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Zusammenfassung

Das Clique Problem ist eines der am besten untersuchten Probleme in der In-
formatik. Wohingegen nur wenige Untersuchungen existieren, die sich mit der
wichtigen Verallgemeinerung von Clique, dem s-Club Problem, beschäftigen.
Im besonderen gibt es keine intensiven Untersuchungen bezüglich der parametri-
sierten Komplexität dieses Problems.

In dieser Arbeit wird gezeigt, dass s-Club festparameter-handhabbar bezüglich
der Anzahl der Knoten in der Lösung ist. Im Bezug auf Polynomialzeit-Daten-
reduktionen, wird gezeigt, dass es keinen many-to-one Kern polynomieller Größe
für s-Club geben kann. Im Gegensatz dazu wird ein Turing Kern angegeben,
dessen Größe kubisch in der Knotenanzahl der gesuchten Lösung ist. In diesem
Kontext wird auch eine interessante Verbindung zur Approximation einer Lösung
für s-Club gezeigt sowie ein kombinierter Algorithmus angegeben, der diese Ver-
bindung ausnutzt. Ferner wird die Komplexität von s-Club auf beschränkten
Graphklassen untersucht.

Um effiziente Festparameter-Algorithmen zu erhalten, ist es oft nützlich, die Pa-
rametrisierung zu ändern. Daher wird auch s-Club mit einer dualen Parametri-
sierung untersucht, welches als das s-Club Vertex Deletion Problem definiert
wird. Es wird gezeigt, dass dieses Problem festparameter-handhabbar bezüglich
der Anzahl der Knoten in der Lösung ist.

Ebenfalls wird das s-Club Cluster Vertex Deletion Problem eingeführt,
welches eine Generalisierung des Cluster Vertex Deletion Problems ist.
Für dieses Problem wird NP-Vollständigkeit und Festparameter-Handhabbarkeit
bezüglich des kombinierten Parameters Anzahl der Knoten in der Lösung und s
gezeigt.
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Abstract

The Clique problem is one of the best-studied problems in computer science.
However, there exist only few studies concerning the important Clique general-
ization, called the s-Club problem. In particular there have been no intensive
investigations with respect to the parameterized complexity of this problem.

In this thesis we show that s-Club is fixed-parameter tractable with respect
to the number of vertices in the solution. In terms of polynomial time data
reduction, we show that s-Club does not admit a polynomial many-to-one kernel.
In contrast to that we give a cubic-vertex Turing kernel. In this context we also
show an interesting connection to the approximation of a solution for s-Club,
and give a combined algorithm to exploit this connection. Furthermore we study
the complexity of s-Club on some restricted graph classes.

In order to obtain efficient fixed-parameter algorithm, it is often useful to change
the parameterization. Therefore, we analyze s-Club with a dual parameteriza-
tion, which we define as the s-Club Vertex Deletion problem. We show that
this problem is fixed-parameter tractable with respect to the number of vertices
in the solution.

We also introduce the s-Club Cluster Vertex Deletion problem, which is
a generalization of the Cluster Vertex Deletion problem. For this problem
we show NP-completeness and fixed-parameter tractability with respect to the
combined parameter number of vertices in the solution and s.
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1 Introduction

The s-club concept was defined in the context of social science by Alba [Alb73].
Consider people in a social community and the relation “knowing each other”.
Then, an s-club is a subgroup of persons that know each other directly, or over
at most s − 1 persons which are in this subgroup as well. In general, people
could be any set of objects and “knowing each other” could be an arbitrary
relation. This work investigates the algorithmic complexity of finding s-clubs in
large structures.

1.1 Motivation and Application

Although the term s-club was defined in 1973 [Alb73], the interest in these struc-
tures goes back to at least the 1960’s. Especially, there has been much interest
in constructing s-clubs [HS60, ER62, Dam73, EFH80, II81, Del85, FHS95], often
because one can guarantee some sort of efficiency in them. In this thesis the focus
will be on already given networks in which we want to find “efficient” subnet-
works. The task of finding an s-club of a particular size in a given structure is
called the s-Club problem.

The s-Club problem is a generalization of the famous Clique problem, since
for s = 1 these problems are equivalent. There are mainly two arguments for
analyzing the s-Club problem:

1. From a practical standpoint, Clique may be too restrictive for the given
problem. For example take the task of identifying structures in protein
interaction networks. A protein interaction network is a set of proteins and
the relation “known to interact”. But protein-protein interactions involve
not only the direct-contact association of protein molecules but also longer
range interactions [TS76]. Thus an interesting structure could interact over
a distance of s interactions. This may not be revealed by identifying a clique,
but certainly does by an s-club. In general the s-club structure is useful if
the interaction not happen directly, but through at most s interactions.
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2. From a parameterized complexity standpoint, the Clique problem is not
believed to be (fixed-parameter) tractable with respect to its solution size.
More precisely it is W[1]-hard [DF99]. In contrast, the s-Club problem,
with s ≥ 2, is (fixed-parameter) tractable with respect to the parameters
solution size and s [Kom07]. It is interesting to work out the difference in
the parameterized complexity of Clique and s-Club in more detail.

Based on these arguments this work focuses on the s-Club problem. In the
following, the first argument will be additionally supported by giving possible or
already known applications.

The s-Club problem found already consideration in the following real-world ap-
plications. Memon and Larsen [ML06] applied s-Club for the analysis of terror
networks. In these networks the elements are terrorists and the relation is “known
to work together”. We already mentioned protein-protein interaction networks.
Pasupuleti [Pas08] used s-Club to analyze the structure of these networks. In
the following we discuss possible applications in the context of networks with a
specific property.

For the last decade the major topic in applied network science has been “small
world” networks, mainly due to a paper by Watts and Strogatz [WS98], which has
been cited more than 9000 times until today. This paper showed evidence that in
many real-world networks the average path length is very short with respect to
the number of elements in it. The authors called these networks small world net-
works, while referring to a famous experiment from Stanley Milgrim [TM69]. An
interesting example for such a small world network is a network of mathematicians
called the “Erdős Network” [Gro09]. In this network the Erdős number zero is
assigned to Paul Erdős, who was a very productive mathematician, and the Erdős
number one to researchers who published with him. The co-authors of people with
Erdős number one have the Erdős number two, and so on, building one of the
best studied small-world networks. There are many other networks which have
been found to show small world properties. Examples include road maps [JC04],
food webs [MS02], airplane passenger traffic [ASBS00], metabolite processing
networks [FW00], neural networks [SZ04], mobile call graphs [NGD+06], tennis
players and their matches [Sit07] and ownership links among German compa-
nies [KW01].

In general, a graph is considered a small world network if its average local clus-
tering coefficient is significantly higher than a random graph constructed on the
same vertex set, and if the graph has a short average path length. These are more
or less global measurements. The s-Club problem directly identifies interest-
ing local structures or “sub small worlds” of scalable diameter, on which further
analysis can be performed. Therefore, solving the s-Club problem could be an
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initial step of a detailed exact analysis of local structures in small world networks.
Therefore, efficiently solving the s-Club problem is useful in many applications
or could even form new ones.

1.2 Known Results

To our knowledge the first approach from computer science to the s-Club prob-
lem was made by Bourjolly et al. [BLP00]. They gave a heuristic algorithm that
determines the vertex with maximum degree and uses it as the center of a star
graph of maximum size. Butenko and Prokopyev [BP07] have shown that, unless
P = NP, one cannot design a polynomial time algorithm for the s-Club prob-
lem, giving a larger solution than the trivial approach of picking a vertex with
maximum degree and all its neighbors as the solution set. As a consequence,
with the approach by Bourjolly et al. [BLP00] the heuristic approaches for the
s-Club problem already seem to have reached there limits. To our knowledge the
first proof of NP-completeness for the s-Club problem was given by Bourjolly et
al. [BLP02]. In this work also a formulation of the s-Club problem as integer
linear program (ILP) was given. Butenko et al. [BBT05] gave similar results, they
also evaluated their integer linear program on biological data. Both publications
gave no worst-case running time. In the following we use the variable k for the
solution size of the s-Club problem. In approximation theory, Marincek and
Mohar [MM02] showed that there is no better polynomial time approximation
possible than k1/3−ǫ, for any ǫ > 0, unless P=NP. The first fixed-parameter ap-
proach to the s-Club problem was made by Komusiewicz [Kom07]. He classified
s-Club to be fixed-parameter tractable with respect to the combined parameter
(k,s).

1.3 Overview

The remaining part of this thesis is structured as follows. Chapter 2 is an introduc-
tion to several notions we use in this thesis. Section 2.1 gives a short introduction
to some basic notation from graph theory. In Section 2.2 the most important
definitions from parameterized complexity theory are introduced. We introduce
search trees of bounded depth in Section 2.3 and give a brief introduction to poly-
nomial time data reduction in Section 2.4, including the concepts of many-to-one
kernelization (Section 2.4.1) and Turing kernelization (Section 2.4.2).
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Chapter 3 gives the definition of the s-Club problem and the corresponding
solution set s-club. Then, in Section 3.1 an overview of interesting aspects of s-
clubs and the s-Club problem is given. Section 3.2 describes two concepts which
are clique relaxations similar as the s-club concept is. Furthermore, Section 3.3
mentions two problems which are concerned with graphs of bounded diameter like
the s-Club problem.

Chapter 4 presents our results for s-Club on general graphs. In Section 4.1 we
give two results on problem kernelization. In detail we show that s-Club cannot
have a polynomial-size many-to-one kernel in Section 4.1.1 and give a k3-vertex
Turing kernel in Section 4.1.2. A fixed-parameter algorithm for s-Club on general
graphs is given in Section 4.2.

Chapter 5 presents our results for s-Club on special graph classes. Section 5.1
gives an algorithm to solve s-Club on trees in O(n ·s2) time. Section 5.2 gives an
algorithm to solve s-Club on interval graphs in O(n2) time. Section 5.3 shows
how to solve 2-Club on bipartite graphs in O(n5) time. Section 5.4 classifies
s-Club to be polynomial time solvable on graph classes with bounded clique-
or treewidth. Section 5.5 classifies s-Club to be fixed-parameter tractable with
respect to parameter s on planar graphs.

Chapter 6 introduces two vertex deletion problems which are closely related to s-
Club. In Section 6.1 we analyze the s-Club Vertex Deletion problem, which
is a dual parameterization of s-Club. More precisely, we will show that s-Club
Vertex Deletion is fixed-parameter tractable with respect to its solution size
in Section 6.1.1 and give data reduction rules for this problem in Section 6.1.2.
In Section 6.2 we analyze the s-Club Cluster Vertex Deletion problem,
which asks to delete vertices in the input graph such that in the remaining graph
every connected component is an s-club. In Section 6.2.1 we show that s-Club
Cluster Vertex Deletion is NP-complete. In Section 6.2.2 we show that this
problem is fixed-parameter tractable with respect to the combined parameter so-
lution size and s. Section 6.2.3 shows that s-Club Cluster Vertex Deletion
is solvable on trees in O(n · s) time.

Finally, Chapter 7 gives some conclusions from this thesis in Section 7.1 and an
outlook for future research in Section 7.2.



5

2 Basic Notations and Definitions

This chapter summarizes some basic notations used throughout this work and
provides a brief introduction to parameterized complexity theory.

2.1 Basic Notation in Graph Theory

This section provides the reader with basic terms and definitions used throughout
this thesis. For a general introduction to graph theory, see [Die05].

In this work we only consider undirected graphs. An undirected graph is defined
as a tuple (V,E), where V is a finite set of vertices and E is a set of edges, which
are unordered tuples of vertices, that is, E ⊆ {{u, v} | u, v ∈ V }. By V (G) we
denote the set of vertices in G and by E(G) is the set of edges in G. Throughout
this work, let n := |V | and m := |E|. A vertex v is called incident edge e, if
v ∈ e. Two vertices v,w are called adjacent if there exists an edge e such that
v,w ∈ e.

A path Pi in a graph G is a sequence of i vertices (p1, ..., pi) such that for all
1 ≤ j ≤ i {pj−1, pj} ∈ E. The length of a path is the number of edges traversed.
Two vertices in this sequence are called connected. If p1 = pn the sequence is
called a cycle. A connected graph is a graph G = (V,E) such that every pair
u, v ∈ V is connected. The distance d(u, v) between two vertices u and v of a
graph is the minimum length among all paths connecting them. If no such path
exists, then the distance is set equal to infinity. The diameter of a graph is the
length of the longest shortest path between any two graph vertices (u, v) of a
graph and will be denoted as diam(G).

The degree deg(u) of a vertex u is the number of edges incident to u. The (open)
i-neighborhood of v is the set of all vertices that lie at distance at most i from
v: Ni(v) = {u | 1 ≤ d(u, v) ≤ i}. The closed i-neighborhood of v is Ni[v] =
Ni(v) ∪ {v}. The exact i-neighborhood of v is the set of all vertices that lie at
distance exact i from v: N◦

i (v) = {u | d(u, v) = i}.
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For a vertex set S, we use G[S] to denote the subgraph of G induced by S, with
vertex set S and edge set E′ = {{u, v} ∈ E(G) | u, v ∈ S}. A graph property P is
hereditary if whenever a graph G obeys P, then all induced subgraphs of G obey
P also. Let G = (V,E) and A ⊆ V , then we define G − A := G[V \A].

