
On Bulk Models of Shallow Cumulus Convection

GILLES BELLON

Laboratoire de Météorologie Dynamique du CNRS, IPSL, Université Pierre et Marie Curie, Paris, France

BJORN STEVENS

Department of Atmospheric Sciences, University of California, Los Angeles, Los Angeles, California

(Manuscript received 8 October 2003, in final form 22 September 2004)

ABSTRACT

Two-layer bulk models of the cloudy boundary layer are investigated, focusing on the consistency issues
between common assumptions on the turbulent mixing and the thermodynamic profiles. Simplifications of
the vertical structure of the conserved variables are shown to lead to inconsistent steady states. First, linear
profiles in the cloud layer are incompatible with the common parameterizations of the turbulent mixing.
Second, this approximation is inconsistent with simple models of an infinitely thin inversion layer. Simple
mass-flux parameterizations of the turbulence are shown to produce reasonable profiles inside the cloud
layer without solving the problem of the inversion. The cloud � environment difference and the vertical
gradient of the conserved variables appear as interesting test variables for such models, as well as their
ability to match the free-tropospheric boundary conditions. The latter certainly requires a unified approach
for the cloud and inversion layers.

1. Introduction

Processes that take place in the cloud-topped bound-
ary layer (CTBL) in the regions of the trade winds are
important to the dynamics and thermodynamics of the
tropical atmosphere as a whole. Not only does the
depth of the boundary layer condition the low-level
convergence of moist energy in the deep Tropics, which
in turn helps determine the amount of deep convection,
but the details of the vertical structure of the CTBL
also determine its cloudiness, whose radiative forcing is
an important feedback of the tropical system. While
regions of boundary layer stratocumulus are thought to
constitute a strong stabilizing feedback in the tropical
atmosphere (Miller 1997), the radiative response of the
trade wind regions is crucial to the sensitivity of the
tropical climate (Bony et al. 2004). Through their
modulation of the tropical climate, trade wind clouds
regulate the climate as a whole. The variability among
treatments of CTBL cloud processes is a leading expla-
nation for the varied climate sensitivity of general cir-
culation models (GCMs) noted in Cess et al. (1996).

Bulk models of the boundary layer are interesting
tools to study the climate sensitivity (Betts and Ridg-

way 1989). Because they often encapsulate our under-
standing, bulk models also provide a convenient frame-
work for evaluating parameterization ideas. The steady
states of these models can give a good description of the
bulk state of a real CTBL, or at least the bulk state to
which it tends. Some one-layer models have proven
their efficiency in representing the boundary layer. For
instance, mixed-layer models (e.g., Lilly 1968) have al-
lowed a better theoretical understanding of the dry con-
vection and the stratocumulus-capped boundary layer.

Later, Betts and Ridgway (1988, 1989) developed the
mixing-line model for the CTBL, which is based on
empirical relationships describing the mixing of the air
rising from the surface with the air descending from the
free troposphere. Notwithstanding that a mixing line
does not respect diabatic processes other than mixing, a
limitation of this model is that the cloud-layer structure
is slaved to the subcloud layer through a fixed param-
eter � that depends on the nature (cloudy or clear sky)
of the profile. Thus, the degrees of freedom exercised
by the model are equivalent to that of a single-layer
model. Because of these limitations, it is interesting to
explore two-layer models, or equivalent two-layer mod-
els that truly allow extra degrees of freedom in the
cloud layer and typically require additional closure as-
sumptions. In principle, these models should allow a
more realistic treatment of the variability in the vertical
structure of the cloud layer, thereby improving the rep-
resentation of cloudiness, and cloud depth within the
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CTBL, both of which are critical from the larger-scale
perspective. In so far as the additional closure assump-
tions are concerned, these usually take the form of a
specification of a mean-field representation of the tur-
bulent fluxes. In large part, it is thought that the fidelity
of this representation determines the overall degree to
which variability in the height and vertical structure of
the CTBL are better represented in two-layer models.

The best-known example of a two-layer model of the
CTBL is the one developed by Albrecht et al. (1979,
hereafter A79) and Albrecht (1984, hereafter A84).
This model consists of a well-mixed subcloud layer
capped by a cloud layer in which the profiles of the
conserved variables are linear and the turbulence is pa-
rameterized by a mass-flux scheme. It has been criti-
cized in past work because of its sensitivity to poorly
constrained parameters (Bretherton 1993). More re-
cent work calls into question its closure assumptions:
the turbulence parameters produced by large eddy
simulation (LES) models (Siebesma and Cuijpers 1995,
hereafter SC95; Stevens et al. 2001) and used in recent
parameterizations (Siebesma and Holtslag 1996, here-
after SH96) are an order of magnitude bigger than the
ones produced by the Albrecht model. This raises the
question: Do improved models of cloud mixing lessen
the sensitivity of the model to tunable parameters? In-
deed, to what extent can recent advances in our under-
standing of the boundary layer improve our theoretical
description at a bulk level?

The present work is devoted to answering these ques-
tions. We begin by reviewing the Albrecht model in

section 2. Section 3 examines the relationship between
the popular models of the cloud layer fluxes and the
assumed cloud layer structure. Section 4 discusses the
compatibility of Albrecht’s framework with more gen-
eral formulations of the turbulence, and section 5 ex-
amines the prospects of two-layer models with more
degrees of freedom, with the idea of developing insight
into remaining challenges confronting attempts to de-
velop consistent bulk theories of the structure of the
trade wind boundary layer.

2. A two-layer framework

a. Thermodynamic structure

The shallow cumulus boundary layer can be repre-
sented by two idealized layers, as in Albrecht’s model
(Fig. 1): (i) a well-mixed subcloud layer; (ii) a cloudy
layer where average vertical gradients �q and �s of the
conserved variables (i.e., the total water ratio qt � q �
ql and the static liquid energy sl � cpT � gz � Lql) are
independent of height. This assumption will be hereaf-
ter called “constant gradient” hypothesis. (iii) The in-
terface between the two layers, as well as the inversion
layer, is characterized by jumps of humidity and tem-
perature. These interfaces are considered here as infi-
nitely thin and represented by the jumps �q0 and �s0.
Such profiles can be described as follows:

p � pcb qt�p� � q0 sl�p� � s0

pcb � p � pct �qt�p� � q0 � �q0 � �qp�

sl�p� � s0 � �s0 � �sp�

,

FIG. 1. Profiles of (a) liquid static energy and (b) total water produced by Albrecht model;
solid line: Albrecht model; dash–dotted line: Albrecht model without linearization of the
cloud � environment difference.
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where p is the pressure, the subscript cb (ct) indicates the
cloud base (cloud top); p	 � pcb � p is the pressure
difference with the cloud base, which will be hereafter
used as a vertical coordinate. Note that, following Al-
brecht, p	 increases with height.

b. Large-scale conditions

Locally, we are looking at how the state of the equi-
librium boundary layer depends on the large-scale con-
ditions as measured by the sea surface state, surface
divergence D, and radiative forcing.

