www.sciencemag.org/cgi/content/full/science.1229017/DC1

Supplementary Materials for

EF-P Is Essential for Rapid Synthesis of Proteins Containing Consecutive Proline Residues

Lili K. Doerfel, Ingo Wohlgemuth, Christina Kothe, Frank Peske, Henning Urlaub, Marina V. Rodnina*

*To whom correspondence should be addressed. E-mail: rodnina@mpibpc.mpg.de

Published 13 December 2012 on *Science* Express DOI: 10.1126/science.1229017

This PDF file includes:

Materials and Methods Figs. S1 to S4 Table S1 References

Supplementary Materials:

Materials and Methods

Figures S1-S4

Table S1

References (28-33)

Supplementary Materials:

Materials and Methods:

Buffers and reagents

Buffer A: 50 mM Tris-HCl, pH 7.5 at 37°C, 70 mM NH₄Cl, 30 mM KCl and 7 mM MgCl₂; buffer B (HiFi): 50 mM Tris-HCl, pH 7.5 at 37°C, 70 mM NH₄Cl, 30 mM KCl, 3.5 mM MgCl₂, 0.5 mM spermidine, 8 mM putrescine and 2 mM DTT; buffer C: 50 mM Tris-HCl, pH 7.5 at 37°C, 70 mM NH₄Cl, 30 mM KCl, 1 mM spermidine, 16 mM putrescine and 4 mM DTT. Chemicals were from Roche Molecular Biochemicals, Sigma Aldrich, or Merck. Radioactive compounds were from Hartmann Analytic.

EF-P cloning, expression and purification

Genes coding for EF-P, YjeA, YjeK and YfcM were amplified from the *E. coli* genome (BL21(DE3) cells) and cloned into pET28a, adding an N-terminal His tag to EF-P as described (5). To overexpress EF-P alone or together with its modifying enzymes, the

following constructs were made: pET28efp, pET28efp/yjeA, pET28efp/yjeA/yjeK and pET28efp/yjeA/yjeK/yfcM.

EF-P was overexpressed in BL21(DE3). Cells were cultured in LB medium supplemented with kanamycin (30 µg/ml) at 37°C; expression was induced by the addition of IPTG (1 mM), and cultures were further grown for 3 h. Cells were harvested and pellets were resuspended in Protino buffer (20 mM Tris-HCl, pH 8.5, 300 mM NaCl, 5 mM 2mercaptoethanol, 15% glycerol) with the addition of Complete Protease Inhibitor (Roche) and a trace of DNaseI. Cells were opened using an Emulsiflex apparatus, and the extract was centrifuged for 30 min at 300,000 g. The supernatant was applied to a Protino gravityflow column (Macherey-Nagel) for affinity chromatography using the His tag. The column was washed with Protino buffer A and the protein was eluted with Protino buffer A containing 250 mM imidazole. The eluted protein was concentrated and the buffer was exchanged to 2 x buffer A by membrane filtration (Vivaspin 10,000); for storage, one volume of glycerol was added. The His tag was cleaved off with thrombin (GE Healthcare) in cleavage buffer (20 mM Tris-HCl, pH 8.4, 150 mM NaCl and 2.5 mM CaCl₂) with 2 units per 5000 pmol EF-P at room temperature overnight. The protein was concentrated by membrane filtration (Vivaspin 10,000). To remove the His tag and thrombin, EF-P was purified by FPLC on a HiTrapQ HP column using a 50 mM - 2 M NaCl gradient in 30 mM Tris-HCl, pH 7.5. EF-P containing fractions were pooled and concentrated and the buffer was exchanged to 2 x buffer A by membrane filtration (Vivaspin 10,000); for storage, one volume of glycerol was added. The concentration was determined by absorbance at 280

nm, assuming an extinction coefficient of $25,440 \text{ cm}^{-1} \text{ M}^{-1}$ (calculated on: www.biomol.net/en/tools/proteinextinction.htm).

Purification of native EF-P

Native EF-P was prepared as previously described (28) by pelleting EF-P in complex with ribosomes in the first step followed by a purification by FPLC. E. coli MRE600 cells were opened and ribosomes were pelleted as described (29), except that the NH₄Cl concentration in the opening buffer was 30 mM. EF-P was dissociated from ribosomes in high-salt buffer (10 mM Tris-HCl, pH 7.4, 1 M NH₄Cl, 10 mM MgCl₂, 3 mM 2-mercaptoethanol, 0.5 mM PefaBloc), ribosomes were pelleted at 300,000 g for 5 h, and the supernatant was dialyzed against dialysis buffer (25 mM HEPES, pH 7.4, 100 mM KCl, 10 mM MgCl₂, 5 mM 2mercaptoethanol, 0.5 mM PefaBloc). For ion-exchange chromatography on a HiTrap Q column (GE Healthcare), concentration of KCl was reduced to 50 mM by dilution with HiTrap Q buffer (25 mM HEPES, pH 7.4, 5% glycerol, 5 mM 2-mercaptoethanol). The protein was eluted by a gradient from 50 mM to 500 mM KCl. EF-P-containing fractions were identified by dot-blot using an anti-EF-P antibody (kindly provided by D. Görlich, Max Planck Institute for Biophysical Chemistry, Goettingen), pooled, and concentrated by membrane filtration (Vivaspin 10,000). EF-P was further purified by gel filtration on a HiLoad Superdex 75 column in buffer A. Fractions were analyzed by SDS-PAGE and western blotting; fractions containing EF-P were pooled and concentrated. For storage the buffer was exchanged to 2 x buffer A before adding one volume of glycerol.

