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Variance scaling in shallow-cumulus-topped mixed layers
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ABSTRACT: Scaling of thermodynamic variance in shallow-cumulus-topped mixed layers is studied using large-eddy
simulation (LES). First, the performance of the top-down scaling (the turbulent flux at mixed-layer top divided by w∗)
is evaluated for transient shallow-cumulus convection over land. The results indicate that this scaling fails to capture all
the variance in the top half of the mixed layer when shallow cumulus clouds are present. A variance-budget analysis is
then performed, to derive a new scaling for the variance at mixed-layer top, which differs from the standard top-down
scaling by a factor of one Richardson number. The essential new features of the proposed scaling are that the local vertical
gradient is retained and that a balance is assumed between gradient production of variance and removal by transport and
dissipation, using an adjustment time-scale given by w∗/h. Evaluation against LES for a range of different cases, including
a dry convective boundary layer as well as steady-state marine and transient continental shallow cumulus, reveals a data-
collapse of the newly-scaled variance, for all hours and all cases in the top half of the mixed layer. The corresponding
vertical structure is shown to resemble a power-law function. The results suggest that the structure of variance in the dry
convective boundary layer is similar to that in the sub-cloud mixed layer. In transient situations, the scaling reproduces the
time-development of variance at sub-cloud mixed-layer top. The new cloud-base variance scale is then further interpreted in
the context of statistical cloud schemes, which depend on the variance as the second moment of the associated probability
density function. The results suggest that the area fraction of the moist convective thermals uniquely depends on the ratio
of cloud-base transition-layer depth to sub-cloud mixed-layer depth. This puts ‘valve’- or ventilation-type closures for the
cloud-base mass flux in the context of the variance budget for the sub-cloud layer. Copyright  2007 Royal Meteorological
Society
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1. Introduction

The parametrization of vertical transport of heat, humid-
ity and momentum by shallow-cumulus-cloud popula-
tions has been the subject of intensive research (see,
for example, (Arakawa, 2004) for a recent review). The
mass-flux approach, wherein the vertical advective trans-
port by organized updraughts is explicitly modelled,
has emerged as one of the more successful methods
(e.g. Ooyama, 1971; Yanai et al., 1973; Betts, 1975;
Siebesma and Cuijpers, 1995). The mass flux is defined
as the product of air density, convective area fraction, and
vertical velocity of the associated updraughts. While most
bulk-closure methods parametrize the mass flux as a sin-
gle entity, the area fraction and vertical velocity can also
be modelled individually. For instance, the updraught
vertical velocity can be estimated from the integrated
mixed-layer buoyancy flux (e.g. Grant, 2001), while the
associated convective area fraction can be retained and
explicitly parametrized (e.g. Bretherton et al., 2004; Neg-
gers et al., 2004). The area fraction can be estimated
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using an assumption for the underlying probability den-
sity function (PDF) of the thermodynamic state variables
(Sommeria and Deardorff, 1977), as constrained by the
prediction of one or more of its moments. Even the sim-
plest of these PDF-based approaches requires knowledge
of the variance of temperature and humidity. This raises
the question motivating this study: what determines the
structure of the variance at the top of the sub-cloud mixed
layer?

Standard similarity theory for the convective mixed
layer, or mixed-layer scaling, grew out of attempts to
understand the similarity structure of the surface layer
in the early 1970s (see, for example, (Stull, 1988) for
a review). Near the surface in shear-free convective
layers it is often argued that conserved scalars follow the
free-convective temperature scaling of (Wyngaard et al.,
1971; Kaimal et al., 1976), in which the dimensionless
variance of some scalar c scales as

σc
2

c2
∗

= α(
z

h
)
− 2

3 , (1)

where

c∗ ≡ w′c′
0

w∗
.

Copyright  2007 Royal Meteorological Society



1630 R. A. J. NEGGERS ET AL.

The overline denotes the mean value, and the prime
denotes fluctuations, so that c = c + c′. Values at z = 0
are denoted by subscript 0; values at the top of the sub-
cloud mixed layer, z = h, will be denoted by subscript h.
The Deardorff, or convective, velocity scale is denoted
by w∗.

Field measurements from Minnesota reported by
Kaimal et al. (1976) show that the potential-temperature
variance conforms well to Equation (1) in the lower part
of the mixed layer (z < 0.1h) with the constant of pro-
portionality α = 1.8. However, this scaling works less
well for z > 0.1h. Between 0.1h and 0.5h, θ2 tends
to decrease more rapidly than the theory predicts, and
θ2 tends to increase again above 0.5h. Kaimal et al.
(1976) recognized the tendency of θ2 to increase with
z above 0.5h as a signature of entrainment: a process
not accounted for in the arguments leading up to Equa-
tion (1). Subsequent work by a number of investiga-
tors (e.g. Deardorff, 1974b; Nicholls and LeMone, 1980;
Lenschow et al., 1980; Caughey, 1982) reinforced these
findings, and helped motivate the concepts of top-down
and bottom-up scalar diffusion (Wyngaard and Brost,
1984). According to these ideas, the fundamental asym-
metry of the convective forcing of the convective bound-
ary layer (CBL), whereby the buoyancy flux is positive
at the surface and some negative fraction of the surface
forcing at the top of the CBL, causes scalars mixing into
the CBL from the top (top down) to diffuse through the
CBL differently from scalar fluxes originating at the bot-
tom (bottom up).

