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ABSTRACT

Large eddy simulation is used to study top-hat parameterizations of second- and third-order scalar statistics
in cumulus and stratocumulus cloud-topped boundary layers (CTBLS). Although the top-hat parameterizations
based on commonly used conditional sampling methods are a useful approach to modeling the vertical fluxes
in the simulated CTBLSs, they fail to realistically represent the scalar variances. The reason is that the common
sampling methods are based at least in part on the sign of vertical velocity, but not on the sign of the scalars
whose variances are represented and that scalars and velocity are not perfectly correlated. Furthermore, the
self-correlation nature for a variance means that all the fluctuations contribute to its value, while the top-hat
models completely ignore the deviations from the top-hat means and thus considerably degrade the repre-
sentation of the variance. For the fluxes, however, only the coherent convective elements make the most
contribution. Analysis of analytic models and ‘‘toy’’ time series indicates in a more generic setting that the
effect of poor correlations between the signal upon which the sampling is based and the signal whose variance
is to be represented tends to degrade the ability of top-hat parameterizations to capture the variance. The
analysis of toy time series also indicates that variability among individual events within a composite degrades
the top-hat representation of the variance more than variability within events. For the vertical velocity—scal ar-
related third-order moments, the top-hat model gives reasonable estimates for the cumulus CTBL but not for
the stratocumulus CTBL. These differences are explained by structural differences (tied to circulation dif-
ferences in the two CTBLS) in their respective joint probability density functions of vertical velocity and
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Top-Hat Representation of Turbulence Statistics in Cloud-Topped Boundary Layers:

various scalars.

1. Introduction

It has been a common practice to use the convective
mass flux method to represent vertical turbulent fluxes
of temperature and moisture in cumulus cloud-topped
boundary layers (CTBLS). That is, the fluxes are pa-
rameterized as the products of a mass flux and differ-
ences between characteristics of convective updraftsand
the mean state (e.g., Arakawa and Schubert 1974; Betts
1973). Thisapproach is based on the belief that coherent
structures (usually clouds) are responsible for most of
the turbulent transport and that these structures are rel-
atively uniform. Because the mass flux method ignores
the variability either among or within coherent elements
(i.e, updrafts or downdrafts) and only considers the
mean properties of some average coherent element, it
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may also be referred to as ‘‘top-hat” representation of
the turbulent fluxes. Recently, Siebesma and Cuijpers
(1995) gave excellent discussions on someissuesrelated
to the top-hat parameterizations for the trade wind cu-
mulus boundary layers.

The mass-flux decomposition of the flow has also
been applied to stratocumulus CTBLSs for both obser-
vational studies (e.g., Penc and Albrecht 1986; de L aat
and Duynkerke 1998; and others) and modeling studies
(e.g., Wang and Albrecht 1986; Randall et al. 1992).
One critical issue is the construction of a simple and
yet physically based conditional sampling that can ef-
fectively identify the coherent structures for the top-hat
parameterization of the turbulent fluxes. Both Siebesma
and Cuijpers (1995) and Schumann and Moeng (1991)
discussed this issue.

Recently the top-hat approach has been extended as
ameans of representing moments other than fluxes. For
instance, Randall et al. (1992) used the top-hat for-
mulation to represent the variance of a generic scalar
variable ¢:
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¢ = au(gou - 6)2 + (1 - au)(qod - 6)2

= au(l - au)(gou - QDd)zi (1)
where «, is the fractional coverage of updrafts; ¢, and
@q, respectively, represent the value of ¢ averaged over
the updrafts and downdrafts; the overbar operator, ( - ),
implies an ensemble averaged value of a variable; and
the prime denotes the departure from that average, that
is, ¢’ = ¢ — @. They also proposed a similar top-hat
parameterization for the flux of the scalar variance:

W,(Plz = au(Wu - W)(@u - 6)2

A= a)wy — W)es — @)% (2
where w is vertical velocity.