Mass spectrometry

The identification and quantification of EF-P modifications was carried out by LC-MSMS. Protein samples (100 µg) were precipitated with acetone. Denaturation with Rapigest (Waters), reduction, alkylation, and trypsination were performed as described (30). Peptides were separated by reversed-phase Nanoflow chromatography on a Thermo Easy nLcII using chromatographic conditions as described (30). Eluting peptides were ionized by electrospray ionization (ESI) on a Q Exactive mass spectrometer (Thermo Fisher Scientific) and analyzed in the data-dependent mode. MS scans were acquired in the range m/z 350-1600 with a resolution of 70,000 and twelve peaks of the highest intensity were selected for HCD MS/MS fragmentation. The dynamic exclusion was 20 s. Singly-charged ions and ions with unrecognized charge state were excluded. Peptides were quantified by integrating over the corresponding extracted ion chromatograms (XIC). XICs were generated with a mass tolerance of 10 ppm using the Thermo Excalibur software (version 2.2 SPI48). The overall signal intensity in different runs was corrected by normalization, using as internal reference two razor peptides (VPLFVQIGEVIK and GDTAGTGGKPATLSTGAVVK) that were well observable and chemically stable. The charge state of highest intensity (z=3for unmodified EF-P peptide and z=5 for lysinylated and lysinylated/hydroxylated EF-P peptide) and the most prominent peak in the isotope distribution of the respective peptides was selected for quantification by integration. Quantification based on the monoisotopic mass led to similar results, albeit at poor signal-to-noise ratios for low-abundance peptides. Spectra shown in **fig. S3B,C** show the corresponding peptides with z=4 that were less populated but yielded better spectra then those with z=5. Because the degree of Met oxidation was reproducibly small, only the unoxidized peptides were quantified.

mRNA constructs

mRNAs used in **Fig. 1** were purchased from IBA. The genes coding for AmiB, PrmC, TonB, Rz1, and YafD were amplified from the genomic DNA of *E. coli* BL21(DE3) by colony PCR, digested with *NdeI* and *Xho1* (New England Biolabs) and ligated into the pET24a vector (Novagen). Templates for transcription were generated by PCR amplification of the respective gene (including the T7 promoter and the Shine-Dalgarno sequence of the pET24 5'UTR) coding for AmiB (1-159), PrmC (1-75), TonB (1- 239), Rz1 (1-62) and YafD (1-75). For peptide markers, mRNA templates of desired length were prepared. Transcription was performed in transcription buffer (40 mM Tris-HCl, pH 7.5, 15 mM MgCl₂, 2 mM spermidine, 10 mM NaCl, 10 mM DTT, 3 mM NTPs each, 5 mM GMP, 10% (v/v) DNA template, 5 u/ml pyrophosphatase, 1.5% (v/v) RiboLock RNase inhibitor (Fermentas) and 0.8% (v/v) T7 RNA-polymerase) for 3 h at 37°C. The mRNAs were purified from the crude transcription mixture using the RNeasy Midi Kit (Qiagen) according to the manufacturer's protocol.

Ribosomes, factors and tRNAs

Ribosomes from *E. coli* MRE600, initiation factors (IF1, IF2, IF3), EF-Tu, EF-G, and some individual tRNAs (fMet-tRNA^{fMet}, Phe-tRNA^{Phe}, Lys-tRNA^{Lys}, Gly-tRNA^{Gly}, Trp-tRNA^{Trp},

Val-tRNA^{Val}, Arg-tRNA^{Arg}, Glu-tRNA^{Glu}) were prepared as described (*31*). Other tRNAs (Pro-tRNA^{Pro}, Asp-tRNA^{Asp}, Gln-tRNA^{Gln}) were prepared as follows. Total tRNA from *E. coli* was aminoacylated with the respective ¹⁴C-labeled amino acid (*32*). After phenol extraction and ethanol precipitation, aminoacyl-tRNA was enriched by high performance liquid chromatography (HPLC) on a Lichrospher WP 300 column (Merck) using a gradient of 0-15% ethanol in 20 mM ammonium acetate, pH 5.0, 10 mM magnesium acetate, 400 mM NaCl. After ethanol precipitation, aminoacyl-tRNA was dissolved in water, and added to EF-Tu-GTP to form ternary complex which was purified by FPLC gel filtration on two Superdex 75 columns run in tandem. Fractions containing ternary complex were extracted by phenol and the aminoacyl-tRNA was isolated by ethanol precipitation.

Ribosome complexes

Initiation complexes were prepared by incubating 70S ribosomes (1 μ M) with a 3-fold excess of mRNA, IF1, IF2, IF3 (1.5 μ M each), fMet-tRNA^{fMet} (1.5 μ M; amino acid labeled with ¹⁴C/³H or with Bodipy FL when translation products were to be visualized on SDS-PAGE) and GTP (1 mM) in buffer A for 30 min (*14*). For experiments presented in **Figs. 1 and4** as well as **figs. S1 and S2A**, initiation complexes were purified by centrifugation through 400 μ l sucrose cushions (1.1 M in buffer A) at 260,000 g for 2 h. Pellets were dissolved in buffer A and complexes stored at -80°C. In all other cases, when initiation complexes were diluted with buffer C to yield buffer B.

Ternary complexes, EF-Tu·GTP·aminoacyl-tRNA, were prepared by incubating EF-Tu (50 μ M, containing a C-terminal His tag) with pyruvate kinase (0.1 mg/ml), phosphoenolpyruvate (3 mM) and GTP (1 mM) for 20 min at 37°C in buffer A or B. Aminoacyl-tRNA was added in a 1:2 ratio to EF-Tu and the ternary complex was either purified by gel filtration on a Superdex 75 tandem column (*31*) or used without prior purification.

