local alignment scores in BLAST compared to
LALIGN. Those parts of the pairwise alignments, which differ in the BLAST
searches from the LALIGN result, are put into boxes.
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Validation of the Searching Step

When using the BLAST heuristic as a filtering step and performing LALIGN com-
parisons only with a subset of sequence pairs, hits may be lost. Here we test how
many pairwise hits get lost and what kind of hits these are. For this purpose we se-
lected randomly 5,000 sequences from Swiss-Prot Rel. 39. For each sequence pair
we compute a pairwise score employing the different methods and accept the lower
out of the two calculated E-values. Pairwise comparisons of a sequence against
itself were not considered.

We evaluated the following four methods:

1. All-against-all LALIGN:
computing all pairwise alignments of all 5,000 sequences using the LALIGN
program results in 12,497,500 pairwise scores in a triangular matrix. Based on
a database size of 5,000, we computed E-values as in the BLAST program.
Only 13,978 pairwise scores (0.11%) result in an E-value better than or equal
to 0.05.

2. All-against-all BLAST2:
performing n BLAST searches each against a database of n sequences results
in 12,696 E-values better than or equal to 0.05. The missing 1,282 values
(9.17%) in comparison to Case (1) have an E-value equal to or worse than
7e-14.

3. Cumulative all-against-all BLAST?2:

performing (n — 1) BLAST searches where the i-th sequence is searched
against a database of (i — 1) sequences, with 1 < / < n. Although the
search space is in average only half as big as in the previous experiment, the
time needed for reformatting the database into BLAST format makes this
approach intractable for large scale analyses. Since the database size varies in
every search, the resulting E-values need to be recalculated after the search
based on a uniform database size. Additionally, some of the results may be
missed, since BLAST searches are not symmetric as shown above.

4. All-against-all BLAST2 with subsequent LALIGN:
performing n BLAST searches each against a database of n sequences with
subsequent m LALIGN pairwise local alignments. m is the number of BLAST
hits with an E-value better than or equal to 0.05 (worst case: m = W).
Here m = 12,696 as in Case (2). Since the pairwise LALIGN comparisons
will either improve or confirm the result, but will not worsen it, again the
1,282 values in comparison to Case (1) will be missing.

Figure 4.4 shows the properties of the 1,282 pairwise values which were missed by
BLAST in comparison to all values calculated by LALIGN. Although their overlap
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lengths are only slightly smaller than those of the hits found by LALIGN, the percent
identity and the scores of these matches are low. Having a look at some of these
alignments one recognizes that they are interrupted by long stretches of gaps. Due
to the heuristics implemented in BLAST, long alignments consisting of low-scoring
amino acid pairings interrupted by long stretches of gaps can not be found by this
procedure (for details see Section 3.2.2 and 3.2.3).
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Figure 4.4: Properties of pairwise hits missed by BLAST in comparison to LALIGN.
The plots on the left show all pairwise values of 5,000 sequences from Swiss-Prot
produced using LALIGN with subsequent calculation of the E-value (Only those
pairwise values are shown which have an E-value better than or equal to 0.05). On
the right, only those pairwise values out of the left ones are plotted which were

missed when using BLAST as filtering step before performing LALIGN.

4.3.2 Clustering Method

A single linkage clustering [Sokal and Sneath, 1973] of the whole data set is done at
a conservative threshold E-value t (e.g., 1e-40) as follows: the symmetric distance
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matrix D contains all pairwise E-values d(s;, s;) for each pair of protein sequences s;
and s;, 1 </, j < n, for which d(s;, s;) < t. D can be represented by an undirected,
unweighted graph G, known as a threshold graph. G = (V, E) is defined as follows:
V={s|ie{l,....,n}} and E ={(s,s) | d(si,s;) < t,i,j€{1l,...,n},i#j}.
The single linkage cluster set is the set of connected components in G.

Depending on the connectivity within the resulting clusters, they themselves are
again classified as perfect, nested, or overlapping. Since we are working now on an
undirected graph, we have to modify our previous notation from SYSTERS 1 as
follows: let H = (W, F) be a connected, undirected, unweighted subgraph of G.

Perfect Cluster: each node in H is connected to every other node in H. This
corresponds to a completely linked cluster or clique.
In the language of set theory, W satisfies Vv, w € W, v # w, (v, w) € F.

Nested Cluster: at least one and at most (|W| — 1) nodes in H are connected to
all other nodes in H.
Or, v e W, v # w with (v, w) € F for all w € W\ v and
Ix,y € W, x # y with (x,y) ¢ F

Overlapping Cluster: there is no node in H which is connected to all other nodes
in H.
Or,Vve W 3w e W, w # v with (v,w) ¢ F

This classification of clusters can also be seen from a set-theoretical point of view,
where each set contains all sequences reached by a query sequence in a single
database search step (c.f. Fig. 4.5).

4.3.3 Clustering Results

We have applied the single linkage clustering to a sequence set consisting of all
known protein sequences from the Swiss-Prot Rel. 39 [Bairoch and Apweiler, 2000],
TrEMBL Rel. 13 [Bairoch and Apweiler, 2000], and PIR Rel. 65 [Barker et al.,
2001] databases. The non-redundant sequence set contains 290,811 sequences.
The result of performing a single linkage clustering at a static cutoff E-value is
shown in Figure 4.6 for several different cutoff values. There is no significant break
in the curves at a certain E-value, which would suggest an appropriate threshold
for all protein families in the cluster set. For the actual SYSTERS 2 cluster set
we decided on a cutoff E-value of 1e-40. This is a compromise between having a
large number of single sequence clusters and splitting the data into a small number
of large overlapping clusters. Nevertheless, even at this cutoff E-value some huge
clusters are built and have to be split again at more stringent cutoff E-values to
result in a biologically meaningful partitioning. They mainly comprise sequences of
the following protein families:
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e immunoglobulins,

e Human immunodeficiency virus envelope proteins,
e cytochromes and AT Pases,

e protein kinases, actins, myosins, etc.

Perfect
Cluster:

0ed 23 €2 €0
B D B D B D B D
C C C C
Nested e A
EEANRININIG
C
©
Overlapping e A
LA ETIDIBIE
(©

Figure 4.5: The three different categories into which the resulting clusters can be
sorted: perfect, nested, and overlapping. The query of each set is typed in bold
italic, the underlying database search tool is assumed to produce symmetric results.
Each sequence of a perfect cluster identifies exactly the same cluster when used as
query in a database search. In the case of a nested cluster, at least one sequence
identifies all other sequences of the cluster when used as query (here sequence A),
but at least one of the other sequences of the cluster identifies only a subset of
the sequences. Overlapping clusters are built of overlapping sets of sequences as
shown in the last row, in @ manner similar to a chain in a graph.
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Figure 4.6: Single linkage clustering at different E-values. All possible single linkage
cluster sets at cutoff E-values from 1e-180 to le-5 are depicted in the plots. The
plot on the upper left shows the number of all clusters and the number of single se-
quence clusters. The smaller the E-value, the higher the number of single sequence
clusters, while with a higher E-value more sequences end up in larger connected
components. There is no significant break in the curves which would suggest an
appropriate threshold for all protein families in the cluster set. The plot on the top
right shows the growth of the largest clusters in the cluster set as a function of the
E-value. As expected, the higher the E-value the larger the clusters, and there is
a significant increase in size above an E-value of approximately 1e-40 (represented
in the graph by a vertical line). The plot in the lower left of the figure shows the
distribution of the clusters into perfect, nested, and overlapping clusters, and the
plot on the lower right shows the number of sequences in these clusters. Single
sequence clusters were not considered in these plots. Up to an E-value of 1e-60,
the number of perfect clusters grows. Most of these clusters cover only a small
number of sequences, and as the E-value increases, these “trivial” clusters merge
into nested and overlapping clusters.
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4.4 SYSTERS 3 (hierarchical clustering)

A crucial point in the single linkage clustering is the choice of a suitable threshold.
Pairwise E-values better than or equal to this threshold result in an edge in the
single linkage graph and thus contribute to the clustering, while E-values worse
than the threshold are not included in the graph. For those families whose members
are very closely related, a certain cutoff may be too weak, while it may be too
stringent for diverged families. It would be more appropriate to determine a separate
cutoff for each of the protein families. Because we wish to reduce the amount of
manual interaction in our clustering procedure, we keep the single linkage clustering
approach as the basis of the clustering in mind. Instead of extracting one single
linkage layer, we construct a single linkage hierarchy of the data, and generate a
classification into superfamilies and subclusters. Here we present the methods that
we currently use to compute our clustering of proteins, i.e., selecting superfamilies
and dividing them into reasonable family clusters. Figure 4.7 shows a schematic
overview.

DA

Single linkage hierarchy Superfamilies Superfamily distance graph Subclusters

Figure 4.7: Schematic overview of the SYSTERS 3 clustering procedures. We start
with a single linkage tree constructed from pairwise distances. Each leaf in the tree
corresponds to a protein sequence. Superfamilies are determined based on the
internal structure of the tree. For each superfamily, a distinct superfamily distance
graph is built. This weighted graph is cut at weak connections into subclusters.

4.4.1 Pre-processing

The total number of entries in all the aforementioned protein sequence databases
now exceeds half a million. This number includes fragmental as well as identical
sequences from different resources. To reduce the amount of data without losing in-
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formation we exclude redundant information in the form of identical (sub)sequences
from the data set prior to the clustering.

We model the remaining protein space as a weighted undirected graph with pairwise
distances attached to the edges. We decided on using E-values computed from
pairwise local sequence alignments as edge labels computed as described in Section
4.3.1. All sequence pairs whose E-value was worse than 0.05 were assumed to be
unrelated, and their distance was set to infinity.

The resulting symmetric distance matrix D contains all pairwise distances d(s;, s;)
for each pair of protein sequences s; and s;, 1 < /,j < n, for which d(s;, s;) < 0.
D can be represented by a weighted graph G, which we call the distance graph.
G = (V,E) is defined as follows: V = {v; | v = {s;},i € {1,...,n}} and E =
(i) | w(vi ) = d(si,5), 0, J € {1,....n},i # j}.

