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ABSTRACT

Large eddy simulation is used to study top-hat parameterizations of second- and third-order scalar statistics
in cumulus and stratocumulus cloud-topped boundary layers (CTBLs). Although the top-hat parameterizations
based on commonly used conditional sampling methods are a useful approach to modeling the vertical fluxes
in the simulated CTBLs, they fail to realistically represent the scalar variances. The reason is that the common
sampling methods are based at least in part on the sign of vertical velocity, but not on the sign of the scalars
whose variances are represented and that scalars and velocity are not perfectly correlated. Furthermore, the
self-correlation nature for a variance means that all the fluctuations contribute to its value, while the top-hat
models completely ignore the deviations from the top-hat means and thus considerably degrade the repre-
sentation of the variance. For the fluxes, however, only the coherent convective elements make the most
contribution. Analysis of analytic models and ‘‘toy’’ time series indicates in a more generic setting that the
effect of poor correlations between the signal upon which the sampling is based and the signal whose variance
is to be represented tends to degrade the ability of top-hat parameterizations to capture the variance. The
analysis of toy time series also indicates that variability among individual events within a composite degrades
the top-hat representation of the variance more than variability within events. For the vertical velocity–scalar-
related third-order moments, the top-hat model gives reasonable estimates for the cumulus CTBL but not for
the stratocumulus CTBL. These differences are explained by structural differences (tied to circulation dif-
ferences in the two CTBLs) in their respective joint probability density functions of vertical velocity and
various scalars.

1. Introduction

It has been a common practice to use the convective
mass flux method to represent vertical turbulent fluxes
of temperature and moisture in cumulus cloud-topped
boundary layers (CTBLs). That is, the fluxes are pa-
rameterized as the products of a mass flux and differ-
ences between characteristics of convective updrafts and
the mean state (e.g., Arakawa and Schubert 1974; Betts
1973). This approach is based on the belief that coherent
structures (usually clouds) are responsible for most of
the turbulent transport and that these structures are rel-
atively uniform. Because the mass flux method ignores
the variability either among or within coherent elements
(i.e, updrafts or downdrafts) and only considers the
mean properties of some average coherent element, it

Corresponding author address: Shouping Wang, Universities
Space Research Association, Global Hydrology and Climate Center,
977 Explorer Blvd., Huntsville, AL 35806.
E-mail: wangsx@vmcs.msfc.nasa.gov

may also be referred to as ‘‘top-hat’’ representation of
the turbulent fluxes. Recently, Siebesma and Cuijpers
(1995) gave excellent discussions on some issues related
to the top-hat parameterizations for the trade wind cu-
mulus boundary layers.

The mass-flux decomposition of the flow has also
been applied to stratocumulus CTBLs for both obser-
vational studies (e.g., Penc and Albrecht 1986; de Laat
and Duynkerke 1998; and others) and modeling studies
(e.g., Wang and Albrecht 1986; Randall et al. 1992).
One critical issue is the construction of a simple and
yet physically based conditional sampling that can ef-
fectively identify the coherent structures for the top-hat
parameterization of the turbulent fluxes. Both Siebesma
and Cuijpers (1995) and Schumann and Moeng (1991)
discussed this issue.

Recently the top-hat approach has been extended as
a means of representing moments other than fluxes. For
instance, Randall et al. (1992) used the top-hat for-
mulation to represent the variance of a generic scalar
variable w:
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2 2 2w9 5 a (w 2 w ) 1 (1 2 a )(w 2 w )u u u d

25 a (1 2 a )(w 2 w ) , (1)u u u d

where au is the fractional coverage of updrafts; wu and
wd, respectively, represent the value of w averaged over
the updrafts and downdrafts; the overbar operator, ( · ),
implies an ensemble averaged value of a variable; and
the prime denotes the departure from that average, that
is, w9 5 w 2 w . They also proposed a similar top-hat
parameterization for the flux of the scalar variance:

2 2w9w9 5 a (w 2 w )(w 2 w )u u u

21 (1 2 a )(w 2 w )(w 2 w ) , (2)u d d

where w is vertical velocity.
The application of (1) and (2) is appealing for both

cloud parameterization and turbulence closure model-
ing. If one can use (1) to calculate , , and2 2q9 u9 q9u9t l t l

(here, qt is total water mixing ratio and ul is liquid water
potential temperature) in cumulus CTBLs, then one can
use the cloud parameterization of Sommeria and Dear-
dorff (1977) to define cloud cover and liquid water con-
tent in a large-scale model. Moreover, (1) and (2) can
be used as a closure technique in ensemble turbulence
closure models (Randall et al. 1992; Abdella and Mcfar-
lane 1997). However, Young (1988) found that the top-
hat model fails to capture the virtual potential temper-
ature variance in a clear convective boundary layer. The
applicability of (1) and (2) in the CTBL has, to our
knowledge, not been previously studied.

In this work, the large eddy simulation (LES) tech-
nique is used to evaluate the top-hat representation for
the scalar variance and covariance for both cumulus and
stratocumulus CTBLs; we explain the results with dis-
crete joint frequency distribution functions; and we brief-
ly discuss the results of the third moments. Last, we
discuss the results from the LES in the context of an-
alytic models and ‘‘toy’’ time series with desirable spec-
tral properties.

2. LES model

The LES model used in this study is that of Stevens
et al. (1996). It is continually under development, and
readers are referred to Stevens et al. (1999) for a com-
plete review and comprehensive evaluation of the cur-
rent implementation of the model. Of relevance to this
study is the fact that monotone operators are used for
scalar advection (following Zalesak 1979), the Sma-
gorinsky–Lilly subgrid model with the Smagorinsky
constant Cs 5 0.23, and a bulk cloud scheme in which
liquid water is diagnosed at its equilibrium value. The
subgrid-scale (SGS) scalar variances are also calculated
(only for diagnostic purpose) from

3

2^u0w0&O i2 i512^w0 & 5 , (3)
C C TKEh w s

where double primes denote SGS fluctuations, ^ · & a
grid volume average, ui velocity component, TKEs is a
diagnosed SGS turbulent kinetic energy, Ch 5 0.42, and
Cw 5 1.2.