Using these ideas, and noting that any scalar c can
be written as a linear combination of its top-down and
bottom-up components ct and cb, Moeng and Wyngaard
(1984) showed that the scalar variance through the depth
of the dry CBL can be well represented by superimposing
the scalar variance expected for pure top-down and
bottom-up scalars:

σ 2
c = c2

h∗fh

( z

h

)
+ 2ch∗cs∗fhs

( z

h

)
+ c2

s∗fs

( z

h

)
. (2)

In this expression, the quantities

ch∗ = w′c′
h/w∗

cs∗ = w′c′
0/w∗

}
, (3)

are separate scalings measuring the relative contributions
of the top-down and bottom-up components of the scalar,
with w′c′

0 and w′c′
h denoting the turbulent flux at the

surface and top of the planetary boundary layer (PBL)
respectively. The height variations of the component
variances are carried by the functions fh and fs, which
Moeng and Wyngaard (1984) deduced empirically on
the basis of existing field data and large-eddy simulation
(LES).

We ask how well Equation (2) captures the variance
profiles of liquid-water potential temperature θl and total
specific humidity qt, in the sub-cloud layers of bound-
ary layers topped by shallow cumulus. To answer this
question, we use a suite of simulations drawn from past

studies, ranging from nearly-stationary maritime shallow
cumulus to highly non-stationary cases of shallow cumu-
lus over land. The non-stationary cases are all tied to the
diurnal cycle, and allow us to explore several different
convective regimes within one simulation. This signifi-
cantly broadens the parameter space, compared to studies
of more stationary conditions.

Figure 1 shows hourly variance profiles, obtained from
LES, of the diurnal variation of a fair-weather cumulus
case over land (see Section 2 for its description). The
variance profiles are normalized by the mixed-layer-top
scale c2

h∗, as defined in Equation (3). Near z = h (defined
as the height of minimum buoyancy flux), this scale
dominates the contributions from the fs and fhs terms in
Equation (2). In other words, use of the height-dependent
scaling given by Equation (3) would not improve the
scaling in the upper part of the mixed layer. Although
c2

h∗ explains more of the variance than does c2
s∗, the

normalized variance profiles still exhibit considerable
spread. This is especially evident during the later hours
of the diurnal cycle, when convection is more intense:
the top scaling c2

h∗ then underestimates the variance.
The figure also illustrates a limitation of Equation (2),
in that fh, which Moeng and Wyngaard (1984) set to
14(1 − z/h)−2/3 for z > 0.9h, has a singularity at z = h,
thus further hinting at the inappropriateness of Equation
(2) as z approaches h.

These observations motivate further study of the ver-
tical structure of variance in shallow-cumulus-topped
mixed layers. In this paper, a new top-down variance
scaling is presented, which differs from that of Equa-
tion (3) by its incorporation of the local gradient. It is
found that this scaling better reproduces the structure,
magnitude and time-development of mixed-layer vari-
ance, for both stationary and transient shallow-cumulus
cases and a transient case of dry convection. The new
cloud-base-variance scaling is then further interpreted in
the context of statistical cloud schemes, by assuming
the form of the PDFs of humidity and temperature. The
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Figure 1. Scaled hourly-mean vertical profiles of the variance of (a)
total specific humidity qt, and (b) liquid-water potential temperature
θl, during the continental cumulus case based on the Small Cumulus
Microphysics Study (SCMS). The height is scaled by the mixed-layer
height h, defined as the height of minimum buoyancy flux, and the
variance is normalized by the mixed-layer-top scale c2

h∗, as defined in
Equation (3). The grey lines indicate the fh structure function.
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VARIANCE SCALING 1631

results suggest that the area fraction of the moist convec-
tive thermals uniquely depends on the ratio of cloud-base
transition-layer depth to sub-cloud mixed-layer depth.
This places the type of mass-flux closures that explicitly
parametrize this area fraction – also known as ‘valve’-
type closures (e.g. Mapes, 2000; Bretherton et al., 2004;
Neggers et al., 2004) – in the context of the full variance
budget.

In Section 2, the LES model, as well as the cases
that form the basis of this study, will be described. In
Section 3, the new scaling will be presented; in Section 4
it is evaluated against the LES. In Section 5 the important
role of the cloud-base transition layer in the new scaling
will be explored, implying a new closure formulation for
the mass-flux area fraction. The implications of the results
are discussed in Section 6, and some concluding remarks
are given in Section 7.