4.4.2 Single Linkage Tree

The single linkage tree is built in an agglomerative manner (see Section 4.1) based
on the distance graph G. The algorithm starts with a tree collection (forest) T
where each sequence corresponds to a distinct tree. As long as there are edges in
the graph G, the edge with the smallest weight is selected and the adjacent nodes in
G are merged. Edges linking this newly created node to adjacent ones in the graph
receive the weight of the smaller of the original edges. The two corresponding trees
in T are collected together in a new tree rooted by a parental node labeled with
the connecting edge weight. Finally, to allow for a better handling of the data,
the resulting unconnected trees are rooted by connecting their roots to an artificial
overall root node with weight oo. Algorithm 4 gives a detailed description.

Algorithm 4 Single linkage tree
Input: Distance graph G = (V, E)
Output: Node labeled tree
1: Initialize collection of single vertex trees :
T:=(L;, F;)with L, ={s;} and F; = ( for all i € {1, ..., n}
while |V| > 1 do
Find edge e = (v, v,) € E with smallest weight w(e)
Replace v, and v, by v, = v, U v,
Define the distance between v, and any other node v’ in G as:
d(vz, v') = min{d(s;, s;) | si € v, 5, € V'}
6:  Create tree T, with root node L1°°" labeled with d(vy, v,)
and edges (L1°°%, L[°°F) and (L[°°F, L}°°F)
7. end while
8. Root unconnected trees by adding an artificial overall root node labeled with
weight oo




58 4.4 SYSTERS 3 (HIERARCHICAL CLUSTERING)

4.4.3 Superfamily Determination

Different protein superfamilies display a different degree of conservation. There-
fore, for each superfamily, the twilight zone starts at a different cutoff. A crucial
problem thus lies in the determination of an appropriate E-value threshold for each
superfamily. To this end we have devised the following procedure.

For an edge of the tree linking, say, a parent p and a child g, we compute the
quantity

_ subtreesize (p) - subtreesize (q)
B subtreesize (q)

J(q,p)

J represents the ratio between the size of all the subtrees below p without the child
g and the size of the subtree below g. The following figure shows p and g in the
tree context:

Watching the development of J as one walks up the tree from a leaf towards
the root, one can observe that J tends to increase dramatically as one leaves the
superfamily to which the leaf belongs, and then decreases again. This intuition is
captured by our algorithm. For each leaf, we determine the maximum J as one
proceeds from the leaf to the root of the single linkage tree. This strategy is applied
to all leaves in the tree, assigning a superfamily to each leaf. In the end, inclusions
are resolved by keeping the largest superfamilies. We call the internal node induced
by a superfamily the superfamily root. The E-value linked to this node is called the
superfamily cutoff. Refer to Algorithm 5 for more details.

Figure 4.8 shows an example of the superfamily determination. Only a part of
the complete single linkage tree consisting of 290,811 leaves and 186,176 internal
nodes is shown. The superfamily procedure correctly determines the ephrin family of
sequences. Ephrins are membrane-attached proteins involved in the development
of the nervous system and can be further distinguished into type A and type B
ephrins depending on their membrane binding mechanism.
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Algorithm 5 Superfamilies

Input: Tree T = (V, E) with n leaves (sequences)
Output: Superfamilies

10:
11:
12:
13:
14:
15:

1
2
3
4:
5:
6
7
8
9

. for all leaves [ €V, ie{1,..., n} do
: q <
/<0
Sf,’ — /,'
while g # T"°°t do
p < parent (q)
J e subtreesize (p) - subtreesize (q)

subtreesize (q)
if J > [/ then

[+ J
sfi+q
end if
q<p
end while
end for
Resolve inclusions by keeping the largest superfamilies
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Figure 4.8: Excerpt from the single linkage tree. The superfamily of sequence
093431 is determined as follows (traversing the tree along the branches depicted as
bold lines). The first internal node connects this sequence with the four sequences
P52794, P20827, P52793, and P97553 at an E-value of 1e-52. Thus, the ratio of
the size of the merging subtree and the size of the current subtree at this point is
4/1. Stepping up the hierarchy, the next node (E-value 4e-38) connects these five
sequences with a subtree consisting of 13 sequences, resulting in a ratio of 13/5
(= 2.6). Stepping further up the hierarchy, the following ratios are 1/18 (= 0.056
at E-value 6e-38), 2/19 (= 0.105 at E-value 2e-37), 15/21 (= 0.714 at E-value
2e-13), 1/36 (= 0.028 at E-value 5e-10), 211975/37 (= 5729.054 at E-value
0.022), 259/212012 (= 0.001 at E-value 0.023), etc. Taking the maximum of
the ratios, we find the superfamily root at E-value 5e-10 as the last node before
the largest relative increase (depicted as a bullet in the tree). The superfamily of
sequence 093431 hence consists of the 37 sequences belonging to the ephrin type
A and type B families plus a few predicted proteins.
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4.4.4 Subclustering

Stepping down the hierarchy of the single linkage tree starting at a superfamily root
usually splits off one sequence after another, but does not lead to a meaningful
partitioning into families. Since the single linkage tree is built using only the best
(lowest) E-values connecting subtrees, information about the connectivity within
these subtrees is lost in the hierarchy. We construct a threshold graph for each
superfamily by including only those nodes labeled with sequences belonging to the
respective superfamily. This graph contains only those edges from the distance
graph which are labeled with a distance better than or equal to the superfamily
cutoff. To split these graphs into family clusters, we use an algorithm that can be
seen as a weighted version of a method presented by [Hartuv et al., 1999].

To present this algorithm, we first review some standard graph-theoretic definitions.
The edge-connectivity k(G) of a graph G is the minimum number k of edges whose
removal results in a disconnected graph. A cut in a graph is a set of edges whose
removal disconnects the graph. A minimal cut is a cut with a minimum number
of edges. The length of the shortest path p(u, v) between nodes v and v in G
is the minimum length of a path from v to v, if such a path exists; otherwise
p(u, v) = oo. The diameter of a connected graph G is the longest of all shortest
paths between any two nodes in G.

The key definition of the algorithm in [Hartuv et al., 1999] is the following: an
undirected unweighted graph G with n > 1 nodes is called highly connected, if
k(G) > 5. A highly connected subgraph (HCS) is an induced subgraph H C G,
such that H is highly connected. In an unweighted graph this definition results
in the following property: the diameter of every highly connected subgraph is at
most two. Thus, these subgraphs are compact clusters which need not meet the
constraint of being fully connected.

The original HCS algorithm in [Hartuv et al.,, 1999] recursively splits a connected
graph at a minimal cut site until a disjoint set of highly connected subclusters is
reached. For our purposes we had to modify the algorithm to be able to handle
a weighted graph. Precisely, in our weighted HCS algorithm, if the edge weights
covered by the minimal cut are approximately the same as in the remaining graph,
the graph is assumed to be already highly connected and is not further split into
subclusters (see Algorithm 6).

Figure 4.9 shows an example of two graphs with the same topology and the same
minimal cut, but different weights in the remaining parts of the graph, resulting
only in one case in a cut.

The E-values in our data set range from 0 (corresponding to any E-value better
than 1e-180) to 0.05. To be able to find a minimal cut in our graph, edge labels
should be positive values with a low value representing a weak connection and a
high value representing a strong connection. Instead of using the raw E-values
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Algorithm 6 weighted HCS
Input: Connected weighted graph G = (V, E)

Output: Subclusters
: (Hl, H2, C) <+ mincut (G)

[y

Zv w(i)
2. x <+ |E| ¥+ &€ <
|E| > jee wl)
3. if x> Y then
4:  output G
5. else
6. weighted HCS (H,)
7. weighted HCS (H>)
8: end if
V=7 = M_350
IE| = 15
4 4 4 3
c 1 B c 1 B
1 1 1 1
2 1 B 1
1 1 1 1
Minimum
CutC
D 4 A D L A
E 4 F E 2 F
x=155 =231<350 x=155 =3.60>350
39 25

Figure 4.9: Effect of the modified weighted version of the HCS algorithm. The
annotation follows the nomenclature in Algorithm 6 for each of the graphs G =
(V, E). The weighted minimum cut C in the graph on the left splits the graph into
two distinct subgraphs ADEF and BCG (x < %). The graph on the right will be
left as it is (x > '%‘), although it has the same topology and the same weighted
minimum cut as the graph on the left.
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we label the edges in our graph with the negative logarithm of the corresponding
E-value each. Since the logarithm of 0 is not defined, we use an arbitrary value
(e.g., 181) for these edges instead of the logarithm.

The running time of both HCS algorithms is bounded by 2N x f(n, m), where N is
the number of clusters found and f(n, m) is the time complexity of computing a
minimum cut in a graph with n nodes and m edges. We use the implementation of
the "mincut” algorithm given in the LEDA [Mehlhorn and Naher, 1995] distribution,
which has a time complexity of O(nm + n?log n).

To apply this algorithm to our data set we added a pre-processing as well as a
post-processing step as follows (see Algorithm 7): Let F be the set of sequences
belonging to a superfamily and ¢ the superfamily cutoff. We call the connected
weighted graph G = (V, E) with V = {v; | vy = {s;},s; € F} and E = {(v;, v}) |
w(v;, vj) = d(si,s;),sis € F,i #j,d(s;,s;) < c} the superfamily distance graph
of F.

Algorithm 7 Subclustering

Input: Superfamily distance graph G

Output: Family clusters
1: repeatedly merge nodes with degree 1 with their respective adjacent node
2: weighted HCS (G)
3. perform singleton adoption

Cuts consisting of only one edge in the graph will be found first by the mincut
algorithm, but are as time consuming to find as other cuts. Sequences which are
connected in the remaining graph by only one edge are either fragmental, or are
(thus far) the sole representative of a protein family in the sequence database. The
underlying data of our clustering is known to contain lots of fragmental sequences.
Figure 4.10 shows the average sequence length with respect to a single linkage
clustering.