The LES code has been used to simulate various cases
of CTBLs in the previous five Global Energy and Water
Experiment Cloud System Study workshops, and the
performance of the model has compared favorably with
both other LES models and observations (e.g., Moeng
et al. 1996; Bretherton et al. 1999).

For the cumulus CTBL simulation, the LES model
uses 100 3 100 3 76 grid points with uniform grid
spacing in three dimensions to cover a 6.5 km 3 6.5
km 3 3 km domain, implying Dx 5 Dy 5 65 m and
Dz 5 40 m. For the stratocumulus CTBL simulation,
the model uses 68 3 68 grid points with uniform spacing
Dx 5 Dy 5 50 m in the horizontal; and there are 76
grid points in the vertical with a minimum spacing of
5 m within the inversion and 25 m below the inversion
to span a 3.4 km 3 3.4 km 3 1.97 km domain. The
time step is 2 s for both simulations.

3. Cases of shallow cumulus and stratocumulus
simulations

For the shallow cumulus case, we use Barbados
Oceanographic and Meteorological Experiment (BOM-
EX) conditions, which were used in the fifth intercom-
parison case of the working group 1, held in Seattle,
Washington, in July of 1997. This case has a complete
set of large-scale conditions and has been studied in
detail (Siebesma and Cuijpers 1995). The initial and
large-scale conditions can be found in their paper or on
the Web site1 for the workshop.

For the stratocumulus case we use the San Nicolas
Island sounding composited by Albrecht et al. (1995)
from observations taken during First International Sat-
ellite Cloud Climatology Project (ISCCP) Regional Ex-
periment (FIRE). This sounding represents a classic sit-
uation corresponding to persistent stratocumulus. Also,
we specify a fixed SST of 288.8 K and a fixed large-
scale divergence of 6 3 1026 s21. For this case, the four-
stream radiation parameterization developed by Fu and
Liou (1992) and Fu et al. (1995) was used to interac-
tively calculate longwave radiative cooling rate.

For both cases the LES is integrated until a quasi–
steady state is achieved (7 h for the BOMEX case and
4 h for the FIRE case), and the analysis is conducted
over the last hour. The focus is on the top-hat repre-
sentation of turbulence statistics; thus, we will not dis-
cuss the general physical processes associated with the
mean and turbulent structures of the simulations, except
to say that they are in accord with our expectations and
past experience. Nonetheless, for the sake of reference

1 Online at http://www.knmi.nl/;siebesma/bomex.html.
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FIG. 1. Mean profiles and SGS statistics from both BOMEX and FIRE simulations. Upper panels are for the BOMEX case, lower panels
for the FIRE case. (left to right) Total water mixing ratio (g kg21) and liquid water potential temperature (K); liquid water content; wind
components u and y (m s21); and SGS fractional contributions. For the SGS panels, dotted line denotes the fractional contribution of SGS
qt flux; dash-dotted the ul flux; solid the qt variance; and long-dashed the ul variance.

we have included in Fig. 1 the mean profiles of the
simulations averaged over the last hour. As shown in
Figs. 1d and 1h, the fractional contributions of the SGS
statistics are relatively minor: for the BOMEX case, all
the variances and fluxes contribute less than 10% in the
cloud layer; for the FIRE case, the SGS contributions
for most of the variables are less than 10% in the mixed
layer, except for ^u 02& , which is more than 20% above
700 m. We emphasize that our study focuses on the
regions where the flows are mostly resolvable, that is,
the cloud layer for the BOMEX case and the mixed
layer below 700 m for the FIRE case. All the turbulence
statistics presented hereafter are for the resolved-scale
variables only.

4. Contributions of top-hat and subplume
variability to second moments

Here we first formulate the decomposition of the var-
iance abstractly; the results from the two case simula-
tions are presented subsequently.

a. Top-hat model

Consider two variables a and b defined over a set E
of N points. One may partition E into M disjoint subsets

Ei, of length Ni, i 5 1, . . . , M. One can then write the
covariance of a and b over E, solely in terms of the
values of a and b averaged over E and their values
defined relative to the Eis:

M M
i

a9b9 5 a (a 2 a )(b 2 b ) 1 a a9b9 , (4a)O Oi i i i i i
i51 i51

where the unannotated overbar still represents an av-
erage over the set E, while the overbar annotated by i
represents an average over the Eith subset, that is,

1ia [ a [ a , (4b)Oi 1 2N Ei i

(similarly for b). Primes denote deviations from a subset
average, so, for instance, 5 a 2 ai. From (4b) ita9i
follows that

M

a 5 a a , (4c)O i i
i51

where a1 5 Ni/N. Because E is a disjoint union of the
Eis, a1 1 a2 1 · · · 1 aM 5 1.

The two terms on the rhs of (4a) can be interpreted
as follows. The first summation on the rhs of (4a) rep-
resents the top-hat contributions, namely, the contri-
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bution to the covariance from the values of a and b
composited over each subset Ei. The second summation
in (4a) measures the total contribution from variability
within each subset. If a subset is loosely termed plume
(analogous to the commonly used updraft and downdraft
decomposition), the second summation can be called
the subplume variability term. Then, if one can define
a physically meaningful conditional sampling method
to determine the subsets in such a way that the second
summation in (4a) is significantly smaller than the first
one, then the covariance can be represented by the first
summation. For obvious reasons, this decomposition is
most appealing when M, the number of subsets, is small.