A tree T = (V,E) is a connected graph without cycles. A tree is called a rooted
tree if one vertex has been designated the root, in which case the edges have a
natural orientation, towards or away from the root. A vertex v with deg(v) = 1
is a leaf. A lowest leaf is a vertex with the maximum distance to the root. The
father of a vertex v is the vertex that is adjacent to v and lies on the path from v
to the root. The children of a vertex v are the vertices that are adjacent to v and
are not the father of v and will be denoted as child(v). The subtree Tv is induced
by all the vertices connected to v via paths that do not contain the father of v.
The height of a vertex v is the distance to the lowest leaf in the induced subtree
Tv and will be denoted as h(v). The level of a vertex v is distance from a lowest
leaf to the root, minus the actual distance of v to the root and will be denoted as
l(v).

2.2 Parameterized Complexity

Parameterized complexity is a two-dimensional framework for studying the com-
putational complexity of problems. One dimension is the input size n (as in
classical complexity theory), and the other one is the parameter k (in this work
the size of the solution).

We begin with the basic definitions of parameterized complexity theory given by
Downey and Fellows [DF99]:

Definition 2.1. A parameterized problem is a language L ⊆ Σ∗ × Σ∗ , where Σ
is a finite alphabet. The second component is called the parameter of the problem.

Throughout this work the parameter is a nonnegative integer. Thus, we will usu-
ally write L ⊆ Σ∗×N instead of L ⊆ Σ∗×Σ∗. For (x, k) ∈ L, the two dimensions
of the parameterized complexity analysis are then the input size n := |(x, k)| and
the parameter k. In this work we also need to know what the unparameterized
version L̂ of L is. Therefore we define L̂ by L̂ = {x#1k | (x, k) ∈ L} where # is
the blank letter and 1 is any letter from Σ.

Definition 2.2. A parameterized problem L is fixed-parameter tractable if there
is an algorithm that decides in f(k) · nO(1) time whether (x, k) ∈ L, where f is
an arbitrary computable function depending only on k. The complexity class that
contains the fixed-parameter tractable problems is called FPT.
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Note that the running time of a fixed-parameter algorithm is polynomial in the
instance size and exponential only in the parameter k. Hence, if k is fixed at
a small value, a problem in FPT can still be considered “tractable” despite its
traditional classification as “intractable”.

2.3 Search Trees of Bounded Size

In this work we will use the concept of search trees of bounded size to give fixed-
parameter algorithms. A search tree is a systematic exhaustive search, organized
in a tree-like fashion. The basic idea is to find in polynomial time a small part
of the input such that at least one element of that part has to be in an optimal
solution. We then branch into several cases of choosing an element of the small
part to be in the solution, and then proceed recursively until a solution is found.
A search tree corresponds to the recursive calls of such an algorithm. If we can
bound the number of cases in each search tree node as well as the height of the
tree, then we obtain a fixed-parameter algorithm.

Search tree algorithms work in a recursive manner. The number of recursion
calls is the number of nodes in the according tree. This number is governed by
linear recurrences with constant coefficients. These can be solved by standard
mathematical methods [Nie06]. If the algorithm solves a problem of size n and
calls itself recursively for problems of sizes n − d1, ..., n − di, then (d1, ..., di) is
called the branching vector of this recursion. It corresponds to the recurrence
Tn = Tn−d1

+ · · · + Tn−di
for the asymptotic size Tn of the overall search tree.

In order to give an instance for a search tree of bounded size, we start by intro-
ducing the parameterized Vertex Cover problem, which is defined as follows:

Vertex Cover
Input: An undirected graph G = (V,E) and a nonnegative integer k.
Question: Is there vertex set C ⊆ V of size at most k, such that each
edge of G is incident with at least one element of C?

For parameterized Vertex Cover, where the size of a vertex cover is bounded
by a parameter k, a small part of the input that contains at least one element of
an optimal solution is a single edge in the graph, because we know that each edge
must be covered by at least one of its endpoints. Thus, we select an arbitrary
edge e = {u, v} of the graph, and branch into the two subcases of adding u or v
to the vertex cover. At least one of the two assumptions is correct. Then, if we
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decided that for example u is in the vertex cover, then we can delete u and all
incident edges from the graph and proceed with the remaining instance. In each
branching step, one vertex is deleted from the graph. After at most k recursive
steps we either obtain an instance without edges, and we have found a solution, or
the remaining instance has still some edges, which means that the corresponding
path from the search tree root to the leaf cannot lead to a solution of size at
most k. The branching vector corresponding to this recursion is (1, 1). This leads
to a search tree of size O(2k). The selection of an edge and the branching can
be done in O(n) time and therefore we obtain a fixed-parameter algorithm with
running time O(2k · n).

2.4 Data Reduction

The idea of data reduction is the elimination of polynomial time “solvable” parts
of the input data, to obtain “hard” cores. Then time intensive algorithms are only
applied to this cores. Data reduction is also useful for other techniques in the area
of algorithms for solving hard problems (such as approximation, heuristics or ILP
formulations).

2.4.1 Many-to-One Kernelization

We now give the original definition of kernelization as it was introduced by Downey
and Fellows [DF99]. This definition of kernelization reduces the input instance to
exactly one kernel and is defined as follows:

Definition 2.3. Let L be a parameterized problem. A reduction has a problem
kernel or kernelization is a transformation of an instance (x,k) to an instance
(x′,k′), such that:

1. (x, k) ∈ L ⇔ (x′, k′) ∈ L

2. |x′| ≤ g(k) for some arbitrary computable function g depending only on k

3. k′ ≤ k, and

4. the transformation runs in polynomial time.

The size of a reduced instance does only depend on the size of the parameter k,
and not on the original input n anymore. In this work we will often call this
kernelization a many-to-one kernelization.
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2.4.2 Turing Kernelization

As recent work has shown, the traditional kernelization is sometimes too restric-
tive. This is also the case for problems we analyze in this work. Therefore we
also give the definition of Turing kernelization, as recently introduced by Lok-
shatnov [Lok09]. In order to define Turing kernels, we first define an t-oracle:

Definition 2.4. [Lok09] A t-oracle for a parameterized problem Π is an oracle
that takes as input (I, k) with |I| ≤ k, k ≤ t and decides (I, k) ∈ Π in constant
time.

Definition 2.5. [Lok09] A parameterized problem Π is said to have a g(k)-sized
Turing kernel if there is an algorithm which, given an input (I, k) together with a
g(k)-oracle for Π, decides whether (I, k) ∈ Π in time polynomial in |I| and k.

Note that a many-to-one kernel is equivalent to a Turing kernel where the ker-
nelization algorithm is allowed to make only one oracle call and must return the
same answer as the oracle. Since the definition of Turing kernelization is more
general than it will be necessary in this thesis, we illustrate how the idea will be
used. The Turing kernelization algorithm reduces the input instance (I, k) to |I|
independent kernels of size at most g(k). In more detail, the algorithm outputs
instances (Z1, k

′), . . . , (Z|I|, k
′) such that (I, k) is a yes instance if and only if

(Zi, k
′) is a yes instance for some i, and if |Zi| ≤ g(k) for every i.
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3 s-Club and Related Problems

This chapter starts by giving a definition of s-clubs and the corresponding s-
Club problem. Then, in Section 3.1 an overview of interesting aspects of s-clubs
and the s-Club problem is given. Section 3.2 introduces two further concepts
which are clique relaxations like the s-club concept. Furthermore, Section 3.3
introduces two problems which are concerned with graphs of bounded diameter
like the s-Club problem is.

In this work we call a vertex set an s-club, if it fulfills the following definition:

Definition 3.1. Let G be a graph with G = (V,E), then an s-club is a subset of
vertices S ⊆ V such that the diameter of G[S] is at most s.

The task of finding an s-club is called the s-Club problem. More precisely, this
problem is defined as follows:

s-Club
Input: An undirected graph G = (V,E) with integers s, k ≥ 2.
Question: Is there a set of vertices S ⊆ V of size at least k such that
G[S] has diameter at most s?

The s-Club problem is NP-complete [BLP02, BBT05], and this remains true even
in graphs of diameter s + 1 [BP07]. With s = 1 the s-Club problem would be
equivalent to the Clique problem, which is known to be W[1]-hard with respect
to its solution size [DF99]. W[1]-hard means that the Clique problem is not
believed to be fixed-parameter tractable. Therefore, many of our results will not
work for s = 1 and we define the s-Club problem with s ≥ 2.
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3.1 Basic Observations Concerning s-Clubs

In this section we give a detailed overview one interesting aspects of s-clubs and
the s-Club problem.

3.1.1 s-Club Definitions

Originally [Alb73], s-clubs were defined by demanding additionally to Defini-
tion 3.1 the maximality with respect to inclusion. Consider for example, the
graph in Figure 3.1(a). By the original definition {a, b, c} is not a 2-club since it
is not maximal, in contrast {a, b, c, d, e} is a 2-club. Balasundaram et al. [BBT05]
discussed that, assuming the original definition [Alb73], checking whether a given
subset is an s-club would be a non-trivial problem itself. Take again the graph
given in Figure 3.1(a). The subgraph G[S] with S = {a, b, c} has diameter two.
Adding one of the vertices e or d to S would increase the diameter of the induced
subgraph; however, if both vertices are added, the diameter is two. In this work
we follow this argumentation of Balasundaram et al. and use Definition 3.1.

3.1.2 The Non-Hereditariness of s-Club

A graph has the s-club property if it has diameter at most s. Now we show
that the s-club property is non-hereditary by a simple example illustrated in
Figure 3.1. The subgraph G[{a, b, c, e}] given in Figure 3.1(b) has diameter 3
whereas the original graph in Figure 3.1(a) has diameter two. Thus G[{a, b, c, d, e}]
is a 2-club, whereas its subgraph G[{a, b, c, e}] is not a 2-club. Hence, s-club is
a non-hereditary graph property. This is one of the difficulties throughout this
work, since it is unclear whether standard techniques work with respect to non-
hereditary properties.

3.1.3 Monadic Second Order Logic Formulation of s-Club

Monadic second order logic (MSO) is an important tool in computational com-
plexity analysis. For problems which are expressible in monadic second order
logic, one can quickly classify the complexity of this problem on graphs with
bounded clique- or treewidth [CO00, CMR01]. For more details see the books
by Flum and Grohe [FG06] or by Niedermeier [Nie06]. We will use the following
MSO formulation of s-Club in Section 5.4 and Section 5.5.
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a e

d

(a) A graph with diameter 2.

b

a e

c

(b) A subgraph with diameter 3.

Figure 3.1: The subgraph G[{a, b, c, e}] in (b) has a higher diameter than the
original graph G in (a).

The formulation in Equation 3.1 translates the definition of s-clubs into MSO. To
do so, the formulation uses the terms S(u) and E(u, v), where S(u) is equivalent
to “u ∈ S” and E(u, v) is equivalent to “u and v are adjacent”. Using this, the
maximization version of the s-Club problem can be expressed in Monadic Second
Order Logic as follows:

max S ∀u, v(S(u) ∧ S(v) → [E(u, v)

∨ ∃x1(S(x1) ∧ E(u, x1) ∧ E(x1, v))

∨ ∃x1, x2(S(x1) ∧ S(x2) ∧ E(u, x1) ∧ E(x1, x2) ∧ E(x2, v))

...

∨ ∃x1, x2, ..., xs(S(x1) ∧ S(x2) ∧ ...S(xs) ∧ E(u, x1) ∧ E(x1, x2) ∧ ...E(xs, v))]

(3.1)

3.1.4 Integer Linear Program for s-Club

A general way to solve combinatorial problems is to translate them into opti-
mization problems and utilize linear programming techniques. An integer linear
program (ILP) is a linear program where the values of the decision variables are
restricted to integers. For more details on integer linear programs see the book
by Schrijver [Sch98].

For the s-Club problem Bourjolly et al. [BLP02] gave the following formulation
as an integer linear program:

maximize
∑

i∈V

xi (3.2)
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subject to:

∑

i∈Cs
ij

yt ≥ xi + xj + 1 ∀{i, j} /∈ E Cs
ij 6= ∅ (3.3)

yt ≤ xr ∀t ∈ C ∀r ∈ Vt (3.4)

xi + xj ≤ 1 ∀{i, j} /∈ E Cs
ij 6= ∅ (3.5)

xi ∈ {0, 1} ∀i ∈ V (3.6)

xj ∈ {0, 1} ∀j ∈ V (3.7)

where Cs
ij is the set of all paths of length at most s between vertices i and j

in G and where yt is an auxiliary binary variable associated with every path
P ∈ ∪i,j∈V Cs

ij . This formulation ensures that if there are two vertices i and j in a
s-club, then all the vertices on the paths with length at most s between them are
included in this s-club as well. Although we will not utilize the ILP formulation
of s-Club in this thesis, it may be a starting point for further investigations or
practical implementations.

3.1.5 Dual Parameterization for s-Club

The idea of fixed-parameter algorithms is to confine the exponential running time
to a small parameter. For the s-Club problem one possible parameter is the
number k of vertices in the solution. If one wants to identify an s-club which has
almost as many vertices as the whole graph, this will not be efficient any more.
The idea of s-Club Vertex Deletion is to find the complement set of an s-
club. The size of this set is n−k, and if k is close to n, then under the assumption
of an fixed-parameter algorithm for s-Club Vertex Deletion we will find the
s-club again efficiently. In Section 6.1 the s-Club Vertex Deletion problem
is discussed in more detail.

