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ABSTRACT

The scale dependency of variance of total water mixing ratio is explored by analyzing data from a general

circulationmodel (GCM), a numerical weather predictionmodel (NWP), and large-eddy simulations (LESs).

For clarification, direct numerical simulation (DNS) data are additionally included, but the focus is placed on

defining a general scaling behavior for scales ranging from global down to cloud resolving. For this, appro-

priate power-law exponents are determined by calculating and approximating the power density spectrum.

The large-scale models (GCM and NWP) show a consistent scaling with a power-law exponent of approxi-

mately 22. For the high-resolution LESs, the slope of the power density spectrum shows evidence of being

somewhat steeper, although the estimates are more uncertain. Also the transition between resolved and

parameterized scales in a current GCM is investigated. Neither a spectral gap nor a strong scale break is

found, but a weak scale break at high wavenumbers cannot be excluded. The evaluation of the parameterized

total water variance of a state-of-the-art statistical scheme shows that the scale dependency is underestimated

by this parameterization. This study and the discovered general scaling behavior emphasize the need for

a development of scale-dependent parameterizations.

1. Introduction

The parameterization of cloud processes, including

fractional cloud cover, is known to be the principal

driver of uncertainties in simulations of climate change

(e.g., Bony and Dufresne 2005; Randall et al. 2007).

Although different parameterizations use different ap-

proaches, all rest on assumptions about the subgrid-scale

variability of total water mixing ratio (Tompkins 2008).

In this study the scaling behavior of total water variance

and its representation in a state-of-the-art parameteri-

zation is investigated.

Currently, parameterizations are challenged by a new

generation of global climate models (GCMs), which in-

clude the possibility to use local grid refinement [e.g.,

Icosahedral Non-hydrostatic general circulation model

(ICON;Wan et al. 2013) andLaboratoire deM�et�eorologie

Dynamique general circulation model (LMDZ; Hourdin

et al. 2006)]. With this it is no longer feasible to tune pa-

rameterizations to certain resolutions. The aimhas to be to

develop parameterizations that adjust naturally to differ-

ent grid sizes. Those parameterizations should be able

to manage a consistent transition from today’s GCM

resolution [O(100 km)] down to cloud-resolving scales

[O(1 km)] or even smaller.

According to Arakawa et al. (2011), there are two dif-

ferent approaches to reach this goal. The first approach is

to develop parameterizations for a conventional climate

model, which are flexible enough to allow for convergence

with increasing resolution toward a global cloud-resolving

model. An alternative approach is to include a cloud-re-

solving model as a parameterization in the grid of the

global climate model—a so-called ‘‘multiscale modeling

framework (MMF).’’

One promising approach for the first and conventional

concept is to develop scale-aware statistical parameteri-

zations. Statistical approaches are based on a representa-

tion of the highermoments of the subgrid-scale probability

density function (PDF) so as to provide a distribution of

the considered quantity—for instance, total water mixing
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ratio. Typically in such approaches a moment expansion

is taken and assumptions are required to truncate the

moments (e.g., by assuming a given family of PDFs) (e.

g., Andr�e et al. 1976; Larson and Golaz 2005). Although

it is generally well appreciated that the variance should be

treated prognostically, the ability to treat higher-order

moments is a matter of some debate (e.g., Klein et al.

2005). This motivates the present, as well as other studies,

that attempt to understand controls on the subgrid vari-

ance, particularly as a function of scale.

Variance as a function of scale can often be described

by a power law and with this by a single scaling expo-

nent. By extrapolating the resolved saturation variance

with a power-law exponent of 25/3 and introducing the

resulting subgrid-scale variability, Cusack et al. (1999)

found an improvement in cloud amount. Since then, a

few additional studies have explored how different scales

contribute to the water vapor variance. Using aircraft

measurements, Cho et al. (2000) found an exponent of

21.46 60.04 for a wavenumber range of approximately

50m–100 km in the boundary layer; in the free tropo-

sphere a higher exponent of 21.63 60.05 for tropical

regions and 21.79 60.05 for extratropical regions was es-

timated. Similar results were found by Kahn and Teixeira

(2009), who used data from the Atmospheric Infrared

Sounder (AIRS) (;50-km resolution) to produce a global

climatology of scaling exponents for water vapor and

temperature. The estimated exponents for water vapor

varied between 21.4 and 22.2. Nastrom et al. (1986)

also reported evidence of power-law scaling for water

vapor, with a scaling exponent of 25/3 for the range of

approximately 150–500 km and 22 for 500–1500 km.

The height dependency of the exponents is investigated

by Fischer et al. (2012), which analyzed a range of 10–

100 km and found exponents of 25/3 for the lower tro-

posphere and 22 for the upper level. All these results

together imply that there is not a spectral gap between

today’s resolved [O(100 km)] and parameterized (less

than;100 km) GCM scales and that formulations of the

subgrid variance must incorporate information about

the scales being parameterized.

Whether or not this scaling continues to the finest

scales of variability is more unclear. There is some evi-

dence of a change in scaling, or a scale break, at fine scales.

Based on an analysis of numerical weather prediction and

climate models, as well as available observational data,

Kahn et al. (2011) reported evidence of such a break on

scales of order 10km, with a steeper gradient (less than

21.8) emerging at smaller scales.

All cited studies investigated more details and de-

pendencies on different heights, meteorological condi-

tions, or regions for the scaling of water vapor variance.