2. LES model and case descriptions

The LES is performed using the model of the
Royal Netherlands Meteorological Institute (KNMI), as
described in detail by Cuijpers and Duynkerke (1993).
The results presented in this paper are based on a
reanalysis of a suite of simulations established over time,
of which many were performed in order to take part in the
LES intercomparison studies organized by the boundary-
layer working group of the Global Energy and Water
Experiment Cloud System Study (GCSS) (Browning,
1993). The details of the model and the numerical
simulations, including the domain size and resolution,
differ between cumulus cases, as described below.

Four shallow-cumulus cases are simulated. Two of
these represent relatively steady marine conditions, while
the other two represent more transient continental con-
ditions. The first marine case is based on a period of
undisturbed trade-wind convection capped by a weak
inversion, as synthesized from observations made dur-
ing the Barbados Oceanic and Meteorological Experiment
(BOMEX) (Holland and Rasmusson, 1973; Nitta and
Esbensen, 1974). Further details are given by Siebesma
et al. (2003). The second marine case is similar, although
capped by a much stronger inversion, below which the
cumulus clouds detrain into a shallow stratocumulus
layer. It is based on a synthesis of observations taken
during an undisturbed period of the Atlantic Trade-Wind
Experiment (Augstein et al., 1973, 1974). Further details
are given by Stevens et al. (2001).

The first continental diurnal-cycle case is based on
measurements taken at the Central Facility of the South-
ern Great Plain site of the Atmospheric Radiation Mea-
surement (ARM) programme (Stokes and Schwartz,
1994). The shallow-cumulus cloud layer was observed
to slowly deepen after onset. The set-up of the LES case
is described by Brown et al. (2002). The second con-
tinental cumulus case is based on the Small Cumulus
Microphysics Study (SCMS) (Knight and Miller, 1998;
French et al., 1999; Laird et al., 2000). Some relevant

boundary-layer measurements, and the set-up of the LES
case, are described by Neggers et al. (2003). Although
similar to the ARM case, it is somewhat more humid, and
features a relatively high cloud cover in the LES, with a
peak value of about 40% shortly after cloud onset. The
cloud layer also deepens relatively rapidly compared to
the ARM case.

The dry CBL case is roughly based on a previous
intercomparison case of LES codes for the dry CBL
(Nieuwstadt et al., 1993). Several modifications are intro-
duced in order to increase transience: prescribed sur-
face fluxes of w′θ ′ = 100 Wm−2 and w′q ′ = 200 Wm−2,
a prescribed radiative-cooling tendency of −1 K day−1,
and an initial state consisting of a 700 m-deep mixed
layer with q = 8 g kg−1 and θ = 300 K, topped by a
layer with lapse rates of �q = −1.67 g kg−1 km−1 and
�θ = 2 K km−1. In the first 4 h of simulation, the inver-
sion rises from 0.7 km to 1.8 km.

3. Variance-budget analysis

The failure of ch∗ to scale the variance correctly as z

approaches h could reflect differences in the scaling of the
dry convective layer as compared to the sub-cloud layer,
but more probably reflects the inappropriateness of the
formulation near the top of the dry convective layer. We
argue that a successful scaling should reflect the coupling
between the dry convective (sub-cloud) layer and the
(cloud) layer above, and therefore should incorporate
information from both layers, as well as the local
stability of the interface (transition) layer separating them
(e.g. Augstein et al., 1974; Albrecht et al., 1979; Yin and
Albrecht, 2000). In revisiting this issue, we return to the
full prognostic equation for the thermodynamic variance.
Following Deardorff (1974a), the variance budget can be
written as

∂σ 2
c

∂t
= −2w′c′ ∂c

∂z
− ∂w′c′c′

∂z
− ε. (4)

Here w′c′c′ is the turbulent flux of variance, and ε is
the molecular dissipation of variance. We have assumed
horizontal homogeneity because it is enforced in LES and
it simplifies the analysis.

We focus on the variance budget at the mixed-layer
top, because the variances at this height are critical
to a determination of cloud fraction. Using LES of a
developing clear CBL, Deardorff (1974b) showed that
at the top of the dry CBL the gradient-production term
is the only source term, representing dry mixed-layer
thermals that overshoot into the strong gradient and
generate variance accordingly. Production is countered
by transport and dissipation. Figure 2 illustrates that this
structure is similar in shallow-cumulus situations. To the
extent that h is the only relevant length scale in the
problem, one expects the variance dissipation to decay
on a large-eddy time-scale (Nieuwstadt and Brost, 1986):

τ ≡ h

w∗
. (5)
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Figure 2. The steady-state humidity-variance-budget equation (4) for
the BOMEX case, as sampled in LES. Production and transport are
calculated, and dissipation is obtained as their residual. Cloud base in

BOMEX is at about 600 m.