The application of (1) and (2) is appealing for both
cloud parameterization and turbulence closure model-
ing. If one can use (1) to calculate g;?, 6,2, and g, 60/
(here, g, istotal water mixing ratio and 6, isliquid water
potential temperature) in cumulus CTBLSs, then one can
use the cloud parameterization of Sommeria and Dear-
dorff (1977) to define cloud cover and liquid water con-
tent in a large-scale model. Moreover, (1) and (2) can
be used as a closure technique in ensemble turbulence
closure models (Randall et al. 1992; Abdellaand Mcfar-
lane 1997). However, Young (1988) found that the top-
hat model fails to capture the virtual potential temper-
ature variance in aclear convective boundary layer. The
applicability of (1) and (2) in the CTBL has, to our
knowledge, not been previously studied.

In this work, the large eddy simulation (LES) tech-
nique is used to evaluate the top-hat representation for
the scalar variance and covariance for both cumulus and
stratocumulus CTBLSs; we explain the results with dis-
cretejoint frequency distribution functions; and webrief-
ly discuss the results of the third moments. Last, we
discuss the results from the LES in the context of an-
alytic modelsand ‘“toy”’ time series with desirable spec-
tral properties.

2. LES model

The LES model used in this study is that of Stevens
et al. (1996). It is continually under development, and
readers are referred to Stevens et al. (1999) for a com-
plete review and comprehensive evaluation of the cur-
rent implementation of the model. Of relevance to this
study is the fact that monotone operators are used for
scalar advection (following Zalesak 1979), the Sma-
gorinsky—Lilly subgrid model with the Smagorinsky
constant C, = 0.23, and a bulk cloud scheme in which
liquid water is diagnosed at its equilibrium value. The
subgrid-scale (SGS) scalar variances are also calculated
(only for diagnostic purpose) from

3
5 >, (Ul'p")?
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where double primes denote SGS fluctuations, ( -) a
grid volume average, u; velocity component, TKE, isa
diagnosed SGS turbulent kinetic energy, C,, = 0.42, and
C, =12

The LES code has been used to simulate various cases
of CTBLsin the previous five Global Energy and Water
Experiment Cloud System Study workshops, and the
performance of the model has compared favorably with
both other LES models and observations (e.g., Moeng
et al. 1996; Bretherton et a. 1999).

For the cumulus CTBL simulation, the LES model
uses 100 X 100 X 76 grid points with uniform grid
spacing in three dimensions to cover a 6.5 km X 6.5
km X 3 km domain, implying Ax = Ay = 65 m and
Az = 40 m. For the stratocumulus CTBL simulation,
the model uses 68 X 68 grid pointswith uniform spacing
Ax = Ay = 50 m in the horizontal; and there are 76
grid points in the vertical with a minimum spacing of
5 m within the inversion and 25 m below the inversion
to span a 3.4 km X 3.4 km X 1.97 km domain. The
time step is 2 s for both simulations.

3. Cases of shallow cumulus and stratocumulus
simulations

For the shallow cumulus case, we use Barbados
Oceanographic and Meteorologica Experiment (BOM-
EX) conditions, which were used in the fifth intercom-
parison case of the working group 1, held in Seattle,
Washington, in July of 1997. This case has a complete
set of large-scale conditions and has been studied in
detail (Siebesma and Cuijpers 1995). The initial and
large-scale conditions can be found in their paper or on
the Web sitet for the workshop.

For the stratocumulus case we use the San Nicolas
Island sounding composited by Albrecht et al. (1995)
from observations taken during First International Sat-
ellite Cloud Climatology Project (ISCCP) Regional Ex-
periment (FIRE). This sounding represents a classic sit-
uation corresponding to persistent stratocumulus. Also,
we specify a fixed SST of 288.8 K and a fixed large-
scale divergence of 6 X 10-¢ s 1. For this case, the four-
stream radiation parameterization developed by Fu and
Liou (1992) and Fu et al. (1995) was used to interac-
tively calculate longwave radiative cooling rate.