3.2 s-Club and Other Clique Relaxations

This section introduces two concepts which are clique relaxations, like the s-club
concept, and their corresponding decision problems. For s = 1, these relaxations
are identical to the clique concept. An overview on these relaxations and clique
is given in Figure 3.2.
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Name Definition Example

clique
S ⊆ V is a clique if and only if

G[S] is a complete graph

s = 2

s-club
S ⊆ V is an s-club if and only if

G[S] has diameter at most s

s = 2

s-clique
S ⊆ V is an s-clique if and only if

∀u, v ∈ S : d(u, v) ≤ s

s = 2

s-plex
S ⊆ V is an s-plex if and only if

min
v∈S

degG[S](v) ≥ |S| − s

s = 2

Figure 3.2: An overview over clique and three clique relaxations. The vertices in
the respective set S are marked grey.

An s-clique is defined in Figure 3.2. The s-clique concept, like the s-club concept,
relaxes over the maximal distance between each of the vertices in the set. The
s-Clique problem is defined as follows:

s-Clique
Input: An undirected graph G = (V,E) and positive integers k, s.
Question: Is there a set of vertices S ⊆ V of size at least k such that for
any two vertices u, v ∈ S, d(u, v) ≤ s?

The s-Clique problem is NP-complete [BLP02] and fixed-parameter tractable
with respect to the combined parameter (k, s) [Kom07]. In the following we
describe the difference between an s-clique and an s-club. Every s-club is an
s-clique but not vice versa. Take for example the graph G given in Figure 3.3.
The set A = {a, b, d, f, g} is a 2-clique but not a 2-club, since for example the
vertices f and d are connected via a length-2 path in G but not in G[A]. Hence,
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b d

e

c

ga f

Figure 3.3: The grey marked set A = {a, b, d, f, g} is a 2-clique but not a 2-club.

s-club is in this sense a more selfcontained structure than s-clique. However, the
results for the s-Club problem given in this work are easily transferable to the
s-Clique problem, by working with the distance in the input graph instead of
the distance in the induced subgraph.

In the following we motivate the s-plex concept and present its definition. Seidman
and Foster [SF78] observed that s-cliques, and by that also s-clubs, are often not
robust. Seidman and Foster measured the robustness of a subgraph in terms
of “the degree of which the structure is vulnerable to the removal of any given
individual”. Consider a 2-club S of size k, which is a star. The induced subgraph
G[S] is according to Seidman and Forster not robust, since we could remove the
vertex v with deg(v) = k− 1 and remain with k− 1 unconnected components. To
overcome this problem Seidman and Foster introduced the s-plex concept. An s-
plex is defined in Figure 3.2. In contrast to the s-club concept, the s-plex concept
relaxes over the degree of the vertices in the defined set. Using the definition of
s-plex from Figure 3.2, the s-Plex problem is defined as follows:

s-Plex
Input: An undirected graph G = (V,E) and positive integers k, s.
Question: Is there an s-plex S ⊆ V of size at least k?

The s-Plex problem was shown to be NP-complete [BBHS09] and W[1]-hard
with respect to the combined parameter (s, k) [KHMN09]. For this problem there
exist several further results [GKNU09, MNS09, Pei09].

In conclusion, s-club is a self-contained, but not necessary robust structure. This
should be considered in real-world applications.



3.3 s-Club and Other Bounded Diameter Problems 17

3.3 s-Club and Other Bounded Diameter Problems

This section introduces two problems which are also concerned with graphs of
bounded diameter. The first one is a problem in discrete mathematics. The
second one is a problem in algorithmic complexity, which unfortunately turns out
to be W[2]-hard.

In the context of graphs with bounded diameter, one of the best studied problems
is the Degree/Diameter problem, which is defined as follows:

Degree/Diameter
Input: A diameter D, a maximum degree δ, a number of vertices n.
Question: Can we construct a graph G of diameter D, with n vertices,
which each have degree at most δ?

An application for this problem is in the design of networks. In the design process
there are a number of features that must be taken into account. The most common
ones are limitations on the vertex degrees and on the diameter.

However, the number of vertices in a graph with degree δ and diameter D is
upper-bounded by the Moore bound [HS60]:

δ + (δ − 1)δ + ...δ(δ − 1)D−1 =
δ(δ − 1)D − 2

δ − 2
= N(δ,D) (3.8)

Research activities related to the Degree/Diameter problem fall into two main
streams. On the one hand, there are proofs of non-existence of graphs of order
close to the general Moore bound [Dam73, Ple74]. On the other hand, there is
much activity in the construction of large graphs [HS60, II81, Del85, FHS95],
providing better lower-bounds. For more on the Degree/Diameter Problem
see the survey papers by Chung [Chu87] or by Miller and Siran [MS05].

The Degree/Diameter problem is interested in the construction of large graphs
of bounded diameter. In this thesis the focus will be on already given graphs in
which we want to find large graphs of bounded diameter.

Another interesting problem is the Maximum Diameter Edge Addition prob-
lem, which is defined as follows:

Maximum Diameter Edge Addition
Input: An undirected, connected graph G = (V,E) and positive inte-
gers D, k.
Question: Can we obtain a supergraph G′ of G by adding k edges to G,
such that G′ has diameter of at most D?
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The problem is also known as Graph Diameter-D Augmentation problem.
An application for this problem is the maintenance of networks. Think of an
inefficient network in terms of long pathways between the elements. One may
ask the question: Can we make the network efficient again, in terms of a longest
pathway with length at most D, by adding at most k new connections to the
network? This is the Maximum Diameter Edge Addition problem in the
graph corresponding to the network.

The Maximum Diameter Edge Addition problem was first defined and ana-
lyzed by Schoone et al. [SBL87], who could show that this problem is NP-complete
for D ≥ 3. Li et al. [LMSL92] strengthened the result by showing that Maximum
Diameter Edge Addition is NP-complete even for D = 2. Recently, Nastos
and Gao [NG09] have shown that this problem is also W[2]-hard for D ≥ 2. This
means that this problem is presumably not fixed-parameter tractable.
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4 s-Club on General Graphs

In this chapter we investigate the s-Club problem on general graphs. Section 4.1
analyzes two different kernelization techniques for s-Club. Section 4.2 gives a
branching algorithm to solve s-Club on general graphs.

4.1 A Problem Kernel for the s-Club Problem

Section 4.1.1 shows that the s-Club problem does not admit a polynomial many-
to-one kernel unless there is an unlikely collapse of complexity classes. In contrast,
Section 4.1.2 shows that there is a k3-vertex Turing kernel for s-Club.

4.1.1 A Lower Bound for Many-to-One Kernels for the s-Club

Problem

Using a lower bounds engine from Bodlaender et al. [BDFH09], we show that
s-Club does not admit a polynomial size kernel, unless the polynomial hierarchy
collapses to the third level. This kernelization lower bound engine [BDFH09] was
already used to show that a variety of problems [BTY09, DLS09, FFL+09, KW09]
do not admit polynomial kernels under this assumption. In order to use the engine
the terms composition algorithm and compositional parameterized problem must
be defined:

Definition 4.1. [BDFH09] A composition algorithm for a parameterized problem
L ⊆ Σ∗ × N is an algorithm that receives as input a sequence ((x1, k), ..., (xt, k)),
with (xi, k) ∈ Σ∗ × N

+ for all 1 ≤ i ≤ t, uses time polynomial in
∑t

i=1 |xi| + k,
and outputs (y, k′) ∈ Σ∗ × N

+ with:

1. (y, k′) ∈ L ⇔ (xi, k) ∈ L for some 1 ≤ i ≤ t and

2. k′ is polynomial in k.
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A parameterized problem is compositional if there exists a composition algorithm
for it.

If we can show that the s-Club problem is compositional, then we can use the
following lemma:

Lemma 4.1. [BDFH09, FS08] Let L be a compositional parameterized problem
whose unparameterized version L̂ is NP-complete. If L has a polynomial kernel,
then the polynomial hierarchy collapses to the third level.

In order to show that the s-Club problem is compositional, we characterize a
compositional parameterized graph problem by the following lemma:

Lemma 4.2. [BDFH09] Let L be a parameterized graph problem such that for any
pair of graphs G1 and G2, and any integer k ∈ N, we have ((G1, k) ∈ L∨(G2, k) ∈
L) ⇔ (G1 ⊎ G2, k) ∈ L, where G1 ⊎ G2 is the disjoint union of G1 and G2. Then
L is compositional.

Now we utilize Lemma 4.2 to show that the s-Club problem is compositional
even if parameterized by k.

Lemma 4.3. The s-Club problem is compositional.

Proof. We have to show that (G1, k) or (G2, k) is a yes-instance if and only if
(G1 ⊎ G2, k) is a yes-instance.

“⇒”: Assume that (G1, k) or (G2, k) is a yes-instance. In a disjoint union of G1

and G2, the graphs G1 and G2 will exist as subgraphs in (G1 ⊎ G2, k). Since
s-Club is defined over subgraphs and (G1, k) or (G2, k) is a yes-instance, the
following statement holds: if (G1, k) or (G2, k) is a yes-instance, (G1 ⊎ G2, k) is
also a yes-instance.

“⇐”: Assume that (G1 ⊎G2, k) is a yes-instance. Because of the properties of the
disjoint union, the subgraphs G1 and G2 are not connected in (G1 ⊎G2, k). Since
the diameter of unconnected components is infinite, subgraphs containing vertices
from G1 and G2 are of no interest and at least one of the subgraphs (G1, k) or
(G2, k) has to form a yes-instance in (G1 ⊎ G2, k). Hence, if (G1 ⊎ G2, k) is a
yes-instance, then (G1, k) or (G2, k) is a yes-instance.

By using the facts that s-Club is compositional, that its unparameterized coun-
terpart is NP-complete [BLP02], and by applying Lemma 4.1, the following state-
ment holds.

Theorem 4.1. Parameterized s-Club cannot have a polynomial kernel, unless
the polynomial hierarchy collapses to the third level.
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4.1.2 A Turing Kernel for the s-Club Problem

In Section 4.1.1 we observed that the s-Club problem does not admit a poly-
nomial kernel in a many-to-one kernelization. Fernau et al. [FFL+09] recently
showed an analogous result for the k-Leaf Out-Branching and k-Leaf Out-
Tree problem. In contrast to this result they also gave a Turing kernelization
for these two problems. In the following we will show an analogous result for the
s-Club problem.

To begin with, a simple observation for the s-Club problem can be made:

Observation 4.1. If a vertex v is part of a solution S for the s-Club problem,
then only vertices in the s-neighborhood of v can also be part of S.

Observation 4.1 follows from the fact that all other vertices have distance greater
than s to the vertex v. Next, a reduction rule is introduced to shrink the number
of vertices in the s-neighborhood of a vertex:

Reduction Rule 1. If there exists a vertex v ∈ V with |N⌊s/2⌋(v)| ≥ k − 1, then
set S = N⌊s/2⌋[v] and return “yes”.

Lemma 4.4. Reduction Rule 1 is correct and can be performed in O(n(n + m))
time.

Proof. To show that Reduction Rule 1 is correct, we show that G[S] is an s-club,
that is, the pairwise distance of any two vertices x, y ∈ N⌊s/2⌋[v] is at most s.
Since x, y ∈ N⌊s/2⌋[v] and by the definition of N⌊s/2⌋[v], the distance from x to
v is at most ⌊ s

2⌋ and the distance from v to y is at most ⌊ s
2⌋. Consequently,

the distance between x and y is at most s. Thus, Reduction Rule 1 is correct.
Computing the set N⌊s/2⌋[v] can be done in O(n + m) time for one vertex by
breadth-first search. Checking whether Reduction Rule 1 can be applied to any
vertex thus takes O(n(n + m)) total time.

By Section 4.1.1 we know Reduction Rule 1 is of no help to find a polynomial
“classic” kernel. Therefore, we describe in the following how to obtain a Turing
kernel. Recall that a t-oracle for s-Club is an oracle that takes as input (I, k)
and decides (I, k) ∈ s-Club in constant time. As input (I, k) we provide the
t-oracle with n s-neighborhoods, one for each vertex from the input graph, and
the parameter k. Due to Observation 4.1 it is obvious that there exists an s-club
of size k in G if and only if there exists an s-club of size k in one of these s-
neighborhoods. Hence, the Turing kernel is correct. To form a Turing kernel, the
size of each s-neighborhood has to be bounded by some function g(k). Therefore,



22 4 s-Club on General Graphs

we assume in the following that Reduction Rule 1 has been applied for each
vertex in G, and show that this upper-bounds the s-neighborhood of each vertex
v ∈ V (G). For this we will distinguish between two cases depending on s. First,
we will show that s-Club admits a k2-vertex Turing kernel when s is even, then
we will show that s-Club admits a k3-vertex Turing kernel when s is odd.

Recall that the exact i-neighborhood of a vertex v is defined as: N◦
i (v) = {u |

d(u, v) = i}. Using N◦
i (v), we observe, that Ns[v] is expressible by the union of

two sets:

Claim 4.1. When s is even, Ns[v] = Ns/2[v] ∪ Ns/2(N
◦
s/2(v)).

Proof. We now show that Claim 4.1 is correct: Any vertex that has distance of at
most s

2 from v is in Ns/2[v], this follows from the definition of the s
2 -neighborhood.

Any vertex x with s
2 ≤ d(v, x) ≤ s has distance of at most s

2 to at least one vertex
in N◦

s/2(v) and thus belongs to Ns/2(N
◦
s/2(v)).

Now we utilize Claim 4.1 for the following theorem.

Theorem 4.2. For even s, s-Club admits a k2-vertex Turing kernel, which can
be computed in O(n(n + m)) time.