The above equations are not complete until the Ei’s
are specified. In the present study, we follow the core
decomposition method of Siebesma and Cuijpers (1995)
for the BOMEX case, and the w-plume approach with
zero threshold of Schumann and Moeng (1991) for the
FIRE case. These two conditional sampling (CS) meth-
ods, denoted by CSA (for the BOMEX case) and CSB

(for the FIRE case), respectively, decompose the flow
into two subsets. Thus the second subset E2, is simply
defined as the set of all points not in E1, where the E1’s
are defined as follows:

CS : A point P 5 (x, y, z, t) ∈ E if and only ifA 1

w9(x, y, z, t) . 0, q (x, y, z, t) . 0c

and u (x, y, z, t) 2 u (z, t) . 0;y y

CS : A point P 5 (x, y, z, t) ∈ E if and only ifB 1

w9(x, y, z, t) . 0.

In these definitions, qc is liquid water content, and uy

virtual potential temperature. The subset E2 or plume 2
in CSA represents the surrounding area of the convective
updraft (subset E1) in the cumulus CTBL and thus will
be referred to as the convective environment or simply
the environment.

b. Results

Figure 2 compares the top-hat contributions with the
subplume variability for qt, ul, w variances, and qt 2
ul covariance from the BOMEX simulation. Clearly, all
the variance and covariances are dominated by the en-
vironmental subplume variability terms; the contribu-
tions from the top-hat terms of the convective updrafts
are only 25%–30% of the total values. All the top-hat
terms vanish at the cloud-top level. The other two terms
in (4a), the convective updraft subplume variability and
the environment top-hat terms, contribute little and are
neglected. The convective updrafts (subset E1) occupy
only about 2.5% of the domain. This fractional coverage
of the active updraft is close to the value of 3.0%, typ-
ically observed in the trade wind cumulus boundary
layers (Albrecht 1981).

We also applied the other two conditional sampling

methods discussed by Siebesma and Cujpers (1995).
One defines convective updrafts (E1) solely based on
clouds (qc . 0); the other, based on both updrafts and
clouds (w9 . 0 and qc . 0). These two CS definitions
lead to modest increases of updraft fractions to 4% and
5% and increases in the top-hat fraction of the scalar
variances to 35%–40% (the figures are not shown here).

For the FIRE case, the subplume variability contri-
butions are dominant terms, and the fractional top-hat
contributions are only 5%–15% of and 20%–30%2u9l
of , as shown in Figs. 3a,b. The covariance is2q9 q9u9t t l

small and changes sign in the interior of the boundary
layer, a feature that is difficult to model. The top-hat
contribution has the wrong sign for the covariance for
most of the vertical domain. However, for w92 , the top-
hat contribution is greater than the subplume contri-
butions and explains more than 60% of the total vari-
ance, which is consistent with the result of Schumann
and Moeng (1991). Although the top-hat model can ex-
plain most of the w variance in the FIRE case, it carries
only 20% of the variance for the BOMEX case.

The results for qt and ul fluxes are plotted in Fig. 4
for comparison with the scalar variance and covariances.
Despite the failure to capture the variance statistics, the
same top-hat models well represent the fluxes in the
BOMEX case and also give a useful estimate in the
FIRE case, in support of the previous studies (Siebesma
and Cuijpers 1995; Schumann and Moeng 1991).

5. Discrete joint frequency distribution function

To understand why the top-hat model is so successful
in representing the fluxes but so poorly represents scalar
variances, we find it useful to study the discrete joint
frequency distribution function (FDF). If we consider
the values of a9 and b9 to be random variables X9 and
Y9, then the FDF is defined as

f (a9, b9) 5 P(a9 2 Da9/2 , X9 # a9 1 Da9/2,

b9 2 Db9/2 , Y9 # b9 1 Db9/2), (5)

where P(A) represents the probability that A occurs. The
FDF is related to probability density function (PDF) by

a91Da9/2 b91Db9/2

f (a9, b9) 5 pdf (a9, b9) db9 da9. (6)E E
a92Da9/2 b92Db9/2

Clearly, all the discussions based on FDFs can be easily
extended to the PDFs. Because the conditional sampling
methods are defined mainly in terms of w9, we focus
on the FDFs for w9 and scalar fluctuations.

a. BOMEX case

For the BOMEX case, the relevant features of FDFs
do not vary with height within the cloud layer. Thus we
discuss these functions only at 1 km. Figures 5a–c show
the distribution functions f (w9, w9), where w9 ∈ ( ,q9t

, ). Also displayed in Figs. 5d–f are the scatterplotsu9 u9l y
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FIG. 2. Contributions of top-hat and subplume variability to various variance and covariance statistics in the BOMEX
simulation. (a) , (b) , (c) , and (d) w92 . Solid lines denote total values of the statistics; long-dashed, the2 2q9 u9 q9u9t l t l

contribution of convective updraft top-hat terms; dotted, the contribution of the updraft subplume variability; and dash–
dotted, the contribution of the environment subplume variability.

of w9 and w9 sampled at 20 different times for the con-
vective updrafts defined as plume 1 by CSA. Clearly,
the sampled w9 and w9 are highly correlated and coincide
with the long ‘‘tail’’ areas of f (w9, w9).

An important characteristic of these distributions, par-
ticularly for f (w9, ) and f (w9, ), is that in the en-q9 u9t l

vironment, each one tends to be approximately sym-
metric about w9 5 0 and w9 5 0 [i.e., f (w9, w9) ù
f (2w9, w9) and f (w9, w9) ù f (w9, 2w9)]. This feature
of symmetry implies poor correlation between w9 and
w9 in the environment. In addition, the fluctuations in
the environment are generally significantly weaker than
those in the convective updrafts, reflecting the lack of
convective activity there. Thus, the environment terms

(the plume-2 terms) in (4a), including both top-hat and
subplume variability, are very small, and the total flux
w9w9 can be determined approximately by only the up-
draft contribution. Furthermore, because the local fluc-
tuations 5 w 2 w1 are, in general, smaller than w1w91
2 w , and because some of the positive and negative
values of are canceled out in (4a), the convectivew9w91 1

updraft subplume variability makes a very small con-
tribution to the scalar fluxes.