Before applying the HCS algorithm to our graph, we repeatedly merge all nodes
connected to the remaining graph by only one edge to their respective adjacent
node. Nevertheless, the HCS algorithm may split off single sequences as subclus-
ters. Thus, sequences which ended up after the subclustering as a single sequence
cluster are assigned to their closest neighboring cluster (singleton adoption), if
there is no contradiction.

When there are several minimum cuts in a graph, either the original or our weighted
HCS algorithm might choose a minimum cut which, from the clustering point of
view, Is not optimal. In many cases this process will break clusters into singletons
(c.f. Fig. 4.11). In the original algorithm in [Hartuv et al., 1999], iterations were
introduced to handle these cases. Since we are working on a weighted graph, these
cases occur very rarely and mostly are compensated by the subsequent singleton
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adoption step.

Figure 4.12 shows an example of splitting the superfamily distance graph of the
ephrin superfamily (c.f. Fig. 4.8) into two clusters representing ephrin types A and
B.

An alternative approach for cluster determination is presented by [Sharan and
Shamir, 2000, c.f. Section 2.2.3]. Their procedure splits the whole distance graph
at once into disjoint clusters. In our much simpler approach, we produce a hierar-
chical clustering based on the partitioning into superfamilies, which already results
in a biologically meaningful set of family clusters.
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Figure 4.10: Average sequence length with respect to a single linkage clustering at
different E-values. The average length of the sequences which end up in single se-
quence clusters (dashed line) is always below the average length of those sequences
in multi sequence clusters (dotted line). The average length of a sequence in the
whole data set is 354 amino acids (solid line).
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Figure 4.11: Influence of choosing arbitrarily one out of several possible minimal
cuts on the result of the HCS algorithm. Three out of several other possible
cut series are shown for an unweighted and undirected graph of eight nodes. The
graph is split in either four (left row), six (middle row), or eight (right row) clusters,
depending on the minimal cut chosen. Edges affected by a minimal cut are shown
as dotted lines, while the remaining edges are shown as solid lines.
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Figure 4.12: The superfamily distance graph of the ephrin superfamily. The only
edges that are included are those which represent E-values of at least the super-
family cutoff 5e-10. The width of an edge is according to its E-value, here ranging
from 5e-10 (thinnest edge) to 3e-149 (thickest edge). The subclustering procedure
first splits off nodes from the bottom right of the graph as single sequence clusters.
These sequences are predicted proteins which are not yet confirmed as functioning
by any experiment. The last accepted split in the graph results in the partitioning
into the two major groups of ephrin type A (left) and type B (right) sequences as
shown by the dashed line. Single sequence clusters are added to the ephrin type B
family in the subsequent singleton adoption step.
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4.4.5 Clustering Results

We have applied the above algorithms to a sequence set consisting of all known pro-
tein sequences from the Swiss-Prot Rel. 39 [Bairoch and Apweiler, 2000], TrEMBL
Rel. 13 [Bairoch and Apweiler, 2000], and PIR Rel. 65 [Barker et al., 2001] databases.
The original set contains 607,972 sequences (c.f. Table 4.3).

Number of Pairwise comparisons
sequences theoretical actual
redundant sequence set 607,972 | 184,814,672,406 -
without short sequences 583,452 | 170,207,826,426 -
without duplicates 395,089 | 78,047,461,416 | 24,834,881 (0.032%)
without inclusions 290,811 | 42,285,373,455 | 11,848,536 (0.028%)

Table 4.3: Reduction of sequence comparisons by removal of redundant sequence
information. For each sequence pair only one pairwise comparison is performed.
A comparison of a sequence to itself is assumed to result in an E-value of 0 and
thus is not explicitly computed. The original set of 607,972 sequences can be
reduced by excluding very short sequences, identical sequences, and sequences
which are subsequences of other included sequences, to a non-redundant set of
290,811 sequences.

Sequences which are too short to yield a result in the database search are removed
from this set. Sequences identical to other sequences are sorted together and only
one is retained as the representative. In a pairwise comparison of all remaining
395,089 non-redundant sequences, this would result in a triangular matrix filled
with 78,047,461,416 values. Since we rely on symmetric distances, each sequence
pair is counted only once and comparisons of a sequence to itself are not consid-
ered. By temporarily removing all those sequences which are 99% identical over
at least 95% of their entire length to another sequence, this number decreases.
These sequences are considered redundant, and are added to the cluster set again
later in order to retain their annotation. By reducing the number of sequences,
the remaining number of pairwise comparisons decreases significantly. Neverthe-
less, the number of possible pairwise values (more than 42 billion) would still be
intractable for a clustering procedure. In reality, the resulting triangular distance
matrix turns out to be sparsely filled with only 0.028% of the values (11,848,536
pairwise comparisons). Constructing the distance graph, the data splits into 40,288
unconnected components with 32,464 components consisting of only one sequence.
The resulting single linkage tree divides into 64,282 superfamilies with 46,802 of
them consisting of only one sequence. Figure 4.13 shows the distribution of su-
perfamily cutoffs. The superfamily cutoff E-values are in a range from 1e-180 to
0.05 with half of them being better than or equal to an E-value of 2e-17. There
is no peak in the data at a certain E-value, which would suggest an appropriate
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Figure 4.13: Distribution of superfamily cutoffs. 47,258 superfamilies are derived
from a separate tree and for 456 superfamilies the superfamily cutoff is better than
1e-180. These superfamilies are not depicted in the plot. Of the superfamilies
counted for the plot, half of them have a cutoff E-value better than or equal to
2e-17 (vertical line). There is no peak at a certain E-value, which would point to
an overall valid static cutoff.

threshold valid for all superfamilies. The subclustering splits the data further into
82,450 family clusters with an overall number of 55,182 single sequence clusters.
Depending on the connectivity within these family clusters, they themselves are
again classified into 13,481 perfect clusters (40,533 sequences), 9,358 nested clus-
ters (68,478 sequences), and 4,429 overlapping clusters (126,618 sequences) as
described in Section 4.3.2.

To describe the behavior of the different algorithms, we plot the number of clusters
vs. the E-value cutoff (Figure 4.14a) and the number of sequences in the largest
clusters vs. the E-value cutoff (Figure 4.14b), respectively. For single linkage clus-
tering, one observes a continuous, smooth curve, indicating that there is no obvious
choice of cutoff. The methods described here result in a partitioning where cutoffs
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are chosen dynamically. Thus, in the figure our results are depicted by horizontal
lines.
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Figure 4.14: Result of a single linkage clustering (SLC) in comparison to the super-
family determination (SF) with subsequent subclustering (SF+SC). Plot (a) shows
the number of clusters (solid line) and single sequence clusters (dashed line) result-
ing from a single linkage clustering at various different cutoff E-values (SLC). The
curves show no region that would suggest an overall threshold valid for all protein
families. Our clustering procedures are independent of such a cutoff. The results
of applying them to the same sequence set are shown in straight lines. Plot (b)
shows the total number of sequences in the ten largest clusters (solid line) and in
the largest cluster (dashed line). The curves show that our clustering procedures
are able to minimize the number of single sequence clusters (a) without forming
huge clusters in the twilight zone (b).
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4.4.6 Validation of the Cluster Set

To judge the resulting cluster set with respect to its biological accuracy, one would
like to compare it to a “true” cluster set. We have to address the following
problems:

e There is no generally accepted “true” cluster set.
e Other automatically generated cluster sets are:

— not necessarily biologically correct
— normally also based on all-against-all sequence comparisons

— often based on a different sequence set
e Manually generated cluster sets:

— often contain only well-characterized sequence stretches (representing
folds or domains) instead of full-length sequences (e.g., SCOP)

— are normally also based on sequence comparisons with subsequent man-
ual interaction (e.g., PIR-ALN is based on pairwise % sequence identity)

Nevertheless, we decided to apply our clustering procedures to the PIR-ALN data
set (c.f. Section 2.2.3). The PIR-ALN classification is based on all-against-all
database searches with a subsequent manual classification of the sequences into
families, superfamilies, and homology domains. The data set contains well-charac-
terized full length protein sequences and the classification is done in a very conser-
vative way.

Clustering Coefficients

A cluster set of n elements can be represented by m = w values in a triangular
matrix M where, for i < j, Mj; = 1, if and only if / and j are in the same cluster, and
M;; = 0 otherwise. If T denotes the matrix of the true solution, we can compare
the two cluster sets based on the following numbers:

a: the number of sequence pairs clustered together in both cluster sets.
a=|{(i,j) | My=1AT;=1,i <j} “true positives”

b: the number of sequence pairs clustered together in the true cluster set, but
not in the current clustering solution.
b=|{(i,j)| My=0AT;=1,i <j} “false negatives”



CHAPTER 4. SEQUENCE CLUSTERING 71

c: the number of sequence pairs clustered together in the current clustering
solution, but not in the true cluster set.
c=H{(i,j) | My=1AT;=0,i <j} “false positives”

d: the number of sequence pairs not clustered together in both cluster sets.
d=|{(,Jj) | Mj=0AT;=0,i <Jj} “true negatives”

As similarity measure we used the Jaccard similarity [Jaccard, 1908] defined as

follows:
a

at+b+c
A perfect clustering which is identical to the true cluster set results in S = 1.
Figure 4.15 shows an example of comparing two cluster sets.

ABCD ABCD  a=[{(B,C)} =1
Al TTO AlT000  b={(AB).(AO}=2
T=8 10 M=B 11 c=[(BD)(CD)}=2
C 0 C 1 d=[{(AD)} =1
D D

Figure 4.15: Comparison of two cluster sets T and M. By counting those sequence
pairs clustered in the same way and those clustered differently in T and M, we can

compute the Jaccard similarity as follows: S(T, M) = Wlﬂ =0.2.

Comparison with PIR-ALN

The December 2000 release of PIR-ALN (c.f. Section 2.2.3) contains 3,508 align-
ments covering 994 superfamilies, 2,128 families, and 386 homology domains.
Since a sequence can contain several domains and belong to different families,
the data set had to be reduced into disjoint sets of 994 superfamilies (4,968 se-
quences), 2,114 families (11,711 sequences), and 374 homology domains (2,656
sequences). We merged all identical sequence entries by retaining the union of their
class assignments.