Posttranslocation complexes used in the experiment of Fig. 1A,B were formed by mixing initiation complexes with a 1.5-fold excess of the corresponding unpurified ternary complex. Translocation was initiated by the addition of EF-G (1/10 molar ratio to the ribosome). Posttranslocation complexes were purified by centrifugation through a sucrose cushion as described above for initiation complexes. For the experiments shown in fig. S2B, initiation complexes were prepared with mRNA coding for mutant PrmC containing the PPG sequence and were used without prior purification; the ternary complex was prepared from total aa-tRNA labeled with [14C]Pro and [3H]Gly, EF-Tu, and GTP and purified as described above. Initiation complexes (0.2 µM) were mixed with ternary complexes (9.6 µM) in buffer B and incubated for 3 min at 37°C. Ribosome-nascent-chain complexes were purified from ternary complexes, tRNAs, EF-G, and GTP by gel filtration (Biosuite 450 8µm HR SEC, Waters, at a flow of 0.8 ml/min in buffer B). [¹⁴C]Pro and ³H]Gly eluting in the ribosome peak were quantified by double-label scintillation counting. Fractions containing ribosome-nascent chain complexes were pooled, and the samples were hydrolyzed in 0.5 M KOH for 30 min at 37°C and neutralized with acetic acid. Translation products and amino acids were separated by reversed phase HPLC (Nucleosil 300-5 C4,

7

Macherey Nagel) applying a gradient from 0 to 65% acetonitrile/0.1% TFA in 20 min. $[^{14}C]$ Pro and $[^{3}H]$ Gly were quantified by scintillation counting.

Quench-flow experiments

The Pmn reaction (**Fig. 1A**) was performed in buffer A at 37°C as described (*14*) with purified ribosome complexes and subsaturating concentrations of Pmn, which ensures the maximum sensitivity to measure effects on both affinity and catalysis. In the reactions with dipeptidyl-tRNAs, the final Pmn concentration was 1 mM, whereas with fMet-tRNA^{fMet} the Pmn concentration was reduced to 100 μ M, because the K_M of the reaction, 300 μ M, is lower than with dipeptidyl-tRNAs (*14*). Reaction time courses were measured in a quenchflow apparatus (KinTek Laboratories, Inc.) by mixing equal volumes (14 μ l) each of the ribosome complex (0.15 μ M) and Pmn.

Rates of di- and tripeptide formation (**Fig. 1B**) were determined using purified initiation (fM) or posttranslocation (fMP) complexes (0.2 μ M) and adding unpurified ternary complexes at saturating concentrations (10 μ M) in buffer B at 37°C. Reactions were quenched with KOH (0.5 M), samples hydrolyzed for 30 min at 37°C, neutralized with acidic acid, and analyzed by reversed phase HPLC (LiChrospher 100 RP-8 or Chromolith RP8 100-4.6 mm column, Merck) using a 0-65% acetonitrile gradient in 0.1% TFA. Products and educts were quantified by double-label scintillation counting. Where appropriate in the experiments of **Figs. 1A,B**, EF-P (overexpressed, lysinylated; 3 μ M) was present in both syringes. The experiments of **Fig. 1C** were performed using purified initiation complexes (0.2 μ M), unpurified ternary complexes (2 μ M each as specified by the mRNA sequence), EF-G (1 μM), with or without EF-P (native, lysinylated/hydroxylated; 3 μ M) in buffer B at 37°C. The experiments of **Fig. 4** were carried out in the same way, except that overexpressed lysinylated/hydroxylated EF-P was used if not stated otherwise. Rate constants were evaluated by exponential fitting using GraphPad or Scientist software. Data shown are the mean of three independent experiments; error bars represent standard deviations.

In-vitro translation

For *in-vitro* translation, initiation complexes and ternary complexes were prepared in buffer A and mixed with an equal amount of buffer C to reach buffer B. To compensate for Mg²⁺ binding to GTP and PEP (*33*), the MgCl₂ concentration was increased to 3.5 mM free MgCl₂. Ternary complex (40 μ M for sequences coding for 75 amino acids) and EF-G (2 μ M) were rapidly mixed with initiation complex (20 nM). EF-P (3 μ M) was added both to the factor and the ribosome mix; the experiments were carried out with either native or overexpressed lysinylated/hydroxylated factor. The concentrations of ternary complex were increased proportionally to the length of the protein to be translated. For exceptionally proline-rich proteins (TonB, AmiB, Rz1, and YafD), the total aminoacyl-tRNA was supplemented with Pro-tRNA^{Pro} (10 equivalents of Pro-tRNA^{Pro} per encoded proline). Translation was carried out at 37° and the reaction stopped by addition of 1/10 volume of 2 M NaOH. The specific peptide markers were synthesized in the same way in the presence of EF-P (3 μ M) for 10 min at 37°C. After hydrolysis for 30 min at 37°C, the samples were neutralized by addition of 1/10 volume 2 M HEPES pH 7, incubated in loading buffer (50 mM Tris-HCl pH 6.8, 12% (w/v) glycerol, 2% 2-mercaptoethanol, 4% SDS) for 30 min at 40°C and loaded onto the 10-20% or 16.5 % Tris/Tricine SDS gels (Criterion, BIO-RAD) and PAGE was carried out using commencial Tris/Tricine buffer (BIO-RAD). Gels were incubated in water for 5 min and scanned on a FLA-9000 fluorescence imager (Fuji) at 50 μ m resolution. Bodipy fluorescence was excited at 473 nm and monitored after passing a LPB (510LP) cut-off filter.

Fig. S1. Time courses of fMetX-Pmn formation. (**A**) fMetAsp-Pmn. (**B**) fMetGly-Pmn. (**C**) fMetPro-Pmn. Reactions were carried out in the absence (open circles) or presence of overexpressed lysinylated EF-P (closed circles) or lysinylated/hydroxylated EF-P (open triangles). Ribosomes carrying dipeptidyl-tRNA as indicated were mixed with Pmn in the quench-flow apparatus. At the indicated times, the reaction was quenched and the products analyzed by HPLC (Materials and Methods).