Proof. To show the correctness, we bound the size of the set Ns[v], by bounding
the sizes of Ns/2[v] and Ns/2(N

◦
s/2(v)). With Reduction Rule 1 applied for vertex

v, as illustrated in Figure 4.1(a), Ns/2[v] contains at most k−1 vertices. Thereby
also the size of the set of vertices N◦

s/2(v) is upper-bounded by k − 2. With Re-

duction Rule 1 applied to each vertex w ∈ N◦
s/2(v), as illustrated in Figure 4.1(b),

the size |Ns/2(w)| of the s
2 -neighborhood for each w is upper-bounded by k − 1.

Thus the size of Ns/2(N
◦
s/2(v)) is at most k2 − 2k + 1. Clearly, the size of Ns/2[v]

∪ Ns/2(N
◦
s/2(v)) is at most k − 1 + k2 − 2k + 1 ≤ k2 and by Claim 4.1 we know

that |Ns[v]| ≤ k2. By Lemma 4.4 we know that applying Reduction Rule 1 to the
input graph G takes at most O(n(n + m)) time. This is sufficient, since reducing
the input graph G reduces also the s-neighborhood of each vertex in G.

If s is odd, then the kernelization is different. In the case of even s we can bound
the s-neighborhood of v by restricting the number of vertices of two subsets, for
odd s we bound three subsets. In the following, we show that for any vertex
v ∈ V there exists a k3-vertex Turing kernel for the s-Club problem with odd s.
Because s is odd, ⌊ s

2⌋ = s−1
2 . For the ease of presentation, N(s−1)/2 is now being

used instead of N⌊s/2⌋. Using the s−1
2 -neighborhood, we can express Ns[v] by the

union of three sets:
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Ns/2[v]

Ns[v]

s
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s
2

(a) Reduction Rule 1 on v bounds the s

2
-

neighborhood of v to at most k−1 vertices.

vw1

w2

w3s
2s

2

Ns/2[v]

Ns[v]

Ns/2[w1]

(b) Reduction Rule 1 on w1 bounds the s

2
-

neighborhood of w1 to at most k − 1 ver-
tices.

Figure 4.1: Turing kernelization via Reduction Rule 1 for the s-Club problem,
with even s.

Claim 4.2. Ns[v] ⊆ N(s−1)/2[v] ∪ N(s−1)/2(N
◦
(s−1)/2(v)) ∪ N(s−1)/2(N

◦
s−1(v)).

Proof. Any vertex which has distance of at most s−1
2 from v is in N(s−1)/2[v], this

follows from the definition of the s−1
2 -neighborhood. Any vertex y with s−1

2 ≤
d(v, y) ≤ s−1 has distance of at most s−1

2 to at least one vertex in N◦
(s−1)/2(v) and

thus belongs to N(s−1)/2(N
◦
(s−1)/2(v)). Any vertex z with s − 1 ≤ d(v, z) ≤ 3s−1

2

has distance of at most s−1
2 to at least one vertex in N◦

s−1(v) and thus belongs to
N(s−1)/2(N

◦
s−1(v)). Since 3s−1

2 = 1.5s − 1.5 ≥ s for s ≥ 3, Claim 4.2 holds.

No we utilize Claim 4.2 for the following theorem.

Theorem 4.3. For odd s, s-Club admits a k3-vertex Turing kernel, which can
be computed in O(n(n + m)) time.

Proof. To show correctness, we bound the size of the set Ns[v], by upper-bounding
the number of vertices in each of the three sets N(s−1)/2[v], N(s−1)/2(N

◦
(s−1)/2(v))

and N(s−1)/2(N
◦
s−1(v)). Reduction Rule 1 applied for vertex v secures that the

closed s−1
2 -neighborhood of v consists of at most k − 1 vertices. By that also the

size of N◦
(s−1)/2(v) is bounded to at most k−2. Reduction Rule 1 applied for each
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vertex w ∈ N◦
(s−1)/2(v) bounds for each w the size of the |N(s−1)/2(w)| to at most

k− 1. Thus, the size of N(s−1)/2(N
◦
(s−1)/2(v)) is at most k2 − 2k + 1. By that also

the size of N◦
s−1(v) is bounded by k2 − 2k + 1. Reduction Rule 1 applied for each

vertex x ∈ N◦
s−1(v) bounds the size of |N(s−1)/2(x)| by k − 1. Thus the size of

N(s−1)/2(N
◦
s−1(v)) is at most k3 − 3k2 + 3k − 1.

Clearly, the size of N(s−1)/2[v] ∪ N(s−1)/2(N
◦
(s−1)/2(v)) ∪ N(s−1)/2(N

◦
s−1(v)) is at

most k + k2 − 2k + 1 + k3 − 3k2 + 3k − 1 ≤ k3 and by Claim 4.2 we know that
|Ns[v]| ≤ k3. By Lemma 4.4 we know that applying Reduction Rule 1 to the
input graph G takes at most O(n(n + m)) time. This is sufficient, since reducing
the input graph G, reduces also the s-neighborhood of each vertex in G.

Note that the Turing kernel size is completely independent of the parameter s.
This leads directly to another result:

Theorem 4.4. The s-Club problem is fixed-parameter tractable with respect to
the parameter k.

Proof. Using the kernelization results from Theorem 4.3 we can compute n in-
dependent k3-vertex kernels in O((n + m) · n) time, one for each vertex v ∈ V .
Then we run on each of the n vertex sets of size ≤ k3 a brute-force algorithm,
which needs 2O(k3) time to enumerate each possible subset of the at most k3 ver-
tices and O(k3) time to verify if this set is a solution via an all pairs shortest
path algorithm, like the Floyd Warshall algorithm [CLRS01]. Over all, we need
O((n + m) · n + n · k3 · 2O(k3)) time.

In the following we will show an interesting connection between the Turing kernel
size and approximation algorithms for s-Club. The idea is to give an algorithm
which computes both a Turing kernel and an approximation for s-Club. In the
Turing kernelization given in this section, Reduction Rule 1 is applied to each
vertex v ∈ V . The Reduction Rule 1 computes the set N⌊s/2⌋[v] and checks
whether the size of this set is at least k. By Lemma 4.4 the set N⌊s/2⌋[v] is
an s-club. Therefore we can use N⌊s/2⌋[v] as an approximate solution for s-
Club. Hence, the combined s-club algorithm proceeds as the Turing kernelization
described in this section, but additionally computes the maximum set N⌊s/2⌋[v]
over all v ∈ V and returns this set. Since the comparison of size of n set sizes takes
O(n) time and by the arguments of Lemma 4.4, the combined s-club algorithm
needs O(n(n + m)) time as well.

In the following the performance, regarding the kernel size and the approximation
factor, of the combined s-club algorithm is evaluated. To start with, two extremal
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examples are given. In the worst case for the given Turing kernelization, at least
one vertex v ∈ V has closed ⌊ s

2⌋-neighborhood of size k− 1. The combined s-club

algorithm will identify the vertex v and return N⌊s/2⌋[v]. N⌊s/2⌋[v] is a factor-k−1
k

approximation for s-Club, which is for large k close to an optimal solution. The
other extremal example is the lower bound for a polynomial time approximation
factor, which was shown by Marincek and Mohar as k1/3−ǫ [MM02], for any ǫ ≥ 0.
Since the combined s-club algorithm operates in polynomial time, this also upper-
bounds the ⌊ s

2⌋-neighborhood of each vertex in G to k1/3. Using the kernelization
idea given in this section, this results in a k-vertex Turing kernel, which gives
a polynomial time recognizable optimal solution for s-Club, if exists. In the
following theorem we generalize the kernel size and the approximation factor the
combined s-club algorithm will return.

Theorem 4.5. For even s (odd s), given an instance (G, k, s) for which the
combined s-club algorithm computes:

1. A Turing kernel of size at least (k − l)2 (at least (k − l)3) vertices, with
l ≤ k, for s-Club, the combined s-club algorithm computes a polynomial
time approximation of at least factor-k−l

k for s-Club.

2. A factor-k−l
k , with l ≤ k, polynomial time approximation for s-Club, the

combined s-club algorithm computes a Turing kernel of size at most (k− l)2

(at most (k − l)3) vertices for s-Club.

Proof. 1. In an instance, in which the combined s-club algorithm computes a
Turing kernel of vertex size at least (k − l)2 (at least (k − l)3) for s-Club,
there exists at least one vertex v with |N⌊s/2⌋[v]| = k−l. Since the combined
s-club algorithm computes the set N⌊s/2⌋[v] over each v ∈ V (G) and returns
the set with maximum size, the algorithm will return an approximation set,
which is at least a factor-k−l

k approximation for s-Club. Since the combined
s-club algorithm has a running time of O(n(n + m)), this is a polynomial
time approximation.

2. Since the combined s-club algorithm computes the set N⌊s/2⌋[v] over each
v ∈ V (G) and returns the set with maximum size, the size of |N⌊s/2⌋[v]|,
in an instance in which the combined s-club algorithm returns a factor-
k−l
k polynomial time approximation for s-Club, is upper-bounded to k − l

for every v ∈ V . Therefore and by the arguments given in Theorem 4.2
(Theorem 4.3) the vertex Turing kernel size computed by the combined
s-club algorithm is upper-bounded by (k − l)2 (by (k − l)3).



26 4 s-Club on General Graphs

In other words, by using the combined s-club algorithm either we achieve a Turing
kernel of “small” vertex-size or a “good” approximation for s-Club.

4.2 A Branching Algorithm for s-Club

In this section we give a branching algorithm which solves s-Club on general
graphs. The idea of this algorithm (Figure 4.2) is to initialize each vertex of the
input graph as a start vertex set of size one, then we branch over all adjacent
vertices which are possible enhancements of this set, until this sets have reached
size k. Afterwards we check for each computed set whether it forms an s-club.

Lemma 4.5. The algorithm Solve-s-club given in Figure 4.2 is correct.

Proof. In the iteration starting in line 1 the function Iterate-s-club, described in
Figure 4.3, is called for each vertex u of the graph G.

In function Iterate-s-club the size of the set S is checked. If the size of S is less
than k, then we start a nested for-loop in line 2, which iterates over each vertex
v in S and over each vertex w that is adjacent to v and not already in S. In each
iteration step of the loop we build a new set, which consists of S together with the
adjacent vertex w and call Iterate-s-club for this new set. Thereby each possible
adjacent enhancement of the set S will be checked. It is sufficient to check only
adjacent vertices, since G[S] has to be one connected component in order to have
a diameter of at most s. If the set S has size at least k, then we test in line 8 if S
is an s-club. If S is an s-club, there will be an output of S in line 9. Hence, each
possible connected vertex set which is of size k and contains u, will be checked
whether it forms an s-club.

Since Solve-s-club called the function Iterate-s-club for each vertex u of the graph
G, all s-clubs of size k in G will be provided as output.

In general the algorithm Solve-s-club enumerates all s-clubs of size k. However,
in the following, we run the algorithm on a graph, which is reduced by Reduction
Rule 1. Therefore the algorithm will only enumerate non-trivial s-clubs instances,
but in order to solve s-Club it provides a more efficient running time.

Theorem 4.6. The s-Club problem can be solved in O(n(n + m) + n((k − 2)k ·
k! · k3)) time.
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Algorithm: Solve-s-club (G)
Input: A graph G, an integer k
Output: All s-clubs of size k

1 for each u ∈ V (G)
2 call Iterate-s-club({u},G,k)
3 endfor

Figure 4.2: Pseudo-code of the algorithm which, together with the algorithm in
Figure 4.3, outputs all s-clubs of size k in G.

Algorithm: Iterate-s-club (S,G)
Input: A graph G, a set S, an integer k
Output: An s-club of size k

1 if |S| ≤ k then

2 for each v ∈ S
3 for each w ∈ {N1(v)\S}
4 call Iterate-s-club(S ∪ {w},G,k)
5 endfor

6 endfor

7 else

8 if S is s-club then

9 output S

Figure 4.3: Pseudo-code of the recursive function which is called by the algorithm
in Figure 4.2.

Proof. By Lemma 4.5 we know the algorithm Solve-s-club given in Figure 4.2 is
correct. We now prove the theorem by bounding the running time of algorithm
Solve-s-club on an input graph, which is reduced by Reduction Rule 1. The
reduction takes O(n(n + m)) time and upper-bounds the size of the open ⌊ s

2⌋-
neighborhood to k − 2, due to Lemma 4.4.

In the iteration starting in line 1 the function Iterate-s-club is called n times. In
this function, a nested for loop is started in line 2, which iterates over each vertex
v of the set S and over each vertex w that is adjacent to v and not already in
S. By Reduction Rule 1 there are at most k − 2 possible vertices for w. Thereby
each iteration makes for a vertex set S of size i at most (k − 2) · i steps in each
calling a new instance of Iterate-s-club of size i+1. In order to obtain the running
time over all recursive calls, we have to multiply over all i and this results in a
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running time of (k − 2) · 1 · (k − 2) · 2 · ... · (k − 2) · k ∼ (k − 2)k · k!. This is
correct, since for a set of size ≥ k we abort the iteration and thereby do not enter
recursive calls. Testing if S is an s-club takes O(k3) time, using an all pair shortest
path algorithm, like the Floyd Warshall algorithm [CLRS01]. Over all we need
O(n(n + m)) time for data reduction, then we make n calls to a function which
calls itself up to (k− 2)k · k! times, and additionally tests the at most (k− 2)k · k!
resulting sets in O(k3) time. Hence, the overall running time bound follows.
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5 s-Club on Special Graph Classes

In this chapter, we analyze the complexity of the s-Club problem on several
special graph classes. More specifically, polynomial time algorithms for trees are
given in Section 5.1 and for interval graphs in Section 5.2. For bipartite graphs the
complexity of the 2-Club problem will be given in Section 5.3. The complexity
of s-Club will be discussed for distance-hereditary graphs in Section 5.4 and for
planar graphs in Section 5.5.