Because in the balance all the leading-order terms must
follow the same scaling, the steady-state variance budget
of Equation (4) then becomes:

−w′c′
h

∂c

∂z

∣∣∣
h

∝
σ 2

c

∣∣∣
h

τ
, (6)

where the subscript h refers to the local value at mixed-
layer top. Support for these arguments is provided by
Grant and Lock (2004), who show that mixed-layer
scaling of turbulent kinetic energy still holds in the
transition zone. A further justification is provided in
Appendix A, where we approach the scaling from the
perspective of the transport term: in this framework,
transport and dissipation act together to reduce any
variance that is produced and maintained by mixed-layer
thermals overshooting into the transition layer. Relation
(6) suggests a new local scaling c# for the variance at
mixed-layer top:

c2
# ≡ −w′c′

h

∂c

∂z

∣∣∣
h

h

w∗
. (7)

The remainder of this paper explores this scaling in more
depth.

In previous scaling of shallow-cumulus variance (Grant
and Brown, 1999; Lenderink and Siebesma, 2000), the
time-scale of relaxation of variance has been modelled as
the ratio of cloud-layer depth to a vertical-velocity scale
that is a function of the convective available potential
energy (CAPE) of the cloud layer. This choice may be
appropriate in the cloud layer, but becomes problematic
in the mixed layer in cases of forced cumulus convection
(cumulus humilis), in which the clouds never reach their

level of free convection and the velocity scale associated
with CAPE is zero or negative. A good example is
the period shortly after cloud onset in the transient
continental convection. A further feature of Equation
(7) is that it is only applied locally at mixed-layer top.
As a result, through the vertical gradient ∂c/∂z, the
small jump in temperature and humidity that is often
observed at shallow-cumulus cloud base (e.g. Augstein
et al., 1974; Albrecht et al., 1979; Yin and Albrecht,
2000) is incorporated into the scaling.

4. LES results

The new variance scaling (7) is now evaluated using
LES. Figures 3 and 4 show hourly-averaged variance
profiles normalized by c# for all the PBL cases described
in Section 2, irrespective of the presence of clouds. The
scaling applies best in the height range 0.6 < z/h ≤
1, corresponding to heights where the production of
variance at the top of the PBL might be expected to
exert more influence than, say, near-surface variance
production.

These results suggest that a typical vertical structure
exists in the scaled variance profile in the top half of
the mixed layer. To illustrate this, the scaled variance
profiles of all hours and all cases are plotted together
in Figure 5. Because fh behaves poorly near z = h, we
fit a new power-law function to the scaling region. To
this end, the same data are plotted on logarithmic axes:
see Figure 6. Here a linear relation with slope b implies
that the variance depends on the dimensionless height
ratio raised to the power of b (so-called ‘similarity of the
second kind’):

σ 2
c

c2
#

= 0.9
( z

h

)bc

, (8)

where the exponents for specific humidity bq = 4 and
potential temperature bθ = 6 are different. Both fits are
also shown in Figure 5. We believe that differences
in the exponent reflect the different ways in which
humidity and temperature project onto buoyancy, but
this warrants further investigation. The variance peaks at
the level of maximum gradient, which is slightly higher
than the level of minimum buoyancy flux, as already
observed by Deardorff (1974b) for the dry CBL. This
is reflected in the constants of proportionality used in
Equation (8), which are slightly less than one. Close
to the surface, the new variance scaling fails, because
cloud-base characteristics become less relevant at levels
further away from it. At these levels one expects the
surface scalings to dominate. This motivates combining
the surface and mixed-layer-top scalings into one relation
(e.g. Moeng and Wyngaard, 1984):

σ 2
c (z) = 1.8

( z

h

)− 2
3

c2
s∗ + 0.9

( z

h

)bc

c2
#. (9)

Figure 7 shows the time series of the variances at
mixed-layer top for three of the cases. The performance
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Figure 3. Vertical profiles of the moisture variance, as in Figure 1(a), but for all cases and with the variance normalized by the new scaling c2
#.

The height is scaled by the mixed-layer depth h.
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Figure 4. As Figure 3, but for the scaled liquid-water potential-temperature variance.
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Figure 5. Scaled variance profiles for (a) moisture and (b) liquid-water potential temperature, as in Figures 3 and 4, but averaged over all
cases and all hours. The black solid line is the mean, while the grey area indicates the standard deviation. The thick dashed line represents the

power-law fit (Equation (8)).

of c# is compared to that of the surface scaling cs∗ and
top-down scaling ch∗. The new variance scaling c# is most
successful in reproducing the time evolution as seen in
LES. The surface scaling cs∗ tends to reach its maximum
at a much earlier time than the scalings for mixed-layer
top. Using ch∗ correctly shifts the maximum towards later
times, but is still not sufficient. Both the scalings that fail
to capture information on the local vertical gradient also
fail to capture the variance minimum that occurs in the
ARM case at hour 7.