MEYQHWLREA ISQLQASE**PP P**RDAEILLEH VTGKGRTFIL AFGETQLTDE QCQQL

Fig. S2. Binding of peptidyl-tRNAs to stalled ribosomes. (A). Retention of short peptidyl-tRNAs resulting from translation of fMPPGF in the absence (white bars) or presence (black bars) of EF-P (3 μ M) or of fMFFF in the absence of EF-P (gray bars). The reaction was carried out as described for Fig. 1C. Ribosome-bound peptidyl-tRNA was isolated by nitrocellulose filtration and quantified by radioactivity counting. Peptides were labeled with [¹⁴C]Met and [¹⁴C]Pro (fMPPGF) or [³H]Met and [¹⁴C]Phe (fMFFF). (B) Retention of [¹⁴C]Pro (gray bars) and [³H]Gly (black bars) in ribosome-nascent-chain complexes (identified in the elution profile from a gel filtration column by optical density at A₂₆₀; black line) stalled on the PPG sequence in PrmC in the absence of EF-P. Inset: Gly/Pro stoichiometry in the ribosome-nascent chain complex (70S; if Gly and both Pro residues are bound, a ratio of 0.5 is expected) or incorporated into the nascent chain (NC; a ratio should increase from 0 to 0.5 with the portion of Gly incorporated into peptide). (C) Rescue of PrmC translation after addition of EF-P. Left panel, ribosome stalling on the PPP sequence in the absence of EF-P. Middle panel, translation of full-length product in the presence of EF-P. Right panel, resuming of translation upon addition of EF-P (3 μ M) to stalled ribosome complexes after 100 s of pausing in the absence of the factor.

Fig. S3: Analysis of EF-P modifications by mass spectrometry. (**A**) MS/MS spectrum of the unmodified peptide (amino acids 15-34). The y-type product ion series clearly identify the sequence of the peptide lacking the modification. Inset: MS spectrum (m/z= 727.3696) of the intact and unmodified peptide (z=3). (**B**) MS/MS spectrum of the lysinylated peptide (amino acids 15-40). Inset: MS spectrum (m/z= 735.3837) of the intact and lysinylated quadruply charged peptide (z=4). (**C**) MS/MS spectrum of the lysinylated and hydroxylated peptide (amino acids 15-40). Inset: MS spectrum (m/z= 739.3825) of the intact, lysinylated

and hydroxylated quadruply charged peptide (z=4). (**D**) Relative quantification of the modifications in different EF-P preparations. The unmodified (blue), the lysinylated (red) and the lysinylated/hydroxylated (green) peptides were quantified by integration of their respective extracted ion chromatograms (XIC). Error bars represent standard deviation of three technical replicates. For the quantification, the charge states with the maximum signal intensity were used, z=3 for the unmodified EF-P and z=5 for the lysinylated and lysinylated/hydroxylated EF-P.

Sequence motif: MEYQHWLREA ISQLQASE PP GRDAEILLEH VT

В

Entroped to the second second

Fig. S4. Effect of EF-P modification on the translation of mutant PrmC containing a PPG sequence. (**A**) Time courses of translation visualized by analysis of translation products by SDS-PAGE and fluorescence imaging. (**B**) Quantification of the translation kinetics of full-length product formation in the absence of EF-P (open circles), with unmodified EF-P (open squares) or overexpressed lysinylated/hydroxylated EF-P (closed circles). The density of the product band is normalized to the total density in the respective lane and presented in arbitrary units (a.u.).

Table S1. Proteins containing consecutive prolines. The data were extracted from the *E*.

coli (K12) genome through the uniprot database.

Sequence	Protein name
PPPPPPP	1.AMIB_ECOLI N-acetylmuramoyl-L-alanine amidase AmiB
PPPPP	1. RZOR_ECOLI Outer membrane lipoprotein Rz1 from lambdoid prophage 2.YAAX_ECOLI Uncharacterized protein yaa
РРРР	 C56H_ECOLI Cytochrome b561 homolog 1 YODB CLS_ECOLI Cardiolipin synthase ENTS_ECOLI Enterobactin exporter EntS MTLR_ECOLI Mannitol operon repressor YCGL_ECOLI UPF0745 protein YcgL YDEI_ECOLI Uncharacterized protein ydeI
PPP	 ACEK_ECOLI Isocitrate dehydrogenase kinase/phosphatase ADRA_ECOLI Probable diguanylate cyclase AdrA ADRB_ECOLI Putative cyclic-di-GMP phosphodiesterase AdrB AGP_ECOLI Glucose-1-phosphatase BCSB_ECOLI Cyclic di-GMP-binding protein C56I_ECOLI Cytochrome b561 homolog 2 CAPP_ECOLI Phosphoenolpyruvate carboxylase CATE_ECOLI Catalase HPII CREC_ECOLI Sensor protein CreC CYOB_ECOLI Ubiquinol oxidase subunit 1 DPFF_ECOLI Dipeptide transport ATP-binding protein DppF ENTF_ECOLI Enterobactin synthase component F ENVZ_ECOLI Ethanolamine utilization protein EutL EX58_ECOLI Exodeoxyribonuclease V beta FLHC_ECOLI Flagellar transcriptional regulator FlhC FOCB_ECOLI Flagellar regulator flk FTSK_ECOLI DNA translocase FtsK GFCC_ECOLI Gamma-glutamyltranspeptidase GLPR_ECOLI Glucerol-3-phosphate regulon repressor