Here, they are cited in a way to generate a context for

the discussion of the results on amore generalized scaling

behavior of total water variance. As the differences in

the scaling behavior for water-vapor and total water

variance are expected to be small, at least for the large

scales, a comparison between the previous and the new

results can still be useful. The importance of more de-

tailed investigations of the scaling behavior of water

vapor for the development of GCM parameterizations

was also discussed by Pressel and Collins (2012), who

analyzed first-order structure functions in the AIRS-

observed water vapor field.

In this study the scaling behavior of total water variance

in the warm cloudy boundary layer is analyzed in a hier-

archy of models stretching from scales of tens of meters to

the global scale. So doing permits the analysis of variance

as a function of all relevant scales. The contribution of

variance at different length scales is changing across

several orders of magnitude. Because the construction

of a single composited spectrum spanning all the scales

can be sensitive to how the various scales are matched to

one another, a detailed analysis is done for each dataset

separately and the scaling behavior is analyzed across

the individual range of scales spanned by the individual

datasets, instead of estimating a universal law for all

scales. To further decrease the resulting uncertainty and

to providemore background for the discussion of scaling

exponents, in this study three different approaches are

used for the estimation of the scaling exponent. The

question of a scale break is additionally investigated by

including data with a resolution of some millimeters from

direct numerical simulations (DNS). The scaling behavior

identified in this analysis is discussed in the context of the

previous studies on water vapor scaling. Furthermore,

a state-of-the-art parameterization of subgrid-scale vari-

ance developed for use in global climate models is vali-

dated against the results obtained in this study.

The manuscript is organized as follows: Section 2 is

a short overview of the data and methods used. In sec-

tion 3 the three different approaches to estimate scaling

of total water mixing ratio variance and the respective

results are presented. The description of a statistical

cloud cover parameterization and its evaluation with

regard to the scaling of variance is presented in section 4.

Concluding remarks and perspectives for future research

are given in section 5.

2. Background

a. Data

A continuous analysis of scales ranging from those

sufficiently small to resolve ordinary cumulus clouds, to

the planetary scales, would require a dataset with very
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high resolution over very large domains. Calculations with

this many degrees of freedom (e.g., Satoh et al. 2008) are

only just becoming possible, and could be applied to ex-

plore these questions using a unifiedmodeling framework,

but even these do not reach into the scales relevant for

boundary layer clouds. For this reason the present study is

based on data from several different model types whose

domain size and resolution differ, but which collectively

span the desired range of scales.

The University of California Los Angeles (UCLA)

Large-Eddy Simulation (LES)model (Stevens et al. 1999,

2005; Stevens and Seifert 2008) is used to investigate the

scale dependency of total water mixing ratio variance at

cloud-resolving scales. Four different cases with differ-

ing grid spacings and domain sizes are investigated.

From the Cloud Feedbacks Model Intercomparison

Project (CFMIP)/Global Atmospheric System Studies

(GASS) Intercomparison of Large-Eddy and Single-

ColumnModels (CGILS) (Blossey et al. 2013) the trade-

cumulus case (s6), simulated with a 100-m grid spacing,

96 3 96 points, and 128 vertical levels, and the strato-

cumulus case (s12), simulated with a 25-m grid spacing,

1283 128 points, and 180 vertical levels, were analyzed.

For both cases 8 of the 10 simulated days with hourly

output were included. In addition, two further 30-h

simulations of trade cumulus with hourly output using

a grid mesh with 25-m spacing, 1024 3 1024 points, and

160 vertical levels were analyzed. The trade-cumulus

simulations are based on observations made during the

Rain in Cumulus over theOcean field campaign (RICO)

(Rauber et al. 2007), and differ in the specification of

free tropospheric humidity following the setup described

by Stevens and Seifert (2008). The moister simulation

more readily simulates precipitation, which leads to a

growth of variance of total water mixing ratio at large

scales. More details on the organization and the differ-

ent distribution of variance can be found in Seifert and

Heus (2013).

The scale dependency at the mesoscales (10–100km) is

assessed using a numerical weather prediction model de-

veloped and maintained by the German Weather Service

(Deutscher Wetterdienst). Two different setups of

this model were explored: the local model Consortium for

Small-Scale Modelling Germany (COSMO-DE) with 2.8-

km grid spacing and the European version COSMOEurope

(COSMO-EU) with 7-km grid spacing (see, e.g., Baldauf

et al. 2011). To account for the effects of different physical

situations and seasons, several periods of 6-h forecast, each

with a length of 4 days, from varying months of 2011

have been analyzed. The two periods (January and

June) showing the largest differences were chosen for

further study so as to bound the range of behavior evi-

dent in the more extensive analysis (not shown).

With simulations using the ECHAM6 GCM (Stevens

et al. 2013), larger, through global, scales are analyzed.

ECHAM6 is used in two different resolutions: the T63

(;200-km resolution at the equator) and the T127 (;100-

km resolution at the equator) spectral truncations. Be-

cause the area of each grid box of the latitude–longitude

grid corresponding to the GCM spectral resolution con-

verges toward the poles, the analysis is limited to the

tropics, defined as the region between 308N and 308S so as

to have grid boxes of approximately equal size. Within

the analyzed region the distance between two longitudes

varies between 111 and 96km for the T127 grid, or twice

that for the coarser-resolution version ofECHAM6.Hence,

the transform (physical space) grid is relatively uniform.