The PIR-ALN sequence data was split into three data sets based on the PIR-
ALN classification scheme (superfamily, family, and domain homology). Each of
these sets was handled independently. We applied our clustering methods in various
combinations to show their effect on the PIR-ALN data set:
e Superfamily classification without subsequent subclustering:

For the superfamily determination, first the complete single linkage hierarchy

was built, resulting in 214, 974, and 703 distinct trees for the PIR-ALN

domain, family, and superfamily data sets.



72 4.4 SYSTERS 3 (HIERARCHICAL CLUSTERING)

e Subclustering without prior superfamily classification:
For the subcluster determination first a single linkage cluster set was gen-
erated at a static cutoff E-value of 0.05 for the PIR-ALN domain, family,
and superfamily data sets each. These cluster sets are then further split into
subclusters.

e Superfamily determination with subsequent subclustering:
The clusters obtained from the superfamily determination are further split
into subclusters.

e Single linkage clustering at various static E-value cutoffs.

Figure 4.16 shows a summary of the results together with the result of the single
linkage clustering. Table 4.4 gives the exact numbers computed for the Jaccard
similarity. The best Jaccard similarity in comparison to the PIR-ALN homology

PIR-ALN: Domains | Families | Superfamilies
Sequences 2,656 | 11,711 4,968
Clusters 374 2,114 994
Superfamily determination:

distinct trees 214 974 703
SYSTERS superfamilies 398 974 703
Jaccard similarity 0.13552 | 0.00693 0.04721
Subclustering:

distinct graphs 214 974 703
SYSTERS subclusters 344 1,377 903
Jaccard similarity 0.22466 | 0.12550 0.25173
Superfamily determination with subsequent subclustering:
SYSTERS clusters 527 1,550 952
Jaccard similarity 0.26027 | 0.13052 0.24147

Table 4.4: Jaccard similarities computed by comparing the PIR-ALN homology
domain, family and superfamily cluster sets with various combinations of the SYS-
TERS superfamily determination and subclustering procedures.

domain classification is obtained by combining the SYSTERS superfamily determi-
nation with a subsequent application of our subclustering procedure (S = 0.26027).
The same holds for the PIR-ALN family classification, but with a worse Jaccard
similarity (S = 0.13052). In this case, a single linkage clustering at a cutoff E-
value of 1e-59 would give the best result (S = 0.198606). In comparison with the
PIR-ALN superfamily classification, the best result is obtained by applying only the
subclustering procedure (S = 0.25173).
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Figure 4.16: Single linkage clustering (bold dots), superfamily determination (solid
line), subclustering (dotted line), and superfamily determination with subsequent
subclustering (dashed line) of the PIR-ALN sequence set. In the case of PIR-
ALN domain homology and PIR-ALN superfamily, both the subclustering and the
superfamily determination with subsequent subclustering perform better than a
simple single linkage clustering. For the PIR-ALN family classification the single
linkage clustering at an E-value of 1e-59 gives the best result.
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4.4.7 Updating the Cluster Set

When adding a new sequence to a single linkage cluster set at a static cutoff E-
value one can observe the following three cases (see Fig. 4.17). The new sequence
will end up as either:

(1) a new single sequence cluster,
(2) part of an already existing cluster, or

(3) a connection between several already existing distinct clusters.

(1)@ (2) /QA}-@ (3) --@--
o0 GG &

Figure 4.17: Effect of adding a new sequence Z to a single linkage cluster set.
(1) Sequence Z builds a new single sequence cluster. (2) Sequence Z becomes a
member of an already existing cluster. (3) Sequence Z connects several formerly
distinct clusters.

Sequences are not only added to current sequence database. Sometimes a (frag-
mental) sequence is exchanged by another (complete) sequence. This can be real-
ized by first removing the outdated sequence from the cluster set and then adding
the new sequence again as described above. The removal of a sequence from a
cluster set has one of the following effects (in reverse of adding a sequence):

(1) a former single sequence cluster vanishes,
(2) the sequence is removed from a cluster, or

(3) acluster resolves into several distinct clusters for which the outdated sequence
was the only connection.

For the SYSTERS superfamily determination and the subclustering procedure we
have to consider one more scenario: adding a new sequence to the data set may
also result in splitting a cluster into smaller distinct clusters, if a formerly under-
represented protein family is affected. Figure 4.18 shows an example.
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Figure 4.18: Updating the superfamily distance graph of the ephrin superfamily.
The only edges that are included are those that represent E-values of at least the
superfamily cutoff 5e-10. The width of an edge is according to its E-value, here
ranging from 5e-10 (thinnest edge) to 1e-180 (thickest edge). As opposed to Fig.
4.12, a new sequence NewSeq was added. NewSeq is connected to the sequences
Q9U474 and CE21543 with edges corresponding to an E-value of 1e-180. The
subclustering procedure again first splits off nodes from the right of the graph as
single sequence clusters. The second-to-last split disconnects the subgraph built by
the sequences NewSeq, Q9U474, and CE21543 (bottom right) from the remaining
graph. The last accepted split results in the partitioning into the two major groups
of ephrin type A (left) and type B (top right) sequences. Single sequence clusters
are added to the ephrin type B family and to the new family initiated by NewSeq
in the subsequent singleton adoption step. The three resulting subclusters are
separated by dashed lines in the graph.
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The most time consuming part of the SYSTERS clustering procedures are the all-
against-all sequence comparisons, while the clustering itself can be done within few
hours. Thus, our main focus in updating the cluster set is on the pre-processing
step and the database searches. Since the cluster set is made available over the
Internet, the second focus is on maintaining a stable cluster numbering to make
sure that every sequence has a reproducible cluster history. Algorithm 8 solves the
problem of regularly updating the cluster set.

Algorithm 8 Update SYSTERS 3 (different cases as shown in Fig. 4.17)

Input: Non-redundant union of all currently available protein sequence databases
(new_set), non-redundant sequence set underlying the latest SYSTERS cluster
set (old_set), pairwise distances computed for old_set, and the latest SYSTERS
cluster set.

Output New SYSTERS cluster set

core_set <— new_set N old_set

new_seqs < new_set \ core_set

for all sequences in new_seqs do

database search against new_set resulting in symmetric pairwise distances

end for

collect distances of all sequences in new_set

apply superfamily determination and subclustering procedures

{Compare new and old clustering result:}

8: Retain cluster numbers of
- unchanged clusters,
- clusters extended by new sequences (Case (2)), and
- clusters shrunken due to the deletion of sequences (reverse Case (2)).

9: Assign a new cluster number to clusters completely made of new sequences
(Case (1))

10: Assign a new cluster number while maintaining the old numbers to clusters
being merged by new sequences (Case (3)).

11: Assign new cluster numbers while maintaining the old number to clusters being
split by new sequences (SYSTERS specific case).

oo we =

The algorithm takes as input the non-redundant union of the currently available
protein sequence databases (new_set), the non-redundant sequence set underlying
the latest SYSTERS cluster set (old_set), the pairwise distances already computed
for the sequences in old_set, and information about the cluster numbering. In the
pre-processing (Line 1), the set of sequences is extracted which both sequence sets
(new_set and old_set) have in common (core_set). Then (Line 2), those sequences
are collected which were not yet part of old_set. Only these sequences (new_seqs)
are searched afterwards against the non-redundant set of currently available protein
sequences new_set (Lines 3 to 5). Afterwards (Line 6), only the pairwise distances
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of sequences which are part of new_set are used for the clustering (Line 7). Doing
this, all sequences being deleted from old_set or replaced by new sequences will
be excluded automatically from the subsequent clustering. The post-processing
(Lines 8 to 11) compares the newly achieved cluster set with the latest version to
guarantee a stable cluster numbering.

The algorithm will be implemented to be able to provide a stable and up-to-date
cluster set to the user.



Chapter 5

Access to the Cluster Set

The SYSTERS 3 cluster set [Krause et al., 2002a] is available over the Internet
at http://systers.molgen.mpg.de/. There it is possible to explore the pro-
tein sequence space by navigating through the complete hierarchy consisting of
superfamilies, family clusters, and domains. For the last layer in the hierarchy, the
domain level, we rely on one of the currently established domain databases, namely
the Pfam collection of protein domains [Bateman et al., 2000]. It is possible to en-
ter the hierarchy at any layer, e.g. by searching for a keyword, choosing a species, or
selecting a domain. For each family cluster a consensus sequence is generated. All
consensus sequences together build a database searchable by BLAST. Thus, a clear
assignment of a new protein or nucleotide sequence to a family and a superfamily
is possible now. Additional information like a multiple alignment or a phylogenetic
tree is given for each of the family clusters. Whenever possible, links to external
resources are provided to allow for further information, e.g. about structural prop-
erties or underlying genes. Figure 5.1 gives a schematic overview of the SYSTERS
Web server and its functionality by an example.

5.1 Cluster Information

The sequences in every cluster have been multiply aligned using ClustalW 1.7
[Thompson et al., 1994], and with each cluster an unrooted tree (computed using
Neighbor-Joining [Saitou and Nei, 1987]) is available. All multiple alignments are
annotated with known domains from the Pfam protein family database of align-
ments and HMMs [Bateman et al.,, 2000]. Each domain annotation in a multiple
alignment is linked to the list of clusters containing this domain. Alternatively,
clusters can be selected directly from a list of Pfam domains.
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Figure 5.1: Schematic overview of the SYSTERS Web server. As an example, the
cluster set was searched with a query sequence (top left). A more detailed insight
into the nested cluster 66044 (middle right) containing 29 sequences is given.
Additionally, the MView local alignment (bottom left), the list of clusters contained
in the corresponding superfamily (middle left), and the domain composition of the
sequences in the cluster (bottom right) is shown.
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Additionally a new sequence can be used as query against the SYSTERS cluster set.
The search is done by the similarity searching tool SSMAL (Shuffling Similarities
with Multiple Alignments) [Nicodeme, 1998, c.f. Section 3.3.3]

For each cluster a representative sequence is chosen and its corresponding BLAST
database processed with the MView program [Brown et al., 1998]. MView is a
tool for converting the results of a sequence database search into the form of a
colored multiple alignment of hits stacked against the query. The result is a local
multiple alignment representing the conserved parts of the sequences in the cluster.
Based on this alignment a majority consensus sequence is calculated. All consensus
sequences together build a database searchable with BLAST.