Figure 8 shows the time series of the local vertical
gradients of humidity and temperature at mixed-layer

top for the two cumulus-over-land cases. In the course
of the day, these gradients change significantly. In
general, the mixed-layer top experiences destabilization
in the first hours and stabilization in the last hours of
the diurnal cycle. This reflects the development of the
coupling between the mixed layer and the cloud layer.
In this respect, the ARM and SCMS cases develop
quite differently during the first hours, the ARM case
being much more stable above the mixed layer. During
the 7th hour in the ARM case, the mixed-layer top
suddenly destabilizes; this is accompanied by a more
rapid deepening of the cloud layer (see Figure 9(b)). This
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Figure 6. Logarithmic scatter plot of the scaled variance profiles of all cases and all hours. The black solid line represents a power-law fit through
the upper part of the sub-cloud layer, which shows evidence of scaling behaviour. The slope of the fit corresponds to the exponent, which is 4

for specific humidity and 6 for potential temperature (see Equation (8)).
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Figure 7. Time series of the diagnosed variances of qt and θl at mixed-layer top (grey), and the corresponding variance scales cs∗, ch∗ and c#

(black), during (a) BOMEX, (b) SCMS, and (c) ARM. Some scales are multiplied by a factor of 10 for purposes of comparison.

sudden weakening of the gradients is accompanied by a
significant decrease in variance (see Figure 7(c)). This
further suggests that the variance near h is coupled to the
vertical gradients at h, and that scalings that incorporate
the local gradients can be expected to behave with more
fidelity.

5. Mass-flux area fraction

The results illustrate that the structure of the cloud-base
transition layer significantly affects the local variance.

This interface layer is now studied in more detail, with the
aim of parametrizing those of its properties that appear
in the new variance scaling (7). This is necessary for the
broad class of models that do not provide this information
naturally, and it may give more insight into the important
role of the cloud-base transition layer in shallow-cumulus
convection.

Figure 9 shows the typical vertical structure of a
shallow-cumulus-topped boundary layer. The cloud base
height zb is defined as the height of maximum cloud-
core fraction, which is defined as the area fraction of
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Figure 8. Time series of the local vertical gradients of total specific humidity and liquid-water potential temperature at mixed-layer top h, during
the SCMS and ARM cases.
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Figure 9. Typical structure of the shallow-cumulus-topped mixed layer. (a) Profiles of the buoyancy flux w′θ ′
v, total specific humidity, and

cloud-core fraction A (the symbols are defined in the text). (b) Time series of h and zb for the ARM case. The cloud layer is shaded (grey).
The transition layer is situated between h and zb.

positively-buoyant clouds (also called the ‘moist con-
vective thermals’). In prototype shallow-cumulus convec-
tion, the cloud core does most of the vertical transport
(Siebesma and Cuijpers, 1995): this justifies its use in
the bulk-mass-flux approach. Following (Grant, 2001),
we define the transition layer as the layer of depth
�h between h and zb. Lenderink and Siebesma (2000)
were the first to apply the mass-flux approach in the
variance-production term. Combined with a bulk-gradient
approach over the transition-layer depth, this gives for
Equation (7):

c2
# = M

�c2

�h

h

w∗
, (10)

where M is the cloud-base mass flux and �c is the
jump in the mean vertical profile c over the transition
layer. Here the humidity excess of the moist convective
thermals over the dry environment has been assumed
to be proportional to �c. Figure 10(a) shows that this
assumption is supported by LES. This proportionality
is due to the moist convective thermals still carrying
properties of the mixed layer where they originate. Their
collective volumetric mass flux M is defined as the
product of their area fraction A and their vertical velocity,
which at cloud base scales well with w∗ (Neggers et al.,
2004).

M = Aω∗ (11)

This eliminates w∗ in Equation (10), yielding:

c2
# ≈ A�c2 h

�h
. (12)

Thus, retaining the convective area fraction in the mass
flux (e.g. Neggers et al., 2004; Neggers et al., 2006)
makes it appear in the cloud-base variance scaling. This is
intriguing from the perspective of statistical parametriza-
tion of area fractions (Sommeria and Deardorff, 1977),
which itself depends on the variance as the second
moment of the turbulent distribution of humidity and tem-
perature. As a consequence, there are two equations for
the two unknowns A and σc, so that A and σc are defined
implicitly. In other words, scaling σc with c# would yield
a parametrization for A.