In the analysis that follows the wavenumber spectrum is

not corrected for the remaining small inhomogeneities

in the grid relative to a fixed mesh with a spacing of

100 km (respectively 200 km). Onemonth of data (June)

with instantaneous output every 6 h is analyzed.

In addition to the three types of models used for the

main analysis, data from DNS are included to investigate

the question of a scale break at finest scales. TheDNS data

were obtained from a (1024)3 simulation of a 3-m-wide

mixed-layer configuration that mimics a stratocumulus top

solely driven by evaporative cooling (Mellado 2010). The

power density spectra from four different heights are in-

cluded. As those domain sizes and resolutions are still

negligible for global parameterizations, these data are not

included in the main analysis but provide information on

the issue of a possible scale break.

To further simplify matters, analysis is restricted to

grid levels where warm clouds can be found. This fa-

cilitates a comparison of models that span a wide range

of resolutions, as finescale simulations incorporating

processes related to ice clouds are not available to us.

Because of the diversity of models used, it was neces-

sary to define a general condition as to decide which

model levels are related to warm clouds, and thus

should be incorporated into the analysis. A good in-

dicator for warm clouds is the presence of liquid water.

Hence the vertical profiles (average over time and

space) of liquid cloud water mixing ratio was used to

identify levels relevant to warm clouds, and those levels

where the liquid water was within 10% of the value at the

level containing the maximum liquid water were analyzed

(e.g., see Fig. 1).

b. Method

1) FOURIER TRANSFORMATION

The Fourier transformation requires periodic input

data. If this requirement is not fulfilled the spectrummay

show some artifacts associated with mismatches at the end
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points. As the COSMO-DE, the COSMO-EU, and the

ECHAM6 datasets are not doubly periodic, it is necessary

to preprocess the data by removing any linear trends and

tapering the data records to remove end-point effects. For

the tapering, a split-cosine-bell tapering is applied, fol-

lowing the implementation in the National Center for

Atmospheric Research (NCAR) Command Language

(NCL 2012). For consistency, tapering was also applied to

the datasets with periodic boundary conditions (LES,

GCM in longitude direction).

The two-dimensional discrete Fourier transform is

defined as

F (k, l)5
1

MN
�

M21

m50
�
N21

n50

f (m,n)e2i2p(mk/M)e2i2p(nl/N) (1)

5
1

MN
�

M21

m50
�
N21

n50

f (m,n)e2i2p[(mk/M)1(nl/N)] , (2)

with the wavenumbers k 5 0, . . . , M 2 1, l 5 0, . . . ,

N 2 1, the wavenumber-dependent Fourier coefficients

f(m, n), and

e2i2p[(mk/M)1(nl/N)] 5 cos

�
2p

�
mk

M
1

nl

N

��

2 i sin

�
2p

�
mk

M
1
nl

N

��
.

The two-dimensional discrete Fourier transform can

also be rewritten and calculated as a twice-implemented

one-dimensional Fourier transform:

F (k, l)5
1

N
�
N21

n50

"
1

M
�

M21

m50

f (m,n)e2i2p(mk/M)

#
e2i2p(nl/N) .

(3)

The resulting two-dimensional discrete Fourier trans-

form is symmetric around the origin, which means

jF (k, l)j5 jF (2k,2l)j. Because of this, it is common to

describe the two-dimensional Fourier transform centered

around the mean value, with wavenumbers 2bM/2c#
k# bðM2 1Þ/2c, 2bN/2c# l# bðN2 1Þ/2c.
The effective frequency of the two-dimensional dis-

crete Fourier transform is defined as

f̂
(k,l) 5

1

D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k

M

�2

1

�
l

N

�2
s

, (4)

where D is the spatial resolution. For this definition it is

assumed that the spatial resolution is the same in both

directions, whichmeansDx5Dy5D. This is true for the
LES and numerical weather prediction (NWP) datasets

and, as discussed previously, can also be assumed for the

analyzed ECHAM6 region. To avoid aliasing and arti-

facts, the effective frequency has to be constrained on

f̂ k,l # 1/(2DÞ for all k and l.

2) POWER DENSITY SPECTRUM

The power density spectrum of the two-dimensional

Fourier transform provides scale-by-scale informa-

tion about the variance and the variance scaling. It

is defined as the product of the Fourier transform

and its complex conjugate. For instance, if F is the

discrete Fourier transform, the power spectrum P is

defined by

P5FF *5 [<(F )21J(F )2] , (5)

where F* is the complex conjugate, <(F ) is the real and

J(F ) is the imaginary part of F .

The power density at each point includes the infor-

mation about the variance at a certain effective fre-

quency or wavenumber. If the spectrum is isotropic then

it is possible to reduce the two-dimensional (k, l) power

spectrum into a one-dimensional spectrum by integ-

rating over annuli that define an effective frequency. In

the present study this is accomplished by binning the

data by effective frequency. The number of bins can also

be used to smooth the resulting spectrum. In the fol-

lowing results bð3/4Þ3 npc bins were chosen, where np is
the minimum of the number of discrete wavenumbers in

both spectral directions. With this the range of bins is

defined as ½0, Dk, . . . , 1/(2D)�, where D is the grid spacing

of the original data and

FIG. 1. Temporal- and domain-average vertical profile of cloud

liquid water mixing ratio for the COSMO-DE June dataset, nor-

malized by its maximum value. Dots represent the mean values for

the model levels and asterisks the levels selected (i.e., those with

a value larger than the threshold of 0.1).
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Dk :5
1

3/43np3D
. (6)

To get a quantity that is independent of the bin width

(Dk), the density is calculated by dividing by Dk.
In the following analysis the focus will be placed on

the scaling behavior and not the amount of variance. For

this the normalized power density spectrum is of interest

and is defined by

p(ki)5
P(ki)
Dk

1

�
k
j
2K

P(kj)
, (7)

where K includes all considered wavenumbers and

ki 2 K.