5.1 Trees

In this section, we give an algorithm that solves s-Club on trees in O(n ·s2) time.
In this algorithm we use a special property regarding the neighborhood of lowest
leaves in rooted trees. This property is shown in the following claim:

Claim 5.1. For a lowest leaf u in a rooted tree, the set Su = {v | d(u, v) ≤ s} is
the uniquely determined maximum s-club containing u.

Proof. To prove the claim we have to show that ∀a, b ∈ Su : d(a, b) ≤ s. Without
loss of generality let d(u, a) ≥ d(u, b). Consider Pa as the shortest path between
u and a and Pb as the shortest path between u and b. Since u is as leaf there
exists the path P ′ = Pa ∩ Pb. Now let t be the vertex in P ′ with the shortest
distance to a, as illustrated in Figure 5.1(a). Since u is a lowest leaf, it follows
that d(b, t) ≤ d(u, t). Thus d(b, t) + d(t, a) ≤ d(u, t) + d(t, a) ≤ s. This means
the distance between a and b is not higher then the distance between u and a
and therefore at most s. Hence, the pairwise distance of any two vertices a, b in
Su = {v | d(u, v) ≤ s} is at most s. Therefore, Su is an s-club. Since an s-club
containing u cannot contain a vertex with distance greater than s, the set Su is
clearly the uniquely determined maximum s-club containing u.

In the following we show that if u is not a lowest leaf this idea will generally not
work. For ease of presentation, we consider the same variables as in the proof of
Claim 5.1. Now we give a simple example, which is illustrated in Figure 5.1(b).
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Pa

P ′

t Pb

u b a

(a) Illustration for the proof of Claim 5.1,
with u as a lowest leaf.

Pa

t

u a

b

P ′

Pb

(b) The vertex u is not a lowest leaf, since
b is in a lower tree level than u.

Figure 5.1: Illustration for Claim 5.1.

Assume, u is not a lowest leaf, and d(u, t) = 1
4s, d(t, a) = 3

4s, d(t, b) = 1
2s and

therefore a, b ∈ Su = {v | d(u, v) ≤ s}. But the pairwise distance in Su is not at
most s: d(a, b) = 3

4s + 1
2s ≥ s. Hence, Su is not an s-club.

In Figure 5.2 we give the algorithm Tree-s-club. The algorithm computes, given
a tree and a diameter as input, a maximum-cardinality s-club in this tree. The
idea of this algorithm is to apply Claim 5.1 to each lowest leaf. After a lowest leaf
is processed it is removed from the graph. By this, level-wise each vertex of the
tree is processed until the root vertex r is reached. One may give a much simpler
algorithm which computes the maximum s-club with a running time O(n2). In
order to obtain an algorithm which does not compute n times the set Su, we
perform a precomputation resulting in the table C[v, d]. C[v, d] stores for each
vertex v in the tree, the number of vertices with distance exactly d in the induced
subtree of v. See Figure 5.3(a) for example entries in the table C[v, d]. Then a path
P from the lowest leaf towards the root is spanned. Then in order to obtain the
size of a maximum s-club containing a current lowest leaf, the number of vertices
in the sublevels, which have a sufficient distance, of the path vertices in P are
added up. This path is illustrated in Figure 5.3(b), the triangles illustrate the
vertices in the sublevels with sufficient distance. Thereby we obtain an algorithm
which has an over all running time of O(n · s2). This algorithm always computes
a maximum s-club S of the tree; we may check afterwards whether the size of S
is at least k and therefore a solution for s-Club.
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Algorithm: Tree-s-club (T, s)
Input: A tree T , a diameter s.
Output: A maximum-cardinality s-club S.

1 Root the tree T at an arbitrarily root vertex r
2 Tcopy := T
3 sizeSsol := 0
4 for each v ∈ V (T ) //loop to initialize the table C
5 C[v, 0] := 1 //each vertex is initialized for d = 0 with value 1
6 endfor

7 for o := 1 to l(r) //calculate the vertices in each sublevel for each vertex
8 for each v with l(v) = o
9 for d := 1 to min(o, s) //d is depth in subtree

10 C[v, d] :=
∑

{u|u child(v)} C[u, d − 1]
11 endfor

12 endfor

13 repeat //process lowest leaf and delete
14 Take a vertex v0 from the lowest tree level (a leaf)
15 q := min{l(r), s)}
16 Get the shortest path P := (v0, v1, ..., vq) of length q from v0 towards r
17 repeat //calculate the s-club by utilizing C for vq ∈ Pv

18 if l(vq) > ⌊ s
2⌋ then sizeS := sizeS +

∑s−l(vq)
i=0 C[vq, i] − 1

19 else sizeS := sizeS +
∑l(vq)

i=0 C[vq, i]
20 q := l(vq) − (s − l(vq) //index update
21 until q ≤ ⌊ s

2⌋ //until all subtree levels have distance at most s
22 if sizeS ≥ sizeSsol

23 sizeSsol := sizeS
24 usol := v0 //save for later reconstruction of maximum
25 endif

26 V (T ) := V (T )\{u} //delete processed vertex
27 for i := 1 to min{l(r), s)}
28 C[vi, i] := C[vi, i] − 1 //table update for deleted vertex
29 endfor

30 until V (T ) = ∅ //until tree is empty
31 S := {v | dTcopy

(usol, v) ≤ s ∧ lTcopy
(usol) ≤ lTcopy

(v))} // get solution
32 return S

Figure 5.2: The Pseudo-code of the algorithm which computes an s-club on a
tree. In Figure 5.3(a) the table entries C[v, d] and the vertices in P
are illustrated.



32 5 s-Club on Special Graph Classes

v3 = vq

v0

v1

v2

C[v3, 0...3] = [1, 3, 8, 13]

C[v2, 0...2] = [1, 3, 7]

C[v1, 0...1] = [1, 3]

C[v0, 0] = [1]

(a) Example, with s = 4, for the vertices in
P , with corresponding entries of table C(v, d).

v0

vq

vq′

P

C[vq′ , 0...(s − l(vq′)]

C[vq, 0...(s − l(vq)]

(b) The vertices in the subtree of vq with suf-
ficient distance to v0 are illustrated as trian-
gles. The index q is updated, here illustrated
as q′, towards the leaf v0.

Figure 5.3: Illustration for the algorithm Tree-s-club from Figure 5.2. The term
C[v, 0...d] is the number of vertices in the induced subtree of v in the
distances 0 to d.

Lemma 5.1. The algorithm Tree-s-club is correct.

Proof. The algorithm Tree-s-club is given in Figure 5.2. In line 3 the size of the
current maximum s-club sizeSsol is set to zero. In the loop starting in line 4 the
entry of the table C[v, 0] is initialized with 1. This is correct since in distance 0 of
any vertex there exists the vertex itself. The iterations starting in the lines 7 and
8 iterate over each vertex v of the tree in a bottom-up way. In lines 9 and 10 the
number of vertices in distance exactly d in the induced subtree of v are calculated
and stored in table C[v, d]. This is done in a bottom up way, by summing up over
the entries in C[u, d − 1], whereby u are the children of v. This is correct since
d(v, u) = 1 and table C is initialized correctly for leaves in line 4. This finishes
the precomputation.

In line 13 we start iteratively checking the size of the maximum s-club containing
a lowest leaf v0. By Claim 5.1 this s-club is determined as Sv0

= {z | d(v0, z) ≤ s}.
In line 15 the value q is evaluated as the minimum from s and the level of the root
r. In line 16 the path P is initialized as the path of length q from the lowest leaf
v0 towards the root r. If vq = r, this is sufficient for our calculation since we know
from table C how many vertices are in the sublevels in distance 0, ..., (s−d(v0, r)).
If q = s this is correct, since vertices which are farther away than s, are too far
away from v0 to build an s-club with v0. The level q is also used as index in the
loop starting in line 17. This loop calculates the value of sizeS, which is the size
of the maximum s-club containing the leaf v0. In order to do so, decreasing from
level q, each subtree level is added up, which has distance s − q and therefore
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distance at most s from v0. We subtract ones per iteration the value 1 to prevent
a double counting of the new vq in the next iteration. The idea of the summation
is illustrated in Figure 5.3(b), the triangles illustrate the vertices in the sublevels
with sufficient distance. This summation is done until a path vertex with level
at most ⌊ s

2⌋ is reached, from this vertex one can add up all levels in the induced
subtree. In line 22 the value sizeS is tested if it is greater than sizeSsol, then a
larger s-club is found, and the optimal leaf is stored in usol and its size in sizeSsol.
In line 26 the processed leaf v0 is removed from the tree. Since the input tree T
is deleted, we look in line 31 in a copy of the input tree for the solution set C.
Since every set Sv0

is a maximum s-club and in the iteration every vertex will be
a lowest leaf, and thereby checked, the algorithm is correct.

Theorem 5.1. s-Club on trees can be solved in O(n · s2) time.

Proof. By Lemma 5.1 we know that algorithm Tree-s-club given in Figure 5.2
is correct. Hence, we prove the theorem by upper-bounding the running time
of algorithm Tree-s-club to O(n · s2). Making a copy of the input tree in line 2
takes O(n) time. The for-loop beginning in line 4 takes O(n) time. The iterations
starting in lines 7 and 8 iterate over each tree level and every vertex in these levels.
Therefore, the iterations process each vertex in each level exactly once, this takes
O(n) running-time. The loop starting in line 9 makes at most s iterations. The
operation in line 10 makes in the whole algorithm at most as much summations
as there are are edges in the tree. Therefore, the operation takes constant time.
Hence, the loop starting in line 7 makes at most O(n · s) iterations in which each
operation takes at most O(1) time. Therefore, the loop starting in line 7 takes
at most O(n · s) time. The iteration beginning in line 13 makes at most as much
iterations as there are vertices in the graph, these are at most n iterations. Getting
the path P in line 16 of length at most s takes at most O(s) time. In line 17 we
start a repeat loop with at most s iterations. Each of the operations in lines 18
and 19 perform at most s additions, this takes O(s) time as well. Therefore, the
repeat loop started in line 17 takes at most O(s2) running time. In line 27 we start
a for-loop with O(s) iterations overall. Since we have seen that each operation in
the iteration, which started in line 13, needs at most O(s2) time, we need O(n ·s2)
time for the whole iteration. The calculation of the solution set in line 31 takes
O(n) time. Since every iteration in the algorithm takes at most O(n · s2) time,
the whole algorithm Tree-s-club takes O(n · s2) time as well.

By using a table with a consumption of O(n · s) space, we gave an algorithm that
solves s-Club on trees needing O(n · s2) time. One may generalize this dynamic
programming idea for solving s-Club on tree decompositions.
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a′ d′
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(a) Interval collection on a real line.

a c
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f
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(b) The corresponding interval
graph.

Figure 5.4: An example interval and the corresponding interval graph.

5.2 Interval Graphs

Interval graphs are a popular graph class in algorithmic graph theory. The
applications are numerous. For example, problems in scheduling and storage
translate to finding minimum colorings and clique covers in respective interval
graphs [Gol80]. Since the Clique problem is solvable in polynomial time on in-
terval graphs [Gol80], the question arises whether or not the same holds for the
s-Club problem. In this section, we give an algorithm that finds an maximum
s-club for an interval graph in O(n2) time. To start with, interval graphs are
defined.

Let I = {i′1, i
′
2, . . . , i

′
n} be a finite collection of intervals on the real line. The cor-

responding interval graph is G = (V,E) where V = {i1, i2, . . . , in} and (ix, iy) ∈ E
⇔ i′x ∩ i′y 6= ∅. An example interval collection and the corresponding graph are
illustrated in Figure 5.4. In the following, the left startpoint and right endpoint
of an interval v′ will be denoted by lv′ and rv′ , where lv′ ≤ rv′ .

In the following a vertex u ∈ V will be called s-simplicial if the closed s-neigh-
borhood Ns[u] = {v ∈ V | d(u, v) ≤ s} of u is an s-club. The idea of algo-
rithms [Gol80] which solve Clique on interval graphs is to use that the vertex
corresponding to the interval with the maximum left startpoint is 1-simplicial.
We generalize this idea for an algorithm which solves s-Club on interval graphs.
In order to do so, we show that u is s-simplicial:

Lemma 5.2. In an interval graph the vertex corresponding to the interval with
the maximum left startpoint is s-simplicial, with s ≥ 1.
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Algorithm: Interval-s-club
Input: A graph G, the corresponding interval collection I, a diameter s
Output: A maximum s-club Ssol

1 Ssol := ∅
2 repeat

3 U := {u | lu′ = max{li′ | i = 1, ..., n}}
4 Choose arbitrary an u ∈ U
5 Su := {v | d(u, v) ≤ s}
6 if |Su| ≥ |Ssol| then Ssol := Su

7 V (G) := V (G) \{u}, I := I\{u′}
8 until V (G) = ∅
9 return Ssol

Figure 5.5: The Pseudo-code of the algorithm which computes a maximum s-club
on an interval graph.

Proof. Let G be an interval graph with n vertices, and consider the corresponding
interval representation I. Let u be a vertex of G whose corresponding interval
u′ has the maximum left startpoint lu′ in I. It will be now shown that u is s-
simplicial. Consider two vertices a and b such that d(u, a) ≤ s and d(u, b) ≤ s.
Without loss of generality, let la′ < lb′ < lu′ . Consider a shortest path P between
u and a, there must be a vertex z ∈ P such that lz′ ≤ lb′ < rz′ . Hence, d(a, b) ≤
d(u, z) + 1 ≤ d(u, a) ≤ s. Therefore, d(a, b) ≤ s and vertex u is s-simplicial.