This implicit representation of A still requires the
definition of the shape function of the associated tur-
bulent distribution. One could use a normal distribution
(e.g. Sommeria and Deardorff, 1977; Bougeault, 1982).
However, such a distribution would have global support,
and it is perhaps more appropriate in this problem to use
a distribution with compact support. For example, the
most extreme qt value at cloud base that can theoreti-
cally occur – that of an undiluted updraught – can never
exceed its value at its starting height in the mixed layer.
We choose to explore these issues using the beta distri-
bution (e.g. Tompkins, 2002), whose density is expressed

Copyright  2007 Royal Meteorological Society Q. J. R. Meteorol. Soc. 133: 1629–1641 (2007)
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Figure 10. (a) Difference between mean-state total specific humidity qt and that of the cloud core qco
t at zb, plotted against the jump in total

specific humidity qt between mixed-layer top h and cloud base zb. The points represent hourly averages from all cases. The dashed line represents
the least-squares linear fit. (b) Scatter plot of �h/h against M/w∗. The points represent hourly averages from all cases. The results of (Grant,

2001) are also included. The dotted line represents the least-squares fit of Equation (17), giving p = 2.2.

by the beta function:

B(p, r) =
∫ 1

0
xp−1(1 − x)r−1dx, (13)

where p and r are the shape parameters of the distribu-
tion. The standard deviation of the beta distribution is
related to the distribution boundaries a and b:

σ ≡ b − a

p + r

√
pr

p + r + 1
. (14)

Figure 11 supports a choice for the boundaries satisfying:

b − a = 2�c. (15)

Assuming a non-skewed distribution (p = r), Equation
(14) then gives

σ 2
c

�c2 = 1

2p + 1
. (16)

Thus the variance is related to the local jump in c through
the shape function of the associated PDF. Substituting
this ratio into the cloud-base variance scaling (12) finally
gives

A = �h

h

1

2p + 1
. (17)

This relation states that the area fraction of the cloudy,
buoyant thermals is uniquely determined by the ratio
of transition-layer depth to sub-cloud mixed-layer depth,
multiplied by a term dependent on the shape of the
distribution.

Equation (17) is verified by comparing the ratio M/w∗
at zb to the depth ratio �h/h for all cumulus cases: see
Figure 10(b). Despite some scatter, the existence of a
relation between A and �h/h is supported by the LES
results (cf. (Grant, 2001), where this ratio is assumed
constant). The apparent linearity of the LES data suggests
that p is constant, implying that the shape of the PDF

at cloud base is more or less case-independent. Fitting
relation (17) to the LES data gives

p ≈ 2.2. (18)

The side panels in Figure 11 illustrate that this beta
distribution resembles the LES distributions reasonably
well. Some of the scatter in Figure 10(b) can be
attributed to the low vertical resolution of these LES
runs, which at 40 m was of the same order of mag-
nitude as �h. This causes deviations in �h/h of up
to 40 m /800 m = 0.05 (taking a typical value for h).
Additional simulations at higher vertical resolution, and
using a shorter averaging time-scale, could help clarify
this issue.

In the derivation of Equation (17), the numerator �c of
the local vertical gradient has dropped out against σc, but
the denominator �h is preserved, introducing a coupling
between the area fraction of the moist convective ther-
mals and the depth of the transition layer. For example,
in situations of high transition-layer stability (large gradi-
ents, or small �h), A is small, corresponding to a reduced
mass flux. The transition layer thus acts as a ‘valve’ in
cumulus transport. On the other hand, through the dissi-
pation time-scale, the mixed-layer depth has entered the
equation. As a result, deepening sub-cloud mixed layers
imply decreasing convective area fractions: a characteris-
tic feature of diurnal cycles of shallow cumulus, which is
indeed often observed in nature and in LES (e.g. Brown
et al., 2002; Neggers et al., 2004).

6. Discussion

6.1. Comparison to (Moeng and Wyngaard, 1984)

We now return to the (Moeng and Wyngaard, 1984)
scaling ch∗, as discussed in Section 1, and ask why and
how the new variance scaling c# is different. Comparing
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Equations (3) and (7), we see that the two scales are only
the same if

w′c′
h ≈ −hw∗

∂c

∂z

∣∣∣
h
. (19)

Figure 12(a) shows the two sides of Equation (19),
confirming that they are indeed not the same and that
the vertical gradient (plotted in Figure 12(b)) is causing

the difference in time development between the scales.
Further breakup of the gradient in Figure 12(c) and (d)
reveals that growth of the transition-layer depth �h

is uniquely responsible for the sudden decrease in the
gradient at t = 7 h, counteracting a strengthening of the
jump �c in the process.