5.2 Cluster Selection

Clusters can be selected directly by cluster number, cluster size, species name, se-
quence accession number, or sequence identifier. Sequence annotations are stored
in separate files for every cluster. A keyword search can be done on these files
with the indexing and query scheme GLIMPSE [Manber and Wu, 1994, GLobal
IMPlicit SEarch]. This allows for query compositions containing boolean operators
or regular expressions.

5.3 Data Storage

To guarantee a fast, secure and flexible access to the sequence and cluster informa-
tion, all data is stored in a PostgreSQL (http://www.postgresql.org) database.
PostgreSQL is a freely available object-relational database management system,
originally developed at the University of California at Berkeley [Stonebraker and
Rowe, 1986]. All searchable attributes (e.g., cluster number, sequence accession
number, and identifier) are indexed using a B-tree index to improve access time.
Figure 5.2 gives an overview of the information stored in the PostgreSQL database.
All cluster information from the SYSTERS cluster set is stored in a database table
(see Table 5.1). Sequence information is stored in a sequence table and is con-
nected with the cluster table via the attribute “clusternr” (see Table 5.2). Similar
tables are available with information about links to other databases, i.e., EMBL,
PDB, PROSITE, Pfam, and ENZYME [Bairoch, 1999]. Additionally, information
about identical and redundant sequences is stored in the database.

All other information is stored in separate files sorted into respective subdirectories.
They are accessible by the cluster number. E.g., the multiple alignment computed
for a cluster X is stored in a file named cluster.X.aln in the subdirectory aln.
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Figure 5.2: SYSTERS structure in the PostgreSQL relational database manage-
ment system. Each box represents a table containing information about clusters
or sequences. The first row in a box contains the table name, while the following
rows indicate the attributes. Solid arrows connect common attributes in different
tables. Dashed arrows point to external information resources available over the
Internet. Thin open arrows indicate entry points for querying.

Attribute Type Len | Index | Description
clusternr varchar() | 16 | Yes | Cluster number
type char 1 No | Cluster type:

S(ingle), P(erfect), N(ested), or O(verlapping)
size int4 4 | Yes | Number of (redundant) sequences in this cluster
superfamily | int4 4 | Yes | SYSTERS superfamily number

Table 5.1: Database table with cluster information
Attribute Type Len | Index | Description
acenr varchar() | 16 | Yes | Sequence accession number
ident varchar() | 16 | Yes | Sequence identifier
database varchar() 8 | No | Database key
length int4 4| No | Sequence length
clusternr varchar() | 16 | Yes | Cluster number
species text var | No | Species name(s)
description | text var | No | Description line
Table 5.2: Database table with protein sequence information
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5.4 Applications

Protein Structure Initiative

The SYSTERS database turned out to be useful in the context of the structural
genomics project for finding interesting candidates for crystallographic determina-
tion of the three-dimensional structure of a protein. By identifying the structure
of only one protein from a cluster it is possible to avoid redundant work on sim-
ilar sequences. For this purpose, SYSTERS has been integrated into the Protein
Structure Initiative structural genomics web site [Vitkup et al., 2001].

VT Scoring Matrix

The series of VT (variable time) matrices [Miiller and Vingron, 2001] are built
using a new method to estimate the parameters of an amino acid substitution
model. Following Dayhoff [Dayhoff et al., 1978], protein evolution is modeled as
a Markov process, but in contrast to Dayhoff's estimation method, the estimator
handles alignment data of various degrees of divergence. The approach is iterative
and cycles between estimating the evolutionary distances between the sequences in
an alignment and updating the current estimator for the rate matrix. The overall
matrix is derived from the SYSTERS database of protein families.

GeneNest

GeneNest [Haas et al., 2000] is a software package for automated generation and
visualization of gene indices. The GeneNest database of gene indices is avail-
able at http://genenest.molgen.mpg.de. The gene indices are based either
on a database of sequences extracted from the EMBL database or from an al-
ready clustered database of expressed sequence tags (ESTs) from Unigene. After
pre-processing the sequences in order to mask repeats, vectors, and regions of
low quality, an all-against-all database search is performed and the sequences are
clustered. Sequences in a cluster are assembled in order to determine their rela-
tive positions and to obtain a representative consensus sequence. The GeneNest
visualization serves as an entry point to the gene-index database as well as to ex-
ternal databases. Predicted amino acid sequences of putative open reading frames
(ORFs) longer than 30 nucleotides are searched against the SYSTERS consensus
sequence set and homologies are shown in the visualization.

Oncogene Chip

The DKFZ Division of Molecular Genome Analysis has used the SYSTERS family
database for the delineation of genes for the “onco-chip”, a DNA microarray for
the study of cancer.



Chapter 6

Reconstructing the Vertebrate
Phylogeny

The SYSTERS data set consists of all publicly available protein sequences hierar-
chically sorted into family and superfamily clusters. In this chapter we will focus on
a subset of these sequences from a clearly defined set of species. The aim of clus-
tering these sequences is not only to determine groups of homologous sequences,
but furthermore to unravel their evolutionary relationship.

Relationships between genes from different species can be represented as a system
of homologous families consisting of orthologous and paralogous genes. Paralogous
genes are related by duplication within a genome and might diverge while existing
side by side in the same lineage. Orthologous genes originate from speciation, that
is, the common ancestor of the two genes lies in the cenancestor of the taxa the
two genes were obtained from [Fitch, 2000].

The cephalochordate amphioxus is the invertebrate chordate that most recently
separated from the vertebrate lineage for which there is a living representative.
Major duplication events during vertebrate evolution are assumed to have hap-
pened after the divergence of amphioxus. To test different hypotheses concerning
vertebrate evolution, one depends on well-separated vertebrate gene families having
only one orthologous representative apiece in the invertebrates.

We present a clustering of invertebrate and vertebrate sequence data into well-
separated gene families as a prerequisite for the analysis of vertebrate evolution and
functional annotation. As a basis, a cluster set consisting of the predicted proteins
from the completely sequenced genomes of Drosophila melanogaster, Caenorhab-
ditis elegans, and Saccharomyces cerevisiae was produced. On top of this data, we
included publicly available vertebrate protein sequences from human, mouse, rat,
lamprey, hagfish, and amphioxus.
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6.1 Biological Background

6.1.1 Chordates

The following descriptions are mostly adapted from the book Five Kingdoms: An
lllustrated Guide to the Phyla of Life on Earth [Margulis and Schwartz, 1998].

Chordates can be divided into three classes, namely vertebrates, cephalochordates,
and wrochordates as shown in Fig. 6.1. All of them share three major defining
characteristics:

1. A dorsal hollow nerve chord (the brain and spinal chord of humans).

2. Clefts in the wall of the throat region, usually referred to as pharyngeal gill
slits, which have been modified for other functions in terrestrial vertebrates,
but are used for respiration and feeding in the more “primitive” chordates.

3. An original dorsal cartilaginous structure called a notochord. The notochord
gives the animal structural support and is gradually replaced by the vertebrae
as one moves higher up in the vertebrate phylogeny. The notochord persists
in the vertebrate embryo and is also still present in some fish and a few fossil
amphibians and reptiles.

Gnathostomes
(jawed vertebrates)

Lamprey
} Agnatha

Hagfish

Vertebrata

Amphioxus} Cephalochordata

Ascidian } Urochordata
Chordata

Figure 6.1: Phylogeny of chordates.

Vertebrates

The vertebrates are characterized by the development of a cartilaginous or bony
vertebrate column to surround and protect the dorsal nerve chord. All vertebrates
have a brain that lies within a cranium (skull), which distinguishes members of
this phylum from the urochordates and cephalochordates. The earliest vertebrates
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were the agnaths. Living representatives include the groups of the lampreys and
hagfish. The agnaths lack a jaw and their mouth is simple. The placoderms were
the first vertebrates with a jaw, an important innovation for hunting and feeding.
The jaws are derived from cartilaginous support bars found in the pharyngeal region
of the primitive chordates. Later, some of these pharyngeal bars were incorporated
as small bones in the ear of the more advanced vertebrates. The hinged jaw was
apparently a very important advance in vertebrate evolution, and the placoderms
are believed to have given rise to the rest of the vertebrates.

Cephalochordates

All three defining features of chordates persist in adult cephalochordates (Greek:
cephalo = head; Latin: chorda = cord). Amphioxus (Branchiostoma) is one of the
23 known species belonging to the cephalochordates. They range from about 5
to 15 cm in length and live on shallow sandy sea floors. Branchiostoma are fish-
like but scale less and without bones and cartilage. Because cephalochordates are
lance shaped, they are also called lancelets. Ribosomal RNA comparisons suggest
that cephalochordates are the closest relatives of vertebrates. Because of their
remarkable morphology, they have proved crucial in understanding the morphology
and evolution of chordates, including vertebrates.

Urochordates

Only two of the defining features of chordates persist in adult urochordates (Greek:
oura = tail). The notochord extends the length of the urochordate body but
exists only in the larva. Adult urochordates (tunicates) secrete an external tunic
surrounding the body. They have a small cerebral ganglion but no brain. The 1,400
species are grouped into three classes — Ascidiaceae, Larvacea, and Thaliacea. All
urochordates are marine and this group comprises about 90% of the invertebrate
(acraniate) chordates.