This FDF analysis demonstrates that the success of
the top-hat models to represent the fluxes in this case
depends on the contrast of the very different correlation
functions between w9 and w9 in the environment and
that in the convective updrafts, or the bimodal behavior
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FIG. 3. Contributions of top-hat and subplume variability to various variances and covariances in the FIRE simulation.
(a) , (b) , (c) , and (d) w92 . Solid lines denote total values of the statistics; long-dashed, the total top-hat2 2q9 u9 q9u9t l t l

contribution; dotted, the contribution of the updraft subplume variability, and dash–dotted, the downdraft subplume
variability.

of the FDFs in the two plumes. We notice that in the
environment positive and negative values of each of the
turbulent fluctuations, including both w9 and w9, are
almost canceled out due to the broad sampling area
(97% of the domain), leading to the fact that the en-
vironmental averaged variables are very close to the
ensemble mean. This cancellation of negative and pos-
itive values in an individual plume significantly de-
grades the top-hat representation of some statistics, es-
pecially scalar variances for the CTBLs.

As shown in Fig. 6, a significant difference between
f ( , ) and f (w9, w9) is that and are stronglyu9 q9 q9 u9l t t l

negatively correlated not only in the updrafts where the
liquid water fluctuations dominate both and , butq9 u9t l

also in the environment that is influenced by the de-
trained nonbuoyant air from the updrafts. This strong

anticorrelation results in a significant environmental
contribution to the total covariance . However, theq9u9t l

environmental top-hat term in (4a), that is, ( 2qt2

2 ul), is close to zero because the environmentalq )(ut l2

averages are very close to the ensemble mean. Thus,
the contributions from the environment based on CSA

are predominantly accounted for by the subplume var-
iability term. Therefore, the top-hat model fails to rep-
resent for this case.q9u9t l

The same argument applies to the case of variance.
Since any turbulent fluctuation perfectly correlates with
itself, the environmental contributions must be included
in the parameterization. However, the conditional sam-
pling method for the BOMEX case, CSA, results only
in a trivial contribution from the environmental top-hat
terms, due to the cancellation of the negative and pos-



1 FEBRUARY 2000 429W A N G A N D S T E V E N S

FIG. 4. Contributions of top-hat and subplume variability to the turbulent fluxes in both simulations. (left) rLw9q9t
and (right) rcpw9 . Upper panels are for the BOMEX case and lower panels for the FIRE case. Solid lines denoteu9l
total values of the fluxes; long-dash, the total top-hat contribution; dotted, the contribution of the updraft subplume
variability, and dash–dotted, the environment or downdraft subplume variability.

itive fluctuations. Consequently, the contributions from
the environment subplume variability terms dominate
the total environmental plume terms. Therefore, the top-
hat model is not sufficient to capture the variances.

The above examples suggest that the coherent struc-
ture may not carry most of the scalar variance and co-
variances for cumulus CTBLs. Therefore, one should
design a conditional sampling method not only to iden-
tify the coherent structure, but also to represent the var-
iability in the environment. This requires that the pos-
itive definite nature of a variance be preserved in the
top-hat model. For example, we define a new conditional
sampling method CSC by adding one more subset
(plume) to the BOMEX conditional sampling method:

CS : A point P 5 (x, y, z, t) ∈ E if and only ifC 1

w9(x, y, z, t) . 0, q (x, y, z, t) . 0 andc

u (x, y, z, t) 2 u (z, t) . 0;y y

P ∈ E , if and only if w9(x, y, z, t) . 0 and2

P ¸ E ;1

P ∈ E , otherwise.3

This conditional sampling method not only defines a
convective plume, but also separates upward and down-
ward streams in the environment, each of which oc-
cupies a similar fractional coverage. Thus, it guarantees
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FIG. 6. (a) Joint frequency distribution function and (b) the scatterplots for and of the convective updrafts from theu9 q9l t

BOMEX simulation.

that w9 has only one sign in each of these plumes. As
shown in Fig.7a, the top-hat terms based on the above
conditional sampling can explain 50%–60% of the re-
solved w92 (similar to what was explained for the FIRE
case), a fraction significantly larger than that in Fig. 2d,
even though it is still well below the top-hat fraction of
the fluxes. However, the above sampling approach does
not at all improve the top-hat parameterization of 2q9t
as shown in Fig. 7b, since and w9 are poorly correlatedq9t
in the convective environment.

If we apply CSB (in which the updrafts are defined
only by w9 . 0) to the BOMEX case, the top-hat fraction
of w variance is reduced to 40% (figures not shown
here) compared to 60% for CSC (Fig. 7a). In addition,
the top-hat fluxes of qt and ul account for about 40%
of the total fluxes at the cloud base and decrease to only
10% at 1 km, which is clearly a result of the failure by
the w9-sign-only scheme to identify the coherent struc-
ture, that is, cloudy updrafts, in this case. This result is
consistent with Siebesma (1996).

b. FIRE case

We found that the relevant structures and patterns of
the various distribution functions are similar within the
cloud layer. Therefore, it is sufficient to show these
functions at one level in the cloud layer. Figure 8 dis-
plays various FDFs at 637.2 m, where w9 is large.u9l
The distribution functions f (w9, ) and f (w9, ) showq9 u9t y

positive correlation in general, while f (w9, ) tends tou9l
be quasi-symmetric about 5 0, implying that theu9l
variables are poorly correlated.