The latter consists of two components: a clear-sky
component R and a cloud component �FR that depends
on the cloud fraction and the optical depth of the
clouds. We assume that R is homogeneous. Following
recent work (SH96; Stevens et al. 2001), we further
assume that the shallow cumuli cause no radiative forc-
ing, whereas the stratiform clouds cause a cooling at the
top of the boundary layer. The cloud radiative forcing
can thus be approximated by a discontinuity �FR of the
net upward radiative flux at the cloud top:

�FR � fs�F0
R,

where fs is the stratiform cloud fraction and �FR
0 �

75 W m�2. It corresponds to a simplified version of the
parameterization of the cloud radiative forcing in
Stevens et al. (2001), with an average liquid water path
of 3 g m�2 in the stratocumulus.

In the trade wind regions, the free troposphere varies
on time scales of order days, which is long compared to
the turbulent time scale of the CTBL (order tens of
minutes). Thus, it makes sense to ask how the boundary
layer structure develops as a function of some pre-
scribed free-tropospheric state, which we specify as
some linear function of p	 according to

qi� � qi
o � �qp�,

si� � si
o � �sp�,

where the subscript i� indicates the value at the top of
the inversion, 
q and 
s are the free-tropospheric ver-
tical gradients of humidity and static energy; qo

i and so
i

are the reference humidity and static energy at the
cloud base. In our study, choosing the cloud base as a
reference altitude is equivalent to choosing the surface
or tropopause levels, and it simplifies the notations.

To maintain these profiles of the free-tropospheric
thermodynamic structure, radiative cooling must be
balanced by advection. Usually the balance is enforced
only through the consideration of the vertical compo-
nent of advection, called subsidence and denoted by �.
In the case of a fixed gradient in sl, a constant radiative
cooling implies that � � �i� for p � pct. To have a
positive rate of subsidence at, and above, the top of the
CTBL, continuity demands that the large-scale diver-
gence D of the horizontal winds is positive within the
CTBL. If we further consider that D is constant with

height within the CTBL then this is sufficient to com-
pletely specify a consistent vertical velocity

� � D�ps � p� � D��psc � p��,

where ps is the surface pressure and �psc � ps � pcb is
the thickness of the subcloud layer. Note that one draw-
back of this formulation is that because pct is deter-
mined by the model, specifying D does not guarantee
that the subsidence at cloud top �ct will adopt a value
consistent with the subsidence �i� above the inversion.

c. Fluxes and budgets: Additional information

1) TURBULENT FLUXES NEEDED TO COMPUTE A
CONSTANT GRADIENT MODEL

The time-dependent equation of isentropic invariants
(e.g., total water, moist entropy) can be written as

�t	 � ��	 � g�p�F
	 � 
	. �1�

Here, � � {sl, qt} denotes one of our thermodynamic
state variables; F� the turbulent flux of � and 
� is a
source associated with irreversible processes acting on
�, which for the most part we restrict to be independent
of height below pct such that 
sl

� R and 
qt � 0. As
well, F� can be thought to include the fluxes due to
precipitation, which are negligible at the surface but not
at the cloud base. For a uniform diabatic source, the
prognostic equation of the vertical gradient can be ob-
tained by differentiating (1) with respect to p	,

�t�	 � D�	 � g�p�p�F
	. �2�

If we approximate the last term on the right-hand side
(rhs) using divided differences, this expression can be
written as follows:

�t�	 � D�	 � 4g
Fct

	 � 2FA
	 � Fcb

	

�p2 , �3�

where �p is the depth of the cloud and subscript A
denotes the midpoint value, for example, pA� 1⁄2(pct�
pcb), or p	A � 1⁄2(pcb � pct) � �p/2. Because subcloud
layer budgets give the time variation of the variables at
the surface once the time evolution of �� is known, the
time evolution of the jump at cloud base can be derived
using the budget of the full cloud layer. The latter in-
volves the flux at cloud base and cloud top—both of
which were required to specify �t��. The time evolution
of the cloud layer, and its equilibrium, can thus be de-
termined by a parameterization that specifies the fluxes
at cloud base, cloud top, and at pA in terms of known
quantities. It can be thought of as the closure hypoth-
esis required for the two-layer model.

2) PROFILES OF THE FLUXES IN A STEADY STATE

Assuming that the cloud layer can be in a steady
state, and given the large-scale forcing, the turbulent
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fluxes can be written from (1) as a function of the ver-
tical gradient F� � F� (��):

�p�F
	 �

D

g
��psc � p���	 �


	

g
, �4�

which, for constant ��, implies that the turbulent fluxes
are quadratic in p	:

F	 � Fcb
	 �

D

2g
���psc � p��2 � �psc

2 ��	 �

	

g
p�.

�5�

This is consistent with the fact the two-layer model re-
quires the values of the flux at three levels in the cloud
layer: a quadratic function can be entirely defined by its
values at three different points.

d. Parameterization of the mixing

Albrecht’s model, as well as more recent works
(Tiedtke 1989; SH96), uses a mass-flux scheme to pa-
rameterize the turbulent fluxes that is based on a one-
plume approach. This parameterization is often called
“bulk mass flux” parameterization. It can be written as
follows:

F	 �M�	c � 	�, �6�

�p�M � �� � ��M, �7�

�p�	
c � ���	c � 	�. �8�

Here � and F� retain their prior meaning except that
the superscript c indicates an expected value within the
cloud; M is the convective mass flux, � and � are the
fractional entrainment and detrainment rates, respec-
tively. In most of the current parameterizations (A79;
A84; Tiedtke 1989; SH96), � is independent of height, in
which case (8) can then be integrated to obtain the
cloud � environment difference

	c � 	 � �	cbe��p� �
�	

�
�1 � e��p��, �9�

where ��cb is the cloud � environment difference at
the cloud base. In Albrecht’s model, � is parameterized
as E/�p, where E is a parameter depending on the
buoyancy profile [see Eqs. (35) and (36) in A79]. Equa-
tions (6) and (7) can also be written:

F	 � Fcb
	 f�p��d�p�, �	�, �10�

M �Mcb f�p��, �11�

where f is a function of the pressure that gives the evo-
lution of the mass flux with height [ f(0)� 1] and d gives
the evolution of the cloud � environment difference
with height [d(0) � 1], which depends also on the ratio
�� � ��/��cb between the vertical gradient and the
cloud � environment difference at cloud base:

d�p�, �	� � e��p� �
�	

�
�1 � e��p��. �12�

Any pair of functions (�, �), (�, f ), and ( f, d) uniquely
describes the parameterization. Conversely, whatever
the profiles of conserved variables may be, any pair of
flux profiles (Fq, Fs) can be parameterized by any pair
of those functions: the mass-flux formalism per se does
not place any constraint on the system.

On the contrary, common K diffusion schemes do
constrain the turbulent fluxes, since the mixing is de-
scribed by only one function K (Stevens 2000); in this
type of scheme, the turbulent fluxes are parameterized
as follows:

F	 � �K�	. �13�

From Eq. (5), it is readily apparent that the K diffusion
scheme is inconsistent with the assumption of a con-
stant-gradient steady state

F	

�	

�
Fcb

	

�	

�
D

2g
���psc � p��2 � �psc

2 � �

	

g�	

p�,

�14�

and it is unlikely to be independent of � since it would
require F�cb/�� and 
�/�� to be independent of �. Of
course, using two different K profiles is possible, al-
though it takes more elaborate justification than the
classical K diffusion schemes.