6.1.2 Duplication Events in Vertebrate Evolution

Gene duplication followed by functional divergence may be one class of mutation
that permits major evolutionary changes [Holland et al.,, 1994; Ohta, 1989]. Ohno
[Ohno, 1993] already suggested that at least one round of tetraploidization occurred
in the lineages leading to amniotes (reptiles, birds, mammals). It is now widely
accepted that genome expansion by either tetraploidy or tandem gene duplication
occurred in a major phase close to vertebrate origins, after divergence from the
amphioxus lineage. A second phase of duplication was probably close to the origin
of jawed vertebrates (c.f. Fig. 6.2). Recent reviews of this field can be found
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in [Makalowski, 2001] and [Pennisi, 2001]. To test different hypotheses on the
evolution of vertebrate genes, one primarily depends on data representing clearly
separated gene families (see Fig. 6.3).

Gene duplication
phase 2 ?

Gnathostomes

Gene duplication (jawed vertebrates)

phase 1 ?

Lamprey

Hagfish

Amphioxus

Ascidian

Chordata

Figure 6.2: Suggested duplication events in vertebrate evolution. The first major
phase is believed to have happened after the divergence of amphioxus, and the
second phase prior to the origin of jawed vertebrates.

(@) X1 (H) (b) — X1(H) © — X1(H)
X2 (H) —— X1 (M) —— X1 (M)
X1 (M) — X2 (H) X1 (D)
X2 (M) — X2 (M) X1 (C)
X (D) X (D) X1 (Y)
X (C) X (C) — X2 (H)
X (Y) X (Y) —— X2 (M)

Figure 6.3: Possible phylogenies resulting from the occurrence of multiple homol-
ogous copies of gene X in Human (H) and Mouse (M) in contrast to single copies
in D. melanogaster (D), C. elegans (C), and S. cerevisiae (Y). Branchings marked
with a bullet indicate a duplication event, all other branchings are due to speciation.
(a) Two duplications, independent in Mouse and Human. (b) One duplication in
the common ancestor of Mouse and Human. (c) One duplication in the common
ancestor of vertebrates and invertebrates.
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6.2 Current Approaches

Most approaches toward the characterization of well-separated vertebrate gene
families are based on database searches, where significant matches are taken as an
indicator for homology (e.g., see [Rubin et al., 2000]). These approaches often
rely on cutoff values such as an E-value or a z-score. In this way, distantly-related
sequences may be missed while sequences belonging to a neighboring family may
be included as false positives. Other approaches are based on manually selected
sequence sets, and are not applicable for large scale analyses. Moreover, these
results cannot be easily reproduced.

HOVERGEN

The HOVERGEN database of Homologous Vertebrate Genes [Duret et al., 1994]
integrates information about phylogenetic trees, alignments, taxonomy, sequences
etc. to allow for retrieval of all sets of homologous genes sequenced for a given set
of species. The determination of orthologous genes within HOVERGEN is done
in @ manual approach based on an automatic classification performed according to
different similarity criteria. Since this approach is not applicable for large datasets,
HOVERGEN gives the users access to all data necessary to interpret homology
relationships between genes.

TetraBase

TetraBase (database of tetralogues) [Spring, 1997] is a collection of invertebrate
genes together with their duplicated vertebrate counterparts. TetraBase mostly
contains families where one invertebrate (i.e. Drosophila) gene is related to up to
four vertebrate (i.e. human) genes on four different chromosomes. The data set is
collected manually based on sequence comparison and mapping information.

COG

A comparison of proteins encoded in completely sequenced genomes from different
phylogenetic lineages is done by Tatusov, Koonin, and Lipman [Koonin et al.,
1998; Tatusov et al., 1997]. Their database of Clusters of Orthologous Groups of
proteins (COGs) [Tatusov et al., 2001] constitutes a phylogenetic classification of
the proteins encoded in completely sequenced genomes of bacteria, archaea and
eukaryotes. COGs have been identified on the basis of an all-against-all sequence
comparison of the proteins encoded in completely sequenced genomes using the
gapped BLAST program after masking low-complexity and predicted coiled-coil
regions. The COG construction procedure is based on the assumption that any
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group of at least three proteins from distant genomes are most likely to belong
to an orthologous family, if they are more similar to each other than to any other
proteins from those genomes. Each sequence pair in such a group is connected via a
so called pairwise best hit. Remarkably, this rule even holds true when the absolute
level of sequence similarity between the proteins in question is relatively low. In a
post-processing step, multidomain proteins are split into single-domain segments
and clustered again. Large COGs are evaluated manually based on phylogenetic
trees, cluster analysis, and visual inspection of the alignments. Each COG consists
of individual orthologous genes or orthologous groups of paralogs from at least
three phylogenetic lineages.

A similar clustering of the D. melanogaster, C. elegans, S. cerevisiae, and the
predicted human proteins from the Ensembl database [Hubbard et al, 2002] is
mentioned in [International Human Genome Sequencing Consortium, 2001], but to
our knowledge, there exists no publicly available resource for accessing such data.

InParanoid

InParanoid [Remm et al., 2001] is a program that automatically detects orthologs
(or groups of orthologs) from two species. At the present time, the species are
E. coli, S. cerevisiae, A. thaliana, C. elegans, D. melanogaster, and H. sapiens.
The algorithm is based on pairwise similarity scores which are calculated using the
BLAST program. Then pairwise best hits between sequences from two different
species are detected. These are two main orthologs that form an orthologous group.
Other sequences are added to this group if they are closely related to one of the
main orthologs. These members of the orthologous group are called in-paralogs.
A confidence value is provided for each in-paralog that shows how closely related
it is to the main ortholog.

6.3 COPSE Clustering Method

We developed a clustering method called COPSE (short for “Clusters of Orthol-
ogous and Paralogous SEquences”; copse = thicket of small trees or shrubs). It
extends the idea of Tatusov and Koonin (c.f. Section 6.2) to determine protein fam-
ilies which cover not only complete genomes, but also still-incomplete genomes from
the vertebrate, agnathe, and cephalochordate lineages, to offer a platform for the
reconstruction of vertebrate evolution and functional annotation of vertebrate as
well as invertebrate sequences. After performing an all-against-all database search
of the complete sets of predicted protein sequences from Drosophila melanogaster
[Adams et al., 2000], Caenorhabditis elegans [C.elegans Sequencing Consortium,
1998], and Saccharomyces cerevisiae [Goffeau et al., 1996], we determine ortholo-



CHAPTER 6. RECONSTRUCTING THE VERTEBRATE PHYLOGENY 89

gous groups based on pairwise-best hits of sequences from different species. These
groups are then extended to clusters by adding potentially paralogous sequences of
these species, and related sequences from still-incomplete sequence sets of other
species.

Pre-processing

The sequences were extracted from a non-redundant protein sequence set built from
Swiss-Prot Rel. 39 (and updates until July 15, 2000) [Bairoch and Apweiler, 2000],
PIR Rel. 65 [Barker et al., 2001], TrEMBL Rel. 13, FlyBase (March 23, 2000)
[FlyBase Consortium, 1999], wormpep Rel. 20, the S. cerevisiae protein transla-
tions from MIPS (August 2000), and the Ensembl [Hubbard et al., 2002] sequence
sets of predicted human and mouse protein sequences (May 2001). Additionally,
14,189 expressed sequence tag (EST) sequences (assembled to 9,173 consensus
sequences) from amphioxus (Branchiostoma floridae) generated in a sequencing
project of G. Panopoulou [Panopoulou et al., 2002] are included.

Sequences which are identical to other sequences over at least 99% of their entire
length are considered redundant and removed from the sequence set prior to the
searching and clustering. These sequences were added again to the cluster set
for phylogenetic analyses. Regions of low complexity were masked prior to the
database searches using the seg program with standard parameters [Wootton and
Federhen, 1996].

After this pre-processing step, an all-against-all database search was done by search-
ing each sequence in the data set against a database containing only sequences
from the invertebrates D. melanogaster, C. elegans, and S. cerevisiae using gapped
BLAST [Altschul et al., 1997] down to a weak E-value of 0.05. Pairwise alignments
and E-values were recalculated as described in Section 4.3.1.

Clustering

The clustering procedure tries to make a distinction between orthologous and par-
alogous sequences. Orthologous sequences from different species originate from
a speciation event, while paralogous sequences are related by duplication within a
genome. Searching all predicted protein sequences of one species against all those
sequences of another species should result in a pairwise best hit if these sequences
originate from a speciation event. A best hit within the same genome of higher
rank than every hit in a different genome points to a species-specific duplication
event as the reason for similarity. Thus, the main idea is based on the observation
that the last dividing event in evolution (either duplication or speciation) should
result in the highest sequence similarity when doing a database search.
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Clusters are built as follows: First, from the search results only the best hit(s)
according to the E-value to sequences from C. elegans, D. melanogaster, and
S. cerevisiae are selected, and all other hits are rejected. Each cluster can be
represented as a weighted directed graph with nodes corresponding to sequences,
and edges to database search results labeled with E-values. An arrow points from
the query to the sequence identified in the database search. Clusters are formed
based on the following constraints:

2. Any other invertebrate sequence is added as a potential
paralogous sequence to an orthologous group, if at least
one sequence of every other invertebrate species repre-
sented in this group is a best hit of this sequence.

X
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o . X (D
1. Pairwise best hits between sequences from C. elegans, (D)
D. melanogaster, and S. cerevisiae build the orthologous lT X (Y)
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Sequences connected bidirectionally are assumed to be orthologous, while sequences
connected unidirectionally are paralogous in the case of invertebrates. The rela-
tionships between vertebrate sequences can only be determined by constructing a
phylogenetic tree like the ones in Fig. 6.3.

The clustering routines are implemented in C** using the LEDA library [Mehlhorn
and Naher, 1995] for the processing and visualization of the sequence graphs. The
program is flexible in terms of the ability to include a larger or possibly different set
of completely sequenced genomes as basis of the orthologous groups.