For both cases the LES is integrated until a quasi—
steady state is achieved (7 h for the BOMEX case and
4 h for the FIRE case), and the analysis is conducted
over the last hour. The focus is on the top-hat repre-
sentation of turbulence statistics; thus, we will not dis-
cuss the general physical processes associated with the
mean and turbulent structures of the simulations, except
to say that they are in accord with our expectations and
past experience. Nonetheless, for the sake of reference

1 Online at http://www.knmi.nl/~siebesma/bomex.html.
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Fic. 1. Mean profiles and SGS statistics from both BOMEX and FIRE simulations. Upper panels are for the BOMEX case, lower panels
for the FIRE case. (left to right) Total water mixing ratio (g kg=*) and liquid water potential temperature (K); liquid water content; wind
components u and v (m s71); and SGS fractional contributions. For the SGS panels, dotted line denotes the fractional contribution of SGS
q, flux; dash-dotted the 6, flux; solid the g, variance; and long-dashed the 6, variance.

we have included in Fig. 1 the mean profiles of the
simulations averaged over the last hour. As shown in
Figs. 1d and 1h, the fractional contributions of the SGS
statistics are relatively minor: for the BOMEX case, all
the variances and fluxes contribute less than 10% in the
cloud layer; for the FIRE case, the SGS contributions
for most of the variables are less than 10% in the mixed
layer, except for (”2), which is more than 20% above
700 m. We emphasize that our study focuses on the
regions where the flows are mostly resolvable, that is,
the cloud layer for the BOMEX case and the mixed
layer below 700 m for the FIRE case. All the turbulence
statistics presented hereafter are for the resolved-scale
variables only.

4. Contributions of top-hat and subplume
variability to second moments

Here we first formulate the decomposition of the var-
iance abstractly; the results from the two case simula-
tions are presented subsequently.

a. Top-hat model

Consider two variables a and b defined over a set E
of N points. One may partition E into M disjoint subsets

E,, of length N;,i = 1, ..., M. One can then write the
covariance of a and b over E, solely in terms of the
values of a and b averaged over E and their values
defined relative to the E;s:

M

ab = 2 a;(a

i=1

—a)(b, — b) + ZM: xah, (4a)

where the unannotated overbar still represents an av-
erage over the set E, while the overbar annotated by i
represents an average over the E;th subset, that is,

a=2a= %(Z a),

Ej

(4b)

(similarly for b). Primes denote deviations from a subset
average, so, for instance, @ = a — a,. From (4b) it
follows that

M

a= E o, q;,

i=1

(4c)

where a; = N;/N. Because E is a disjoint union of the
Es o+ a,+ -+ a,=1

The two terms on the rhs of (4a) can be interpreted
as follows. The first summation on the rhs of (4a) rep-
resents the top-hat contributions, namely, the contri-
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bution to the covariance from the values of a and b
composited over each subset E;. The second summation
in (4a) measures the total contribution from variability
within each subset. If a subset is loosely termed plume
(analogous to the commonly used updraft and downdraft
decomposition), the second summation can be called
the subplume variability term. Then, if one can define
a physically meaningful conditional sampling method
to determine the subsets in such a way that the second
summation in (4a) is significantly smaller than the first
one, then the covariance can be represented by the first
summation. For obvious reasons, this decomposition is
most appealing when M, the number of subsets, issmall.

The above equations are not complete until the E;’s
are specified. In the present study, we follow the core
decomposition method of Siebesmaand Cuijpers (1995)
for the BOMEX case, and the w-plume approach with
zero threshold of Schumann and Moeng (1991) for the
FIRE case. These two conditional sampling (CS) meth-
ods, denoted by CS, (for the BOMEX case) and CS;
(for the FIRE case), respectively, decompose the flow
into two subsets. Thus the second subset E,, is simply
defined as the set of al pointsnot in E,, wherethe E,’s
are defined as follows:

CS.: ApointP = (x Y, z,t) OE, if and only if
w'(x,y, z,t) >0,
and 6,(x,y, z, t) — 6,(z, t) > 0;

CS;: Apoint P = (xy, z t) OE, if and only if

a.xy, zt) >0

w'(x, Yy, z,t) > 0.

