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Abstract. We present a new subcortical structure shape modeling frame-
work using heat kernel smoothing constructed with the Laplace-Beltrami
eigenfunctions. The cotan discretization is used to numerically obtain
the eigenfunctions of the Laplace-Beltrami operator along the surface of
subcortical structures of the brain. The eigenfunctions are then used to
construct the heat kernel and used in smoothing out measurements noise
along the surface. The proposed framework is applied in investigating the
influence of age (38-79 years) and gender on amygdala and hippocampus
shape. We detected a significant age effect on hippocampus in accordance
with the previous studies. In addition, we also detected a significant gen-
der effect on amygdala. Since we did not find any such differences in the
traditional volumetric methods, our results demonstrate the benefit of
the current framework over traditional volumetric methods.

1 Introduction

The amygdala and hippocampus are primary subcortical structures involved in
emotion and memory [1,2]. Age and gender could be major factors that affect
the functions and structures of these regions, as implied by postmortem studies
[3]. Although the atrophy of brain tissues associated with the increase of age
is reported in several hundreds subjects [4,5], the findings on the atrophy of
amygdalar and hippocampal structures are somewhat inconsistent. The volume
reduction of amygdala and hippocampus due to aging has been found in some
studies [6,7,8], while other studies did not find such association [4,5,9,10]. For
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the effect of gender, one study reported significant differences in amygdala and
hippocampus volume between the groups [11] whereas others failed to reproduce
these [12]. The inconsistency between these results may have been due to the
different image processing and analysis pipelines used in these studies.

In these volumetric studies, the total volume of the amygdala or hippocampus
was typically estimated by tracing the region of interest (ROI) manually and
counting the number of voxels within the ROI. The limitation of this ROI-
based volumetry is that it cannot determine if the volume difference is diffuse
over the whole ROI or localized within specific regions of the ROI [13]. Our
proposed deformation-based morphometry (DBM) framework can localize the
volume difference up to the mesh resolution at each surface mesh vertex.

Using the 3D deformation field derived from spatial normalization of MRI,
we can model how the surfaces of subcortical structures are different from each
other at the vertex level. Since the deformation field is noisy, it is necessary to
smooth out the field along the surface to increase the signal-to-noise ratio (SNR).
Further, smoothing is desirable in satisfying the assumptions of the random field
theory (RFT), which is used in correcting for multiple comparisons [14,15]. For
RFT to work, the Gaussianness and smoothness of data are needed [14,16].
As the amount of smoothing increases, Gaussianness and smoothness of data
increases. With these motivations, we present a new framework of smoothing
scalar and vector measurements using heat kernel smoothing, which is equivalent
to performing isotropic diffusion but without discretizing the diffusion equation.
The proposed framework is then used in examining the effect of age and gender
on amygdala and hippocampus, contrasting the traditional volumetric analysis.

2 Method

We analyze the shape of subcortical structures as follows: (1) obtain a population
mean volume by averaging the spatially normalized binary masks, and extract a
template surface from the averaged binary volume (section 2.1), (2) interpolate
the 3D displacement vector field onto the vertices of the surface meshes (section
2.1), (3) perform heat kernel smoothing on the displacement length along the
template surface to reduce noise, and on the surface coordinates to smooth out
the surface itself for better visualization (section 2.2 and 2.3), (4) apply a general
linear model testing the effect of age and gender. The detailed description of each
step is given in section 2 except the statistical inference which is given in section
3.

2.1 Images and preprocessing

We have high resolution T1-weighted inverse recovery fast gradient echo anatom-
ical 3D images, collected in 124 contiguous 1.2-mm axial slices (TE=1.8 ms;
TR=8.9 ms; flip angle = 10◦; FOV = 240 mm; 256 × 256 data acquisition
matrix) of 69 middle age and elderly adults ranging between 38 to 79 years
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Fig. 1: Subcortical masks superimposed on MRI (top) and the corresponding
isosurfaces of the masks (bottom).

(mean age = 58.04 ± 11.34 years). The data were originally collected for a na-
tional study for the health and well-being in the aged population, called MIDUS
(Midlife in US; http://midus.wisc.edu/).

