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Abstract
A new method to calculate level densities for non—interactFermions within the constant—spacing
model with a finite number of states is developed. We show dkginptotically (for large nhumbers of
particles or holes) the densities have Gaussian form. Weowepon the Gaussian distribution by using
analytical expressions for moments higher than the secGondparison with numerical results shows that
the resulting sixth—-moment approximation is excellentegaear the boundaries of the spectra and works

globally for all particle/hole numbers and all excitatiomeegies.
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. PURPOSE

Our interest in the dependence of various nuclear levelites®n energy and particle number
has been triggered by recent experimental developmenissar Iphysics. The Extreme Light
Infrastructure (ELI) [1] will open new possibilities for eemely high—intensity laser interac-
tions with fundamental quantum systems different from taglitionally considered atoms and
molecules|[2]. At the Nuclear Physics Pillar of ELI under straction in Romania, efforts are
under way to generate a multi-MeV zeptosecond pulsed l&senlj3]. For medium—-weight and
heavy target nuclei interacting with such a beam, photoreice can cause multiple photon
absorption. With energies of several MeV per photon, thei@gsuclear excitation energies may
well amount to severdl00 MeV. Depending on the time scale on which the excitationgaktace
and on the specific nucleon-nucleon interaction ratesectie excitations may be induced, or a
compound nucleus be formg [4]. A theoretical treatmenheflatter process along the lines of
precompound reaction models requires the knowledge obtia¢level density, of the densities of
p—particleh—hole states, and of the density of accessible states facleénole numbers and/or
excitation energies that go far beyond what has been caesidmtil now. That applies not only
to the target nucleus but also to all daughter nuclei popdlay induced particle emission during
the interaction time of the laser pulse.

The standard approach to level densities goes back to tmegimg work of BetheﬂS] who
calculated the total level density as a function of exaianergy with the help of the Darwin—
Fowler method. Basically the same method was used in maryeahter workle] dealing
with the density ofp—particleh—hole states and related quantities. A beautiful reviewnsrgin
Ref. ]. The Darwin—Fowler method yields analytical eegsions involving contour integrals.
Their evaluation, although straightforward, becomeseaasmgly involved with increasﬁ num-

14]

that account for the exclusion principle by explicit comgti Moreover, without explicit numerical

bers of particles and holes and/or increasing excitati@ngn The same is true for Ref

calculation it is not possible within these approaches tal#ish general properties of particle—
hole densities like the overall dependence on excitati@ngyrand/or particle—hole number. More
recent works use a static—path approximation (R@. badé papers cited therein) or account,
in addition, for the residual interaction in an approximatey (Ref. [17] and references therein).
The method of Ref.m8] avoids contour integrals and deteemi(again numerically) the level
densities directly as coefficients of polynomials. The omfethese rises rapidly, too, with en-

ergy and particle/hole number. In none of these approaches itiseem possible to deal with the



enormously large values of the various densities attainechedium—weight and heavy nuclei at
excitation energies of severall0 MeV in a practicable way. That is why we develop a different
approach in the present work.

In this Letter we present an analytical approximation todhlabal dependence of partial and
total level densities that takes full account of the exdaogrinciple, that is valid for a finite num-
ber of single—particle states, and that holds for all exiciteenergies and particle/hole numbers.
We prove analytically that the level density for particlesoles is for a constant—spacing model
asymptotically Gaussian. We improve on the Gaussian usiatytcal results for the low mo-
ments of the distribution higher than the second. Compangith numerical results shows that
the resulting sixth—-moment approximation is very preciseept near the boundaries of the spec-
trum (where numerical evaluation is easy). Particle—h@estties follow by convolution. The
attained analytical form of the global dependence of leeelsities on excitation energy and parti-
cle number extends our understanding of characteristiteauproperties into uncharted territory.
Moreover, we expect our results to be an indispensable totiie calculation of laser-induced
nuclear reactions mentioned in the first paragraph.