In Figure 5.5 the algorithm Interval-s-club is given, which uses Lemma 5.2 to
compute an maximum s-club on interval graphs. The idea of the algorithm is that
a vertex u, corresponding to an interval with the maximum left startpoint u′, is
s-simplicial and therefore the vertex set Su = {v | d(v, u) ≤ s} is the maximum
s-club containing this vertex. If this vertex set Su is of current maximum size,
this set will be saved. After the size is checked, vertex u is deleted from the graph
and interval u′ is deleted from the collection of intervals. If we apply this idea
repeatedly, every interval will be the interval with the maximum left startpoint
at some point of the algorithm.

Lemma 5.3. The algorithm Interval-s-club given in Figure 5.5 is correct.

Proof. In line 1 the current maximal solution set Ssol is initialized with the empty
set. In line 3 and line 4 a vertex u corresponding to an interval with the maximum
left start is calculated. From Lemma 5.2 we know that u is s-simplicial. Hence,
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Su := {v | d(u, v) ≤ s} is the maximum s-club containing this vertex u. In line 6
the size of set Su is checked. If the set Su has size at least |Ssol|, the algorithm
found a new maximal solution, and the algorithm saves Su in line 6 as the current
maximal solution Ssol. Since the size of the maximum s-club containing u is
checked, it is correct to remove vertex u from the interval collection and the
graph in line 7. This algorithm repeats until the graph has no vertices, therefore
each vertex of the graph will, at some point of this algorithm, correspond to the
interval with the maximum left startpoint. Thus each vertex is checked and the
algorithm is correct.

Theorem 5.2. Computing the maximum s-club on an interval graph can be solved
in O(n2) time.

Proof. From Lemma 5.3 we know that the algorithm Interval-s-club given in Fig-
ure 5.5 is correct. Hence, we prove the theorem by bounding the running time
of algorithm Interval-s-club by O(n2). In line 2 we start an iteration over all the
vertices of the graph. Finding the vertex u corresponding to the interval with
the maximum left startpoint, which is calculated in line 3, takes at most O(n)
time. Calculating the maximum s-club containing u in line 5 takes at most O(n)
time. Lines 6 and 7 take at most O(n) time. Since each step of the iteration takes
at most O(n) time and the iteration runs over all the vertices of the graph, the
iteration takes at most O(n2) time. Since each iteration of the algorithm takes
at most O(n2) time, the algorithm needs at most O(n2) running time. Hence,
Theorem 5.2 is correct.

The worst-case running time of this algorithm can be reduced: Starting by a
precomputation which sorts the intervals I. This sorting takes O(nlogn) running
time. By this the running time of line 3 is reduced to O(1). The running time
of line 5 can be reduced to O(s2), by a precomputation of a table similar to the
table of the algorithm Tree-s-club given in Section 5.1. The running times of the
lines 6 and 7 are depending on the implementation and the datastructure. The
running time of line 6 can be reduced to O(1) by using pointers. The running
time of line 7 can be reduced to O(1) by using an adjacency matrix instead of an
adjacency list. Therefore, the running time of an algorithm which solves s-club
on an interval graph can be reduced to O(nlog(n) + n · s2) time.
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5.3 2-Club on Bipartite Graphs

A bipartite graph is a graph G(V,E) in which the vertex set V can be partitioned
into two disjoint sets A ⊆ V and B ⊆ V such that no two graph vertices within
the same set are adjacent. In other words, bipartite graphs one to one correspond
2-colorable graphs. Bipartite graphs have applications in coding theory [LMSS01],
projective geometry [TN91] and are used to model matching problems [Eke95].

To solve 2-Club on bipartite graphs we show that a biclique is equivalent to the
graph induced by a 2-club. A complete bipartite graph or biclique is a bipartite
graph G((SA ∪ SB), E) such that every vertex of the first set SA is adjacent to
every vertex of the second set SB .

Lemma 5.4. Let G = (V,E) be a bipartite graph and S ⊆ V . Then, G[S] is
biclique if and only if S is a 2-club.

Proof. “⇒”: Since G[SA ∪ SB ] is a biclique, every vertex in one of the sets SA or
SB , without loss of generality SA, has distance one to every vertex in SB. Since
every vertex in SB is also adjacent with every vertex in SA the distance between a
vertex in SA to another vertex in SA is two. Thus every vertex in S has distance
at most two to another vertex in S and therefore S is a 2-club.
“⇐”: Let S be a 2-club. Then every vertex in G[S] has, by definition, distance at
most two to every other vertex in S. Since S is a vertex set in a bipartite graph it
can be partitioned into two subsets SA and SB where no vertex in SA is adjacent
to any other vertex in SA, and analogously for SB. Therefore, every vertex a ∈ SA

has to be adjacent to every vertex b ∈ SB, because otherwise, since all vertices
in Sa are non adjacent, the shortest path from a to b would have length at least
three. Hence, every vertex b is directly connected with every vertex a. Hence, S
is a biclique.

Theorem 5.3. The 2-Club problem on bipartite graphs can be solved in O(n5)
time.

Proof. By Lemma 5.4, we know that S is a 2-club if and only if G[S] is biclique.
The problem of finding a maximum cardinality biclique can be solved via reduction
to the problem of finding a min-cut [DdFS07] in the complement graph G = (V,E)
with E = {(u, v) ∈ E | (u, v) /∈ E}. A minimum cut algorithm like the Edmonds-
Karp algorithm runs in O(nm2) time [EK72, Din70]. The number of edges in in
the complement graph m can be upper-bounded by n2. Therefore, the problem
of finding a maximum cardinality biclique can be solved in O(n5) time.
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In this section we have shown that the 2-Club problem on bipartite graphs can
be solved in O(n5) time. The complexity of s-Club on bipartite graphs, with
s ≥ 3, remains open for further investigations.

5.4 Graph Classes with bounded Clique- or Treewidth

In this section we will classify the complexity of the s-Club problem on graphs
with bounded tree- or cliquewidth. Examples for graphclasses with bounded
tree- [Bod98] or cliquewidth [GR99, GHN06] are: Trees and Forests (treewidth
1), series-parallel graphs (treewidth 2), outerplanar graphs (treewidth 2), Halin
graphs (treewidth 3), cographs (cliquewidth 2), complete graphs (cliquewidth 2)
and distance-hereditary graphs (cliquewidth 3).

The graphs with bounded treewidth can be recognized in linear time [Bod96], with
a running time exponential in the bounded treewidth. Graphs with cliquewidth
at most ≤ 3 are polynomial time recognizable [CHL+00]. Whether it is possi-
ble to recognize graphs of any constant cliquewidth in polynomial time is open
[FRRS06]. The clique or tree decomposition of a graph can be computed by
polynomial time approximation algorithms [BKMT04, Oum08]. For a general in-
troduction to the concepts of treewidth and cliquewidth see the survey by Seese
et al. [SHOG07].

It is known that on a graph with bounded clique- or treewidth, every graph prob-
lem that is expressible in Monadic Second Order Logic can be solved in polynomial
time, given the respective decomposition [CO00, CMR01]. Since Equation 3.1
shows that the s-Club problem is expressible in Monadic Second Order Logic
the following proposition is correct:

Proposition 5.1. On a graph with bounded tree- or cliquewidth the s-Club prob-
lem is solvable in polynomial time.

This is a classification result, since the running time is exponential in the respec-
tive width. The fact that the width is bounded by a constant secures Proposi-
tion 5.1. We gave no explicit algorithm to solve s-Club on those decompositions,
but one may generalize the dynamic programming technique from Section 5.1 to
solve s-Club on tree decompositions.
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5.5 Planar Graphs

A graph is planar if it can be drawn in a plane without crossing graph edges.
Planar graphs arise in many applications, such as road networks or printed circuit
boards, which are naturally planar because they are defined by surface structures.
Therefore, planning routes on roads without underpasses [SS07] or laying out
circuits on computer chips [HSM82] are planar graph problems.

In a planar graph there is no induced K5. This arises from the fact that a K5 can
not be drawn without intersecting edges. This fact can be used to show that the
number of maximal cliques in planar graphs is at most p(n) = (7n/3− 6) [Pri95].
This bound helps to give an efficient polynomial time algorithm for the Clique
problem on planar graphs. One may first apply the algorithm from Tsukiyama
et al. [TIAS77] to find all maximal cliques in time O(nmp(n)). Then, to find
the maximum clique we iterate over the list of all maximal cliques, selecting the
largest one. This algorithm is bounded by the number of cliques in a planar graph
p(n).

Even though the fact that we cannot draw a K5 seems to be of no help regarding
the s-Club problem, we can use properties of planar graphs to classify the com-
plexity of s-Club on planar graphs. Such a property is given by the following
theorem:

Theorem 5.4. [Bak94, FG06] A planar graph with n vertices and of diameter D
has a tree decomposition of width at most 3D that can be found in time O(D ·n).

For an introduction to treewidth see the publications by Bodlaender [BK08], Flum
and Grohe [FG06] or Niedermeier [Nie06]. However, in the following the idea is to
compute n s-neighborhoods, one for each vertex of the input graph. This idea is
based on Observation 4.1. Recall Observation 4.1, this is that, if a vertex v is part
of a solution S for the s-Club problem, then only vertices in the s-neighborhood
of v can also be part of S. Each of the n s-neighborhoods have clearly diameter
at most 2s. Hence, by Theorem 5.4 one can find n tree decompositions, one for
each s-neighborhood, each of width at most 6s in O(2s ·n2) time. In the following
we will utilize these tree decompositions to solve s-Club on planar graphs.

Courcelle’s famous theorem [Cou90, Cou91, CM93] states that if a problem is
expressible in MSO Logic, then it can be solved in time only exponential in the
treewidth on graphs with a given tree decomposition. Equation 3.1 shows that
s-Club is expressible in Monadic Second Order (MSO) Logic. Since the width of
a tree decomposition of an s-neighborhood is bounded by 6s, the s-Club problem
on such a decomposition is fixed-parameter tractable with respect to parameter
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s. Hence, by solving the s-Club problem on each of the n tree decompositions
and by Observation 4.1 the following statement clearly holds:

Corollary 5.1. On a planar graph the s-Club problem is fixed-parameter tract-
able with respect to parameter s.

If we consider s as a constant, the result changes to:

Corollary 5.2. On a planar graph for constant s, the s-Club problem is decid-
able in polynomial time.

This is a classification result. The running time is still exponential in the tree-
width. Only the fact that the treewidth is bounded, here by the constant 6s,
secures Corollary 5.2.
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6 Vertex Deletion Problems

In this chapter, we introduce the problems s-Club Vertex Deletion in Sec-
tion 6.1 and s-Club Cluster Vertex Deletion in Section 6.2.

6.1 Obtaining an s-Club

Fixed-parameter algorithms are efficient for small parameters. In Section 3.1.5 we
mentioned the idea of a different parameterization for the s-Club problem. The
motivation of such a parameterization is the following. If the size of a maximum
s-club is almost n, then the proposed fixed-parameter algorithms are inefficient.
In this case, however, the number of vertices that have to be deleted is rela-
tively small. Hence, in this section we introduce the s-Club Vertex Deletion
problem, in which one wants to identify the set of vertices which are not in the
s-club.

We define the s-Club Vertex Deletion problem as follows:

s-Club Vertex Deletion
Input: An undirected graph G = (V,E) and integers s, k ≥ 2.
Question: Is there a subset of vertices C ⊆ V of size at most k such that
G[V − C] has diameter at most s?

In classical complexity theory the complexities of s-Club and s-Club Vertex
Deletion are equivalent. Hence, s-Club Vertex Deletion is NP-complete as
well. We show fixed-parameter tractability in Section 6.1.1. To our knowledge
s-Club Vertex Deletion has not been studied yet.

The s-Club Vertex Deletion problem is related to the Vertex Cover prob-
lem, which is defined as follows:

Vertex Cover
Input: An undirected graph G = (V,E) and a nonnegative integer k.
Question: Is there vertex set C ⊆ V of size at most k, such that each
edge of G is incident with at least one element of C?
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While Vertex Cover can be utilized to identify a maximum clique, s-Club
Vertex Deletion can be used to identify a maximum s-club. In detail, let
S ⊆ V be a clique in G and G = (V,E) with E = {(u, v) ∈ E | (u, v) /∈ E},
then V \S is a solution of Vertex Cover in G. And let S ⊆ V be an s-club in
G, then V \S is a solution for s-Club Vertex Deletion in G. In contrast to
clique, s-club is a non-hereditary graph property. Therefore, standard techniques
like characterization by forbidden subgraphs are not directly applicable.

6.1.1 s-Club Vertex Deletion is Fixed-Parameter Tractable

To show the fixed-parameter tractability of s-Club Vertex Deletion we de-
scribe a search tree algorithm with a search tree size upper-bounded by 2k.

Theorem 6.1. The s-Club Vertex Deletion problem is fixed-parameter tract-
able with respect to parameter k, that is, it can be solved in O(2k ·n(n+m)) time.

Proof. The search tree strategy proceeds as follows. Search for a pair of vertices
(u, v) with d(u, v) ≥ s + 1. If no such pair exists then the graph is already an
s-club and no further vertices need to be deleted. The search for these pairs takes
O(n(n + m)) running time using breadth-first search for each of the n vertices
in the graph. Branch into the two subcases of deleting either u or v and set
k := k − 1. This is correct, since u and v have too high distance, consequently
one of them have to be deleted. The number of cases in each search tree node is
bounded by two and the algorithm terminates if either k = 0 or a valid solution
set of size ≤ k has been found. Hence, the size of the search tree is bounded to
2k.