In these definitions, q. is liquid water content, and 6,
virtual potential temperature. The subset E, or plume 2
in CS, represents the surrounding area of the convective
updraft (subset E,) in the cumulus CTBL and thus will
be referred to as the convective environment or simply
the environment.

b. Results

Figure 2 compares the top-hat contributions with the
subplume variability for q,, 6,, w variances, and g, —
0, covariance from the BOMEX simulation. Clearly, all
the variance and covariances are dominated by the en-
vironmental subplume variability terms; the contribu-
tions from the top-hat terms of the convective updrafts
are only 25%-30% of the total values. All the top-hat
terms vanish at the cloud-top level. The other two terms
in (4a), the convective updraft subplume variability and
the environment top-hat terms, contribute little and are
neglected. The convective updrafts (subset E,) occupy
only about 2.5% of the domain. Thisfractional coverage
of the active updraft is close to the value of 3.0%, typ-
ically observed in the trade wind cumulus boundary
layers (Albrecht 1981).

We also applied the other two conditional sampling
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methods discussed by Siebesma and Cujpers (1995).
One defines convective updrafts (E,) solely based on
clouds (g, > 0); the other, based on both updrafts and
clouds (w' > 0 and g, > 0). These two CS definitions
lead to modest increases of updraft fractions to 4% and
5% and increases in the top-hat fraction of the scalar
variances to 35%—40% (the figures are not shown here).

For the FIRE case, the subplume variability contri-
butions are dominant terms, and the fractional top-hat
contributions are only 5%—15% of 6,2 and 20%—30%
of g;?, as shown in Figs. 3a,b. The covariance g, 0, is
small and changes sign in the interior of the boundary
layer, a feature that is difficult to model. The top-hat
contribution has the wrong sign for the covariance for
most of the vertical domain. However, for w'2, the top-
hat contribution is greater than the subplume contri-
butions and explains more than 60% of the total vari-
ance, which is consistent with the result of Schumann
and Moeng (1991). Although the top-hat model can ex-
plain most of the w variance in the FIRE casg, it carries
only 20% of the variance for the BOMEX case.

The results for g, and 6, fluxes are plotted in Fig. 4
for comparison with the scalar variance and covariances.
Despite the failure to capture the variance statistics, the
same top-hat models well represent the fluxes in the
BOMEX case and also give a useful estimate in the
FIRE case, in support of the previous studies (Siebesma
and Cuijpers 1995; Schumann and Moeng 1991).

5. Discrete joint frequency distribution function

To understand why the top-hat model is so successful
in representing the fluxes but so poorly represents scalar
variances, we find it useful to study the discrete joint
frequency distribution function (FDF). If we consider
the values of &’ and b’ to be random variables X" and
Y’, then the FDF is defined as

fa,b) = P(a — Aa'/2 < X' = a + Aa'/2,
b’ — Ab/2 <Y =b' + Ab/2), (5)

where P(A) represents the probability that A occurs. The
FDF is related to probability density function (PDF) by

a'+Aa'/2
f(a,b) = f

'—Aa'l2

b'+Ab'/2
pdf (@', b') db’ da’.  (6)

b’—Ab'/2

Clearly, al the discussions based on FDFs can be easily
extended to the PDFs. Because the conditional sampling
methods are defined mainly in terms of w’, we focus
on the FDFs for w' and scalar fluctuations.

a. BOMEX case

For the BOMEX case, the relevant features of FDFs
do not vary with height within the cloud layer. Thus we
discuss these functions only at 1 km. Figures 5a—c show
the distribution functions f(w', ¢'), where ¢’ O (g,
0/, 0.). Also displayed in Figs. 5d—f are the scatterplots
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Fic. 2. Contributions of top-hat and subplume variability to various variance and covariance statistics in the BOMEX
simulation. (a) g2, (b) 6/, (c) g/, and (d) w'2. Solid lines denote total values of the statistics; long-dashed, the
contribution of convective updraft top-hat terms; dotted, the contribution of the updraft subplume variability; and dash—
dotted, the contribution of the environment subplume variability.

of w and ¢’ sampled at 20 different times for the con-
vective updrafts defined as plume 1 by CS,. Clearly,
the sampled w’ and ¢’ are highly correlated and coincide
with the long “tail”’ areas of f(w', ¢').