It is straightforward to ask what assumptions on the
functions describing a mass-flux scheme are compatible
with the constant gradient hypothesis. To start with, we
can study whether the parameterizations used in A79 or
developed more recently (SH96) can lead to a steady
state in such a model.

3. Steady-state solutions?

In this section and the next one, we will study how
the steady-state solutions of the two-layer constant gra-
dient model constrain the functions describing the mix-
ing. For this purpose, we will assume that the whole
boundary layer is in steady state and, focusing on the
cloud and inversion layer, we will derive necessary con-
ditions on the parameters of the turbulence or the char-
acteristics of the inversion.

a. Required values of the parameters

Given a mass-flux parameterization as described in
the previous section, we can assume the existence of a
steady state of the constant gradient model, in which
case, Eq. (5) requires that

f�p��d�p�, �	� � 1 �
D

2gMcb
�p�2 � 2p��psc��	 �


	

gFcb
	

p�.

�15�

As we stated in section 2c, the model can reach an
equilibrium if (15) is verified at least at the top and the
middle of the cloud.
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With those two conditions, we can eliminate the term
involving the diabatic forcing and the flux at cloud base
to obtain

1 � 2f��p
2�d��p
2, �	� � f��p�d��p, �	� �
D�p2

4gMcb
�	.

�16�

Equation (16) can also be derived from (3), for the
steady state of the vertical gradient.

The expression of d [Eq. (12)] shows that the left-
hand side (lhs) of (16) is linear in ��. For Eq. (16) to be
verified for total water and static energy, the following
condition is necessary:

1 � 2f��p
2�e���p
2 � f��p�e���p � 0. �17�

Note that this equation is an expression of the interplay
between the fluxes and profiles, and thus depends not
at all on the bulk budget, but only on the assumptions
on the profiles and in the parameterization of the mix-
ing. Equation (17) always yields to the trivial solution
�p � 0, which reduces the model to a well-mixed one-
layer model. We cannot describe the other solutions
without specifying the function f. We will analyze two
closures that have seemed to be the most reasonable
approximations and have been used for two-layer or
one-dimensional (1D) models.

In Albrecht’s model, the convective mass flux is sup-
posed to vary linearly with height: f(p	) � 1 � �p	.
Equation (17) can be rewritten:

�1 � e���p
2��1 � e���p
2�1 � ��p�� � 0, �18�

which yields to either (i) a mass flux strictly increasing
with height

� �
e��p
2 � 1

�p
� 0,

or (ii) no entrainment: � � 0.
In SH96, it is suggested that the fractional detrain-

ment rate � is independent of height, as well as �; the
mass flux decreases exponentially: f(p	) � e(���)p	.
Equation (17) turns into

�1 � e���p
2�2 � 0, �19�

which yields to no detrainment � � 0. The convective
mass flux increases strictly with height if the entrain-
ment is not also zero.

Though an increase of the mass flux can be observed
in some cases near cloud base or cloud top (Stevens et
al. 2001), the monotonic increase of the convective
mass flux is far from being the general case. The alter-
native absence of entrainment is also unrealistic in shal-
low cumuli (SC95; Stevens et al. 2001; Blyth 1993): even
the air in the cloud cores gets somewhat diluted by air
from the environment. Thus, the linear profiles seem
inconsistent with a bulk mass-flux parameterization of
the turbulent fluxes that uses a constant fractional en-

trainment: the model cannot reach an equilibrium with
such a parameterization.

Here, we can see that the constraints on the profiles
of the conserved variables can affect the mixing in a
way that keeps the system unsteady. In general, the
assumptions about the nature of the mixing determine
the equilibrium profile. Similarly, assumptions about
the state determine, or at least constrain, the mixing.
This raises the question of why Albrecht’s model
“works.”

b. Why does Albrecht’s model work?

1) ALBRECHT’S SIMPLIFICATIONS OF THE
PARAMETERIZATION

In A79, an Atlantic Trade Winds Experiment
(ATEX) case is successfully reproduced. However, dif-
ferent mathematical approximations are used in A79
and A84 to simplify the mass flux scheme. Some of
them prove to have a decisive impact on the equilib-
rium of the model. (i) The cloud � environment differ-
ences (�c � � ) of the conserved variables qt and sl are
linearized. (ii) The flux Fq

ct of water at the top of the
cloud is constrained to respect the budget of the thin
inversion layer.

We reproduce here the base case of A79 except for
the closure on E that is taken from A84 (it corresponds
to the A84 model without horizontal advection). The
equilibrium profiles are shown in Fig. 1. To analyze the
impact of the simplifications, we release each of those
constraints.

2) LINEARIZATION OF THE PROFILES

In Albrecht’s model, the cloud � environment dif-
ferences given by Eq. (9) are linearized constraining the
cloud base values and the total amount of water/liquid
static energy in the cloud layer. Note that the approxi-
mated cloudy profiles do not verify Eq. (8). If we re-
lease that approximation and use the profiles given by
(9), the equilibrium total water and temperature pro-
files are close to the base case (see Fig. 1). However, the
flux profiles are quite different, the convective mass
flux increases with the altitude as stated in section 3a
(Fig. 2a), and that leads to bigger heat and moisture
fluxes at the top of the cloud (Figs. 2b and 2c).

But the model uses only the water flux at the cloud
base, in the middle of the cloud and at the top of the
cloud (indicated by circles and triangles on the profile
in Fig. 2c). The water flux at the top of the cloud is
prescribed by the budget of the inversion layer [con-
straint (ii)] and this approximation allows the model to
find an equilibrium somewhat independently from the
mass-flux parameterization.

3) FLUX OF WATER AT THE TOP OF THE CLOUD

If we release the constraint on the cloud-top water
flux (allowing the budget of water in the inversion layer
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not to be verified), the modeled boundary layer dries
up to become dry and well mixed: the cloud layer dis-
appears (�p � 0 as stated in section 3a).

In the absence of cloud radiative forcing (�FR � 0,
which corresponds to the BOMEX case), the residual
rq

ct between the flux of water prescribed by the balance
of the inversion layer and Fq

ct computed by the param-
eterization of the mixing can be written as

rct
q � Fct

S �qi� � qct

Si� � Sct
�

qct
c � qct

Sct
c � Sct

�. �20�

This residual flux vanishes if the cloud � environment
differences at cloud top, normalized by the jumps
across the inversion, are equal for both conserved vari-
ables. This is actually a strong boundary condition for
the parameterization of the turbulent fluxes. As shown
by the circle at cloud top in Fig. 2, this residual happens
to be small in the ATEX case when the cloud � envi-
ronment difference is linearized, but it is larger when
this mathematical approximation is not applied (see the
triangle in Fig. 2).

The equilibrium of Albrecht model relies on a math-
ematical approximation and on an arbitrary constraint
that modify the mass-flux scheme. Although these
might seem like arcane points, they are critical. The
consistency of the theoretical framework allows for a
more critical evaluation of the effect of various assump-
tions on the cloud layer. This weakens Albrecht mod-
el’s physical pertinence and might explain why its be-
havior depends so much on the tunable parameters
(Bretherton 1993).