The algorithm given in proof of Theorem 6.1 is rather simple. Improved branching
rules are a standard technique to reduce the running time bound of search tree
algorithms. In the following, we give improved branching rules that will work
until we remain with certain graph instances. Then we will talk about difficulties
to give an improved branching strategy for such graph instances. This discussion
is useful for a better understanding of the s-Club Vertex Deletion problem.
For ease of presentation, we call two vertices (u, v) with d(u, v) = s + 1 a conflict
pair.

For s-Club Vertex Deletion, one can improve the running time if one can
process in each case distinction more than just two vertices. This is the case if for
a vertex u the set of vertices {v | d(u, v) ≥ s + 1} contains more than one vertex.
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N0[u] N◦

s+1(u)

u v

(a) Branch into deleting either u or v. This
results in branching vector (1, 1).

......

N0[u] N◦

s+1(u)

v1

v2
u

(b) Branch into deleting either u or v1 and
v2. This results in branching vector (1, 2).

Figure 6.1: Different sizes of |V \Ns[u]| result in different branching situations.

This allows a branching between u and the set {v | d(u, v) ≥ s + 1}. An example
is illustrated in Figure 6.1: If there are two vertices v1 and v2 in the exact s + 1
neighborhood of u, then in order to obtain a graph of diameter s, we branch into
two cases of either deleting u or v1 and v2, resulting in branching vector (1, 2). If
this branching can always be performed we obtain a search tree size of O((1.62)k).
If this branching is no longer applicable, we remain with graph instances in which
∀v ∈ V : |V \Ns[v]| ≤ 1. More informally, these are graphs with diameter s + 1 in
which the size of the exact (s + 1)-neighborhood of each vertex is exactly one.

In the following we explain the difficulties for an improved branching on these
graph instances, by the example graph given in Figure 6.2. This graph has di-
ameter s + 1, with s = 2, and each vertex in the graph has an exact (s + 1)-
neighborhood of size at most one. In particular in this graph we have the conflict
pairs (a, a′), (b, b′), (c, c′) and (u, u′), which are marked as grey vertices. These
vertices have an exact (s + 1)-neighborhood of size one. The white vertices have,
at least for now, an exact (s + 1)-neighborhood of size zero. In the following it is
described why it is not easy to get a better branching vector than (1, 1) for the-
ses instances. The major difficulty are dependencies which arise by the fact that
the s-club property is non-hereditary. Look for example at conflict pair (a, a′) in
Figure 6.2. If we start by deleting a′, the conflict (b, b′) enhances to (b, b′) and
(b′, c′). If we instead delete a, then (c, c′) enhances to (c, c′) and (c, d). However,
d was not part of any conflict pair before. This means that a vertex, like a, could
be an element of the only shortest path connecting a pair of other vertices, like
(c, d). Since one has to consider all shortest paths which could become important
through future deletions, it seems hard to find an improved branching. This also
implies that it is not easy to identify vertices on which one never has to branch.
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u

u′

c′c

b

a a′

b′

d

Figure 6.2: A graph with diameter 3, for s = 2 there exist the conflict pairs (a, a′),
(b, b′), (c, c′) and (d, d′), which are marked as grey vertices.

6.1.2 Data Reduction

In this section, we will give some data reduction rules for s-Club Vertex Dele-
tion. Although we will not show a problem kernel, these rules could be helpful
in practical implementations. We start with a reformulation of Reduction Rule 1
for s-Club from Section 4.1.2:

Reduction Rule 2. If there exists a vertex v ∈ V with |N⌊s/2⌋[v]| ≥ n − k, then
delete V \N⌊s/2⌋[v] and answer yes.

Lemma 6.1. Reduction Rule 2 is correct and takes O(n(n + m)) time.

Proof. To show that Reduction Rule 2 is correct, we show that G[N⌊s/2⌋[v]] is
an s-club, that is, the pairwise distance of any two vertices x, y ∈ N⌊s/2⌋[v] in
G[N⌊s/2⌋[v]] is at most s. Since x, y ∈ N⌊s/2⌋[v] and by the definition of N⌊s/2⌋[v],
the distance from x to v is at most ⌊ s

2⌋ and the distance from v to y is at most
⌊ s

2⌋. Consequently, the distance between x and y is at most s. Thus, Reduction
Rule 2 is correct. Computing the set N⌊s/2⌋[v] can be done in O(n + m) time for
one vertex, by breadth-first search. Checking whether Reduction Rule 2 can be
applied to any vertex takes O(n(n + m)) total time.
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Reduction Rule 2 finds easy yes-instances. In a reduced instance (G′, k′, s′) with
G′ = (V ′, E′) the following holds: ∀v ∈ V ′ : |V ′\N⌊s/2⌋[v]| ≥ k′.

Reduction Rule 3. If there exists a vertex v ∈ V that has distance at least s+1
to more than k vertices, then delete v and set k := k − 1.

Lemma 6.2. Reduction Rule 3 is correct and takes O(n(n + m)) time.

Proof. Assume that we do not remove the vertex v. Then, we have to remove all
vertices in distance ≥ s + 1, otherwise we remain with a graph with diameter at
least s + 1. Thereby we have to delete more than k vertices. By the definition
of s-Club Vertex Deletion we cannot make more than k deletions. Hence,
this is a contradiction and we have to delete v. Thus Reduction Rule 3 is correct.
Computing the set |V \Ns+1[v]| can be done in O(n + m) time for one vertex, by
breadth-first search. Applying Reduction Rule 3 for each vertex takes O(n(n+m))
total time.

This rule finds easy no-instances. In a reduced instance (G′, k′, s′) with G′ =
(V ′, E′) the following holds: ∀v ∈ V ′ : |V ′\Ns′+1[v]| ≤ k′ and diam(G′) ≤ s′ + 1+
k′.

A difficulty in finding a problem kernel for s-Club Vertex Deletion is the
following. In order to upper-bound the vertex size of a reduced instance (G′, k′, s′)
by a function of k′, one also has to upper-bound the number of vertices in the
s-club, one wishes to obtain. The size of this s-club depends on n − k, thus one
has to identify vertices in the s-club, which will never be part of a solution for
s-Club Vertex Deletion. But because of future deletions, and the unforeseen
conflicts which could arise, it is difficult to decide which vertices this will be.

6.2 Obtaining an s-Club Cluster Graph

Data clustering is the assignment of a set of observations into subsets, called
clusters, so that observations in the same cluster are similar. Data clustering is a
central task in many fields like data mining, pattern recognition, machine learning,
and bioinformatics. In the following we see similarity as a distance of at most s
between the observations, however distance in the specific application is defined.
In the following let an s-club cluster graph be a graph, in which every connected
component got diameter s. Our task will be to identify the set of outliers such
that the graph without this set forms an s-club cluster graph.

Hence, we define the s-Club Cluster Vertex Deletion problem as follows:
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s-Club Cluster Vertex Deletion
Input: An undirected graph G = (V,E) and nonnegative integers s, k ≥
2.
Question: Is there a subset of vertices C ⊆ V of size at most k such that
G[V − C] is an s-club cluster graph?

This problem is a relaxation of Cluster Vertex Deletion which has been
studied by Hüffner et al. [HKMN09]. Roughly speaking, Cluster Vertex Dele-
tion is the problem of clustering into cliques, while s-Club Cluster Vertex
Deletion is the problem of clustering into s-clubs. In contrast to clique, s-club is
a non hereditary graph property. Therefore standard techniques like characteriza-
tion by forbidden subgraphs or iterative compression [FGMN09] are not directly
applicable. To our knowledge, the s-Club Cluster Vertex Deletion prob-
lem has not been studied yet. We show NP-completeness in Section 6.2.1 and
fixed-parameter tractability in Section 6.2.2.

The s-Club Cluster Vertex Deletion problem is related to the Graph s-
Clustering problem:

Graph s-Clustering
Input: A graph G = (V,E) and a nonnegative integer l.
Question: Is there a partition of V into disjoint sets C1, ..., Cl such that
the diameter of G[Ci] is at most s.

This problem asks for a partition of V such that each part is an s-club, while
s-Club Cluster Vertex Deletion asks for a subset C of V to delete such
that each component is an s-club. Deogun et al. [DKS97] showed that there is
an ǫ ≥ 0 such that no polynomial time algorithm approximates k-clustering
better than nǫ, unless P=NP. Farley et al. [FHP81] gave a linear-time algorithm
for trees. Abbas and Stewart [AS99] gave a linear-time algorithm for interval
graphs, bipartite permutation graphs, and showed NP-completeness on chordal
and interval graphs.

6.2.1 s-Club Cluster Vertex Deletion is NP-complete

Theorem 6.2. s-Club Cluster Vertex Deletion is NP-complete, even if
the input graph G is planar.

Proof. The s-Club Cluster Vertex Deletion problem is in NP. It is easy to
construct a nondeterministic algorithm that guesses a subset of vertices S ⊆ V
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and checks in polynomial time whether the connected components of G[V \S] have
diameter at most s or not.

It remains to show that s-Club Cluster Vertex Deletion is NP-hard. We
show this by transforming any instance of Vertex Cover into an instance of
s-Club Cluster Vertex Deletion. A vertex cover is defined as a subset of
vertices C ⊆ V such that each edge of G is incident with at least one element of
C. Following this definition the Vertex Cover problem is defined as:

Vertex Cover
Input: An undirected graph G = (V,E) and a nonnegative integer k.
Question: Is there vertex cover C of size at most k?

Vertex Cover is known to be NP-complete even for planar graphs [GJ77].

Let G = (V,E) be the input graph of a planar Vertex Cover instance (G, k).
We construct an s-Club Cluster Vertex Deletion instance (G′, k′, s) as
follows. Initially, we set G′ = G. Every edge and every vertex in G′ that is taken
from G are in the following called natural. Every further element added to G′

is called artificial. For each natural vertex u of G, we add s artificial vertices
u′

1, u
′
2, ..., u

′
s, together with the artificial path P ′

u = (u, u′
1, u

′
2, ..., u

′
s), as illustrated

in Figure 6.3(c). This transformation can clearly be done in polynomial time and
if G is planar, then G′ is also planar.

To show NP-hardness of s-Club Cluster Vertex Deletion, it remains to
show the following:

There exists a vertex cover in G of size k if and only if there exists a
solution of s-Club Cluster Vertex Deletion in G′ of size k:

“⇒”: Let C be a size-k vertex cover of G. We show that C is a s-Club Cluster
Vertex Deletion solution as well. By construction, which is illustrated in
Figure 6.3(c), each artificial path P ′

i in G′ is connected to another artificial path
P ′

j if and only if (i, j) ∈ E. Since C is a vertex cover in G, one of i or j are ∈ C.
Thus, deleting the k vertices of C in G′ deletes at least one of the vertices i, j.
Thereby, in the remaining graph G′[V ′\C] each pair of artificial paths P ′

i and P ′
j

is unconnected. In detail these paths consist of the following:

1. If v ∈ C : G[P ′
v\{v}] remains as an artificial path without the corresponding

natural vertex. This component has diameter s − 1.

2. If v /∈ C : G[P ′
v ] remains as an artificial path of length s. This component

has diameter s.
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(a) Example for
a graph G, with
a vertex cover C

marked black.

v
′
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v
′
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(b) An artifi-
cial path P ′

v

has diameter
s = 3.
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(c) Construction of G′ from
G with s = 3 and with
Vertex Cover solution C

marked black.

(d) The s-club cluster
graph G′(V ′\C′)

Figure 6.3: The construction of G′ from G together with the s-Club Cluster
Vertex Deletion solution C ′ = C. Artificial vertices and edges are
marked dotted.

In Case 1, the natural vertex of the artificial path is part of the vertex cover C
in G and is therefore not in G′[V ′\C]. In Case 2, the connected natural vertex
is not part of the vertex cover C in G and therefore still exists in G′[V ′\C].
Since G′[V ′\C] consists only of connected components of diameter at most s, as
illustrated in Figure 6.3(d), G′[V ′\C] is clearly an s-club cluster graph and C is
a size-k solution for s-Club Cluster Vertex Deletion in G.

“⇐”: Let C ′ be a size-k′ s-Club Cluster Vertex Deletion of G′ solution.
We show that there is a size-k vertex cover C for G with k ≤ k′. The construction
of G′ guarantees that for every natural edge e ∈ E there exists a path of length
2s + 1 in G′, which is a subgraph of G′ with diameter 2s + 1, as illustrated in
Figure 6.4(a). This subgraph needs to be destroyed, which can only be done
by deleting at least one vertex from this subgraph. In order to build the vertex
cover C from C ′, C is initialized empty, then two cases for the vertices in C ′ are
separated:

1. If ∃v ∈ C ′ : v ∈ E then set C := C ∪ {v}. Illustrated in Figure 6.4(b).

2. If ∃v′i ∈ C ′ : v′i ∈ E′ then set C := C ∪ {v}. Illustrated in Figure 6.4(c).

In Case 1 a vertex from a natural edge is in C ′. Then we simply take this vertex in
our vertex cover C. In Case 2 the vertex v′i of C ′ is an artificial vertex, instead of



6.2 Obtaining an s-Club Cluster Graph 49

v′1

v

v′2

v′s

u

u′

1

u′

2

u′

s

(a) Subgraph of a natural
edge in G′ with s = 3.

v′1

v

v′2

v′s

u

u′

1

u′

2

u′

s

(b) v ∈ C′: Hence this is
Case 1 and we set C = C ∪
{v}.

v′1

v

v′2

v′s

u

u′

1

u′

2

u′

s
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1 ∈ C′: Hence this is
Case 2 and we set C = C ∪
{v}.