The lower left quadrants in Figs. 8a,b (w9 , 0; q9t
and , 0) show that the entrainment is associated withu9y
the drier inversion air and the cloud-top radiative and

evaporative cooling. These processes tend to make
downward parcels negatively buoyant and dry. The up-
per left quadrant of Fig. 8b shows the entrainment of
more buoyant inversion air into the cloud layer. The
distribution function f (w9, ) demonstrates a significantu9l
variability for w9 , 0, as shown in Fig. 8c. The en-
trainment of warmer air from the inversion and the ra-
diative cooling of saturated parcels are clearly two major
processes that simultaneously regulate the distribution.
If the radiative cooling dominates, negative is as-u9l
sociated with negative w9 in the lower left quadrant in
the distribution. On the other hand, if the entrainment
mixing is dominant, positive is associated with neg-u9l
ative w9 as shown in the upper left quadrant to increase
the negative correlation between w9 and . Apparently,u9l
there is significantly larger variability in ul in the down-
drafts than in the updrafts, which explains why the con-
tribution from the downdraft variability dominates the
total ul variance as shown in Fig. 3b. Figure 8d shows
that the correlation between and is very weak, dueq9 u9t l

to the well-mixed mean profiles. The tendency of neg-
ative correlation in the lower right corner, that is, neg-
ative associated with positive , apparently impliesq9 u9t l

effects of the entrainment.
It is evident that the poor correlation of w9 with w9,

particularly with w9, in each of the plumes consid-u9l
erably reduces the significance of the top-hat contri-
butions to the variances, because the positive and neg-
ative scalar fluctuations within each plume are canceled
out. Thus, for top-hat representation of a variance, it is
important to maintain a unique sign, positive or nega-
tive, for turbulent fluctuations in each of the plumes
defined by a conditional sampling. For example, to im-
prove the representation of , the ‘‘wq-plume’’ method2q9t
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FIG. 7. Contributions of top-hat and subplume variability to w and qt variances based on the CSC for the BOMEX
case. (a) w92 and (b) . Solid lines represent total variances; long-dashed, the total top-hat contribution; and dotted,2q9t
the total subplume variability.

by Schumman and Moeng (1991) is tested here. That
is,

CS : A point P 5 (x, y, z, t) ∈ E if and only ifD 1

w9(x, y, z, t) . 0, and q9(x, y, z, t) . 0t

P ∈ E if and only if w9(x, y, z, t) , 0 and2

q9(x, y, z, t) , 0;t

P ∈ E otherwise.3

This sampling scheme guarantees that keeps aq9t
unique sign for plume 1 and 2, which represent the areas
of the upper right and lower left quadrants in Fig. 8a.
Figure 9a shows that the top-hat representation using
CSD contributes significantly more to the total than2q9t
it does with CSB (Fig. 3). However, since is poorlyq9t
correlated with , the uniqueness of the sign in theu9 q9l t

plumes does not lead to the uniqueness of the sign.u9l
Consequently, the new sampling method does not at all
improve the top-hat parameterization of , which is2u9l
again dominated by the subplume variability, as shown
in Fig. 9b. This example demonstrates that the major
difficulty of the top-hat parameterization in this case is
the poor correlation among w9, , and .u9 q9l t

It is now clear why the top-hat parameterizations of
the scalar variances are less successful than those of the
fluxes. First, in the case of variance, the self-correlation
means that all the fluctuations contribute, while the top-
hat models completely ignore the deviations from the
plume mean values. For the fluxes, however, only co-
herent elements make significant contribution, while the
deviations from the top-hat values [second term in (4a)]
may cancel out due to poor correlation. Second, the
commonly used conditional sampling schemes are based

mainly on the vertical velocity and other related vari-
ables and thus are less suitable for the scalar variances
than for the fluxes, due to the poor correlation between
the velocity and the scalars.

6. The contributions to third moments

Third moments can also be written as a sum of con-
tributions from plume top-hat and subplume variability:

2 2a9b9 5 a (a 2 a )(b 2 b )1 1 1

21 (1 2 a )(a 2 a )(b 2 b )1 2 2

1 1 1
2 21 a [a9b9 1 2(b 2 b )a9b9 1 (a 2 a )b9 ]1 1 1 1 1 1 1 1

1 (1 2 a )1

2 2 2
2 23 [a9b9 1 2(b 2 b )a9b9 1 (a 2 a )b9 ],2 2 2 2 2 2 2

(7)

where all the notations are the same as in (4a), except
that only two subsets (or plumes) are considered here.
The first two terms in the rhs of (7) are top-hat terms,
and the rest are subplume variability contributions. We
only consider w9w9-related third moments.

Because the frequency distribution of w9 and w9 in
the BOMEX case tends to be approximately symmetric
about w9 5 0 and w9 5 0 in the environment, one can
easily show that w9w92 and w92w9 are dominated by the
convective plume contributions (see appendix A).
Therefore, one should be able to use the top-hat model
to parameterize them so long as the contributions from
the updraft subplume variability are small. This result
is presented in Fig. 10. The top-hat model gives a better
representation of w9w92 than w92w9 because the sym-
metry about w9 5 0 is better than that about w9 5 0.
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FIG. 8. Various joint frequency distribution functions at 637.2 m for the FIRE case. (a) f (w9, ), (b) f (w9, ), (c)q9 u9t y

f (w9, ), and (d) f ( , ). Note that the numerical values are in the unit of percentage.u9 u9 q9l l t

For the FIRE case, the top-hat contributions do not
provide useful estimates for any of the four third-order
moments, as shown in Fig. 11. In fact, the sum of the
top-hat contributions from the updrafts and downdrafts
is close to zero for each of these statistics. The reasons
are as follows. First, the plume-scale variabilities [i.e.,
(w1 2 w) and (w2 2 w)] are small, due to the existence
of positive and negative fluctuations in each plume. Sec-
ond, the plume-scale variability tends to be symmetric,
that is, (w1 2 w) and (w2 2 w) have similar magnitudes
but different signs, so that the first and second terms in
(7) are nearly canceled out, leading to the dominance
of the subplume variability contributions. Although the
top-hat contributions tend to be symmetric, the sub-
plume contributions are highly asymmetric, particularly
for w92 and w9 , as shown in Figs. 11a,b, reflecting2q9 q9t t

the influences of the cloud-top and surface mixing pro-

cesses. For w92 and w9 , the subplume contribution2u9 u9l l

in downdrafts clearly dominates, which can be explained
by the large variability in downdrafts shown by theu9l
FDF f (w9, ) in Fig. 8c.u9l