6.4 Results

After applying our clustering procedure, we observed the results shown in Figure
6.4. 1,754 orthologous groups contain at least one orthologous sequence from D.
melanogaster, C. elegans, and S. cerevisiae each. 2,538 orthologous groups are
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Figure 6.4: Distribution of species in the resulting set of 4,292 clusters. For 3,505
of the clusters at least one vertebrate homolog in either human, mouse, or rat was
identified (shaded regions) and 677 clusters contain at least one sequence from
amphioxus (numbers in parentheses). 1,754 clusters (intersection in the center
of the diagram) contain at least one sequence from D. melanogaster, C. elegans,
and S. cerevisiae each (1,544 clusters with homologs in human, mouse, or rat
and 210 clusters without any vertebrate homolog). 2,146 clusters are based on
an orthologous group without any sequence from S. cerevisiae (intersection left),
252 without C. elegans (intersection right), and 140 without D. melanogaster
(intersection at the top).

built of sequences from two of the three invertebrates, with the majority of 2,146
without S. cerevisiae, 252 without C. elegans, and 140 without D. melanogaster.
440 orthologous groups contain multiple sequences of at least one of the species.
In total, the sequence set splits into 4,292 separate orthologous groups. We were
able to add vertebrate protein sequences to 3,505 of the orthologous groups and
sequences from amphioxus to 677 groups.

Although a reliable classification should be based on at least three different species
as done in the COGs database (c.f. Section 6.2), we also observed satisfactory
results with clusters based on only two of the invertebrate species. Since D.
melanogaster and C. elegans are more closely related to each other than to S.
cerevisiae, and are both multicellular organisms, most of the orthologous groups
based on only two invertebrate species lack a sequence from S. cerevisiae.

Figure 6.5 shows the distribution of pairwise-best invertebrate sequences in the
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Figure 6.5: Number of pairwise best invertebrate sequences in orthologous groups.
2,048 orthologous groups are based on a pairwise best hit between one sequence
from C. elegans and one from D. melanogaster. Another 1,418 groups contain
sequences of all three species. The largest orthologous group is made of ten
sequences from D. melanogaster, six from C. elegans and three from yeast. The
two largest groups contain sequences annotated as “Multidrug resistance” and
“Multidrug resistance-associated” proteins.

orthologous groups. It again reflects the fact that D. melanogaster as well as C.
elegans are more complex species than S. cerevisiae with higher numbers of copies
of the same gene, especially in those gene families related to structural elements
(e.g., actin, myosin, tubulin).

There are several possible explanations for the occurrence of groups containing
multiple sequences from the same species, connected as pairwise best hits:

1. These sequences are highly similar paralogous sequences. 234 of the 440 or-
thologous groups with multiple sequences of the same species contain equally
highly ranked and thus indistinguishable sequences from at least one inverte-
brate species (e.g., Fig. 6.6).

2. Sequences are missing in the set of predicted proteins, or are only fragmental,
thus resulting erroneously in orthologous groups otherwise being split into
multiple separate groups.

3. Pseudogenes are not part of the set of predicted proteins. After duplication
and speciation, one copy of the gene may no longer be detectable in the
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genome of one of the species due to deleterious mutations. In this case, the
remaining functioning copy will connect two orthologous groups as shown in
Fig. 6.8. These cases cannot be distinguished from Case 2, since both show
the same effect in the resulting sequence graph.

4. Multidomain proteins might cause clusters to merge together [Tatusov et al.,
1997].

6.4.1 Phylogenetic Analysis

To provide an insight into the information contained in the resulting cluster set, two
examples of gene families are discussed. Multiple alignments and neighbor-joining
trees [Saitou and Nei, 1987] were computed using ClustalW [Thompson et al.,
1994].

Eukaryotic topoisomerase |l is an essential nuclear enzyme involved in processes
such as chromosome condensation, chromatid separation, and the relief of torsional
stress that occurs during DNA transcription and replication. In vertebrates there are
two forms of the enzyme, designated a and 3. The alignment of these two protein
sequences suggests strongly that these isoforms evolved recently by duplication of
an ancestral gene [Sng et al., 1999].

Figure 6.6 shows a graphical representation of the database search results and the
gene tree of the topoisomerase Il sequences identified by our method. The ortholo-
gous group of this cluster consists of one sequence from D. melanogaster (FlyBase:
CT28703), one sequence from S. cerevisiae (Swiss-Prot: P06786) and four highly
similar paralogous sequences from C. elegans (Swiss-Prot: Q23670; wormpep:
CE07645, CE17740, and CE25068) with equally high E-values (see edge labels in
the graph). Additionally, there are two sequences each from mouse and human in
the cluster (Swiss-Prot: Q01320, Q02880, P11388, and Q64511). Four sequences
from the human Ensembl sequence set (ENSP00000246634, ENSP00000225490,
ENSP00000246633, ENSP00000159470) are included in the cluster (not shown in
the Figure). The first three are transcripts of the same gene (ENSG00000108358,
Chr. 17, topoisomerase |l a) and the last one is a transcript of ENSG00000077097
(Chr. 3, topoisomerase |1 3). Since the sequences from S. cerevisiae, C. elegans and
D. melanogaster build the outgroup for both the vertebrate topoisomerase o and
the topoisomerase 3 in the phylogenetic tree, this result confirms the hypothesis
of a recent vertebrate specific duplication event.

A more ancient duplication can be observed when analyzing topoisomerase Il se-
quences. DNA topoisomerase Ill belongs to the type IA DNA topoisomerases.
The cellular role of topoisomerase Ill is less understood than that of topoiso-
merase |l. Mutations in the TOP3 gene of S. cerevisiae result in slow growth,
hyperrecombination, and defective sporulation [Bennett et al., 2000]. The cluster-
ing produces two clearly separated groups as shown in Fig. 6.7. The invertebrate
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Figure 6.6: Topoisomerase Il a and B: In the graph on the left, nodes correspond
to sequences and edges to database search results labeled with E-values. The
orthologous group (sequences connected via bidirectional edges) contains one se-
quence from D. melanogaster resp. S. cerevisiae and four highly similar paralogous
sequences from C. elegans. From the gene tree constructed of the sequences in
the cluster one can date the duplication leading to vertebrate topoisomerase |l a
and 3 prior to the divergence of the vertebrates, but after the divergence of D.
melanogaster.

topoisomerase |l a sequences build a triangle: The orthologous group contains one
sequence from D. melanogaster (TrEMBL: QING98), one from C. elegans (worm-
pep: CE22592), and one from S. cerevisiae (Swiss-Prot: P13099). Additionally,
there is one sequence from human (Swiss-Prot: Q13472) and one from mouse
(Swiss-Prot: O70157) in the cluster. The topoisomerase Il B cluster is based on
sequences of only two of the invertebrate species: The orthologous group contains
one sequence from D. melanogaster (FlyBase: CT11647) and one from C. ele-
gans (wormpep: CE25309). Additionally, there are again sequences from human
(Swiss-Prot: 095985) and mouse (Swiss-Prot: Q9Z321). The clear separation
into topoisomerase Il a and 3 in all species and the topology of the correspond-
ing phylogenetic tree points, in contrast to topoisomerase Il, to a more ancient
duplication event.

6.4.2 Prediction of Protein Function

Since sequences can be clearly assigned to distinct clusters with our method, a
functional annotation of so far unknown sequences is facilitated as shown in the
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Figure 6.7: Topoisomerase |Il o and B: The topoisomerase Il sequences split into
two orthologous groups. Topoisomerase Il o is represented by a triangle of pairwise
best hits of sequences from all three invertebrate species, while the orthologous
group of topoisomerase Ill B sequences is based on sequences of D. melanogaster
and C. elegans. The corresponding phylogenetic tree, including sequences from
both clusters, points to a more ancient duplication event.

following example.

Nat/H™ exchanger catalyze the countertransport of Nat and H™ across mem-
branes. There are two subfamilies of NHE (Na®/H™ exchanger) proteins with
distinct cellular localizations: there is one subfamily of plasma membrane pro-
teins (NHE1-5), and a second of NHE proteins localized to intracellular mem-
branes (including the S. cerevisiae NHE protein Nhx1 (Swiss-Prot: Q04121) and
the human NHEG6 (Swiss-Prot: Q92581)) [Fukuda et al., 1999]. Fig. 6.8 shows
the latter subfamily of NHE proteins, which splits again into two subfamilies.
The underlying orthologous group shows a chain built by two sequences from D.
melanogaster (FlyBase: CT31621 and CT9263), two sequences from C. elegans
(wormpep: CE18762 and CE21402) and one sequence from S. cerevisiae (Nhx1;
Swiss-Prot: Q04121). The cluster contains three different sequences from human
(Swiss-Prot:  Q92581; Ensembl: ENSP00000239970 and ENSP00000244054)
and two different mouse sequences (Ensembl: ENSMUSP00000000931 and ENS-
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Figure 6.8: Mitochondrial Na®/H* exchanger: The COPSE cluster of mitochon-
drial Na*/H™ exchanger is based on a chain of invertebrate sequences. In the
corresponding phylogenetic tree, the sequences split into two subfamilies. The dat-
ing of the duplication is not clear based on the graph and the gene tree. While the
graph points to a duplication after the divergence of yeast, the yeast sequence is
maybe misplaced in the corresponding tree.

MUSP00000006583). The arrangement of the vertebrate sequences in the graph
and the gene tree suggests a partitioning of the sequences into two not yet charac-
terized subfamilies, connected only via the S. cerevisiae sequence Q04121. Search-
ing the genomic yeast sequence with the sequences of this cluster for other members
of this subfamily yields no result.