23. GLTB_ECOLI Glutamate synthase [NADPH] large chain

- 24. GNTX ECOLI Protein GntX
- 25. GPR_ECOLI L-glyceraldehyde 3-phosphate reductase
- 26.HCAD ECOLI 3-phenylpropionate/cinnamic acid dioxygenase
- ferredoxin--NAD(+) reductase component
- 27. HISX ECOLI Histidinol dehydrogenase
- 28. HOFM_ECOLI Putative DNA utilization protein HofM
- 29. HOLB_ECOLI DNA polymerase III subunit delta
- 30. HYAF_ECOLI Hydrogenase-1 operon protein hyaF
- 31. HYFR_ECOLI Hydrogenase-4 transcriptional activator
- 32. K6PF2_ECOLI 6-phosphofructokinase isozyme 2
- 33. LEPA_ECOLI Elongation factor 4
- 34. LIGT_ECOLI 2'-5'-RNA ligase OS=Escherichia coli
- 35. LSRC ECOLI Autoinducer 2 import system permease protein lsrC
- 36. MALG_ECOLI Maltose transport system permease protein malG
- 37. MEPA ECOLI Penicillin-insensitive murein endopeptidase
- 38. NLPC_ECOLI Probable endopeptidase NlpC
- 39. NLPD_ECOLI Murein hydrolase activator NlpD
- 40. NUDC_ECOLI NADH pyrophosphatase
- 41. NUOCD_ECOLI NADH-quinone oxidoreductase subunit C/D
- 42. PAT_ECOLI Putrescine aminotransferase
- 43. PBPA ECOLI Penicillin-binding protein 1A
- 44. PHOR_ECOLI Phosphate regulon sensor protein phoR
- 45. PSTA ECOLI Phosphate transport system permease protein pstA
- 46. QOR1_ECOLI Quinone oxidoreductase 1
- 47. RECG ECOLI ATP-dependent DNA helicase recG
- 48. RNB ECOLI Exoribonuclease 2
- 49. RSMA_ECOLI Ribosomal RNA small subunit methyltransferase A
- 50. RUTD_ECOLI Putative aminoacrylate hydrolase
- 51. RUTG_ECOLI Putative pyrimidine permease
- 52. RZOD ECOLI Outer membrane lipoprotein Rz1 from lambdoid prophage DLP12
- 53. RZOR_ECOLI Outer membrane lipoprotein Rz1 from lambdoid prophage Rac
- 54. SDAC_ECOLI Serine transporter
- 55. SFGH2_ECOLI S-formylglutathione hydrolase yeiG
- 56. SLYX_ECOLI Protein SlyX
- 57. SYV_ECOLI Valine--tRNA ligase
- 58. TAMA ECOLI Translocation and assembly module TamA
- 59. TAUC_ECOLI Taurine transport system permease protein tauC
- 60. TONB ECOLI Protein tonB
- 61. UVRB_ECOLI UvrABC system protein B
- 62. YACH_ECOLI Uncharacterized protein yacH
- 63. YAEI ECOLI Phosphodiesterase yaeI
- 64. YAFZ_ECOLI UPF0380 protein yafZ

65. YAGS_ECOLI Putative xanthine dehydrogenase YagS FAD-binding subunit 66. YCGG_ECOLI Uncharacterized protein YcgG 67. YCGL ECOLI UPF0745 protein YcgL 68. YCGR_ECOLI Flagellar brake protein YcgR 69. YCHG ECOLI Putative uncharacterized protein ychG 70. YDCO_ECOLI Inner membrane protein ydcO 71. YDEI_ECOLI Uncharacterized protein ydeI 72. YDIK_ECOLI UPF0118 inner membrane protein ydiK 73. YEEJ_ECOLI Uncharacterized protein yeeJ 74. YEGI_ECOLI Uncharacterized protein yegI 75. YFBK_ECOLI Uncharacterized protein yfbK 76. YFCO_ECOLI Uncharacterized protein yfcO 77. YFCR ECOLI Uncharacterized protein yfcR 78. YFDK_ECOLI Uncharacterized protein yfdK 79. YFJQ ECOLI UPF0380 protein yfjQ 80. YHBW_ECOLI Uncharacterized protein yhbW 81. YHFW_ECOLI Uncharacterized protein yhfW 82. YIDI_ECOLI Inner membrane protein yidI 83. YIFB_ECOLI Uncharacterized protein YifB 84. YIFL_ECOLI Uncharacterized lipoprotein yifL 85. YJBG ECOLI Uncharacterized protein vjbG 86. YJDA_ECOLI Uncharacterized protein yjdA 87. YPDI_ECOLI Uncharacterized lipoprotein ypdI 1. ACCD_ECOLI Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta 2. ACON1_ECOLI Aconitate hydratase 1 3. ACON2_ECOLI Aconitate hydratase 2 4. ACPT_ECOLI 4'-phosphopantetheinyl transferase AcpT 5. ADIA_ECOLI Biodegradative arginine decarboxylase 6. ADRA_ECOLI Probable diguanylate cyclase AdrA 7. ALDB_ECOLI Aldehyde dehydrogenase B 8. AMPD_ECOLI 1,6-anhydro-N-acetylmuramyl-L-alanine amidase AmpD 9. AMPH_ECOLI D-alanyl-D-alanine-carboxypeptidase/endopeptidase 10. ARAC_ECOLI Arabinose operon regulatory protein 11. ARCM_ECOLI Carbamate kinase-like protein YahI 12. AROC_ECOLI Chorismate synthase 13. ASTD ECOLI N-succinylglutamate 5-semialdehyde dehydrogenase 14. ATPA_ECOLI ATP synthase subunit alpha 15. ATPB_ECOLI ATP synthase subunit beta 16. AZUC_ECOLI Uncharacterized protein AzuC 17. BCSB_ECOLI Cyclic di-GMP-binding protein 18. BGLR_ECOLI Beta-glucuronidase 19. C56I_ECOLI Cytochrome b561 homolog 2

PPG:

19

20. CAAL_ECOLI Carboxylate-amine ligase YbdK 21. CATE ECOLI Catalase HPII 22. CBPA_ECOLI Curved DNA-binding protein 23. CHEB ECOLI Chemotaxis response regulator protein-glutamate methylesterase 24. CINAL ECOLI CinA-like protein 25. CLPA_ECOLI ATP-dependent Clp protease ATP-binding subunit ClpA 26. CLPB_ECOLI Chaperone protein ClpB 27. CPTA_ECOLI Phosphoethanolamine transferase CptA 28. CPXA_ECOLI Sensor protein CpxA 29. CURA_ECOLI NADPH-dependent curcumin reductase 30. CYAA_ECOLI Adenylate cyclase 31. CYSQ_ECOLI 3'(2'),5'-bisphosphate nucleotidase CysQ 32. DAPE ECOLI Succinyl-diaminopimelate desuccinylase 33. DCLZ_ECOLI Lysine decarboxylase 34. DCOR ECOLI Ornithine decarboxylase 35. DCOS_ECOLI Ornithine decarboxylase 36. DINF_ECOLI DNA-damage-inducible protein 37. DMSA_ECOLI Dimethyl sulfoxide reductase DmsA 38. DNAT_ECOLI Primosomal protein 1 39. DPIB_ECOLI Sensor histidine kinase DpiB 40. DPPF_ECOLI Dipeptide transport ATP-binding protein DppF 41. ENTF_ECOLI Enterobactin synthase 42. ETK_ECOLI Tyrosine-protein kinase etk 43. EUTJ_ECOLI Ethanolamine utilization protein eutJ 44. EX5C ECOLI Exodeoxyribonuclease V gamma chain 45. EXOX_ECOLI Exodeoxyribonuclease 10 46. FADK_ECOLI Short-chain-fatty-acid--CoA ligase 47. FADR_ECOLI Fatty acid metabolism regulator protein 48. FDOG_ECOLI Formate dehydrogenase-O major subunit 49. FIMD ECOLI Outer membrane usher protein fimD 50. FLIF_ECOLI Flagellar M-ring protein 51. FLK_ECOLI Flagellar regulator flk 52. FTSH_ECOLI ATP-dependent zincmetalloprotease FtsH 53. GALF_ECOLI UTP--glucose-1-phosphateridylyltransferase 54. GALU_ECOLI UTP--glucose-1-phosphateuridylyltransferase 55. GFCC_ECOLI Uncharacterized protein gfcC 56. GPR_ECOLI L-glyceraldehyde 3-phosphate reductase 57. HOFM ECOLI Putative DNA utilization protein HofM 58. HSLU_ECOLI ATP-dependent protease ATPase subunit HslU 59. HTRE ECOLI Outer membrane usher protein htrE 60. HYPF_ECOLI Carbamoyltransferase hypF 61. ICIA_ECOLI Chromosome initiation inhibitor 62. ILVB ECOLI Acetolactate synthase isozyme 63. ILVG_ECOLI Acetolactate synthase isozyme 2 large subunit