There are 23 males and 46 females. The amygdalae and hippocampi were
manually segmented by a trained individual rater. Brain tissues in the MRI
scans were first segmented using Brain Extraction Tool (BET) [17]. Then we
performed a nonlinear image registration using the diffeomorphic shape and
intensity averaging technique with cross-correlation as similarity metric through
Advanced Normalization Tools (ANTS) [18]. A study-specific unbiased template
was constructed from a random subsample of 10 subjects. Using the deformation
field of warping the individual brain to the template, we deformed the amygdala
and hippocampus binary masks to the template space. The normalized masks
were then averaged to produce the subcortical masks. The isosurfaces of the
subcortical masks are extracted using the marching cube algorithm [19]. The
subcortical masks and the corresponding surfaces are shown in Fig. 1.

Using ANTS, we have the deformation vector field of warping an individual
brain to the template. The vector field is defined on voxels. On the other hand,
the vertices of the subcortical surface meshes are located within voxels. So we
simply assigned the vector field onto the mesh vertices by linear interpolation

http://midus.wisc.edu/
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Fig. 2: Displacement vector field (blue arrows) of a subject on an axial slice of
the template brain (left). Yellow contour in the left panel is the boundary of the
left hippocampus in the template. The vector field has been interpolated on the
left hippocampus surface (right).

(Fig. 2). The length of the displacement vector at each vertex is computed and
used as a feature to measure the local shape variation.

2.2 Heat kernel smoothing

Since the displacement length on the template surface is noisy, it is necessary to
smooth out the measurements to increase the signal-to-noise ratio (SNR) and
to improve the smoothness and Gaussianness of data for RFT-based statistiscal
inference [20]. We propose a new diffusion smoothing framework that uses the
Laplace-Beltrami eigenfunctions.

Diffusion equations have been widely used in image processing as a form of
noise reduction starting with Perona and Malik in 1990 [21]. Although numer-
ous techniques have been developed for surface fairing and mesh regularization
[20,22,23,24,25,26] based on heat diffusion. Most diffusion smoothing approaches
mainly use finite element or finite difference schemes which is known to suffer
numerical instability if the forward Euler scheme is used.

In this paper, we propose a new smoothing framework that constructs the
heat kernel analytically using the eigenfunctions of the Laplace-Beltrami op-
erator. Although solving the eigenfunctions of the Laplace-Beltrami operator
requires the finite element method, the proposed method is analytic in a sense
that heat kernel smoothing is formulated as a series expansion explicitly. We are
not claiming our framework to be analytic which is theoretically impossible when
dealing with real data. The proposed method represents isotropic heat diffusion
analytically as a series expansion so it avoids the numerical instability associated
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with solving the diffusion equations numerically [20,22,27]. Our framework is an
improvement over previous approaches in the sense that it bypasses the vari-
ous numerical problems that are associated with previous approaches including
numerical instability, slow convergence, and accumulated linearization error.

Consider a real-valued functional measurement Y (p) defined on a manifold
M⊂ R3. We assume the following additive model:

Y (p) = θ(p) + ε(p), (1)

where θ(p) is the unknown mean signal to be estimated and ε(p) is a zero-
mean Gaussian random field. We may assume Y ∈ L2(M), the space of square
integrable functions on M with the inner product

〈f, g〉 =

∫
M
f(p)g(p)dµ(p),

where µ is the Lebesgue measure such that µ(M) is the volume of M. Solving

∆ψj = λjψj , (2)

for the Laplace-Beltrami operator ∆ on M, we find the eigenvalues λj and
eigenfunctions ψj . The eigenfunctions ψj form an orthonormal basis in L2(M)
[28]. We may order eigenvalues as 0 = λ0 < λ1 ≤ λ2 · · · and corresponding
eigenfunctions as ψ0, ψ1, ψ2, · · · .

heat kernel Kσ(p, q) is then analytically given as

Kσ(p, q) =

∞∑
j=0

e−λσψj(p)ψj(q), (3)

where σ is the bandwidth of the kernel [29]. Heat kernel smoothing of Y is given
analytically defined as

Kσ ∗ Y (p) =

∞∑
j=0

e−λσβjψj(p), (4)

where βj = 〈Y, ψj〉 are Fourier coefficients. The heat kernel smoothing (4) is
taken as an estimate for the unknown signal θ. Since the expansion (4) is a
unique solution to isotropic heat diffusion, we can avoid the need to solve the
diffusion using less stable numerical schemes such as the finite difference method
[29,30].