Animportant characteristic of these distributions, par-
ticularly for f(w’, g;) and f(w’, 6)), is that in the en-
vironment, each one tends to be approximately sym-
metric about w' = 0 and ¢’ = O [i.e, f(W, ¢') =
f(—w', ¢') and f(W', ¢') = f(W', —¢")]. This feature
of symmetry implies poor correlation between w’ and
¢’ in the environment. In addition, the fluctuations in
the environment are generally significantly weaker than
those in the convective updrafts, reflecting the lack of
convective activity there. Thus, the environment terms

(the plume-2 terms) in (4a), including both top-hat and
subplume variability, are very small, and the total flux
w' ¢’ can be determined approximately by only the up-
draft contribution. Furthermore, because the local fluc-
tuations ¢; = ¢ — ¢, are, in general, smaller than ¢,
— @, and because some of the positive and negative
values of w;¢; are canceled out in (4a), the convective
updraft subplume variability makes a very small con-
tribution to the scalar fluxes.

This FDF analysis demonstrates that the success of
the top-hat models to represent the fluxes in this case
depends on the contrast of the very different correlation
functions between w' and ¢’ in the environment and
that in the convective updrafts, or the bimodal behavior
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variability.

of the FDFs in the two plumes. We notice that in the
environment positive and negative values of each of the
turbulent fluctuations, including both w' and ¢’, are
almost canceled out due to the broad sampling area
(97% of the domain), leading to the fact that the en-
vironmental averaged variables are very close to the
ensemble mean. This cancellation of negative and pos-
itive values in an individual plume significantly de-
grades the top-hat representation of some statistics, es-
pecially scalar variances for the CTBLS.

As shown in Fig. 6, a significant difference between
f(6/, ;) and f(w', ¢') isthat g, and 6 are strongly
negatively correlated not only in the updrafts where the
liquid water fluctuations dominate both g, and 6/, but
also in the environment that is influenced by the de-
trained nonbuoyant air from the updrafts. This strong

anticorrelation results in a significant environmental
contribution to the total covariance q; 6, . However, the
environmental top-hat term in (4a), that is, (q, —
G.)(6,, — 6,), is close to zero because the environmental
averages are very close to the ensemble mean. Thus,
the contributions from the environment based on CS,
are predominantly accounted for by the subplume var-
iability term. Therefore, the top-hat model fails to rep-
resent g, 0, for this case.

The same argument applies to the case of variance.
Since any turbulent fluctuation perfectly correlateswith
itself, the environmental contributions must be included
in the parameterization. However, the conditional sam-
pling method for the BOMEX case, CS,, results only
in atrivial contribution from the environmental top-hat
terms, due to the cancellation of the negative and pos-
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FiG. 4. Contributions of top-hat and subplume variability to the turbulent fluxes in both simulations. (left) pLw'g
and (right) pc,w'6/. Upper panels are for the BOMEX case and lower panels for the FIRE case. Solid lines denote
total values of the fluxes; long-dash, the total top-hat contribution; dotted, the contribution of the updraft subplume
variability, and dash—dotted, the environment or downdraft subplume variability.

itive fluctuations. Consequently, the contributions from
the environment subplume variability terms dominate
the total environmental plume terms. Therefore, the top-
hat model is not sufficient to capture the variances.
The above examples suggest that the coherent struc-
ture may not carry most of the scalar variance and co-
variances for cumulus CTBLSs. Therefore, one should
design a conditional sampling method not only to iden-
tify the coherent structure, but also to represent the var-
iability in the environment. This requires that the pos-
itive definite nature of a variance be preserved in the
top-hat model. For example, we define anew conditional
sampling method CS. by adding one more subset
(plume) to the BOMEX conditional sampling method:

CS.. ApaintP = (xy, z t) OE, if and only if
w'(x,Y,2,t) >0, a.(xy,z,t)>0 and
0,(%, Yy, z, t) — 6,(z, ) >0;
POE,, if and only if w'(x,y, z,t) > 0 and
P¢E;
POE,, otherwise.