64. INTE_ECOLI Prophage lambda integrase

```
65. IRAM_ECOLI Anti-adapter protein iraM
```

66. K6PF2_ECOLI 6-phosphofructokinase isozyme 2

7 KDDD ECOLI Generalization KilaD

67. KDPD_ECOLI Sensor protein KdpD

68. LCFA_ECOLI Long-chain-fatty-acid--CoA ligase

69. LDCI ECOLI Lysine decarboxylase

70. LEP_ECOLI Signal peptidase

72. LIGT_ECOLI 2'-5'-RNA ligase

73. LON_ECOLI Lon protease

74. LSRK_ECOLI Autoinducer 2 kinase LsrK

75. LYSR_ECOLI Transcriptional activator protein lysR

76. MCRB_ECOLI 5-methylcytosine-specific restriction enzyme B

77. METF_ECOLI 5,10-methylenetetrahydrofolate reductase

78. MLTA_ECOLI Membrane-bound lytic murein transglycosylase A

79. MNME_ECOLI tRNA modification GTPase MnmE

80. MPAA_ECOLI Protein mpaA

81. MRP_ECOLI Protein mrp

82. MURD_ECOLI UDP-N-acetylmuramoylalanine--D-glutamate ligase

83. MUTL_ECOLI DNA mismatch repair protein mutL

84. NAPG_ECOLI Ferredoxin-type protein napG

85. NARZ_ECOLI Respiratory nitrate reductase 2 alpha chain

86. NUDC_ECOLI NADH pyrophosphatase

87. NUPX_ECOLI Nucleoside permease nupX

88. PARC_ECOLI DNA topoisomerase 4 subunit A

90. PARC_ECOLI DNA topoisomerase 4 subunit A

91. PAT_ECOLI Putrescine aminotransferase

92. PBPA_ECOLI Penicillin-binding protein 1A

93. PHNI_ECOLI Protein phnI

94. PHOR_ECOLI Phosphate regulon sensor protein phoR

95. PHR_ECOLI Deoxyribodipyrimidine photo-lyase

96. POTH_ECOLI Putrescine transport system permease protein

97. POTD_ECOLI Spermidine/putrescine-binding periplasmic protein

98. PPA_ECOLI Periplasmic AppA protein

99. PRIM_ECOLI DNA primase

100. PRPE_ECOLI Propionate--CoA ligase

101. PSTC_ECOLI Phosphate transport system permease protein pstC

102. PSUT_ECOLI Putative pseudouridine transporter

103. PTH_ECOLI Peptidyl-tRNA hydrolase

104. PTNAB_ECOLI PTS system mannose-specific EIIAB component

105. PUTA_ECOLI Bifunctional protein putA

106. QSEC_ECOLI Sensor protein qseC

107. RARA_ECOLI Replication-associated recombination protein A

108. RAVA_ECOLI ATPase ravA

109. RBN_ECOLI Ribonuclease BN

110. RECG_ECOLI ATP-dependent DNA helicase recG

111. RFAG_ECOLI Lipopolysaccharide core biosynthesis protein rfaG

112. RNFE_ECOLI Electron transport complex protein RnfE

113. RRMF_ECOLI Probable rRNA maturation factor YbeY

114. RSEC_ECOLI Sigma-E factor regulatory protein RseC

115. RUVB_ECOLI Holliday junction ATP-dependent DNA helicase RuvB

116. SAPC_ECOLI Peptide transport system permease protein sapC

117. SFMF_ECOLI Fimbrial-like protein sfmF

118. SFMH_ECOLI Protein sfmH

119. SPOT_ECOLI Bifunctional (p)ppGpp synthase/hydrolase SpoT

120. SRP54_ECOLI Signal recognition particle protein

122. SURE_ECOLI 5'/3'-nucleotidase SurE

123. SYA_ECOLI Alanine--tRNA ligase

124. TMCA_ECOLI tRNA(Met) cytidine acetyltransferase TmcA

125. TRKA_ECOLI Trk system potassium uptake protein trkA

126. UHPB_ECOLI Sensor protein uhpB

127. WCAM_ECOLI Colanic acid biosynthesis protein wcaM

128. Y1142_ECOLI Putative uncharacterized protein b1142

129. YAFD_ECOLI UPF0294 protein yafD

130. YAGS_ECOLI Putative xanthine dehydrogenase YagS FAD-binding subunit

132. YAHG_ECOLI Uncharacterized protein yahG

133. YBAB_ECOLI UPF0133 protein YbaB

134. YBBP_ECOLI Uncharacterized ABC transporter permease ybbP

135. YBFO_ECOLI Putative uncharacterized protein ybfO

136. YBGQ_ECOLI Uncharacterized outer membrane usher protein ybgQ

137. YBIC_ECOLI Uncharacterized oxidoreductase ybiC

138. YBIO_ECOLI Uncharacterized MscS family protein YbiO

139. YBIU_ECOLI Uncharacterized protein ybiU

140. YBJD_ECOLI Uncharacterized protein ybjD

141. YCEG_ECOLI UPF0755 protein yceG

142. YCFD_ECOLI Uncharacterized protein ycfD

143. YCFS_ECOLI Probable L,D-transpeptidase YcfS

144. YCFZ_ECOLI Inner membrane protein ycfZ

145. YCGY_ECOLI Uncharacterized protein ycgY

146. YDAU_ECOLI Uncharacterized protein ydaU

147. YDCU_ECOLI Inner membrane ABC transporter permease protein ydcU

148. YDCR_ECOLI Uncharacterized HTH-type transcriptional regulator YdcR

149. YDDK_ECOLI Putative uncharacterized protein yddK

150. YDHK_ECOLI Uncharacterized transporter YdhK

151. YDHV_ECOLI Uncharacterized oxidoreductase YdhV

152. YEBT_ECOLI Uncharacterized protein yebT

153. YEEJ_ECOLI Uncharacterized protein yeeJ

154. YEHB_ECOLI Uncharacterized outer membrane usher protein yehB

155. YEHL_ECOLI Uncharacterized protein yehL

156. YFDE_ECOLI Uncharacterized protein YfdE

157. YFJK_ECOLI Uncharacterized protein yfjK

158. YGAQ_ECOLI Putative uncharacterized protein ygaQ

159. YGBN_ECOLI Inner membrane permease

160. YGCE_ECOLI Uncharacterized sugar kinase YgcE

161. YGCQ_ECOLI Putative electron transfer flavoprotein subunit ygcQ

162. YGGC_ECOLI Uncharacterized protein yggC

163. YGHS_ECOLI Uncharacterized ATP-binding protein yghS

164. YHJC_ECOLI Uncharacterized HTH-type transcriptional regulator YhjC

165. YIDD_ECOLI Putative membrane protein insertion efficiency factor

166. YIEL_ECOLI Uncharacterized protein yieL

167. YIFB_ECOLI Uncharacterized protein YifB

168. YJGZ_ECOLI Uncharacterized protein yjgZ

169. YJJK_ECOLI Uncharacterized ABC transporter ATP-binding protein YjjK

170. YJJU_ECOLI Uncharacterized protein yjjU

171. YKFF_ECOLI UPF0401 protein ykfF

172. YLBA_ECOLI Uncharacterized protein ylbA

173. YMFQ_ECOLI Uncharacterized protein YmfQ in lambdoid prophage e14 region

174. YNHG_ECOLI Probable L,D-transpeptidase YnhG

175. YPDC_ECOLI Uncharacterized HTH-type transcriptional regulator YpdC

176. YPJA_ECOLI Uncharacterized outer membrane protein YpjA

177. YQIG_ECOLI Putative outer membrane usher protein yqiG

References and Notes

- 1. S. B. Zou *et al.*, Loss of elongation factor P disrupts bacterial outer membrane integrity. *J. Bacteriol.* **194**, 413 (2012). <u>doi:10.1128/JB.05864-11</u> <u>Medline</u>
- S. B. Zou, H. Roy, M. Ibba, W. W. Navarre, Elongation factor P mediates a novel posttranscriptional regulatory pathway critical for bacterial virulence. *Virulence* 2, 147 (2011). <u>doi:10.4161/viru.2.2.15039</u> <u>Medline</u>
- 3. G. Blaha, R. E. Stanley, T. A. Steitz, Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. *Science* **325**, 966 (2009). <u>doi:10.1126/science.1175800 Medline</u>
- 4. E. C. Wolff, K. R. Kang, Y. S. Kim, M. H. Park, Posttranslational synthesis of hypusine: Evolutionary progression and specificity of the hypusine modification. *Amino Acids* 33, 341 (2007). <u>doi:10.1007/s00726-007-0525-0</u> <u>Medline</u>
- 5. T. Yanagisawa, T. Sumida, R. Ishii, C. Takemoto, S. Yokoyama, A paralog of lysyltRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P. *Nat. Struct. Mol. Biol.* **17**, 1136 (2010). <u>doi:10.1038/nsmb.1889 Medline</u>
- M. Bailly, V. de Crécy-Lagard, Predicting the pathway involved in post-translational modification of elongation factor P in a subset of bacterial species. *Biol. Direct* 5, 3 (2010). <u>doi:10.1186/1745-6150-5-3</u> <u>Medline</u>
- 7. H. Roy *et al.*, The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-β-lysine. *Nat. Chem. Biol.* 7, 667 (2011). <u>doi:10.1038/nchembio.632</u> <u>Medline</u>
- 8. L. Peil *et al.*, Lys34 of translation elongation factor EF-P is hydroxylated by YfcM. *Nat. Chem. Biol.* **8**, 695 (2012). <u>doi:10.1038/nchembio.1001</u> <u>Medline</u>
- 9. W. W. Navarre *et al.*, PoxA, yjeK, and elongation factor P coordinately modulate virulence and drug resistance in *Salmonella enterica*. *Mol. Cell* **39**, 209 (2010). <u>doi:10.1016/j.molcel.2010.06.021</u> <u>Medline</u>
- B. R. Glick, S. Chládek, M. C. Ganoza, Peptide bond formation stimulated by protein synthesis factor EF-P depends on the aminoacyl moiety of the acceptor. *Eur. J. Biochem.* 97, 23 (1979). doi:10.1111/j.1432-1033.1979.tb13081.x Medline
- B. R. Glick, M. C. Ganoza, Identification of a soluble protein that stimulates peptide bond synthesis. *Proc. Natl. Acad. Sci. U.S.A.* 72, 4257 (1975). doi:10.1073/pnas.72.11.4257 Medline
- P. Saini, D. E. Eyler, R. Green, T. E. Dever, Hypusine-containing protein eIF5A promotes translation elongation. *Nature* 459, 118 (2009). doi:10.1038/nature08034 Medline
- A. P. Gregio, V. P. Cano, J. S. Avaca, S. R. Valentini, C. F. Zanelli, eIF5A has a function in the elongation step of translation in yeast. *Biochem. Biophys. Res. Commun.* 380, 785 (2009). doi:10.1016/j.bbrc.2009.01.148 Medline