2.3 Numerical implementation

As the closed form expression for the eigenfunctions of the Laplace-Beltrami
operator on an arbitrary curved surface is unknown, the eigenfunctions are nu-
merically calculated by discretizing the Laplace-Beltrami operator. To solve the
eigensystem (2), we need to discretize it on a triangular mesh using the Cotan
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Original Smoothed

Original Smoothed

Fig. 3: Illustration of heat kernel smoothing. By summing the Laplace-Beltrami
eigenfunctions, we smooth out functional measurements on surfaces. The left
most surfaces are the noisy original surfaces with the displacement length. First
three eigenfunctions ψ0, ψ1, ψ2 are shown in the middle. The right most surfaces
are the results of summation with σ = 0.5.

discretization [31,32]. Using the Cotan discretization, (2) is linearized as the
generalized eigenvalue problem:

Cψ = λAψ (5)

where C is the stiffness matrix, A is the mass matrix andψ = (ψ(p1), · · · , ψ(pn))′

is the unknown eigenfunction evaluated at n mesh vertices. A first few eigen-
functions for the subcortical surfaces are shown in Fig. 3.

In this study, we have chosen the bandwidth σ=0.5 and used the finite eigen-
function expansion using up to 1,000 basis (Fig. 3). We smoothed the length of
displacement vector field and the coordinates of template surfaces as well.

Once we obtained the basis functions ψj numerically, we need to estimate
the Fourier coefficients βj . It can be shown that the Fourier coefficients can be
estimated as

βj = Y′Aψj , (6)

where Y = (Y (p1), · · · , Y (pn))′ and ψj = (ψj(p1), · · · , ψj(pn))′ [33].
The MATLAB code for computing the eigenfunctions and performing heat

kernel smoothing is available at http://brainimaging.waisman.wisc.edu/~chung/
lb/.

2.4 Validation

The heat kernel smoothing framework is validated on a unit sphere where the
Laplace-Beltrami eigenfunctions are exactly given as spherical harmonics. We

http://brainimaging.waisman.wisc.edu/~chung/lb/
http://brainimaging.waisman.wisc.edu/~chung/lb/
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Fig. 4: Left: 133 eigenvalues are numerically computed (blue dotted) and com-
pared against the ground truth (red solid) λl = l(l + 1) for up to degree l = 11.
Right: The plot of the root mean squared errors (RMSE) of computed heat ker-
nel over the number of eigenfunctions used (horizontal) for bandwidths 0.05,
0.1, 0.2 and 0.5. As the number of eigenfunctions increases, our implementation
converge to the ground truth.

used a spherical mesh with 40,962 uniformly sampled mesh vertices. Let Ylm
be the spherical harmonic of degree l and order m [34]. Due to the multiplicity,
there are 2l+1 eigenfunctions Yl,−l, · · · , Yl,l corresponding to the same eigenvalue

l(l + 1). Further, any linear combination
∑l
m=−l βlmYlm is an eigenfunction as

well. So it is not possible to validate the accuracy of the obtained eigenfunctions.
Therefore, we only checked if solving (5) produces the expected eigenvalues.
Fig. 4 shows the 133 computed eigenvalues compared against the ground truth.
The maximum possible relative error is 0.0032 (0.32%).

We also checked the accuracy of the constructed heat kernel. On a unit
sphere, the heat kernel is given by

Kσ(p, q) =

∞∑
l=0

l∑
m=−l

e−l(l+1)σYlm(p)Ylm(q). (7)

We have taken the degree l = 85 expansion as the ground truth and compared
it to the numerically constructed heat kernel. The RMSE of heat kernel against
the ground truth was computed for various bandwidth between 0.05 and 0.5
(Fig. 4). The rate of convergence depends on the bandwidth. As the number
of eigenfunctions increases, the constructed heat kernel converge to the ground
truth quickly. Beyond 150 eigenfunctions, the reconstruction error is negligible.