By Parseval’s theorem the integral over the whole

power spectrum is equal to the total resolved variance.

In the discrete sense this means

s25 �
k
j
2K

P(kj) , (8)

where s is the standard deviation.

To calculate the variance, which is resolved with a

certain range of wavenumbers k1 # k # k2, it is neces-

sary to integrate the discrete spectrum between the

minimum wavenumber k1 and the maximum wave-

number k2:

s2(k1, k2)5 �
k
2

k5k
1

P(k) . (9)

3) LEAST SQUARES FIT

To estimate the slope of the power spectrum a least

squares algorithm is applied. If the data follow a power

law, they fulfill the following equation:

P(ki)’bkai , i5 1, 2 . . . , (10)

ln[P(ki)]’ ln(b)1a lnki, i5 1, 2 . . . . (11)

The coefficients a and b, which fit the data with respect

to the least squares constraint, are defined implicitly by

minimizing the function

F(a, b)5 �
n

i51

(yi 2 b2axi)
2 , (12)

where n is the number of considered points, yi 5
ln[P(ki)], b 5 ln(b), and xi 5 ln(ki).

3. Scaling of variance

a. Estimation of a valid range

The power density spectra for the whole wavenumber

space is calculated, but only an intermediate range is

considered robust because of numerical and subgrid

parameterization effects at small scales (high wave-

numbers) and domain size constraints, which influence

the largest scales, or lowest wavenumbers. For this reason

focus is placed on the calculation of power-law expo-

nents for an intermediate range of wavenumbers for

each model. But also in this intermediate range there

might be some fluctuations or a transition between dif-

ferent power-law exponents. To address this issue an

attempt is made to identify if there is an intermediate

range of wavenumbers over which a power-law scaling

is evident. Ideally, within this range the estimated ex-

ponent is not sensitive to the exact start and end point of

the chosen range.When power-law scaling is not evident

the estimated exponent will depend on the start and end

points of the analyzed range and it will not be reasonable

to estimate a single exponent.

A procedure as described below helps to find a good

estimate for a robust intermediate range by revealing

dependencies of the exponent on the exact start and end

points more clearly. Nevertheless, the method is not

purely objective and for each dataset a decision about

acceptable deviations and uncertainties has to be made.

The intermediate range for each dataset chosen for this

study, as well as the number of levels and time steps

investigated, can be found in Table 1.

For a particular model the power density spectrum

over the whole wavenumber space at each time and at

TABLE 1. The investigated intermediate range, number of time

steps, and number of levels for each dataset.

Data k21
max(m) k21

min(m)

Time

steps Levels

LES (CGILS s12) 59.38 237.50 191 56

LES (CGILS s6) 236.67 946.67 191 61

LES (RICO moist

low k)

255.67 2556.67 26 74

LES (RICO moist

high k)

63.92 153.40 26 74

NWP (COSMO-DE

January)

13 526.15 175 840.00 33 20

NWP (COSMO-DE

June)

13 526.15 175 840.00 33 21

NWP (COSMO-EU

January)

27 496.00 343 699.97 33 15

NWP (COSMO-EU

June)

27 496.00 343 699.97 33 14

GCM (ECHAM6 T63) 460 000.00 2 300 000.00 120 13

GCM (ECHAM6 T127) 235 000.02 2 350 000.00 120 13
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each level is first normalized to unit variance and then

averaged across all the levels and time periods analyzed

to produce a mean spectrum. An example of such a spec-

trum is shown in Fig. 2 for the case of the COSMO-DE

model. By eye the spectrum shows evidence of three

regimes. The power density spectrum is relatively flat at

very low wavenumbers, has apparent power-law scaling

in an intermediate range, and then the spectrum falls off

increasingly sharply at high wavenumbers. The follow-

ing procedure aims at identifying a minimum and max-

imumwavenumber, which sets limits to the intermediate

range that shows a robust power-law scaling.

The identification of the minimum and maximum

wavenumber is outlined using the example of the

COSMO-DE June dataset, which is shown in Fig. 3. To

determine the minimumwavenumber, a wavenumber in

the middle of the possible range for each model domain

[e.g., kend ’ 1/(7D)] is chosen as a fixed end point and the

start wavenumber (kstart) is increased from k1 until kend.

For each kstart a least squares fit between kstart and kend is

performed, which gives an estimate for the exponent.

The dependence of the estimated exponents on the

choice of kstart is shown in Fig. 3a. At high wavenumbers

clear fluctuations can be seen, as the number of points

used for the least squares fit is decreasing with increasing

kstart. Where the line in Fig. 3a is approximating a

straight line, the calculated exponent becomes less de-

pendent on the exact starting point (kstart) and with this

a good estimate for the start of a robust power law is

reached. To find the maximumwavenumber the procedure

FIG. 2. Normalized power density spectrum of total water mixing

ratio for the COSMO-DE June dataset, averaged over time and

height.