This conditional sampling method not only defines a
convective plume, but also separates upward and down-
ward streams in the environment, each of which oc-
cupies asimilar fractional coverage. Thus, it guarantees
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FiG. 6. (a) Joint frequency distribution function and (b) the scatterplots for 6/ and g, of the convective updrafts from the
BOMEX simulation.

that w' has only one sign in each of these plumes. As
shown in Fig.7a, the top-hat terms based on the above
conditional sampling can explain 50%—60% of the re-
solved w2 (similar to what was explained for the FIRE
case), afraction significantly larger than that in Fig. 2d,
even though it is still well below the top-hat fraction of
the fluxes. However, the above sampling approach does
not at all improve the top-hat parameterization of g, 2
asshowninFig. 7b, sinceq, and w’ are poorly correlated
in the convective environment.

If we apply CS; (in which the updrafts are defined
only by w’ > 0) tothe BOMEX case, the top-hat fraction
of w variance is reduced to 40% (figures not shown
here) compared to 60% for CS. (Fig. 7a). In addition,
the top-hat fluxes of g, and 6, account for about 40%
of the total fluxes at the cloud base and decrease to only
10% at 1 km, which is clearly a result of the failure by
the w'-sign-only scheme to identify the coherent struc-
ture, that is, cloudy updrafts, in this case. Thisresult is
consistent with Siebesma (1996).

b. FIRE case

We found that the relevant structures and patterns of
the various distribution functions are similar within the
cloud layer. Therefore, it is sufficient to show these
functions at one level in the cloud layer. Figure 8 dis-
plays various FDFs at 637.2 m, where w'6, is large.
The distribution functions f(w’, g;) and f(w’, 6!) show
positive correlation in general, while f(w’, 6) tends to
be quasi-symmetric about 6, = 0, implying that the
variables are poorly correlated.

The lower left quadrants in Figs. 8ab (W < O; q;
and 0 < Q) show that the entrainment is associated with
the drier inversion air and the cloud-top radiative and

evaporative cooling. These processes tend to make
downward parcels negatively buoyant and dry. The up-
per left quadrant of Fig. 8b shows the entrainment of
more buoyant inversion air into the cloud layer. The
distribution function f(w’, /) demonstratesasignificant
variability for w < 0, as shown in Fig. 8c. The en-
trainment of warmer air from the inversion and the ra-
diative cooling of saturated parcelsare clearly two major
processes that simultaneously regulate the distribution.
If the radiative cooling dominates, negative 6, is as-
sociated with negative w' in the lower left quadrant in
the distribution. On the other hand, if the entrainment
mixing is dominant, positive ¢, is associated with neg-
ative w' as shown in the upper left quadrant to increase
the negative correlation between w’ and 6;. Apparently,
there is significantly larger variability in 6, in the down-
drafts than in the updrafts, which explains why the con-
tribution from the downdraft variability dominates the
total 0, variance as shown in Fig. 3b. Figure 8d shows
that the correlation between g, and 6, is very weak, due
to the well-mixed mean profiles. The tendency of neg-
ative correlation in the lower right corner, that is, neg-
ative q; associated with positive 6/, apparently implies
effects of the entrainment.

It is evident that the poor correlation of ¢' with w’,
particularly 9, with w’, in each of the plumes consid-
erably reduces the significance of the top-hat contri-
butions to the variances, because the positive and neg-
ative scalar fluctuations within each plume are canceled
out. Thus, for top-hat representation of a variance, it is
important to maintain a unique sign, positive or nega-
tive, for turbulent fluctuations in each of the plumes
defined by a conditional sampling. For example, to im-
prove the representation of q; 2, the ““wg-plume’” method
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the total subplume variability.