- I. Wohlgemuth, S. Brenner, M. Beringer, M. V. Rodnina, Modulation of the rate of peptidyl transfer on the ribosome by the nature of substrates. *J. Biol. Chem.* 283, 32229 (2008). doi:10.1074/jbc.M805316200 Medline
- 15. M. Johansson *et al.*, pH-sensitivity of the ribosomal peptidyl transfer reaction dependent on the identity of the A-site aminoacyl-tRNA. *Proc. Natl. Acad. Sci.* U.S.A. 108, 79 (2011). doi:10.1073/pnas.1012612107 Medline
- 16. M. Y. Pavlov *et al.*, Slow peptide bond formation by proline and other N-alkylamino acids in translation. *Proc. Natl. Acad. Sci. U.S.A.* **106**, 50 (2009). doi:10.1073/pnas.0809211106 Medline
- D. R. Tanner, D. A. Cariello, C. J. Woolstenhulme, M. A. Broadbent, A. R. Buskirk, Genetic identification of nascent peptides that induce ribosome stalling. *J. Biol. Chem.* 284, 34809 (2009). <u>doi:10.1074/jbc.M109.039040</u> <u>Medline</u>
- J. H. Park *et al.*, Post-translational modification by β-lysylation is required for activity of *Escherichia coli* elongation factor P (EF-P). *J. Biol. Chem.* 287, 2579 (2012). doi:10.1074/jbc.M111.309633 Medline
- V. Heurgué-Hamard *et al.*, Ribosome release factor RF4 and termination factor RF3 are involved in dissociation of peptidyl-tRNA from the ribosome. *EMBO J.* 17, 808 (1998). doi:10.1093/emboj/17.3.808 Medline
- 20. Y. Chadani, K. Ono, K. Kutsukake, T. Abo, *Escherichia coli* YaeJ protein mediates a novel ribosome-rescue pathway distinct from SsrA- and ArfA-mediated pathways. *Mol. Microbiol.* 80, 772 (2011). <u>doi:10.1111/j.1365-2958.2011.07607.x</u> <u>Medline</u>
- 21. Y. Chadani *et al.*, Ribosome rescue by *Escherichia coli* ArfA (YhdL) in the absence of trans-translation system. *Mol. Microbiol.* **78**, 796 (2010). <u>doi:10.1111/j.1365-2958.2010.07375.x Medline</u>
- C. S. Hayes, B. Bose, R. T. Sauer, Proline residues at the C terminus of nascent chains induce SsrA tagging during translation termination. *J. Biol. Chem.* 277, 33825 (2002). doi:10.1074/jbc.M205405200 Medline
- 23. T. Sunohara, T. Abo, T. Inada, H. Aiba, The C-terminal amino acid sequence of nascent peptide is a major determinant of SsrA tagging at all three stop codons. *RNA* 8, 1416 (2002). doi:10.1017/S1355838202020198 Medline
- L. Salwinski *et al.*, The Database of Interacting Proteins: 2004 update. *Nucleic Acids Res.* 32, D449 (2004). <u>doi:10.1093/nar/gkh086 Medline</u>
- 25. N. Noinaj, M. Guillier, T. J. Barnard, S. K. Buchanan, TonB-dependent transporters: Regulation, structure, and function. *Annu. Rev. Microbiol.* 64, 43 (2010). <u>doi:10.1146/annurev.micro.112408.134247</u> Medline
- 26. N. A. Sallee *et al.*, The pathogen protein EspF(U) hijacks actin polymerization using mimicry and multivalency. *Nature* **454**, 1005 (2008). <u>doi:10.1038/nature07170</u> <u>Medline</u>

- 27. A. Holmes, S. Mühlen, A. J. Roe, P. Dean, The EspF effector, a bacterial pathogen's Swiss army knife. *Infect. Immun.* 78, 4445 (2010). <u>doi:10.1128/IAI.00635-10</u> <u>Medline</u>
- H. Aoki, S. L. Adams, M. A. Turner, M. C. Ganoza, Molecular characterization of the prokaryotic efp gene product involved in a peptidyltransferase reaction. *Biochimie* 79, 7 (1997). <u>doi:10.1016/S0300-9084(97)87619-5</u> <u>Medline</u>
- M. V. Rodnina, W. Wintermeyer, GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. *Proc. Natl. Acad. Sci. U.S.A.* 92, 1945 (1995). doi:10.1073/pnas.92.6.1945 Medline
- 30. C. Schmidt, C. Lenz, M. Grote, R. Lührmann, H. Urlaub, Determination of protein stoichiometry within protein complexes using absolute quantification and multiple reaction monitoring. *Anal. Chem.* 82, 2784 (2010). <u>doi:10.1021/ac902710k</u> <u>Medline</u>
- 31. K. B. Gromadski, M. V. Rodnina, Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. *Mol. Cell* 13, 191 (2004). <u>doi:10.1016/S1097-2765(04)00005-X Medline</u>
- 32. U. Kothe, A. Paleskava, A. L. Konevega, M. V. Rodnina, Single-step purification of specific tRNAs by hydrophobic tagging. *Anal. Biochem.* 356, 148 (2006). doi:10.1016/j.ab.2006.04.038 Medline
- 33. I. Wohlgemuth, C. Pohl, M. V. Rodnina, Optimization of speed and accuracy of decoding in translation. *EMBO J.* 29, 3701 (2010). <u>doi:10.1038/emboj.2010.229</u> <u>Medline</u>