4. Relaxed flux laws

Parameterizations of the mixing with strong con-
straints on the flux profiles (constant entrainment, lin-
ear, or exponential mass flux) fail to represent a con-
stant gradient cloud layer in steady state, even if they
are applied only at three levels. Here we relax these
constraints to investigate if there exist some form of f
and d that allows a constant gradient cloud layer
capped by an infinitely thin inversion to reproduce the
observations. In the most general sense, we are explor-
ing the compatibility of the mass-flux equations with
the assumption of a constant gradient cloud layer.

To address this issue we consider the cloud-base al-
titude and fluxes as parameters that we take from both
LES results (SC95; Stevens et al. 2001) and observa-
tions (Holland and Rasmusson 1973; Augstein et al.
1973): we further consider that the subcloud layer is in
steady state and that the fluxes at cloud base are con-
strained by the balance of the subcloud layer. The nec-
essary conditions derived from the equilibrium equations
will be evaluated for conditions observed during the Bar-
bados Oceanographic and Meteorological Experiment
(BOMEX; Holland and Rasmusson 1973) and ATEX
(Augstein et al. 1973). The observed altitude of the cloud
top will also be used in the first subsection to bound cer-
tain terms in the resultant equations.

a. Within the cloud: The constant gradient
hypothesis in question

If we assume that a constant gradient model can
reach an equilibrium with more elaborate functions de-

FIG. 2. Profiles of (a) convective mass flux, (b) turbulent heat flux, and (c) turbulent moisture flux; same conventions
as previously, plus circles (triangles) represent moisture fluxes that are actually used in Albrecht model (Albrecht model
without linearization).
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scribing the detrainment and entrainment from the
clouds, we can build the functions �(p	) and �(p	) from
Eqs. (6) to (8) as well as the mass-flux profile M(p	).
Details of the derivation are given in appendix A. Here
M(p	), �(p	), and �(p	) can be expressed as a function
of the turbulent fluxes and their derivatives and the
vertical gradients of sl and qt:

M � �

�p�F
q

Fq �
�p�F

s

Fs

�q

Fq �
�s

Fs

, �21�

� � �

�p�F
q

�q
�

�p�F
s

�s

Fq

�q
�

Fs

�s

, �22�

� �

�p�p�F
q

Fq �
�p�p�F

s

Fs

�p�F
q

Fq �
�p�F

s

Fs

� 2

�p�F
q

�q
�

�p�F
s

�s

Fq

�q
�

Fs

�s

. �23�

The physical consistency of the mass-flux scheme de-
mands M � 0, � � 0, and � � 0. These constraints
reduce the domain of equilibria that can be represented
in the constant gradient framework for a given large-
scale forcing and fluxes at the cloud base. Using the
expression of the fluxes at equilibrium [Eq. (5)], the
domain of possible equilibrium (�q, �s) can be bounded
(see the appendix A for details):

�q�F�1 � ���� �s � �
R

�ct
� �q�F�1 �

��2

2�1 � ��
�,

�24�

�s � �q�F�1 � ���1 � 2
qcb

e

�q�psc
� 1��, �25�

where � � �p/�psc is the ratio of the cloud depth to the
subcloud-layer depth, �F is the ratio of the sensible to
latent heat fluxes at the cloud base (the equivalent of
the Bowen ratio at the cloud base) multiplied by L, � is
the ratio of the total radiative cooling within the sub-
cloud layer to the warming of this layer by the turbulent
flux at cloud base, and qe

cb is the equivalent humidity of
the turbulent transport at the cloud base:

�F �
F cb

s

F cb
q , � �

R�psc

gF cb
s , qcb

e � g
F cb

q

�cb
.

Furthermore, we can analyze the change of the convec-
tive mass flux with height, a decrease of the mass flux
with height corresponds to � � � � 0. Using Eqs. (22)
and (23), we can write

� � � �

�p�p�F
q

Fq �
�p�p�F

s

Fs

�p�F
q

Fq �
�p�F

s

Fs

�

�p�F
q

�q
�

�p�F
s

�s

Fq

�q
�

Fs

�s

. �26�

In the common range of forcing, Eq. (26) yields to both
the condition for a strictly decreasing mass flux (see
appendix A for details):

�s � �q�F�1 �
�

2
��1 � 2� � �2 � 4

qcb
e

�q�psc

� 1 � ���, �27�

and the condition for a strictly increasing mass flux

�s � �q�F�1 �
�

2
��1 � 4

qcb
e

�q�psc
� 1��. �28�

Figure 3 shows the domains of potentially represented
steady states, in the ATEX and BOMEX cases, using
the large-scale forcings, boundary fluxes, and param-
eters indicated in Table 1. The observations are partly
out of the domain: the BOMEX case seems impossible
to reproduce. Moreover, in the cases that can be repro-
duced, a decrease of the convective mass flux is a mar-
ginal case, whereas it is the most common case in the
observations. In the ATEX case, a constant gradient
model would produce a mass flux that would strictly
increase with height, consistent with the results of sec-
tion 3a. This appears unrealistic: though the convective
mass flux increases at the top of the cloud layer because
of stratiform clouds (Stevens et al. 2001), it decreases
within most of the layer.

The increase of the mass flux with height is a direct
consequence of an underestimation of the cloud � en-
vironment difference at the top of the cloud, which is
due to the constant gradient and appears clearly in (9):
this difference tends asymptotically toward ���/�. This
limit in the growth of the cloud � environment differ-
ence with height requires an increase of the convective
mass flux with altitude to produce the equilibrium
fluxes.

The increase of the convective mass flux with height
is also characteristic of some parameterizations that are
used in operational models, as noted in Lenderink et al.
(2005); although it certainly helps represent more
steady-state oceanic cases, Lenderink et al.’s work
shows that it is one of the main problems in the simu-
lation of the diurnal cycle over the continents.

Our result shows that the simple constant gradient
framework can reproduce at best very few observed
profiles when it is coupled to a bulk mass-flux scheme,
whatever the entrainment and detrainment profiles
might be: this type of parameterization depends too
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much on the details of higher-order derivatives of the
conserved variables to be used in such a simple frame-
work. Part of the problem might result from our sim-
plifications to the large-scale forcing or our neglect of
transient or advective effects; nonetheless, it illustrates
the strength of the physical constraints given by a one-
plume scheme. In general, it seems that a constant gra-
dient is essentially incompatible with the mass-flux for-
malism.

b. At the top of the cloud: The overconstrained
massless inversion

1) THE INFINITELY THIN INVERSION

In Albrecht’s framework, the constant gradient hy-
pothesis is a strong constraint on the profiles. The as-
sumption of an infinitely thin inversion layer seems less
questionable since it has proven so useful in the repre-
sentation of the stratocumulus-topped boundary layer.
Considering that some undetermined parameterization
of the turbulence can produce an equilibrium cloud
layer, we can investigate to what extent this assumption
is compatible with the constant gradient hypothesis.