7. Discussion

As illustrated with the two examples above, the fail-
ure of the top-hat parameterization to adequately rep-
resent scalar variances is in part due to issues of sam-
pling and in part due to the generic variability of the
signal. Even with perfect correlations between scalars
and w9, the variability of a scalar within different plumes
leads to significant contributions to the variance by the
subplume variability in (4a). In this section we make
some simple assumptions and look more generically at
how different features of a field contribute to the ability
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FIG. 9. Contributions of top-hat and subplume variability to qt and ul variances based on the CSD. (a) qt variance
and (b) ul variance. Solid lines represent total variances; long-dashed, the total top-hat contribution; and dotted, the
total subplume variability.

of top-hat parameterizations to represent the variance of
that field.

a. Jointly Gaussian processes

Here we consider the ability of a top-hat parameter-
ization to represent the variance of a scalar a, given the
decomposition of the field through CSB, and the as-
sumption that the vertical velocities w and a are jointly
distributed by a Gaussian process with correlation co-
efficient r 5 w9a9 /(sasw), where now we use to2s x

denote the variance of a field x. Because we use the
sampling method CSB, we can speak of our sets as the
set of updrafts Eu and the set of downdrafts Ed. Because
w and a are distributed jointly through a Gaussian pro-
cess, Eu and Ed must each compose an equal fraction
of the set E (i.e., au 5 ad 5 ½). Furthermore, au and
ad, that is, the value of a averaged over updrafts and
downdrafts, respectively, can be calculated analytically
(e.g., Wyngaard and Moeng 1992):

22rs 2rsa aa 5 , and a 5 , (8)d uÏ2p Ï2p

which implies that the variance of a can be written as
2 22s ra2s 5 1 SPV, (9)a p

where the first term above is the top-hat part defined by
(1), and the subplume variability is denoted by SPV.
Thus it follows that

22r 2 SPV
2SPV 5 s 1 2 ⇒ 1 2 # # 1. (10)a 21 2 1 2p p sa

Equation (10) also shows that under the above described

conditions the subplume variability is always significant
and accounts for between about 40% and 100% of the
total variance.

Equation (10) illustrates that the correlation between
the sampling field (in this case w) and the field whose
variance we wish to know determines in large part the
partitioning of the variance between the top-hat and SPV
terms. Note that because the correlation is the flux di-
vided by the product of the square root of the variances,
it is possible that there be significant flux but poor cor-
relation. This, for instance, is the case in the BOMEX
simulation. It is also interesting to note that the upper
bound on the top-hat contribution to the variances, for
jointly Gaussian processes, is very close to what is
found for the top-hat contribution to the w variance for
both the BOMEX and the FIRE case when the Ei’s are
based on the sign of vertical velocity [which ensures r
5 1 in Eq. (9)]. This suggests that even though our
fields from the LES are not purely Gaussian, the analysis
of jointly Gaussian processes does give insight into our
results.

For jointly Gaussian processes, any third-order mo-
ment vanishes, that is, a9b92 5 0. In this case, the top-
hat model gives exact representation of the third-order
moments, because their parameterized values are also
zero due to the symmetry of Gaussian PDFs. For non-
Gaussian processes, SPV may have significant contri-
butions to the total statistics as discussed in the previous
simulations.

b. Numerical results from synthetic time series

To what extent does the upper bound on the contri-
bution of the top-hat contribution to the variance depend
on the nature of the signal being analyzed? What is the
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FIG. 10. Contributions of top-hat and subplume variability to the third-order statistics for the BOMEX case. (a) w9 , (b) w92 , (c)2q9 q9t t

w9 , and (d) w92 . Solid lines represent the total values of the variables; long-dashed, the top-hat contribution from the convective updrafts;2u9 u9l l

dashed–dotted, the contribution from subplume variability in the environment; and dotted, the updraft subplume variability. The environmental
top-hat terms are very small and neglected.

physical space interpretation of the magnitude of the
SPV terms? To gain insight into these questions we
analyze a ‘‘toy’’ time series through the methods already
discussed. The time series are built using the bounded
cascade model of Cahalan et al. (1994) and Davis et al.
(1997) and can be used to generate time series with
some nice scaling properties (i.e., we can enforce wave-
number k scaling proportional to k5/3 over many de-
cades). A further description of how we construct the
time series is provided in appendix B.

Here, because we are interested in the upper bound

on the top-hat terms we only look at the partitioning of
the variance for signals in which the sampling into sub-
sets is based on the sign of the signal itself. We find
that for our synthetic time series the top-hat fraction
tends to be a strong function of the kurtosis of the signal.
This result is illustrated in Fig. 12, where irrespective
of the variance contained in a signal, the top-hat fraction
appears to be a strictly decreasing function of the kur-
tosis. Recall that the kurtosis (or flatness) of a signal is
simply the ratio of the fourth-order moments to the sec-
ond-order moments and its value is large when a time



436 VOLUME 57J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 11. Contributions of top-hat and subplume variability to the third-order statistics for the FIRE case. (a) w9 , (b) w92 , (c) w9 ,2 2q9 q9 u9t t l

and (d) w92 . Solid lines represent total values of the variables; long-dashed, the top-hat contribution from the updrafts; dotted, the top-hatu9l
from the downdrafts; dash–dotted, updraft subplume variability; and dash–dot–dotted, the downdraft subplume variability.

series frequently has extreme values. This result moti-
vated us to look at some simple analytic PDFs, such as
uniform, top-hat, triangle, etc. Integration of these dis-
tributions further suggests that there is indeed a ten-
dency for the top-hat fraction to increase with decreases
in the values of kurtosis as shown in Table 1. Note that
all the PDFs have zero skewness values.