We calculate the various densities in the framework of a @ortsspacing model for spinless
non—interacting Fermions. To justify our choice we conslgdgeway of example the partial level
densityp,(E, J, ) for p particles anc holes, a function of excitation energy, total spin./, and
parity 7, for a system of non—interacting Fermions in three dimamsid~or other densities the

reasoning is the same. The partial level density is giver@y [

(B ) = (1Dl E) S
. exp{ - Ugﬂ} | (1)

The factorl /2 accounts for parity. The last two terms of the product give $hin dependence,
with oy, the spin—cutoff factor. With spin and parity being accodnter, p,(E) is defined as
the level density of spinless non—interacting Fermions ¢hary no angular momentum. We note
that in preequilibrium theories, the interactions betw&emmions neglected here are taken into
account as agents for equilibration. In our model, the noieracting Fermions are distributed
over a set of single—particle states. Each subshell with spf the three-dimensional shell model
contributeq2;j+ 1) states to the set. For large excitation energy or partide-dhumbers, we must
take into account the exclusion principle exactly. It is @tuimportant to account for the finite

binding energy of particles and for the finite size of the ggéanterval available for holes. Both



strongly affect the various level densities at large exictaenergies. We do so using a single—
particle model with a finite number of states. Moreover, wigwate the various densities using
a constant—spacing model for the single—patrticle states.clear from the shell model that the
model is not realistic at the high excitation energies adii@st. Taking into account the multiplicity
(25 + 1) of the subshells, we note that the single—particle levesiteof the shell model strongly

increases with energy. We return to this point at the end ofi&@e\.

IIl. APPROACH

We considerf spinless Fermions in a single—particle model with constarel spacing/ and
with a finite number: of bound single—particle states. In the ground state ajjlsiparticle states
from the lowest (energy) up to a maximum level (energlyf = fd with I’ for Fermi energy) are
occupied. The remaining= B/d levels (with B for binding energy) are empty. Heyeandb are
integers, and we have = f + b. Excited states are describedagarticleh—hole states, with
counting the number of particles in single—particle statils energy larger tha®’ and not larger
thanB+ F', and correspondingly counting the number of holes with energy less thar-or non—
closed shell compound nuclei and/or nuclear reactionsdedby composite particles, the number
of hole statesh may differ fromp. We calculate various many—body level densities for non—
interacting particlespg(p, E) is the level density versus enerdyfor p particles confined to an
energy interval of lengt®, pr(h, F) is the level density foh holes confined to an energy interval
of length 7, pr(p, h, E) is the particle—hole state density defined analogouslygaitid, F) is
the total level density for particles distributed over an energy interval of length= F'+ B. With
e = E/d ande integer we define the dimensionless densityp, ) = ps(p, E) d and analogously
for ws(h,e), wp(p, h, €), andw, (A, €). All densities denoted by are integers.

We describe the method of calculation fog(p, €), assuming for simplicity of notation that
b is odd and shifting the energy such that the ground stateeop-tparticle system has energy
(1/2)p(p + 1). The maximum energy i — (1/2)p(p — 1), and the center of the spectrum is at

e (p) = %p(b +1) . (2)

The level densitw, (p, ) is defined as the number of ways in whigkermions can be distributed

over theb available single—particle states such that the total gneggals:, i.e.,

wb(p7 5) - Z 5n1+n2+...+np,€ . (3)

1<n;<na<...<np<b

4



The calculation otu,(p, ) poses a purely combinatorial problem. With= (1/2)(b — 1) we
define new summation variablés=n;, — (1/2)(b+1),l = 1,2, ..., p that range from- to + 5.
With ¢’ = ¢ — g¢(p) that gives

wy(p,€’) = Z Oky-+hat...+kp, e - 4)

—B<ki<ka<..<kp<pB

We determiney,(p, ¢’) in terms of its low moments. Changing the signs of all sumamatariables
in Eq. (4) one can easily show thaj(p,<’) = wy(p, —¢’) is even ine’, so that all odd moments
vanish. For the@mth moment withm =0, 1,2, ... we have

mb(p> 2m) = Z(E,)2mwb(pv 5,)

5,

2m
- Y (xe) ©)
—pB<k1<ka<..<kp<pB l
Following Ref. EF] we adopt an occupation—number represt@mn for Fermionic many—body
states. We represent each §kf} of integers in Eq.L(4) as @&-dimensional vectofvy, vs, ..., 1}
with entriesy; that take values zero and one. The §kt} is represented by choosing = 1
in the p positionsk; and zero otherwise. The sum over &l;} is replaced by the sum over all

b—dimensional vectors, i.e., over all choices/pBubject to the constraint; v; = p. Thus,

my(p, 2m) = Z 5pu1+u2+ A (Z]VJ)