Taking the time derivative of � integrated over a thin
inversion layer around pct and taking the limit where
the depth of this layer is zero, the budget of a conserved
variable for the inversion can be written as follows:

��tp�ct � �ct��	i� � 	ct� � g�F ct
	 � �	� � 0, �29�

where �� is the diabatic source of � within the inver-
sion layer (�qt � 0 and �sl � ��FR).

The balance of static energy and total water of the
infinitely thin inversion layer can thus be written

F ct
q

qi� � qct
� �

�ct

g
�

F ct
s � �FR

si� � sct
, �30�

with qi� and si� assumed to vary linearly with the alti-
tude of the cloud top, as stated in section 2b.

Assuming an equilibrium of the system with an ad-
equate parameterization of the turbulent fluxes, Fq

ct and
Fs

ct are given by Eq. (5). Knowing the vertical gradients
�s and �q, each part of (30) allows one to compute
independently the thickness of the cloud layer �p:

�p �
�qi

o � �q�psc

�q � 2�q
�1 ��1 �

4��q �
�q

2 ��psc

��qi
o � �q�psc�

2 ��qi
o � qcb

e �	 , �31�

�p �

�si
o � �s�psc �

R

D

�s � 2�s �1 ��1 �
4��s �

�s

2 ��psc

��si
o � �s�psc �

R

D�2 ��si
o � scb

e �	 , �32�

FIG. 3. Domains of equilibrium (�q, �s) (shaded) that can be
simulated by a bulk mass flux parameterization with (a) BOMEX
and (b) ATEX large-scale forcing. Darkest (lightest) shade: mass
flux strictly decreasing (increasing) with height; intermediary
shade: nonmonotonic mass flux; the limits of the different shade
zones are given by (27) and (28). Solid: lhs of (24); dash–dotted:
rhs of (24); dashed: rhs of (25); the circles indicate the observed
values.

TABLE 1. Large-scale forcing and parameters used in
computations.

Case BOMEX ATEX

D 3 � 10�6 s�1 5 � 10�6s�1

R �2 K day�1 �2.5 K day�1

fs 0.0 0.5
ps 1010 mb 1010 mb
Pcb 950 mb 930 mb
Pct 845 mb 855 mb
Fq

cb 125 W m�2 100 W m�2

Fs
cb �12 W m�2 �12 W m�2
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where se
cb is the equivalent static energy of the turbulent

transport at the cloud base, and ��o
i is the temperature

difference between the cloud layer profile and the free-
tropospheric profile at cloud base;

scb
e � g

F cb
s � �FR

�cb
, �	i

o � 	i
o � 	0 � �	0.

This double equation for �p is a potential source of
inconsistency for the framework and shows that the
system is overconstrained. Recall that, in Albrecht’s
model, the total water flux at cloud top is not param-
eterized but computed in order to respect (30); this
allows one to get a unique determination of �p with the
energy budget of the inversion layer. A unique deter-
mination of �p requires the rhs of (31) to equal the rhs
of (32). Given the large-scale conditions and the flux
and variables at the cloud base, this equality leads to a
constraint on (�q, �s). Using the observed variables at
the cloud base (qcb, scb) � (16 g kg�1, 302 kJ kg�1) and
the parameters listed in Tables 1 and 2 for BOMEX,
the possible equilibrium pairs (�q, �s) are shown in Fig.
4 (solid line). The observed gradients do not seem pos-
sible to reproduce. Furthermore, Fig. 4 shows the equi-
librium altitude of the cloud top along the line of pos-
sible equilibrium (dots and labels): gradients (�q, �s)
that are close to the observed ones allow the represen-
tation of an inversion between 700 and 500 mb, which is
much higher than the observed cloud top around 850
mb. One could argue that, by suitably choosing the
fluxes at the cloud base, a reasonable steady state could
be found (see dash–dotted line in Fig. 4). However,
because these fluxes are constrained by the surface
fluxes and the equilibrium of the subcloud layer, it is
reasonable to consider them as parameters. Addition-
ally, the gradients and the altitude of the inversion are
not too sensitive to changes in these parameters: to
reproduce the observed cloud layer, the dash–dotted
line in Fig. 4 was computed with parameters that have
been significantly modified:

�F cb
q , F cb

s � � �100 W m�2, �4 W m�2�.

We do not need to perform the same computation for
ATEX, Albrecht’s model showed that it is possible to
reproduce this case with a constant gradient model and
an infinitely thin inversion layer using a truncated mass-
flux parameterization. Our results show that it is im-
possible to model BOMEX case. This is consistent with
the observations: the inversion was much less abrupt
during BOMEX than it was during ATEX, thus it is less

likely to be satisfactorily modeled by an infinitely thin
layer.

2) A MODEL FOR A THIN FINITE INVERSION

Nevertheless, the model of infinitely thin inversion
layer can be simply modified. Let’s consider a thin in-
version between pct and pi� where the profiles of con-
served variables inside the inversion layer follow a mix-
ing line. This model is slightly more general than an
inversion layer with linear profiles. The balance of the
layer for a conserved variable � can be written as illus-
trated in Fig. 5:

�i�	i� � ��i� � �ct�	 � �ct 	ct � gF ct
	 � �	 � 0,

�33�

where �� is the diabatic source for the whole layer; � �
��i� � (1 � �)�ct is the vertical average of � in the
layer; and � is a mixing coefficient between 0 and 1 that,
since the profiles follow a mixing line, does not depend
on �. For linear profiles, � � 1⁄2.

Assuming that the layer is sufficiently thin to neglect
the effect of the variation of �i� between pi� and pct,
Eq. (33) can be written for qt and sl to yield to the
following equivalent of (30):

F ct
q

qi� � qct
� �

�

g
�

F ct
s � �FR

si� � sct
, �34�

FIG. 4. Possible steady-state gradients (�q, �s) with (solid line)
BOMEX large-scale conditions and fluxes; (dash–dotted)
BOMEX large-scale conditions and (F q

cb, F s
cb) � (100 W m�2, �4

W m�2); the labeled dots indicate the inversion height along the
equilibrium line and the circle indicates the observed gradients.

TABLE 2. Free-tropospheric profiles used in computations.

Case qo
i (g kg�1) 
q (g kg�1 mb�1) so

i (kJ kg�1) 
s (kJ kg�1 mb�1) �i (mb day�1)

BOMEX 6.0 �0.01 306.6 30 35
ATEX 4.0 0.0 306.4 23 55
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where � � (1 � �)�i� � ��ct is the equivalent subsi-
dence at the inversion.

This simple model of the inversion gives an addi-
tional degree of freedom � to the system and allows the
subsidence at the top of the inversion to be smaller than

the subsidence at the top of the cloud, as has been
observed (Holland and Rasmusson 1973; Augstein et
al. 1973).

The two extreme terms of (34) lead to a cubic equa-
tion in the cloud depth �p,

1
2�psc

��q

�q
�

�s

�s
��p3 � ��q

�q
�

�s

�s
�

1
2�psc

��qi
o

�q
�

�si
o

�s
� � R

�cb�s
��q

�q
� 1���p2

� ��qi
o

�q
�

�si
o

�s
�

R

�cb�s

�qi
o

�q
�

scb
e

�s
��q

�q
� 1� � qcb

e

�q
��s

�s
� 1���p �

scb
e

�s

�qi
o

�q
�

qcb
e

�q

�si
o

�s
� 0.