FIG. 3. Estimation of the robust range for a power law for the

COSMO-DE June dataset by approximating the power density

spectrum of total water mixing ratio. The variability of the power-

law exponent due to a change in the (a) minimum and (b) maxi-

mum wavenumber of the fitted wavenumber range. Small changes

represent the beginning (or end) of a stable power-law range. The

chosen wavenumber index is marked with a cross. (c) A least

squares fit (with a slope of a ’ 21.6) to the selected range.
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is repeated the other way around: a start wavenumber is

fixed and from this on kend is increased until the highest

possible value is reached (Fig. 3b). Here the fluctuations

due to a too-small number of points can be seen at low

wavenumbers, as the number of points used for the least

squares fit is increasing by increasing kend.

In this procedure there are two choices, which have to

be made empirically: first, the fixed start and end point

and, second, the threshold for a robust behavior. The

fixed start and end point should already be in the stable

range but for a reasonable estimate with a least squares

fit as many points as possible are needed. Because of

these constraints the choice for the exact start and end

points are made depending on the model and the re-

spective stable range. The exponents calculated by

changing the start or end point of the least squares fit

should approximate a straight line for a robust power-

law behavior. But there will always remain some fluc-

tuations and a threshold for robust behavior has to be

defined for eachmodel independently. Themade choices

can be tested by looking at the resulting fit for an inter-

mediate range. For the COSMO-DE June dataset this fit

is shown in Fig. 3c.

For the two RICO cases, the procedure has been

slightly extended. Both RICO cases show a similar be-

havior for the high, but differ for the low wavenumbers.

Figure 4 shows the normalized and averaged power

density spectrum for both RICO cases. For the high

wavenumbers both show a steep gradient with a scaling

exponent around 24.6. But for the large scales (low

wavenumbers) the moist RICO case shows a growth in

variance while the dry RICO case is already flat. As

both cases have a similar scaling behavior at high wave-

numbers, but only the moist RICO case shows a scaling

at low wavenumbers, only this case will be used for a

more detailed estimation of the scaling exponent. To

evaluate both scaling gradients the dataset is split up

into two parts: one part consisting of the range of high

wavenumbers and one part consisting of the range of low

wavenumbers.

b. Power density spectra of total water mixing ratio

Figure 5 shows datasets from all three kinds of models

(GCM, NWP, and LES), simulated for different regions

and different seasons. This figure, showing the whole

wavenumber range, demonstrates how well the datasets

connect to each other and gives the impression of a

continuous scaling. As the lines for each model are quite

parallel and only shifted on the y axis, there is no evi-

dence for a height dependency of the scaling exponents

but for the total amount of variance. Even though some

variability in the slopes of differing models can be seen,

there is a continuous distribution of variance from the

large scales of GCMs [O(100–1000km)] until small scales

of an LES [O(100m–10km)] without evidence for a spec-

tral gap.

Having ruled out the possibility of a spectral gap (i.e.,

a range of scales with greatly diminished variance), focus

FIG. 4. Normalized power density spectrum of total water mixing

ratio for the two RICO datasets, averaged over time and height for

the moist (thick dotted) and dry (thin dashed) cases of the trade-

cumulus case simulated at 25-m resolution. Two fits to the moist

RICO case are shown: one for the high wavenumbers (24.6) and

one for the low wavenumbers (21.7).

FIG. 5. Power density spectra of total water mixing ratio for the

GCM- (ECHAM6), NWP- (COSMO-DE), and CGILS LES.

Different lines of the same color represent different height levels.

The spectra are temporally averaged.
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is placed on the scaling (i.e., the slopes of the individual

spectra in Fig. 5). For a close look on the consistent

scaling the mean variance (integral over the inter-

mediate wavenumber space) of each model is adjusted

to the variance of a k22 slope (see Fig. 6). This calcula-

tion only affects the height of each line, not the slope.

Especially the large-scale models (GCM and NWP)

show a similar slope and a scaling close to 22. This

finding holds down to the range of the s6 CGILS case

and the larger scales of the RICO dataset. For the small

LES scales the gradient becomes steeper. This change

may hint at a scale break around 1 km. This result would

be in a similar range like the finding of Kahn et al. (2011)

for water vapor. To investigate the question of a possible

scale break in more detail, in this part of the evaluation

also some data from DNS are included. As these data

also show a scaling around 22, a strong break in the

scaling, with a change in the exponent of 50% or more,

is not evident. The steeper gradient at the high wave-

numbers (approximately k. 43 1023m21) for the LES

might also be due to too much dissipation at the small

scales in themodel. But because of the variability a weak

scale break is certainly possible.

To explore these issues inmore depth, Fig. 7 shows the

compensated spectrum. The compensated spectrum is

calculated by adjusting the mean variance to the k22

slope and an additional scaling by k22. Over a large

range of scales, a consistent scaling can be seen, but also

some deviations are obvious. There are some fluctua-

tions for the large-scale models around a scaling of 22

and this variability increases with the wavenumber. Es-

pecially the LES and DNS data tend to show a 25/3

scaling at the lower bound of their wavenumber range

and an increasing exponent at the higher bound. By this

analysis a weak scale break toward a 25/3 or also a 27/3

scaling at the meso- and smaller scales [i.e.,O(1–10 km)

or smaller] cannot be ruled out.