To further illustrate that ch∗ and c# are indeed different
theoretically and do not revert to each other in some
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1638 R. A. J. NEGGERS ET AL.

limit, we now apply the bulk-gradient approach over the
transition-layer depth (see Figure 12(b)),

∂c

∂z

∣∣∣
h

≈ �c

�h
, (20)

and the flux-entrainment relation at h,

w′c′
h = −E�c = − A

Rih
w∗�c, (21)

where E is the top-entrainment velocity, A is a constant
of proportionality, and

Rih ≡ g�θvh/θ0

w2
∗

(22)

is the standard bulk Richardson number, with g�θv/θ0

the buoyancy jump associated with the transition layer. If
Equation (19) holds, then substitution of Equations (20)
and (21) would imply that

�h

h
∝ Rih. (23)

However, we can prove that Equation (23) cannot hold,
by studying the equilibrium mass budget of the sub-cloud
mixed layer (Stevens, 2006; Neggers et al., 2006). In
equilibrium, neglecting large-scale divergence for sim-
plicity (typically wLS � E in shallow-cumulus condi-
tions), the cumulus mass flux M should equal the top-
entrainment rate E. As both share dependence on w∗,
one can equate the associated factors of proportionality
in E and M . Together with Equation (17), as implied by
the variance scaling, this gives:

�h

h
∝ Ri−1

h . (24)

This gives:
g

θ0
�θv�h = Bw2

∗, (25)

where the constant B carries the proportionality in Equa-
tion (24). Accordingly, in equilibrium, �h corresponds
to the depth of the layer in which:

• the dry plumes involved in entrainment, and whose
energy scales with w2∗, lose their kinetic energy; and

• cumulus updraughts condense and reach positive buoy-
ancy.

Clearly Equations (23) and (24) cannot both be true,
and so Equation (19) cannot hold. Finally, substituting
Equation (21) into Equation (3), and Equations (20),
(21) and (24) into Equation (7), we see that the new
local scaling c# is indeed theoretically different from the
(Moeng and Wyngaard, 1984) scaling ch∗ by a factor of
one Richardson number:

c# ∝ Rihch∗. (26)

6.2. Transient convection

Combining Equations (24) and (17) relates the equilib-
rium area fraction of transporting cumulus updraughts to
the interface Richardson number at mixed-layer top:

A = A

Rih
. (27)

Using typical values of E = 1 cm s−1 and w∗ = 1 ms−1

(e.g. Stevens, 2006) gives the equilibrium value A =
0.01, explaining the small convective cloud fractions
that are characteristic of shallow-cumulus convection.
However, what happens when the boundary layer is not in
equilibrium? Then E does not necessarily equal M , and
A can deviate from Equation (27). In fact, as illustrated
in Figure 10(b), in transient conditions A (and with it
�h/h) changes significantly: from the dry convective
limit (A → 0) up to A = 0.05. This suggests that it is
crucial to allow �h to be flexible in order to allow the
system to approach equilibrium: during the equilibration
process, �h and h will adjust to values such that M

becomes equal to E, as expressed by the equilibrium
condition (27).

It is interesting to interpret the role of �h in the equi-
libration process in the context of a recent study by Neg-
gers et al. (2006). They studied sub-cloud mixed-layer
equilibration using a simple bulk model including cumu-
lus mass flux, parametrized statistically as a function
of w∗ and the normalized saturation deficit at mixed-
layer top. They found that the sensitivity to saturation
thus introduced in the mass flux through A constitutes
a negative feedback mechanism, which can explain the
approach towards the equilibrium state of Equation (27).
If A can be parametrized as a function of �h/h, as
implied by combining variance scaling with the mass-
flux approach, then �h should play the same equilibrating
role, acting as a ‘valve’ in the cumulus mass flux. Figure
9(b) illustrates that this is indeed the case, showing how
�h opens and closes at the onset and decay, respectively,
of the cumulus-cloud layer. This suggests that modelling
A as a function of transition-layer depth provides an alter-
native way to represent the concept of moist-convective
inhibition in PBL schemes (e.g. Mapes, 2000; Bretherton
et al., 2004).

It is tempting to think of Equation (27) as a cumulus
equilibrium constraint. However, it should be noted that
Rih is not an external variable, but is highly dependent
on the small internal jump �θv between the cloud and
sub-cloud layers. The eventual equilibrium value of Rih

is determined by the differential large-scale forcings in
the cloud layer and the sub-cloud layer, as well as by
the boundary conditions at the bottom and top of the
PBL (the surface and the lower troposphere respectively).
This topic is explored in more detail by Neggers et al.
(2006), and also in ongoing work by Bretherton and Park
(submitted to JAS, 2006). Understanding what controls
Rih may thus be important in helping to determine cloud
fraction, as well as in applying the c# scalings in models
with coarse vertical resolution.
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VARIANCE SCALING 1639

7. Concluding remarks

A new local scaling c# for the variance at mixed-layer top
is introduced, as defined by Equation (7), with the aim of
addressing shortcomings in the standard top-down scal-
ing for the dry CBL in situations where shallow cumulus
clouds are present. The novelty of c# is that, in addition to
the entrainment flux, it incorporates information on local
(transition-layer) stability and the convective-mixed-layer
turnover time-scale. This significantly improves the scal-
ing of variance in transient cumulus situations. The local
vertical gradient changes considerably during the first
hours after cloud onset, and affects the local variance
through the flux-gradient-production term. The collapse
of the data, for a range of different LES cases, supports
the generality of the scaling. Indeed, the fact that the
scaling also works for dry convective layers not topped
by cumulus convection provides yet another demonstra-
tion of the similarity between dry convective layers and
the sub-cloud layer in the presence of shallow, non-
precipitating, convection.