3 Results: General Linear Models on Surface Shapes

3.1 Traditional volumetric analysis

In the traditional volumetric approach, the volumes of amygdala and hippocam-
pus binary mask were simply computed by counting the number of voxels within
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the mask. In order to account for the effect of intersubject variability in brain
size, the brain volume excluding cerebellum was computed and covariated in
general linear models.

The brain volume is significantly correlated with the amygdala (left: r= 0.55,
p < 10−5; right: r=0.49, p < 10−4) and the hippocampus volumes (left: r= 0.59,
p < 10−7; right: r=0.63, p < 10−8). Since amygdala and hippocampus volumes
are dependent on the whole brain volume, we really need to factor out the brain
volume in the general liner models.

We model the V olume of amygdala and hippocampus as

V olume = β1 + β2 ·Brain+ β3 ·Age+ β4 ·Gender + ε (8)

where ε is zero mean Gaussian noise and Brain is the total brain volume. The
age and gender effects are determined by testing the significance of parameters
β3 and β4 at α = 0.01. The results are displayed in Figure 5.

For the amygdala volume, we did not find a significant effect of age (left p=
0.31; right p= 0.15; combined p= 0.20) nor gender (left p= 0.20; right p= 0.35;
combined p= 0.25) For the hippocampus volume, we did not find a significant
effect of age (left p= 0.92; right p= 0.90; total p= 0.90) nor gender (left p= 0.05;
right p= 0.04; total p= 0.03).

Since our results are based on the volume of the whole amygdala and hip-
pocampus, it is still unclear if there are any localized shape differences within
the parts of amygdala and hippocampus.
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Fig. 5: Scatterplots of left, right and combined amygdala volumes over age (top)
and gender (bottom).
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Fig. 6: Scatterplots of the volume of left, right and total hippocampus over age
(top) and gender (bottom).

3.2 Localized subcortical shape analysis

The length of displacement vector fields along the template surfaces were com-
puted and smoothed as described in section 2. Then Length is regressed over
the total brain volume and other variables:

Length = β1 + β2 ·Brain+ β3 ·Age+ β4 ·Gender + ε (9)

where ε is zero mean Gaussian noise. The age and gender effects are determined
by testing the significance of parameters β3 and β4 at α = 0.01. We used SurfS-
tat MATLAB toolbox (http://galton.uchicago.edu/faculty/InMemoriam/
worsley/research/surfstat/), for the statistical analysis and multiple com-
parison correction. The details on the SurfStat package is given in [34]. The
results are displayed in Figure 7.

Age effect. We found the region of significant effect of age on the posterior part
of hippocampi (left: max F = 39.43, p < 10−5; right: max F = 23.11, p = 0.002)
Particularly, on the caudal regions of the left and right hippocampi, we found
highly localized signals. It is consistent with other shape modeling studies on
hippocampus [35,36]. We did not find any age effects on the amygdala surface
at α = 0.01.

Gender effect. We found a highly focalized region of gender effect on the inferior
part of the right amygdala (max F = 24.66, p < 0.001). In particular, the gender
effect is focused around the ventral part of laterobasal group [37].

We did not find any significant gender effects on the left amygdala and hip-
pocampi.

http://galton.uchicago.edu/faculty/InMemoriam/worsley/research/surfstat/
http://galton.uchicago.edu/faculty/InMemoriam/worsley/research/surfstat/
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Fig. 7: F -statistic maps on the amygdala and hippocampus surfaces showing
the age (a) and gender (b) effects with corresponding p-values indicated. The
posterior regions of the both left and right hippocampi show a significant age
effect. The ventral region of the right amygdala shows a significant gender effect.

4 Conclusion

We have presented a new subcortical structure shape modeling framework us-
ing heat kernel smoothing constructed with the Laplace-Beltrami eigenfunctions.
The proposed framework demonstrated higher sensitivity in modeling shape vari-
ations compared to the traditional volumetric analysis. The ability to localize
subtle morphological difference may provide an anatomical evidence for the func-
tional organization within human subcortical structures.
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