V1,02,
a2m
- Ho2m z : 6P,V1+V2+---+V;, eXp{UE ]I/j}

V1,02, Vp J

(6)

o=0
We multiply Eq. [6) withexp{pa}, sum overp, and carry out the summations over the This

gives the partition function

aZm B

So2m (1 +exp{a+0j})
Jj=-B

The momentn,(p, 2m) is the coefficient multiplyingxp{ap} in an expansion of,(«, 2m) in

Zp(a, 2m) = (7)

o=0

powers ofexp{a}. Form = 0 we findm,(p, 0) = (Z) the correct result. Fon = 1,2 we obtain

o - (5)(72).
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From Eqs.[(B) we obtain the normalized moments

my (p7 2m)

My(p,2m) = (. 0)

(9)

. ASYMPTOTICALLY GAUSSIAN DISTRIBUTION

Egs. [8) suggest that asymptoticallyt 1, p > 1) w,(p,<’) approaches a Gaussian distribu-
tion. (Here, withl < p < bandb > 1, we considep > 1 equivalent tap ~ b/2. Particle—hole
symmetry connects the casese b andp ~ 1). We recall that for a Gaussian distribution, the
normalized fourth moment (see Efl (9)) equals three timestjuare of the normalized second
moment. Fob > 1 andp > 1 that is exactly the relation implied by the valuesrof(p, 4) and
my(p,2) in Eq. (8). Indeed, taken by itself the last term in the exgia@s for m,;(p, 4) yields a
value for M,(p,4) which forb > 1, p > 1 equals three times the square /of(p,2). More-
over, the term proportional tp° j* in the expression for, (p, 4) is smaller by the factor /p than
the one proportional t¢>" j2)2. To show thatu,(p, £’) becomes asymptotically (> 1,p > 1)
Gaussian we generalize the approach of Eds. (6) to (8) toatemts. We define

B
Glo) = T (1 +expfa+os}) = exp{H(o)} (10)
j=—8

and expand? (o) in a Taylor series around = 0. With

_ exp{a}
fla) = T+ expla} (11)

and f™ denoting thenth derivative off, we have form = 1,2, . ..

8777,

dom

B
=y g (12)

=0 i==8

H(a)

This shows that all odd derivatives &f vanish. We insert the Taylor expansion fdrinto Eq. [10)

and obtain

[e.9]

1 B
G(o) = G(0) exp { > wazn Fem Ny f”} . (13)

n=1 j=—8

From here, we proceed in two steps. (i) We neglect all terntls wi> 1 on the right—hand side
of Eq. (I3) and show that as a resul,is Gaussian fob > 1, p > 1. (ii) We show by complete
induction that all terms witm > 1 in Eqg. (I3) are negligibly small in the same limit. (i) For

wy(p, €’) to be Gaussian we have to show thét(p, 2m) = (2m — 1)!! [M,(p, 2)]™. Taking into



account the term with = 1 only, expanding the exponential, and using the result in @dH and
(@) we obtain

Zy(a,2m) = (2m — 1! G(O)(f’)’”( XB: jz)m : (14)

j=—B

The normalize@mth moment\,(p, 2m) is the coefficient multiplyingxp{pa} in the expansion
of Z,(a,2m) in powers ofexp{a} divided by the normalization facto@). Forb > 1 and
p > 1 the relevant coefficient iG(O)(f’)m(g)_l is~ [p(b — p)b~2]™. That yieldsM,(p, 2m) ~
(2m — D)!! [M,(p,2)]™, consistent with a Gaussian form fag(p,<’). In the last step of the
argument we approximate products of the fopiy — 1)...(p — m) by p™. For fixedp the
approximation becomes increasingly inaccurateraacreases. Our result is therefore valid only
asymptotically. (i) We use complete induction to show ttreg contributions of the terms with
n > 1in Eq. (I3) become vanishingly small fér>> 1,p > 1. We have shown above that
this claim holds forn = 2 (i.e., for m;(p,4)). We assume that the claim is correct for<
n < ng, omit the corresponding terms in EQ. {13), and show that id$éor n = ny, i.e., for
My(p, 2np). We have shown under (i) that the contribution(p, 2n,) of the term withn = 1 is
(2no — ! (M, (p, 2))"™. The contribution of the term with = ng is G(0) f*mo~1 3~ j2m. For
b > 1 we havey " j™ ~ ™' /(2™(m + 1)). From Eq.[(I1) we hav¢’ = f — f*. Therefore,
f@ro—1) — ij({ e, f' is a polynomial of degreén, in f with integer coefficients;, and the
contribution ofG(0) f"=1 37 . 52" to M, (p, 2ny) is