This first evaluation of the power density spectra

shows a broadly consistent scaling among the different

models and gives a first estimate for the power-law ex-

ponent (a ’ 22). Additionally, there is no clear evi-

dence of a strong break of scales in the spectrum,

although a weak change with a transition to a slightly

flatter (25/3) or steeper (27/3) spectra is difficult to rule

out. In the following sections a more detailed estimation

for the power-law exponent is presented.

c. Estimation of the power-law exponents based on
least squares fit

To describe the scaling of the variance of total water

mixing ratio in more detail, a good estimate for the

power-law exponent is necessary. One possibility to get

an estimate is to use the least squares fitting algorithm,

described in section 2b (3). With this not only a general

estimate for the mean power density spectrum (as in

section 3b) is possible, but also an estimate for every

level and every time step can be calculated. The resulting

histograms of power-law exponents (see Fig. 8) also

describe the spread in the estimates and show the vari-

ability within the different datasets. A narrow histogram

(e.g., COSMO-DE and –EU, or ECHAM6) provides

FIG. 6. Power density spectra of the intermediate wavenumber

space of total water mixing ratio. The integral over the spectra of

each model is adjusted to the integral of a k22 slope. The adjusted

spectra are averaged over time and height.

FIG. 7. As in Fig. 6, except the whole spectrum is additionally scaled

by k22 (compensated power density spectrum).
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evidence of a robust power law and only small vari-

ability, while a broad histogram (e.g., CGILS s12) hints

at deviations from a robust power-law scaling or at a

high variability.

The impression of a robust estimate for the large-scale

models is supported by calculation of the mean expo-

nents (see Table 2). The NWP and GCM datasets have

similar mean values with a small standard deviation of

FIG. 8. Histograms of power-law exponents estimated by least

squares fitting done individually for each height level and time step of

the model simulations.
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about 10% of the average. The overall mean value for

the large-scale models a 5 21.94 60.24 is close to the

first estimate of 22 from the previous section. Also in

this evaluation the LES datasets show a differing be-

havior for the high wavenumbers. The gradients are

steeper and also the spread is increasing in absolute

terms. The increasing variability in the estimate pro-

vides further evidence for the previous conclusion: that

the steeper gradient for the high-resolved LES is likely

not a signature of a scale break but rather is associated

with numerical issues (e.g., too much dissipation).

d. Estimation of the power-law exponents based on
extrapolation

The approach for estimating the power-law exponents

used in this section is based on a method described by

Cusack et al. (1999), where it was used to estimate the

amount of unresolved variance by assuming a certain

power law and extrapolating. Some modifications to the

original method are necessary in order to use it for the

estimation of a power-law exponent.

First, the wavenumber space is divided into two sub-

sets of wavenumbers higher and lower than a chosen

threshold: the so-called unresolved fkunresg and resolved
fkresg part. Analogously the total variance can be divided

into two parts with contributions from the resolved (low

wavenumbers) and unresolved (high wavenumbers)

wavenumber range:

s2
tot5s2

res1s2
unres (13)
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Now the assumption of having a power law is used.

In the first approach (section 3c), where the power-

law exponent a has been introduced, the data were

integrated over annuli defined by effective frequency.

This time every combination of (kx, ky) is allowed to

contribute to the calculated variance. As the number of

modes (kx, ky) in one annulus scales with the radius

(k5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x 1k2y

q
), an exponent of a 2 1 is used in the

following equations. For details see Cusack et al.

(1999).

The ratio of total and resolved variance can then be

written as
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With this an estimate for the unresolved part of the

variance due to lower wavenumbers depending on the

assumed exponent a can be obtained:
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The exponent a, which minimizes the following dif-

ference of the correct unresolved variance, which can

be calculated by integrating over the respective wave-

numbers and the one estimated by extrapolation is the

resulting best estimate for the exponent of the approx-

imated power law:

[s2
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�
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(17)

In this evaluation 3/4 of the intermediate wavenumber

space is defined as resolved and the remaining 1/4 is de-

fined as unresolved. The result of this evaluation can be

seen in Fig. 9 and Table 3.

The results for the large-scale models (GCM and

NWP) from section 3c are broadly confirmed. There

TABLE 2. Power-law exponents estimated by a least squares fit,

as mean values and standard deviation for all time steps and levels

considered.

Data

Mean

exponent (a)

Standard

deviation

LES (CGILS s12) 23.85 60.40

LES (CGILS s6) 22.38 60.33

LES (RICO moist low k) 21.72 60.28

LES (RICO moist high k) 24.52 60.55

NWP (COSMO-DE January) 21.92 60.16

NWP (COSMO-DE June) 21.65 60.26

NWP (COSMO-EU January) 22.11 60.12

NWP (COSMO-EU June) 22.10 60.21

GCM (ECHAM6 T63) 21.89 60.19

GCM (ECHAM6 T127) 22.04 60.18

3624 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 70



are small variations but these are likely attributable to

different methods. Themean values and the shape of the

histograms still show a consistent scaling for all large-

scale models. Here, the respective mean exponent for

the large-scale models is a 5 22.3 60.33, which is well

within the range of uncertainty of the exponent derived

from the previous approach. The LES cases instead

show again a lotmore variability and highermean values

FIG. 9. As in Fig. 8, except estimating the power-law exponents using

the extrapolation approach.
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than in section 3c. Again, this high uncertainty might be

difficult to be explained by physical reasons and caused

by other issues. As increasingly large-domain and fine-

grid-resolution simulations become available these is-

sues should become easier to resolve.