Physically, we can compare time series with smaller
and larger kurtosis (e.g., Fig. 13). If we conceptually
group the signals into events, each of which has either
successive positive or negative points, then each top-

hat subset (positive or negative) can be thought of as a
composite of all the events (positive or negative) be-
longing to that subset. Then the SPV can be interpreted
as the variability within the individual events as well as
among the different events. We find that the difference
between a time series with large kurtosis and a time
series with a small kurtosis is evident in the amplitude
of distinct events. Thus it suggests that the prime con-
tributor to the SPV is the variability among events, rath-
er than variability within events. This view gets further
support from the fact that a signal with considerably



1 FEBRUARY 2000 437W A N G A N D S T E V E N S

FIG. 12. (a) The top-hat fraction of the variance as a function of kurtosis for fields perfectly correlated with the sampling field. Diamonds
are from a time series with relatively small variance, crosses are from a field with relatively large variance. Circles are from time series
with relatively large variance but a decade less of an inertial range than the time series corresponding to the crosses. (b) The kurtosis and
the variance for the time series analyzed in (a).

TABLE 1. Top-hat fractions for different PDFs. Here, x is a random variable, b a positive parameter, and d Dirac delta function.

PDF Top hat Uniform Triangle Gaussian Exponential

Expression
d(x 1 b)

, x ∈ (2`, 0)
2

1
,

2b

1 |x |
1 21 2b b

2 2exp[2x /(2b )]

Ï2pb

1 |x |
exp 21 22b b

d(x 2 b)
, x ∈ (0, `)

2
x ∈ (2b, b); x ∈ (2b, b); x ∈ (2`, `) x ∈ (2`, `)

0, otherwise 0, otherwise

Kurtosis 1 1.8 2.4 3 6

Top-hat fraction 1 0.75 0.667 0.637 0.5

less spectral power at small scales tends to not differ
substantially in its top-hat fraction from one with more
power at small scales (e.g., compare the crosses and
circles in Fig. 12, corresponding, respectively, to com-
posites of time series like those in Figs. 13b,c, respec-
tively). This result further justifies the scale truncation
implicit in the LES.

8. Conclusions

In this work, we have studied the validity of the top-
hat representation of some second- and third-order tur-
bulence statistics with LES of both a shallow cumulus
and a stratocumulus CTBL. The main conclusions of
this work are summarized as follows.

The top-hat parameterizations based on the common-
ly used conditional sampling techniques poorly repre-
sent the scalar variance and covariance statistics in these
two case simulations, despite the fact that the same pa-
rameterization provides realistic or useful estimates for
the scalar fluxes. This primarily follows from the two
facts. First, most conditional sampling methods are
based at least in part on vertical velocity, in which case

the variance of a scalar may be large in a region of the
flow where it correlates poorly with the velocity. Sec-
ond, the self-correlation nature of a variance ensures
that all the fluctuations contribute to its value, while the
top-hat models completely ignore the variability from
the top-hat means. For the fluxes, however, the contri-
bution comes mainly from the coherent elements, and
the contribution by the subplume variabilities is limited
due to their less coherent nature. The analysis of ‘‘toy’’
time series further indicates that variability among in-
dividual events within a composite degrades the top-hat
representation of the variance more than variability
within events.

We also have shown that there is clear structural dif-
ferences between the BOMEX and FIRE cases in their
respective distributions of w9 and w9 due to the nature
of the different convective circulations. For the BOMEX
case, the distribution functions demonstrate apparent bi-
modal behavior with strong correlation in the convective
updrafts and poor correlation in the environment. This
phenomenon does not exist in the FIRE case, where the
w9– distribution shows some Gaussian features, whileq9t
the w9– distribution is basically non-Gaussian due tou9l
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FIG. 13. (a) Time series with large kurtosis. (b) Time series with small kurtosis. (c) Same as (b), but with a decade
smaller inertial range. That is, kh in low-pass filter is a factor of 10 smaller.

the influences of the opposing entrainment and radiative
processes. This structural difference in part explains
why the top-hat models of the second- or third-order
scalar fluxes in the cumulus CTBLs are more robust
than they are in the stratocumulus CTBLs.

Turbulence in the CTBLs is a manifestation of insta-
bility and tends to organize itself in readily identifiable
coherent structures. These structures are the agents of
the fluxes, and they result from the PBL’s attempt to
relieve itself of the instability generated by various forc-

ings. It is not clear, however, how strongly these forcings
are coupled to the non-top-hat parts of the scalar vari-
ances. In the BOMEX case, much of the variance occurs
in the environment, not in the coherent convective up-
drafts (Fig. 2). This environmental variance may be ex-
plained by decaying structures and may not be as dy-
namically important as that in the convective updrafts
(although it surely affects the evaporation timescale of
the detrained inactive clouds so as to influence the cloud
cover). In the FIRE case, however, our analysis suggests
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that the variability in the downdrafts be strongly asso-
ciated with the two dynamic processes, that is, the en-
trainment and radiative cooling (Fig. 8c). These so-
called subplume variabilities can be an important part
of the overall CTBL dynamics. For example, Moeng
(1986) demonstrated that the buoyancy covariance terms
contribute significantly in the flux budget analysis.
Therefore, one needs to look at the processes that gen-
erate and dissipate the scalar variances and covariances
to formulate the best approach to representing them in
the context of a particular PBL model.

Although the development of new or improved pa-
rameterizations is not a subject of this paper, the results
here indeed suggest a number of ways to improve the
top-hat parameterizations of the scalar variances. For
the cumulus CTBLs, the FDF analysis tends to show
two turbulence regimes of the nonlocal cumulus mixing
mode and the gradient-dependent quasi-Gaussian mode
in the environment. Thus it may be possible to use a
turbulence closure model to capture the variance in the
environment and top-hat models [Eq. (1)] to simulate
the convective updraft’s portion. However, to design
such a approach, we need to learn more about the nature
of the environment turbulence and its relationship to the
convective updrafts. As for the stratocumulus CTBLs,
one can estimate the SPV terms by assuming a jointly
Gaussian distribution as discussed in section 7. A very
recent study by Petersen et al. (1999) found that the
top-hat parameterizations are significantly improved by
relating the SPV terms to the top-hat terms through the
empirical correlation factor.