�35�

Figure 6 shows the most realistic pct � pcb � �p (i.e.,
the closest to 850 mb) where �p is solution of Eq. (35)
and the corresponding mixing-line parameter � com-
puted with (34), using the large-scale conditions and
parameters given in Tables 1 and 2. If the model can
produce plausible altitudes for the inversion, those are
underestimated. For the observed vertical gradients,
the altitude of the inversion would be about 20 mb
below the observed altitude. Moreover, the mixing-line
parameter � is supposed to be between 0 and 1, which
is not the case for most of the domain including the ob-
served gradients. To the extent the BOMEX data are
representative of a steady solution, this shows that a thin
inversion following a mixing line is another incompatible
idealization with the constant gradient hypothesis.

From these results it is unclear whether the source of
the incompatibility is the bias on the fluxes at the cloud
top that originates from the oversimplification of the
profiles inside the cloud or if the inversion layer needs
to be described by models that are more complex than
a mixing line. In either case it is evident that the ideal-
ization of the profiles, either inside the cloud or in the
inversion layer, more strongly constrains the evolution
of the system than is generally appreciated. The fact
that the constant gradient hypothesis is incompatible
with the mass-flux scheme and both idealized models of
the inversion points to this assumption as the main
overconstraint. It thus seems interesting to study what
equilibrium can be reached by releasing this constraint.

5. Relaxed gradient laws

In the previous section, we showed that the assumption
of a constant gradient in the cloud layer places unrealistic
constraints on the model of the turbulent fluxes that
keeps the system from reaching an equilibrium. Thus, it
makes sense to relax this assumption and study what
steady solutions look like given a model of the mixing
(e.g., Stevens 2000). Furthermore, we can investigate
whether a change of the parameterization of turbulence
allows a better representation of the inversion layer.

SH96 showed using a 1D model that a parameteriza-
tion of the cloudy boundary layer with constant frac-

tional entrainment and detrainment rates � and � could
reproduce the quasi-stationary state observed during
BOMEX. The value of � and � were inspired by a LES
run (SC95). It is interesting to analyze the steady pro-
files obtained by this model, in order to understand the
influence of the parameterization on the vertical gradi-
ents, and to explain why the parameterization gives sat-
isfactory results in a 1D model and not in Albrecht’s
framework. Additionally, we can compute the profiles
produced by Albrecht’s parameterization of the turbu-
lent fluxes, which corresponds to running the Albrecht
model without the constant gradient hypothesis.

a. General equations of the cloud layer

Without the constant gradient approximation, Eq.
(1) for the local equilibrium of a conserved variable can
be rewritten

�t	 � ��p�	 � g�p�F
	 � 
	. �36�

With the mass flux parameterization [Eqs. (6)–(8)], it
yields a differential equation in (�c � � ):

�p��	
c � 	� � �� � �

gM

� � gM��	c � 	� �

	

� � gM
,

�37�

which can be solved semianalytically:

	c � 	 � �	cbe�H�p�� � 
	e�H�p��I�p��, �38�

where

H�p�� � 

0

p� �� � �
gM

� � gM� dp and

I�p�� � 

0

p� eH�p�

�� � gM�
dp

are integration factors. The vertical gradient can thus
be written

�p�	 � �
1

� � gM
�
	 � �gMe�H�p����	cb � 
	I�p����.

�39�
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Equations (37) to (39) are valid whatever the profiles of
�, �, and �. If these functions do not depend on the
profiles, these equations can be integrated directly to
compute the steady-state profiles, as we do in the next
subsection.

The inversion will be modeled as described in section
4b(2). The altitude of the inversion will be computed
using the two extreme terms of Eq. (34), and the com-
putation of � using the third term will be used as a test
of the improvement of the representation of the inver-
sion layer.

b. Results for BOMEX case

Figure 7 shows the steady-state profiles of the con-
served variables and their gradients produced by the
following models: (i) SH96’s parameterization with � �
2 � 10�4 Pa�1 and � � 2.7 � 10�4 Pa�1 (solid line), (ii)
Albrecht’s parameterization (with parameters from
A84: �a � 1⁄2 day and A � 0.5; dash–dotted line), and
(iii) the functions � and � tabulated from SC95 (dashed
line). The former actually mimics the LES run of SC95.
As in the previous experiments, the cloud-base fluxes
are prescribed and their values are indicated in Table 1.
Here, we also prescribe the convective mass flux at

cloud base: it is chosen to match the results of LES
(SC95), Mcb � 0.025 kg m�2 s�1.

All three profiles look close to linear, but the vertical
gradient of liquid static energy actually changes signifi-
cantly with height (up to an order of magnitude for the
reconstruction of the LES run). This change is funda-
mental in determining the variation of both vertical ad-
vection and turbulent heating with altitude: the modi-
fication of the vertical transport, both the large-scale
and the turbulent components, permits a steady-state
solution that was not possible to reach with a constant
gradient.

The variation of the vertical gradients with height,
namely the second derivatives of the conserved variable
profiles, has an impact on the turbulence that is unclear
in mass-flux parameterizations, while it is an explicit
term in K-diffusion schemes. Actually, the cloud � en-
vironment difference depends much more on the varia-
tions of the gradient with height than the profile does
(see Fig. A1 in SH96). As the turbulent fluxes are pro-
portional to this cloud � environment difference in the
bulk mass-flux scheme, a good representation of the
cloud environment is thus crucial to the representation
of the turbulent mixing. The variation of the vertical
gradients within the cloud layer is therefore crucial to
the existence of an equilibrium.

Although the three models produce similar profiles
of the conserved variables themselves, the gradient pro-
files are quite different. SH96’s parameterization ap-
pears to be tuned to resemble the LES run in the
middle of the cloud, but the LES produces gradients
that are smaller at the cloud base and larger at the
cloud top than the ensuing parameterization. This sug-
gests that the cloud � environment differences at cloud
top produced by the LES are likely to be quite different
from the ones produced by the parameterization that
mimics the LES.

The gradients produced by Albrecht’s parameteriza-
tion are smaller than the ones produced by SH96’s pa-

FIG. 5. Budget of the inversion layer for a conserved variable.

FIG. 6. (a) Altitude of the inversion (in mb) at the equilibrium, computed from (35), and (b) corresponding value of the mixing-line
parameter �; shaded: domain of possible equilibrium (� � [0; 1]).
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rameterization, but their profiles show the same pat-
tern: the liquid static energy gradient increases with
height, while the total water gradient is more nearly
constant. This similarity reflects the fact that Albrecht’s
parameterization is a linearized version of SH96’s pa-
rameterization with modified parameters.