4. Parameterizations of variance

a. Statistical cloud cover scheme

One example of a statistical cloud cover scheme is

the one from Tompkins (2002), which is part of the

ECHAM6 GCM. In this scheme, the total water mixing

ratio is assumed to be described by a beta distribution.

The upper and lower bounds of the distribution are

described by two parameters (a, b). Two additional pa-

rameters (p, q) define the skewness. Instead of using

prognostic equations for themoments of the distribution

directly, Tompkins (2002) used the distribution width

(b 2 a) and the skewness parameter q as prognostic

equations and for simplicity, assumed p to be constant

(p 5 2). The two prognostic equations are described by

source and sink terms due to turbulence (t), convection

(c), and microphysics (m):
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To calculate the three free parameters—a, b, and q—

three equations are needed. For partial cloudiness the

mean values of total water and cloud water mixing ratio

and the prognostic equation for q are used. In the case of

cloud fraction zero (clear sky) or one (overcast sky), the

prognostic distribution width (b 2 a) is used instead of

the mean cloud water mixing ratio.

Ideally, either through the coupling to other param-

eterizations, or by direct specification, the cloud cover

scheme would get information about the resolution and

be adapted to different grid sizes. As seen in the pre-

vious sections this should lead to a scaling behavior of

the variance of total water mixing ratio. Variance is not

a prognostic variable in the original formulation of

Tompkins (2002), but can be calculated by using the

distribution width (b 2 a) and the shape parameters

(p, q) as follows:

r02t 5
(b2 a)2

(p1 q)2
pq

p1 q1 1
. (20)

For the evaluation of the statistical cloud cover

scheme in the following section, Eq. (20) is used to cal-

culate the parameterized subgrid-scale variance of total-

water mixing ratio. With this not only the prognostic

equation for the distribution width [Eq. (18)] is evalu-

ated, but error and problems caused by both prognostic

equations [Eqs. (18) and (19)] are included in the eval-

uation of the variance [Eq. (20)].

b. Evaluation of the parameterized variance of total-
water mixing ratio

In this section the parameterized subgrid-scale vari-

ance of total water mixing ratio, which is predicted by

the statistical cloud scheme of Tompkins (2002), is eval-

uated with regard to scale dependency. For this evalua-

tion the output of the ECHAM6 setup as described in

section 2a is used and the parameterized subgrid-scale

variance is calculated by Eq. (20) using the prognostic

distribution width, the prognostic shape parameter q, and

the fixed shape parameterp5 2. For comparison, another

subgrid-scale variance is calculated by extrapolating the

resolved T63 variance with a power-law exponent of a5
2.1, which is the mean value of the exponents estimated

for the large-scale models (GCM and NWP) with both

methods. The extrapolation is done with the method

described in section 3d up to a maximum wavenumber

of kmax5 1024m21, which corresponds to a resolution of

10 km. Because of the already mentioned numerical

constraints, only the intermediate wavenumber range

can be used for the extrapolation. This leads to an un-

certainty in the comparison of the different variances, as

actually more variance is resolved by the model than

used for the extrapolation. But the main results are not

affected by this uncertainty.

In Table 4 the mean values of the resolved, the

extrapolated subgrid-scale, and the parameterized

subgrid-scale variance for the two different ECHAM6

resolutions T63 andT127 are shown. The total variance—

the sum of resolved variance and the mean subgrid-scale

TABLE 3. As in Table 2, but using the approach based on

extrapolation.

Data

Mean

exponent (a)

Standard

deviation

LES (CGILS s12) 25.18 60.54

LES (CGILS s6) 22.92 60.50

LES (RICO moist low k) 22.04 60.26

LES (RICO moist high k) 25.93 60.67

NWP (COSMO-DE January) 22.00 60.21

NWP (COSMO-DE June) 21.73 60.29

NWP (COSMO-EU January) 22.29 60.16

NWP (COSMO-EU June) 22.33 60.24

GCM (ECHAM6 T63) 22.47 60.17

GCM (ECHAM6 T127) 22.51 60.13
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variance—should not change with changing resolutions.

This means, that with an increasing resolved variance—

T127 compared to T63—the subgrid-scale variance

should decrease. As shown in Table 4, neither the sum

of resolved variance and parameterized subgrid-scale

variance nor the sum of resolved variance and ex-

trapolated subgrid-scale variance is really constant.

But the differences are remarkable higher for the pa-

rameterized subgrid-scale variance. Table 4 shows also

for the absolute values that the amount of parameter-

ized subgrid-scale variance is smaller than the one cal-

culated by extrapolating. This is consistent with earlier

results of, for example, Quaas (2012) and Weber et al.

(2011), which stated that the parameterized subgrid-

scale variance of total water mixing ratio in the

scheme of Tompkins (2002) is underestimated.