Finally, the conditional sampling technique can be
used to perform similar analysis of scalar variance and
covariance statistics as is done with the LES calculations
in this paper. For example, de Laat and Duynkerke
(1998) used the sign of vertical velocity (similar to the
conditional sampling used for the FIRE simulation here)
to identify updrafts and downdrafts in the aircraft mea-
surement made during the Atlantic Stratocumulus Tran-
sition Experiment. One may follow this approach to use
in situ measurement to calculate the top-hat and sub-
plume contributions to the scalar variance and the third-
order statistics to evaluate the validity of (1) and (2).
Indeed, such a study is necessary, as modeling studies
such as ours predominantly serve the purpose of framing
questions and ideas in a way that makes them suitable
for testing by observations.
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APPENDIX A

Effects of Partial Symmetry of Probability Density
Function

Let us take qt as an example. For the (m 1 n)th
moment w9m , one hasnq9t

` `

m n m nw9 q9 5 w9 q9 p(w9, q9) dq9 dw9, (A1)t E E t t t

2` 2`

where m . 0 and n . 0. If p(w9, ) ù p(2w9, ) forq9 q9t t

w9 ∈ (2`, `) and ∈ (2`, ), where is the cutoffq9 q* q*t t t

value for the saturated convective updrafts as shown in
Fig. 5a, (A1) becomes

0 q*t

m n m nw9 q9 5 w9 q9 p(w9, q9) dq9 dw9t E E t t t

2` 2`

` q*t

m n1 w9 q9 p(w9, q9) dq9 dw9E E t t t

0 2`

` `

m n1 w9 q9 p(w9, q9) dq9 dw9E E t t t

2` q*t

` q*t

m m nù [1 1 (21) ] w9 q9 p(w9, q9) dq9 dw9E E t t t

0 2`

` `

m n1 w9 q9 p(w9, q9) dq9 dw9.E E t t t

2` q*t

(A2)

If m is an odd integer, the first integral vanishes and
one has

w* `

m n m nw9 q9 ù w9 q9 p(w9, q9) dq9 dw9t E E t t t

2` q*t

` `

m n1 w9 q9 p(w9, q9) dq9 dw9.E E t t t

w* q*t

The first integral in the rhs of the above equation should
be small with w* 5 0 and 5 1.7 g kg21 for theq*t
updraft cutoff values in the BOMEX case from Fig. 5,
because the integration is over the small sectorlike area
enclosed by the minimum-value contour line (in upper
left quadrant), w9 5 0 and 5 1.7 g kg21. Thus oneq9t
has

` `

m n m nw9 q9 ù w9 q9 p(w9, q9) dq9 dw9. (A3)t E E t t t

w* q*t

The above equation suggests that the total moment can
be approximated by the contribution only from the up-
drafts. The same conclusion can be reached for the mo-
ment with an n being an odd number and a probability
density function that is approximately symmetric about

5 0. One can apply a similar procedure to ul to obtainq9t
the same conclusion.
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APPENDIX B

Time Series Model

The model we use to generate simple time series with
nice scaling properties is the bounded cascade model of
Cahalan et al. (1994). This model is thoroughly de-
scribed by the National Aeronautics and Space Admin-
istration group (see, for instance, Marschak et al. 1994;
Davis et al. 1997). The purpose of this appendix is to

summarize its features and discuss the details of its im-
plementation for our study.

Mathematically it can be formulated as follows: Let
f j(x) 0 # x # L be piecewise constant on 2j intervals,
each of length rj 5 L/2 j. Then

f j11(x) 5 Wj11(x; p, H) f j(x), (B1)

where

H[1 1 J(k)(1 2 2p)]r x ∈ (kr , (k 1 1/2)r )j j jW (x; p, H ) 5 (B2)j11 H5[1 2 J(k)(1 2 2p)]r x ∈ ((k 1 1/2)r , (k 1 1)r ),j j j

where k 5 0, 1, . . . , 2j 2 1 indexes W over the 2 j

intervals along L; J(k) 5 61 with the sign chosen
randomly for each k (that is, for each interval spanning
L); p ∈ [0, ½]; and H is a real number greater than zero.

The model [(B.1) and (B.2)] generates arbitrarily long
sequences of numbers (which we hereafter refer to as
time series) with nice scaling properties. Physically it
can be interpreted as taking intervals with constant
mass, bisecting them, and redistributing mass between
the bisected components in a way that depends on pa-
rameters p and H. The procedure is defined recursively,
so that it generates a 2j-point time series after j appli-
cations. It preserves the first integral of the time series,
namely, the mean value such that f j(x) 5 f 0(x). For a
given H, p controls the amount of mass redistributed
between intervals; H controls how this fraction changes
with the level of recursion. As j becomes large the power
spectrum of the sequence scales with k2b, where b is
determined by H such that 1 , b(H) 5 min(2H, 1) 1
1 , 2, and k is the wavenumber (Davis et al. 1997).

In our analysis we generate two independent time
series (where independence is obtained by starting the
procedure using a different seed in our random number
generator) with j 5 14 and then take their difference.
This procedure minimizes the skewness. We next filter
large and small scales from the time series by multi-
plying the Fourier amplitudes by

[1 1 (k/kl)2 1 0.5(k/kl)3 1 0.1(k/k l)4]21

for k $ kl

and by

[1 1 (kH/k)2 1 0.5(kH/k)3 1 0.1(kH/k)4]21

for k # kH.

By building time series from signals with larger or
smaller average masses it is possible to modulate the
variance of the difference time series, without signifi-
cantly affecting other low-order statistics. For most of

our analysis we average our results from 100 indepen-
dent time series. Typically we consider time series gen-
erated with H 5 ⅓ fixed so as to generate time series
that scale over several decades with k25/3. The behavior
of the top-hat partitioning of the variance is then con-
sidered as a function of p.
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