The turbulent flux profiles (see Fig. 8) are quite simi-
lar in the three different models except in the upper
part of the cloud where they diverge. But the mass flux
profiles exhibit more marked differences. Actually, the
gap between the profiles of mass flux is compensated by

the gap between the cloud � environment differences.
This shows that, given a parameterization of the con-
vective mass flux, the cloud � environment differences
tend to adapt themselves to the mass flux in order to
produce an appropriate turbulent flux profile. The
cloud� environment differences have an important im-
pact on the buoyancy profile, which might be problem-
atic for buoyancy-based closures.

Although the models give different flux profiles at
cloud top, all three models produce a realistic inversion
around 850 mb, which tends to prove that the inversion

FIG. 7. Profiles of (a) static liquid energy, (b) total water, and (c), (d) their vertical gradients
within the cloud layer, in BOMEX case; circles: observations; dashed: reconstruction of
SC95’s LES run; solid: SH96’s parameterization; dash–dotted: Albrecht’s parameterization.
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is well represented by the mixing line model used here;
but the mixing line parameter is unrealistic in all three
models (SH96’s parameterization � � 3.2; Albrecht’s
parameterization � � 2.7; and reconstruction of SC95’s
LES run � � 3.6). �he model of the inversion layer still
seems oversimplified. Although this issue can be
avoided by relaxing the constraint on cloud-base fluxes
(Bretherton 2004, unpublished manuscript; see also Fig.
4), the � computed in our experiments are quite large
compared to the realistic range [0;1], and the fluxes
required to obtain a realistic � are expected to be sig-
nificantly different from the LES results.

6. Summary and discussion

Our work showed that it is not possible to represent
some observed situations with a constant gradient
model when implemented with a bulk mass-flux param-
eterization. This framework can produce a limited do-
main of cases—most of which exhibit a convective mass
flux that unrealistically increases with height. The
change of the vertical gradient with height seems to be
crucial to the existence of a steady state. SH96’s param-
eterization of the mixing, as well as Albrecht’s, allows
the cloud layer to reach an equilibrium, mainly by in-
creasing the vertical gradient of dry static energy with
height.

The ability of different parameterizations to simulate
realistic profiles of the conserved variables and their
fluxes suggests that those profiles are not sufficient to

validate a parameterization. The profiles of the gradi-
ent and cloud � environment differences appear as a
better test. Unfortunately, they are difficult to observe
directly, although LES may provide useful information
in this respect.

In the absence of diabatic sources, the approximation
of an infinitely thin inversion layer is also shown to
overconstrain the system. Modeling the inversion as a
thin layer following a mixing line allows one to simulate
well the altitude of the inversion, with cloud-layer pro-
files that are either linear or produced by Albrecht’s or
SH96’s parameterizations. But, in all cases, the thermo-
dynamic structure of the inversion is unrealistic. This is
problematic because the vertical structure at the top of
the cloud layer and in the inversion is crucial in deter-
mining the presence or absence of stratiform cloudiness
whose radiative forcing is important.

Of course, the constraints resulting from the constant
gradient hypothesis or from these parameterizations,
which are tuned to represent well the middle of the
cloud, leads to a loose representation of the conserved
variables and their fluxes at the top of the cloud. But, it
seems that the main reason of the misrepresentation of
the inversion is the fact that the processes at play in the
inversion layer need to be addressed more accurately.
Some of the processes are not well understood—
possible decrease of the subsidence speed with height,
radiative cooling at the top of the cloud; but most of
them are actually the same as in the cloud layer. Thus,
it seems natural to take a unified approach, considering

FIG. 8. Profiles of (a) convective mass flux, (b) turbulent heat flux, and (c) turbulent moisture flux in the cloud layer,
in BOMEX case; dashed: reconstruction of SC95’s LES run; solid: SH96’s parameterization; dash–dotted: Albrecht’s
parameterization.
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a unique layer extending from the cloud base to the top
of the inversion.

So far, no consistent theory including the inversion
layer has been developed: most of the parameteriza-
tions strive to reproduce the profiles within the cloud
layer, and the inversion layer is considered a buffer that
links the cloud layer to the free troposphere. A unified
approach would require the parameterizations of the
mixing to produce, at the top of the inversion, turbulent
fluxes that vanish and profiles of the conserved vari-
ables that merge with the free-tropospheric profiles.
The challenge in the construction of such a bulk model
is to establish plausible hypotheses on the profiles of
the conserved and their fluxes that (i) are of the same
order of complexity, (ii) are consistent within the cloud
layer, and (iii) meet the boundary conditions at the top
of the inversion.

Last, one can only speculate how the vertical resolu-
tion of the GCMs can affect the parameterization of the
shallow convection. In general, the parameterization of
the CTBL is very sensitive to this resolution (Lenderink
et al. 2005). Our work also suggests that some precision
in the vertical profiles of the thermodynamic variables
is needed to obtain a good representation of the shal-
low convection. Low vertical resolutions in climate ver-
sions of the GCMs give a representation of the vertical
profiles that are hardly better than a linear profile, and
the inversion layer is not well represented either. In this
case, the parameterization of the shallow convection is
unlikely to produce realistic profiles or cloud fields,
thus imperiling attempts to rationalize the role of
clouds in climate change.
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APPENDIX A

A Derivation of the Domain of Possible
Equilibrium for the Relaxed Flux Laws

Replacing Eqs. (7) and (8) in the derivative of Eq. (8)
gives

�p�F
	 � �p�M�	

c � 	� �M��p�	
c � �	�

� �� � ��M�	c � 	� �M����	c � 	� � �	�

� ��F	 �M�	. �A1�

Using this equation for sl and qt yields a linear system in
M and � that allows us to express the functions M(p	)
and �(p	) as functions of the turbulent fluxes, their de-
rivatives and the vertical gradients [Eqs. (21) and (22)].

Furthermore, Eq. (7) can be rewritten

� � � �
�p�M

M
� �p��ln�M��, �A2�

which yields

� � � � �p� ln��p�F
q
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Fq �
�p�F

s

Fs

�
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q
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�
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s

�s

Fq

�q
�

Fs

�s

.

Replacing the expression of � by the previous result
[Eq. (22)] gives the expression of � [Eq. (23)].

The conditions of sign on M and � can be turned into
conditions on the ratios of the fluxes, their derivatives,
and the gradients of conserved variables, using their
physically consistent signs (Fq � 0, �q � 0, Fs � 0, and
�s � 0):

M � 0 ⇔ ��p�F
q
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s
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�s
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Using the expression of the derivative of fluxes and the
fact that the radiative rate is negative (R � 0), we can
discriminate one of the conditions:

�p�F
q

�q
�

�

g
�

�

g
�
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g�s
�

�p�F
s

�s
. �A5�

Consequently, considering the signs of �� and F�, the
conditions (A3) and (A4) combine into

M � 0 and � � 0 ⇔
Fq

�q
�

Fs

�s
and

�p�F
q

Fq �
�p�F

s

Fs .

�A6�

We will refer to the first condition of the rhs as C1 and
the second as C2. Conditions C1 and C2 imply �p	F

q/�q

� �p	F
s/�s, which can be written �p	(Fq/�q � Fs/�s) � 0.