_by Schumman and Moeng (1991) is tested here. That

is,

CS,: ApointP = (x Y, zt)OE, if and only if
w(xyzt >0 ad g(xyzt)>0
POE,ifandonly if w'(x,y, z,t) <0 and

gy zt <O
PO E,

This sampling scheme guarantees that g, keeps a
unique sign for plume 1 and 2, which represent the areas
of the upper right and lower left quadrants in Fig. 8a.
Figure 9a shows that the top-hat representation using
CS, contributes significantly more to the total g,2 than
it does with CS; (Fig. 3). However, since q; is poorly
correlated with 6/, the uniqueness of the g, sign in the
plumes does not lead to the uniqueness of the 6, sign.
Conseguently, the new sampling method does not at all
improve the top-hat parameterization of 6,2, which is
again dominated by the subplume variability, as shown
in Fig. 9b. This example demonstrates that the major
difficulty of the top-hat parameterization in this caseis
the poor correlation among w’, 6/, and q,.

It is now clear why the top-hat parameterizations of
the scalar variances are less successful than those of the
fluxes. First, in the case of variance, the self-correlation
means that al the fluctuations contribute, while the top-
hat models completely ignore the deviations from the
plume mean values. For the fluxes, however, only co-
herent elements make significant contribution, whilethe
deviations from the top-hat values [second term in (4a)]
may cancel out due to poor correlation. Second, the
commonly used conditional sampling schemesare based

otherwise.

mainly on the vertical velocity and other related vari-
ables and thus are less suitable for the scalar variances
than for the fluxes, due to the poor correlation between
the velocity and the scalars.

6. The contributions to third moments

Third moments can also be written as a sum of con-
tributions from plume top-hat and subplume variability:

ab? = a,(a, — a)(b, — b)?

+ (1 - a)(@ — a)b, - 6)2

+ ay[ab? + 2(b, ~ b)ab; + (a, ~ A)b;? ]

+ (1 - o)

X [a5by” + 2(b, — b)agh; + (a, — A)BF ],

(7

where all the notations are the same as in (4a), except
that only two subsets (or plumes) are considered here.
The first two terms in the rhs of (7) are top-hat terms,
and the rest are subplume variability contributions. We
only consider w' ¢’-related third moments.

Because the frequency distribution of w' and ¢’ in
the BOMEX case tends to be approximately symmetric
about w = 0 and ¢’ = 0 in the environment, one can
easily show that W' ¢’'? and w'2¢" are dominated by the
convective plume contributions (see appendix A).
Therefore, one should be able to use the top-hat model
to parameterize them so long as the contributions from
the updraft subplume variability are small. This result
is presented in Fig. 10. The top-hat model gives a better

representation of w'¢’? than w'2¢’ because the sym-
metry about w' = 0 is better than that about ¢’ = 0.
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FiG. 8. Various joint frequency distribution functions at 637.2 m for the FIRE case. (a) f(w', q;), (b) f(w', 6.), (c)
f(w', 6/), and (d) f(6/, q;). Note that the numerical values are in the unit of percentage.

For the FIRE case, the top-hat contributions do not
provide useful estimates for any of the four third-order
moments, as shown in Fig. 11. In fact, the sum of the
top-hat contributions from the updrafts and downdrafts
is close to zero for each of these statistics. The reasons
are as follows. First, the plume-scale variabilities [i.e.,
(¢, — @) and (¢, — )] are small, due to the existence
of positive and negative fluctuationsin each plume. Sec-
ond, the plume-scale variahility tends to be symmetric,
that is, (¢, — @) and (¢, — @) have similar magnitudes
but different signs, so that the first and second termsin
(7) are nearly canceled out, leading to the dominance
of the subplume variability contributions. Although the
top-hat contributions tend to be symmetric, the sub-
plume contributions are highly asymmetric, particularly
for w'2g; and w'q, 2, as shown in Figs. 11a,b, reflecting
the influences of the cloud-top and surface mixing pro-

cesses. For w26, and w’ 6, 2, the subplume contribution
in downdrafts clearly dominates, which can be explained
by the large 6, variability in downdrafts shown by the
FDF f(w', 6)) in Fig. 8c.