Through the definition of variance as the second
moment of a turbulent distribution, the physics in the
variance budget is shown to imply a relation between the
mass-flux area fraction and the ratio of transition-layer
depth to mixed-layer depth. The transition-layer depth
is shown to represent the negative feedback mechanism
between cloud-base mass flux, local stability and prox-
imity to saturation at mixed-layer top (Bretherton et al.,
2004; Neggers et al., 2006). The mixed-layer depth h in
general increases during diurnal cycles, thus reducing A
with time. This inverse relation is consistent with obser-
vations in nature and LES (Brown et al., 2002; Neggers
et al., 2004).

The role of the transition layer in shallow-cumulus
convection has been studied extensively in the past. The
present study shows how variance and transition-layer
depth enter the problem. Our results suggest new opportu-
nities for parametrization. For example, the variance scal-
ing could be used in combination with statistical cloud
schemes (Neggers et al., 2006). Furthermore, parametriz-
ing the transition-layer depth could be an alternative
approach to representing the impact of the transition
layer: for example, by relating it to the moist instabil-
ity depth scale of model updraughts rising out of the
mixed layer. In a forthcoming study (‘A dual mass-flux
model for boundary-layer convection’, in preparation for
the Journal of the Atmospheric Sciences), these concepts
are explored using the PBL scheme of the ECMWF Inte-
grated Forecasting System.

The LES cases used for evaluation in this study are
of different natures, featuring a dry CBL case as well
as steady-state marine and transient continental cumulus
cases, with surface Bowen ratios ranging from about 0.03
to 0.5. Nevertheless, there are still different scenarios for
which it is unknown whether the variance scaling applies.
For example, it is interesting to study cases with strong
vertical wind shear, as mechanical turbulence might
represent a significant source in the variance budget. The

validity of the variance scaling against observations also
remains a topic for future research.

Studying the variance structure in transient shallow-
cumulus cases such as ARM and SCMS has the advan-
tage that we gain an understanding of their behaviour
for more complex scenarios than steady-state situations.
This significantly expands the parameter range that is
covered. The time-dependence of the variance introduces
challenges for parametrization. The closures as presented
here have been directly inspired by the study of these
diurnal-cycle cases. This emphasizes the importance of
setting up as many different cases as possible, prefer-
ably based on reliable observational data. The work of
the GCSS boundary-layer working group to extract cases
from observations has directly contributed to the wealth
of moist-convective cases that are now available to the
boundary-layer-modelling community.
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A. Appendix: Variance transport

The vertical variance flux is decomposed into contribu-
tions from strong updraughts and their environment,

w′q ′q ′ = aupw′q ′q ′up + (1 − aup)w′q ′q ′en
, (A1)

where the superscript ‘up’ represents the average over
the updraughts and ‘en’ represents everything else. The
updraught area fraction aup represents a fixed top-
percentage of the tail of the PDF of vertical velocity,
here taken to be 5%. The dashed line in Figure 13 shows
that variance transport is dominated by the strongest
updraughts, so that the environmental contribution can be
neglected. The figure also shows the so-called ‘top-hat’
approximation for the updraught fraction, which neglects
sub-ensemble internal variability. This still captures the
bulk of the total transport. This suggests that

∂w′q ′q ′up

∂z
≈ ∂wupσ 2

q

∂z
≈ w∗

∂σ 2
q

∂z
, (A2)
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Figure 13. Various terms of the decomposition (Equations (27) and
(28)) of humidity-variance transport for the BOMEX case, as sampled
in LES. The strongest updraught fraction is defined as the top 5% of
the PDF of vertical velocity. Included are the grid-box-mean variance
transport (solid), the contribution from this top 5% (dashed), the
associated top-hat approximation (dotted), and the decomposition of
the latter into an advection part (dashed-dotted) and a deceleration part

(dashed-double-dotted).

where the last approximation is justified by the small-
ness of the deceleration term σ 2

q ∂wup/∂z: see Figure 13.
Accordingly, only the term representing vertical advec-
tion of variance by the strong updraughts is retained, their
vertical velocity wup being assumed to scale with w∗.
Then, applying the bulk-gradient approach over the top
half of the mixed layer, we obtain:

w∗
�σ 2

q

�z
∝

σ 2
q

∣∣∣
h

τ
, (A3)

where τ ∼ h/w∗ is an adjustment time-scale that can be
used to describe the effect of organized transport on the
variance at the top of the sub-cloud mixed layer. Here we
have made use of the fact that variance in the middle of
the mixed layer is typically about an order of magnitude
smaller than at the top (see Figures 3 and 4).
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