Therefore, Fq/�q � Fs/�s increases with p	 and will be
negative over the whole cloud layer if it is negative at
cloud top. Thus C1 is equivalent to

F ct
q

�q
�

F ct
s

�s
� 0. �A7�

Using the equilibrium flux profiles [Eq. (5)], we can
further write C1 as follows:
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F cb
q

�q
�

F cb
s � R�p
g

�s
� 0, �A8�

which leads to the lhs in inequality (24).
Furthermore, considering the opposite signs of the

fluxes, C2 is equivalent to Fs�p	Fq � Fq�p	Fs � 0. Be-
sides, we note that, according to the equilibrium flux
profiles and their derivatives [Eqs. (5) and (4)], the
second derivative of the flux is expressed as

�p�p�F
	 �

D

g
�	. �A9�

Thus, considering the opposite signs of the gradients and
C1,

�p��F
s�p�F

q � Fq�p�F
s� � �

D

g
�q�s�Fq

�q
�

Fs

�s
� � 0;

thus, Fs�p	F
q � Fq�p	F

s decreases with p	, and will be
positive over the whole cloud layer if it is positive at
cloud top. Thus C2 is equivalent to

F ct
s �p�F

q��p� � F ct
q �p�F

s��p�� 0. �A10�

Using the equilibrium flux profiles and its derivative
[Eqs. (5) and (4)], we can further write C2 as follows:

F cb
q

�q
�1 �

R

�ct�s
� � F cb

s

�s
�

R

g�s

�p2

2��p � �psc�
� 0, �A11�

which leads to the rhs in inequality (24).
The second term of the rhs of (23) is actually twice

�. Therefore, we can write � � h(p	, 2) and � � � �
h(p	, 1) with

h�p�, n� � �
D

g

�q�s

FqFs

Fq
�q � Fs
�s

�p�F
q
Fq � �p�F

s
Fs

� n
R
g�s

Fq
�q � Fs
�s

, �A12�

where the second derivatives of the equilibrium flux

profiles have been replaced by their expression (A9), as
well as the first derivatives in the second term:

�p�F
q

�q
�

�p�F
s

�s
� �

R

g�s
.

The conditions on the signs of � and � � � can thus be
assessed by studying the sign of h. Using the conditions
derived from M � 0 and � � 0, we can write

h � 0 ⇔ H�p�, n� � �Fq

�q
�

Fs

�s
�2

� n
R

D�s
�Fs

�s

�p�F
q

�q
�

Fq

�q

�p�F
s

�s
�� 0.

�A13�

We derive H to assess its variation with p	:

�p�H � 2��p�F
q

�q
�

�p�F
s

�s
��Fq

�q
�

Fs

�s
�

� n
R

D�s
�Fs

�s

�p�p�F
q

�q
�

Fq

�q

�p�p�F
s

�s
�

� �n � 2�
R

g�s
�Fq

�q
�

Fs

�s
�. �A14�

So, for n � 2, H is independent of p	; therefore, the
condition � � 0 can be computed anywhere within the
cloud. We will compute it at the cloud base (H(0, 2) �
0). For n � 1, H decreases with p	. The condition for
increasing mass flux (� � � � 0) for the whole cloud
layer is thus equivalent to H(0, 1) � 0, and the condi-
tion for a strictly decreasing mass flux is equivalent to
H(�p, 1) � 0. Here H is quadratic in �q and �s and can
be rewritten, replacing the fluxes and their derivatives
by their equilibrium profiles (5) and (4):

H�p�, n� �
F cb

q2

�q
2�s

2��s
2 � �s

�q

F cb
q �n

R

g
��psc � p�� � 2�F cb

s �
R

g
p���

�
�q

2

F cb
q2 ��F cb

s �
R

g
p��2

� n
R

g ��F cb
s �

R

g
p����psc � p�� �

R

D �F cb
q

�q
�

DD2�p��

2g ����, �A15�

with D2(p	) � (�psc � p	)2 � �p2
sc. Here H is negative

for �s between the roots ��s and ��s of this quadratic
equation, and positive elsewhere. The roots can be ex-

pressed as a function of �q, the cloud-base fluxes, and
the large-scale forcing:

�s
� �

�q

F cb
q �F cb

s �
R

g
p� �

nR

2g
��psc � p���1  �1 �

4
gF cb

q

D�q
� 2D2�p��

n��psc � p��2
	
. �A16�
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For the parameter range of interest, ��s is negative. The
cloud layer is only conditionally unstable, so �s is posi-
tive, and we will focus on its position with respect to ��s .

We can deduce the three following conditions, which
are reproduced in a more concise form in Eqs. (25),
(27), and (28):

� � 0 ⇔ �s �
�q

F cb
q �F cb

s �
R

g
�psc��1 � 2

gF cb
q

D�q�psc
2 � 1��,

� � � � 0 ⇔ �s �
�q

F cb
q �F cb

s �
R

2g
�psc��1 � 4

gF cb
q

D�q�psc
2 � 1��,

� � � � 0 ⇔ �s �
�q

F cb
q �F cb

s �
R

2g
�psc� �p

�psc
� 1 ��1 � 2

�p

�psc
�

�p2

�psc
2 � 4

gF cb
q

D�q�psc
2 ��.

APPENDIX B

Summary of Symbols

a. Vertical coordinates

p	 ! pcb � p Difference of pressure from
the cloud base

�psc Depth of the subcloud layer
�p Depth of the cloud layer
� ! �p/�psc Normalized depth of the

cloud layer

b. Subscripts

0 Subcloud
cb Cloud base
A Middle of the cloud
ct Cloud top
i� Top of the inversion

c. Conserved variable profiles

� Conserved variable, either sl

or qt. The subscripts l and t
are omitted when � has an-
other subscript or when � it-
self is a subscript or super-
script; � is used for the clear-
sky profile in the cloud layer.

��0 Jump at cloud base
�� Gradient of � in the cloud

layer
�o

i Reference free-tropospheric
profile � at cloud base

��o
i ! �

o
i � �0 � ��0 Reference free-troposphere/

boundary layer difference at
cloud base


� Free-tropospheric gradient
of �

� ! ��i� � (1 � �)�ct Divergence-averaged � of
the inversion layer

�c Cloud profile
��cb Cloud � environment differ-

ence at cloud base

d ! (�c � � )/��cb Normalized cloud � environ-
ment difference

�� ! ��/��cb Ratio of the stratification to
the cloud-base difference

d. Large-scale forcing

� Vertical speed
D Rate of divergence
� ! (1 � �)�i� � ��ct Equivalent subsidence at the

inversion

� Adiabatic source of �
R ! 
sl Radiative cooling
�� Adiabiatic source integrated

over the inversion layer
�FR ! ��sl Jump of the upward net ra-

diative flux at the inversion

e. Turbulent mixing

F� Upward turbulent flux of �
M Convective mass flux
f ! "/Mcb Normalized convective mass

flux
� Entrainment rate
� Detrainment rate

f. Miscellaneous

� Ratio of the cooling of the
subcloud layer to the warm-
ing of this layer due to the
turbulent flux at cloud base

�F Bowen ratio at cloud base
qe

cb Equivalent humidity of the
turbulent water flux at cloud
base

se
cb Equivalent energy of the tur-

bulent sensible flux at cloud
base
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