Figure 6.4: The subgraph of a natural edge in G′ and the construction of an
Vertex Cover solution C.

v′i we take the natural vertex v which is incident with the corresponding artificial
path P ′

v = (v, v′1, ..., v
′
s) in the vertex cover C.

Claim: C is vertex cover of size ≤ k′ in G.
Assume that C is not a vertex cover in G. Then we would have at least two
connected artificial paths P ′

i and P ′
j in G′, for which neither one vertex from

P ′
i nor from P ′

j is in C ′. Therefore G[V ′\C ′] would have at least one subgraph
G[V (P ′

i ∪P ′
j)] with diameter 2s+1 and thus C ′ would not be a solution of s-Club

Cluster Vertex Deletion in G′. It follows that the assumption is wrong and
the Claim is correct. Thus there exists a size-k solution for Vertex Cover in
G.

6.2.2 s-Club Cluster Vertex Deletion is FPT

To show the fixed-parameter tractability of s-Club Cluster Vertex Deletion
we give a search tree with a size bounded from above by a function of k.

Theorem 6.3. The s-Club Cluster Vertex Deletion problem is fixed-
parameter tractable with respect to parameters k and s, that is, it can be solved in
O((2 + s)k · n(n + m)) time.

Proof. The search tree strategy proceeds as follows. Search for a pair of vertices
(u, v) with d(u, v) = s+1. If no such pair exists then we already found a solution
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set. The search for a pair takes O(n(n + m)) running time using breadth-first
search for each of the n vertices in the graph. Let P be the shortest path between
u and v. Then branch into s + 2 subcases of deleting one of the s + 2 vertices
in P and set k := k − 1. Hence, the number of cases in each search tree node is
bounded by s + 2. The algorithm terminates if either k = 0 or a valid solution
set of size ≤ k has been found. Hence, the size of the search tree is bounded to
(s + 2)k.

6.2.3 s-Club Cluster Vertex Deletion on Trees

In this section, we give an algorithm that solves s-Club Cluster Vertex Dele-
tion on trees in O(n ·s) time. To show the correctness of this algorithm, we need
the following two lemmas. The vertices described in the lemmas are illustrated in
Figure 6.5.

Lemma 6.3. Let v be a vertex with one child and let u be this child of v, where
Tu has diameter s. If h(Tu) = s then deleting v is optimal; otherwise, V (Tv) is
an s-club.

Proof. If h(Tu) = s, then Tv cannot have diameter s and therefore we need to
delete at least one vertex from Tv. The vertex v has the maximum possible
height of all vertices from Tv. Hence, it is optimal to include v into the solution
C. If h(Tu) is less than s, then h(Tv) = 1 + h(Tu) is at most s and clearly
diam(Tv) = max(1 + h(Tu),diam(Tu)) is at most s, and V (Tv) is an s-club.

In the following Lemma 6.4 we will use the term highest subtree. Let T be a
subtree, and let d be the distance between the root and a lowest leaf of the tree.
Then the highest subtree of a set of subtrees, is the subtree that maximizes d over
all subtrees in the set.

Lemma 6.4. Let u be a vertex with more than one child and let t1, ..., ti be those
children of u, where each Tt1...i

is an s-club. Now let Tt1 and Tt2 be the highest
subtrees over all subtrees Tt1...i

. If h(Tt1) + 2 + h(Tt2) is greater than s, then
deleting u is optimal, otherwise h(Tt1)+2+h(Tt2 ) is at most s and thereby V (Tu)
is an s-club.

Proof. Since t1 and t2 are the vertices that induce the highest subtrees over all
children of u and Tt1 , Tt2 have diameter s and the vertices t1 and t2 have distance
two, the diameter of Tu is greater s if and only if h(Tt1) + 2 + h(Tt2) is greater
than s. So if diam(Tu) ≥ s, then we need to delete at least one vertex from Tu. In
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Figure 6.5: Illustration of the vertices from Lemma 6.3 and Lemma 6.4. Vertex u
has four children t1, t2, t3, and t4, where t1 and t2 are the two children
which induce the highest subtress.

T , vertex u has the maximum height of all vertices from Tu. Hence, it is optimal
to add u to a solution of s-Club Cluster Vertex Deletion.

In Figure 6.6 we give the algorithm Tree-s-Club-Cluster-Vertex-Deletion. In the
algorithm we use the operator children(), which will give us the number of children
of a certain vertex. The idea of this algorithm is to apply the knowledge from
Lemmas 6.3 and 6.4 to each vertex of the tree in a bottom-up way. This means
starting at tree-level one, we process the vertices levelwise until we finish with the
root vertex r. In each level we check for each vertex the purely local measurements
children() and h(). The algorithm always gives a solution set C. We may check
after computing C whether the size of C is at most k and thus is a solution of
s-Club Cluster Vertex Deletion.

Lemma 6.5. The algorithm Tree-s-Club-Cluster-Vertex-Deletion given in Fig-
ure 6.6 is correct.

Proof. In the algorithm given in Figure 6.6 we do not process any vertices that
have no child. Vertices without a child induce a subtree with diameter one, which
is less than s, so we do not have to process them. In the iteration starting in line 3
we process every vertex with one child, if this vertex has h(v) = s we add the
vertex v to the solution C and remove its subtree from the tree. By Lemma 6.3
this is correct. By removing the induced subtree we ensure the correct values for
future height calculations. In line 5 we process every v with at least two children,
if the two children t1 and t2 with the maximum height fulfill (h(t1)+h(t2)+2 > s),
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Algorithm: Tree-s-Club-Cluster-Vertex-Deletion
Input: A tree T
Output: A minimum solution set C for s-Club-Cluster-Vertex-Deletion
on T

1 Root the tree T arbitrarily
2 lmax := h(root)
3 for r := 1 to lmax

4 for each v ∈ V with l(v) = r
5 if (children(v) = 1) ∧ (h(v) = s) then set C := C ∪ {v},

T := T − V (Tv)
6 if (children(v) > 1) ∧ max{h(t1) + h(t2) + 2 | t1, t2 ∈ child(v)

∧(t1 6= t2)} > s then set C := C ∪ {v}, T := T − V (Tv)
7 endfor

8 endfor

9 return C

Figure 6.6: Pseudo-code of the algorithm Tree-s-Club-Cluster-Vertex-Deletion.

we add v to the solution C and remove its subtree from the tree. By Lemma 6.4
this is correct. By Lemmas 6.3 and 6.4 we also know that in any other case the
induced subtree Tv of a vertex v has diameter s. Since we processed all relevant
vertices of the tree and destroyed each subtree which is not an s-club, we finish
in line 9 with a correct solution C.

Theorem 6.4. s-Club Cluster Vertex Deletion on trees can be solved in
O(n · s) time.

Proof. By Lemma 6.5 we know the algorithm Tree-s-Club-Cluster-Vertex-Deletion
given in Figure 6.6 is correct. Thus we need to show that the algorithm Tree-s-
Club-Cluster-Vertex-Deletion needs O(n · s) running time. Since the height of a
subtree to process is at most s, height calculation in this algorithm takes O(s)
time. Thus, each of the lines 5 and 6 take O(s) time. Since the algorithm iterates
over the vertices of the tree, the iteration takes O(n · s) time. Each other step of
the algorithm runs in constant time. Thus the algorithm runs in O(n ·s) time.
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7 Outlook and Conclusion

In this chapter, we give some conclusions from this thesis in Section 7.1 and an
outlook for future research in Section 7.2.

7.1 Conclusion

In this work, we studied the parameterized complexity of the s-Club and related
vertex deletion problems. In Chapter 2 we defined the basic notation needed for
this work and gave a brief introduction to parameterized complexity. Chapter 3,
introduced the s-Club problem in detail and discussed its properties. We showed
the following results for:

s-Club on General Graphs

• Parameterized s-Club cannot have a polynomial kernel, unless the polyno-
mial hierarchy collapses to the third level.

• For even s, s-Club admits a k2-vertex Turing kernel, which can be com-
puted in O(n(n + m)) time.

• For odd s, s-Club admits a k3-vertex Turing kernel, which can be computed
in O(n(n + m)) time.

• The s-Club problem can be solved in O(n(n + m) + n((k − 2)k · k! · k3))
time.

The data reduction results show intractability for many-to-one kernelization and
tractability for Turing kernelization side by side. Therefore s-Club is another
problem which demonstrates that Turing kernelization is a reasonable approach
to parameterized complexity. Due to the kernelization, we also strengthened the
result given by Komusiewicz [Kom07], by showing that s-Club problem is fixed-
parameter tractable with respect to the parameter k. Furthermore, we gave a
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combined algorithm that gives an approximation and a Turing kernel for s-Club.
We have shown that this algorithm never outputs a large vertex Turing kernel
and a bad approximation for the same instance.

s-Club on Special Graph Classes

• s-Club on trees can be solved in O(n · s2) time.

• Computing the maximum s-club on interval graphs can be solved in O(n2)
time.

• The 2-Club problem on bipartite graphs can be solved in O(n5) time.

• On graph classes with bounded clique- or treewidth the s-Club problem is
decidable in polynomial time.

• On planar graphs the s-Club problem is fixed-parameter tractable with
respect to parameter s.

Vertex Deletion Problems In Chapter 6, we introduced two vertex deletion
problems, which are closely related to s-Club. For these deletion problems we
have shown the following results:

• The s-Club Vertex Deletion problem is fixed-parameter tractable with
respect to parameter k, that is, it can be solved in O(2k · n(n + m)) time.

• s-Club Cluster Vertex Deletion is NP-complete, even if the input
graph G is planar.

• The s-Club Cluster Vertex Deletion problem is fixed-parameter tract-
able with respect to parameters k and s, that is, it can be solved in O((2 +
s)k · n(n + m)) time.

• s-Club Cluster Vertex Deletion on trees can be solved in O(n · s)
time.
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7.2 Outlook

Although we gave some interesting results in this work, many questions remain
open. We have shown a k3-vertex Turing kernel for s-Club. So far, however our
branching algorithm does not utilize this kernel in a sufficient way. Furthermore,
we achieved this Turing kernel with one simple reduction rule. Therefore, we ask
two questions:

• Can we utilize the Turing kernels in a better way to obtain a faster algorithm
for s-Club on general graphs?

• Is there a linear-size Turing kernel for s-Club?

We have shown that s-Club is polynomial time solvable on a variety of graph
classes. But for those graph classes the Clique problem is polynomial time
solvable as well. In order to work out the difference between Clique and s-Club,
the following question is of interest:

• Is there a graph class for which Clique is NP-hard and s-Club is polyno-
mial time solvable, or vice versa?

We have shown fixed-parameter tractability for s-Club Vertex Deletion and
s-Club Cluster Vertex Deletion. Recall, that since being an s-club is a non-
hereditary graph property, there is no characterization via forbidden subgraphs for
s-Club Vertex Deletion and s-Club Cluster Vertex Deletion. Vertex
deletion problems which can be characterized over a fixed number of forbidden
subgraphs always admit a polynomial problem kernel [Mos09]. In contrast, little is
known about kernels for vertex deletion problems which cannot be characterized in
such a way. Therefore, the following two questions, besides the practical interest,
are also of great theoretical interest.

• Is there a nontrivial problem kernel of polynomial-size for s-Club Vertex
Deletion or s-Club Cluster Vertex Deletion?

• Is there a o∗(2k)-algorithm for s-Club Vertex Deletion or o∗((s + 2)k)-
algorithm for s-Club Cluster Vertex Deletion?
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Tud. Akad. Mat. Kutató Int. Közl., 7(A):623–641, 1962. →[1]



60 Bibliography

[FFL+09] H. Fernau, F. V. Fomin, D. Lokshtanov, D. Raible, S. Saurabh, and
Y. Villanger. Kernel(s) for problems with no kernel: On out-trees with
many leaves. In STACS ’09: Proceedings of the 26th International
Symposium on Theoretical Aspects of Computer Science, pages 421–
432. IBFI Schloss Dagstuhl, 2009. →[19, 21]

[FG06] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer,
2006. →[12, 39]

[FGMN09] M. R. Fellows, J. Guo, H. Moser, and R. Niedermeier. A complexity
dichotomy for finding disjoint solutions of vertex deletion problems.
In MFCS ’09: Proceedings of the 34th International Symposium on
Mathematical Foundations of Computer Science 2009, pages 319–330.
Springer, 2009. →[46]

[FHP81] A. Farley, S. Hedetniemi, and A. Proskurowski. Partitioning trees:
matching, domination, and maximum diameter. International Jour-
nal of Parallel Programming, 10(1):55–61, 1981. →[46]

[FHS95] M. Fellows, P. Hell, and K. Seyffarth. Large planar graphs with
given diameter and maximum degree. Discrete Applied Mathematics,
61(2):133–153, 1995. →[1, 17]

[FRRS06] M. R. Fellows, F. A. Rosamond, U. Rotics, and S. Szeider. Clique-
width minimization is NP-hard. In STOC ’06: Proceedings of the
38th annual ACM symposium on Theory of computing, pages 354–
362. ACM, 2006. →[38]

[FS08] L. Fortnow and R. Santhanam. Infeasibility of instance compression
and succinct PCPs for NP. In STOC ’08: Proceedings of the 40th
Annual ACM Symposium on Theory of Computing, pages 133–142.
ACM, 2008. →[20]

[FW00] D. A. Fell and A. Wagner. The small world of metabolism. Nature
Biotechnology, 18(11):1121–1122, November 2000. →[2]
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