6.4.3 Invertebrate Specific Protein Families

An interesting starting point for further analyses of the data are those clusters
containing sequences of all three invertebrate species, but without any from any
vertebrate species. As shown in Fig. 6.4, such a sequence composition can be
found in 210 clusters. Because we relied on the sequence set of predicted proteins
for human and mouse, we extended the search to the human Golden Path genomic
sequence [International Human Genome Sequencing Consortium, 2001] using the
GeneWise program [Birney et al., 1996]. Additionally, we again searched the latest
updates of the protein databases as well as the newest release of the Ensembl
sequence set (Rel. 1.2.0), which surprisingly differs significantly from the previous
one. Based on these searches, we obtain the following results:

151 cases: there is a clear match to the human genomic sequence and to a
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protein sequence. In 95 of these cases the protein match is to a protein
sequence newly added to the protein sequence space. In the remaining cases
we often observe a clear match from a vertebrate protein sequence to the
D. melanogaster as well as to the C. elegans sequence of this orthologous
group, but not to the yeast sequence. In these cases the sequences from
D. melanogaster and C. elegans act as intermediate sequences [Park et al.,
1997]: Although there is no detectable similarity between the vertebrate and
the yeast sequence they belong to the same cluster due to their similarity to
the intermediate sequences.

cases: there is no match to the human genomic sequence, but there is a
clear match to a protein sequence from the TrEMBL or Swiss-Prot database.
These cases may represent protein sequences for which the template genomic
sequence is located in a not yet sequenced genomic region.

cases: there is a clear match to the human genomic sequence, but no match
to any protein sequence. Either there is no predicted protein sequence in
the database yet, or the clear match in the human genome belongs to a
pseudogene.

cases: there is no match to the human genomic sequence and no match to
any protein sequence. These cases may represent gene families specific for
invertebrates. For most of them, no verified sequence annotation is available
thus far and the invertebrate sequences are annotated as “hypothetical”. For
example, among the annotated sequences we can find the following protein
families, which are already known not to be present in vertebrates:

— Chitin synthase:
Chitin is an important component of the cell wall of fungi, the cuticle of
arthropods and also known to be present in nematodes.
TrEMBL: Q9VNW?7 (D) and 017368 (C); Swiss-Prot: P08004 (Y)

— Trehalose 6-phosphate synthase:
Trehalose is a common disaccharide of bacteria, fungi and invertebrates
that appears to play a major role in desiccation tolerance. A pathway
for trehalose biosynthesis may also exist in plants.
TrEMBL: Q9Y119 (D) and 045380 (C); Swiss-Prot: Q00764 (YY)

6.5 Access to the Cluster Set

The COPSE cluster set is available for querying and browsing at: http://copse.
molgen.mpg.de. Clusters can be selected by species composition, accession num-
ber, identifier, or by searching the sequence annotations for keywords. For all
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Figure 6.9: Schematic overview of the COPSE Web server. As an example, the
cluster set was searched with a query sequence (top left). A more detailed insight
into cluster 6521 (bottom left) containing 13 sequences is given. Additionally,
the corresponding E-value graph (bottom right) and a list of clusters selected by
keywords and species range (top right) are shown.

clusters, multiple alignments and neighbor-joining trees [Saitou and Nei, 1987] of
the protein sequences were computed using ClustalW [Thompson et al., 1994]. All
multiple alignments are annotated with known domains from the Pfam [Bateman
et al., 2000] protein family database of alignments and HMMs. Each domain an-
notation in a multiple alignment is linked to a list of clusters containing sequences
with this domain. Vice versa, clusters can be selected directly from the list of all
Pfam domains. A classification of a new sequence can be done by searching the set
of invertebrate sequences using BLAST and following the links to corresponding
COPSE clusters in the search result. Since the COPSE sequence set is a subset
of the one used in SYSTERS, the data sets are fully linked together. Figure 6.9

gives a schematic overview of the COPSE Web server and its functionality shown
by an example.



Chapter 7

Conclusion

In this thesis, we have developed several clustering methods for large scale protein
sequence analysis each focusing on a different biological question. All methods
have been implemented and applied to large data sets. The results have been
made available for querying and browsing over the Internet.

SYSTERS 1 (set-theoretical clustering)

We introduced a database search method, SYSTERS (Section 3.4), that iterates a
traditional search procedure like BLAST and produces a cluster of sequences related
to a query. We showed that this procedure is internally consistent, to a large degree,
in the sense that the resulting clusters show little dependence on the specific query.
This has provided the foundation for a database clustering method (Section 4.2)
that sorts sequences into clusters of which a large fraction is pairwise disjoint. The
resulting set of clusters is self-validating since problems become manifest in overlaps
between clusters. The strength of the method lies in automatically delineating the
subset of sequences that can be sorted into non-overlapping clusters. Since no
special procedure is applied to enforce the disjointness, it may be taken as an
indicator that this information is in fact correct.

SYSTERS 2 (single linkage clustering)

We changed our set-theoretical point of view established in SYSTERS 1 to a graph
oriented perspective in SYSTERS 2 (Section 4.3). The SYSTERS 1 approach was
based on a traditional database search tool like BLAST, involving its asymmetric
behavior. For SYSTERS 2, we recalculated symmetric pairwise distances allowing
the user to employ the most commonly used method in this area, namely single
linkage clustering. The emphasis of our method still lies on the reliability of the re-
sulting clusters. To this end, we developed the distinction between perfect, nested,
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and overlapping clusters. Generally, the clusters in the database, in particular the
perfect clusters, stay on the conservative side. But as a consequence, this approach
produces a fairly large number of singleton clusters.

SYSTERS 3 (hierarchical clustering)

Having established a single linkage clustering, the next step was to take advantage
of the self-structuring properties of the data to avoid the arbitrarily chosen static
cutoff needed in SYSTERS 2. For those protein families whose members are very
closely related, the cutoff may be too weak, while it may be too stringent for highly
diverged families. It would be more appropriate to determine a specific cutoff
for each of the protein families. In SYSTERS 3 (Section 4.4), we introduced a
combination of an upward sweep with dynamic determination of superfamily cutoffs
and a downward pass that divides superfamilies into families. We determine a
superfamily by detecting the largest increase in the size of the merging subtree
traversing from a leaf in a single linkage tree to the root. We assume that at
this point the twilight zone begins because suddenly a large number of supposedly
unrelated sequences enters the cluster. Each of the superfamilies is further cut into
family clusters by detecting weak connections in the underlying distance graph.

It is interesting that both the superfamilies as well as the family clusters are gen-
erated solely from the structure of the single linkage tree (resp. the underlying
distance graph), without any knowledge of the biological information represented.
Such self-structuring properties have also been observed in other large data sets
such as phone-call or web-link graphs [Kleinberg and Lawrence, 2001].

Although the vast majority of cases we looked at are in agreement with biolog-
ical knowledge, there exist some inconsistencies due to peculiarities in the data.
Distinct protein families may end up erroneously in the same superfamily because
of a fusion protein covering sequence information from both families. The same
effect can be seen at multidomain protein families linked together by a single highly
conserved common domain. Although the subclustering in most cases splits these
superfamilies again into distinct families, we would prefer to take care of these
cases already in the process of superfamily determination.

Thus far, our hierarchy consists of two layers representing protein superfamilies
and families. For the third layer located at the domain level, we currently rely on
well-established domain databases, but intend to follow our philosophy also in the
direction of deriving so far unknown domains.

The implementation of the update routine accounting for the self-structuring prop-
erties of our clustering methods will help in providing a stable and up-to-date cluster
set to the user.

Other future developments will be in the direction of the so-called tree of life. We
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plan to combine the evolutionary information given by each of the protein clusters
to extend the knowledge about the relationship between different groups of species.

COPSE

The COPSE cluster set (Chapter 6) relies on a classification of all predicted pro-
teins from Caenorhabditis elegans, Drosophila melanogaster and Saccharomyces
cerevisiae into orthologous groups of sequences. The inclusion of cephalochordate
and vertebrate sequences results in a cluster set suitable for detailed phylogenetic
analyses and functional annotation. The clear separation into distinct vertebrate
gene families gives the basis for phylogenetic reconstruction of vertebrate evolution,
i.e. with respect to the detection of vertebrate specific duplication events.

The comparatively small number of agnathe and cephalochordate sequences avail-
able in the databases thus far makes a dating of duplications on the way to the
vertebrates with respect to amphioxus, lamprey and hagfish difficult. The inclusion
of further sequences, mapping information and a suitable visualization of the data
set will help us in the future to understand genomic rearrangements.



Appendix A

Amino acids

Amino Acid Alanine Arginine Asparagine | Aspartic Acid | Cysteine
Abbreviation Ala Arg Asn Asp Cys
One-letter code A R N D C
Amino Acid Glutamine | Glutamic Acid Glycine Histidine Isoleucine
Abbreviation Gln Glu Gly His lle
One-letter code Q E G H I
Amino Acid Leucine Lysine Methionine | Phenylalanine | Proline
Abbreviation Leu Lys Met Phe Pro
One-letter code L K M F P
Amino Acid Serine Threonine Tryptophan Tyrosine Valine
Abbreviation Ser Thr Trp Tyr Val
One-letter code S T W Y V

Table A.1: Amino acids.
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Three-letter abbreviations for the amino acids

AAIAIAIC|IGIG|G|H |l L MI|P |P |S|T |T|T |V
LIRIS|S|Y|L|L (LI |L|E E|H|[RI|E|H|[RIY |A
Property A|GIN|P|S|U|IN|Y |S |E|U TIE|IOIR|R|P R |L
acidic ] O
acyclic 0|0|0|0|0|0|0 |0 oo m} o|o |
aliphatic O O Og O
aromatic O m] 0o|g
basic O O
buried ] O 0o 0|0 ] )
charged 0 O O O
cyclic ] O
hydrophobic [} O 0|0 m} [} |
large O 0o O|o|o 0o ]
medium 0|0o|d O0 O O
negative ] O
neutral m} a 0 0o |ooig 0o |ojo|o|ojg|g
polar 0|0 |0|0|0|0 0 op
positive O O
small ] 0O |
surface O|op O|o|on oo i
Table A.2: Physical and chemical properties of amino acids.
Second Position
U C A G
. ' ) U
phenylalanin tyrosine cysteine ——
U ) C
serine A
leucine STOP STOP
tryptophan | G
histidine —lc']:
c|C leucine proline arginine —
) ; A
P= glutamine AN
8 G
a ) ) U
E isoleucine asparagine serine T
| A threonine A
ethioninG lysine arginine ——
START G
aspartic acid —U
) . . C
G valine alanine glycine T
glutamic acid —
G

acidic = negative

basic = positive

charged = acidic or basic

polar = not hydrophobic

surface = not buried

Table A.3: Genetic code.

uomISOd piIy L
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