More remarkable is the missing scale dependency of

the parameterized subgrid-scale variance. The amount

of parameterized subgrid-scale variance should decrease

with increasing resolution, but while this effect can be

seen for the extrapolated variance, the parameterized

variance does not decrease significantly. More details

on the changes are provided by the histograms (Fig. 10)

of the differences for the resolved, the extrapolated

subgrid-scale, and the parameterized subgrid-scale var-

iances. For the resolved variance, the values are all pos-

itive, as with the higher T127 resolution more variance

is resolved than with the coarser T63 (Fig. 10a). Re-

spectively, the difference values for the extrapolated

subgrid-scale variances are negative (Fig. 10b), as the

subgrid-scale variance should decrease with increasing

resolution. But the values for the parameterized subgrid-

scale variances are smaller in magnitude and have both

signs: negative and positive (Fig. 10c). Both the smaller

magnitude and the mix of signs show clearly that the

variance parameterized by the Tompkins scheme is

missing a significant scale dependency. This explains why

the mean difference between both resolutions of the

parameterized variance (see Table 4) is two orders of

magnitude smaller than expected.

The vertical structure of the three different types of

variances is shown in Fig. 11. This time the mean expo-

nents for the large-scale models from both approaches

and their standard deviations (a 5 22.3 60.33 and

a521.9460.24) are used for the extrapolation. This

TABLE 4. Mean values of resolved, extrapolated unresolved, and

parameterized unresolved variance in simulations of theECHAM6

GCM at T63 (’190 km) and T127 (’100km) horizontal resolu-

tions. The term ‘‘resolved’’ refers to the amount of variance re-

solved by the mentioned resolution. The extrapolated part is the

amount of unresolved variance extrapolated under the assumption

of a power law of a 5 22.1. The parameterization of the subgrid-

scale variability (parameterized) is the one by Tompkins (2002).

T63 T127 T127 2 T63

Resolved (kg kg21)2 2.92 3 1027 4.89 3 1027 11.97 3 1027

Extrapolated

(kg kg21)2
1.58 3 1027 9.76 3 1028 26.01 3 1028

Parameterized

(kg kg21)2
7.74 3 1028 7.58 3 1028 21.59 3 1029

FIG. 10. Histograms of the difference (T127 2 T63) for (a) the

resolved, (b) the extrapolated subgrid-scale, and (c) the parame-

terized subgrid-scale variance, one value for each time step and

each height.
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produces some estimate for the spread in the variance,

which is caused by the uncertainty in the exponents. The

vertical profiles confirm the underestimation of the

amount (Figs. 11a,b) and scale dependency (Fig. 11c) of

the parameterized subgrid-scale variability by the

Tompkins scheme. Additionally, the vertical profile of

the parameterized subgrid-scale variance shows a strong

decrease in the lower troposphere, which is in contrast to

the constant or slightly increasing profile of the resolved

variance. This gives some evidence on an unphysical

behavior of the parameterized subgrid-scale variance,

which depends on the parameterized distribution width

[Eq. (18)] and shape parameter q [Eq. (19)].

5. Conclusions

Three different kinds of models (GCM, NWP, and

LES) covering a broad range of scales were analyzed to

estimate the scale dependency of variance of total water

mixing ratio. The combined power density spectrum

showed a consistent and continuous scaling from global

scales down to the small LES scales. The analysis pro-

vides no evidence for a spectral gap, nor is there a clear

signal of a strong break in the scaling of the spectra.

However, because of an increased variability of the es-

timated power-law exponent at small scales, a weak

scale break toward 25/3 or 27/3 cannot be ruled out by

our analysis. The existence of clear scaling at all in-

vestigated scales implies the necessity to include a scale

dependency in future cloud process parameterizations.

For the large-scale models (GCM and NWP) a com-

mon scaling exponent of a’22 could be estimated. As

the NWP is covering the scales mainly contributing to

the unresolved variance in a current GCM, this estimate

provides a sufficiently good approximation for the eval-

uation of subgrid-scale parameterizations. The exponent

22 also lies in the range of earlier estimates of a scaling

exponent of water vapor. Because the influence of cloud

water and ice on the scaling is rather small for the large

scales, the estimates of previous studies on water vapor

and the result of this study show a relatively good

agreement.

For the smaller scales (less than ;1 km) more vari-

ability and a decreasing exponent at the higher wave-

numbers were discovered. The change of scaling during

the scales of a typical LES model could hint at a scale

break. But as a scaling exponent of a ’ 22 was also

found in DNS data, this change in the scaling is likely

due to excessive dissipation in individual models rather

than evidence of a strong break in scaling. Looking

from a global modeling perspective the variance pro-

duced at scales less than 1 km is still rather negligible.

Nevertheless, the discovered variability merits more

FIG. 11. Vertical profiles of resolved (solid), extrapolated

subgrid-scale (dotted, dashed–dotted), and parameterized subgrid-

scale (dashed) variance of (a) the T63, (b) the T127 resolution, and

(c) the difference (T127 2 T63). The gray shaded area represents

the standard deviations for both estimated exponents.
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attention, as does the possibility of a slight change in

scaling at small scales.

The evaluation of the parameterized variance in the

statistical scheme of Tompkins (2002) showed an un-

derestimation of the amount of subgrid-scale variance

in the current formulation. But more remarkable is the

nonexistent scale dependency of the parameterized

subgrid-scale variance of total water mixing ratio. As a

follow up, the explored scale dependency should be in-

cluded in the parameterized variance to receive an im-

proved representation of subgrid-scale variability at

different resolutions. The common scaling behavior of

total water variance at a broad range of scales explored

in this study underlines the importance of the devel-

opment of scale-aware parameterizations also for cur-

rent GCMs.
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