7. Discussion

As illustrated with the two examples above, the fail-
ure of the top-hat parameterization to adequately rep-
resent scalar variances is in part due to issues of sam-
pling and in part due to the generic variability of the
signal. Even with perfect correlations between scalars
and w’, the variability of ascalar within different plumes
leads to significant contributions to the variance by the
subplume variability in (4a). In this section we make
some simple assumptions and look more generically at
how different features of afield contribute to the ability
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Fic. 9. Contributions of top-hat and subplume variability to g, and 6, variances based on the CS,. (a) g, variance
and (b) 6, variance. Solid lines represent total variances; long-dashed, the total top-hat contribution; and dotted, the

total subplume variability.

of top-hat parameterizations to represent the variance of
that field.

a. Jointly Gaussian processes

Here we consider the ability of a top-hat parameter-
ization to represent the variance of a scalar a, given the
decomposition of the field through CS;, and the as-
sumption that the vertical velocities w and a are jointly
distributed by a Gaussian process with correlation co-
efficient p = w'a’/(o,0,), where now we use o2 to
denote the variance of a field x. Because we use the
sampling method CS;, we can speak of our sets as the
set of updrafts E,, and the set of downdrafts E,. Because
w and a are distributed jointly through a Gaussian pro-
cess, E, and E, must each compose an equal fraction
of the set E (i.e., a, = a4 = %). Furthermore, a, and
a,, that is, the value of a averaged over updrafts and
downdrafts, respectively, can be calculated analytically
(e.g., Wyngaard and Moeng 1992):

—2po, 2po,
ay = , and a, = , 8
¢ V2 V21 ®

which implies that the variance of a can be written as

222
oz = =P 4 gpy, ©)

k

where the first term above is the top-hat part defined by
(1), and the subplume variability is denoted by SPV.
Thus it follows that

2p2 2 SPV
i)D (1——)5—251.
T ™ g3

Equation (10) also shows that under the above described

SPV = o-§(1 - (10)

conditions the subplume variability is aways significant
and accounts for between about 40% and 100% of the
total variance.

Equation (10) illustrates that the correlation between
the sampling field (in this case w) and the field whose
variance we wish to know determines in large part the
partitioning of the variance between the top-hat and SPV
terms. Note that because the correlation is the flux di-
vided by the product of the square root of the variances,
it is possible that there be significant flux but poor cor-
relation. This, for instance, is the case in the BOMEX
simulation. It is also interesting to note that the upper
bound on the top-hat contribution to the variances, for
jointly Gaussian processes, is very close to what is
found for the top-hat contribution to the w variance for
both the BOMEX and the FIRE case when the E;,’s are
based on the sign of vertical velocity [which ensures p
= 1in Eqg. (9)]. This suggests that even though our
fieldsfrom the LES are not purely Gaussian, theanalysis
of jointly Gaussian processes does give insight into our
results.

For jointly Gaussian processes, any third-order mo-
ment vanishes, that is, a’b’? = 0. In this case, the top-
hat model gives exact representation of the third-order
moments, because their parameterized values are also
zero due to the symmetry of Gaussian PDFs. For non-
Gaussian processes, SPV may have significant contri-
butions to the total statistics as discussed in the previous
simulations.

b. Numerical results from synthetic time series

To what extent does the upper bound on the contri-
bution of the top-hat contribution to the variance depend
on the nature of the signal being analyzed? What is the
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top-hat terms are very small and neglected.

physical space interpretation of the magnitude of the
SPV terms? To gain insight into these questions we
analyzea‘‘toy’ time seriesthrough the methods already
discussed. The time series are built using the bounded
cascade model of Cahalan et al. (1994) and Davis et al.
(1997) and can 