b\ ot Z% p—on

<p> W;Cl(p—lo) (1)
Forb >> 2n, andp > | we have(” *1) ~ (’)p'/b'. The contribution[(I5) is, therefore, of
orderb**o*1 while the contribution from the term with = 1 is of orderb®*°. This shows that the
contributions withn = 1 dominate all others. The situation differs for>> 1 andp ~ 1 orp ~ b
where M, (p, 2) is of orderb? only and[M,(p, 2)]™ is comparable in size to the contributidni(15).
Here the Gaussian approximation cannot be expected to weltk This is consistent with the fact
that forp = 1 andp = b — 1 the densities are flaty,(1,£") = 1 = w,(b — 1,¢’). Furthermore,
for p = 2 andp = b — 2 the densities have a triangularly shaped maximum. Only with 3
andp = b — 3 does the density of states become Gaussian—shaped. Thaunasts' = 5,(,0) (p)

builds up only slowly a increases from unity or decreases from 1.



IV. LOW-MOMENTS APPROXIMATION

Using the asymptotically Gaussian formwaf(p, ') we approximate that function in terms of
its low even moments. We use Eds. (8) fog(p, 2) andmy(p, 4), calculatem,(p, 6) similarly, and

find the parameters,,,, m = 1, 2, 3 of the normalized function
F (p,€) = Cexpf{—(e)* = (=) = 1()"} (16)

that correspond to the normalized momehfgp, 2m) with m = 1,2, 3 in Eq. (9). The resulting
function
A2 = () RO 2) (17)

is referred to in the following as the sixth—-moment appraiion tow,(p, ¢’). Approximations
obtained by using only the second (only the second and thehfloonoment(s) are denoted by
wé” (p,e’) (by wé‘” (p,€’), respectively). The same approach is useddgr., <) and forw, (A, ¢).
Except for suitable changes of indices and parameters,ethdts are formally identical. We
mention in passing that the method is also useful for calitigdhe density of accessible sta@ [10,

] under the constraints of the exclusion principle. Ostaill be given elsewhere. For the-
particle h—hole densityw,(p, h, ) we defines as the total excitation energy of the Fermionic

system. Then
wa(pv h7 6) = Z 6ap+ah,awb(pv Ep)wf(hv gh) . (18)

EpEh

Heres, = ¢ (p) + g, Is the total energy of the particles, and correspondingly for holes, while

e = ¢, + €3, is the excitation energy of the-particleh—hole system. Thus

wer(pshye) = > 6 <0>_€§Lo>wb(p, ep)wr(h,ey) - (19)

/ / _
Eptey E—Ep
EpEh

Sincewy(p, ;) (wy(h,€},)) is a symmetric function of;, (of &), respectively), it follows that;
is a symmetric function of centered at® = £ + ¢\”. Therefore we consider the function

wyr(p, h,e") with & = ¢ — £©, This function is symmetric about = 0. For the low even

i = () ()

mbf(pa hv 2) = mb(pv 2) +mf(h7 2) 5
mbf<p7 h74> = mb(p7 4) +2mb(p7 2>mf(h7 2)
+my(h,4) (20)

moments we obtain

and correspondingly for higher moments.



V. NUMERICAL RESULTS

We begin with an overview of the dependencewgfp, <) on bothp ande using the sixth—
moment approximatiori (17). Even though we expect that agymiation to work well only for
p =~ b/2, we display in Fig[l the values O.féﬁ)(p, ¢) for b = 51 in the p— plane as a coloured
contour plot for all values op between 3 and — 3. For fixedp, the dimensionless energy
takes values in the interval /2)p(p + 1) < e < bp — (1/2)p(p — 1). This accounts for the two
nearly parabolic and sawtooth—like boundaries of the aaglddomain. The parabolic dependence
on p is given by(1/2)p(p + 1) for the lower edge and byp — (1/2)p? + (1/2)p for the upper
edge. The contour plot is symmetric with respect to a sinmelbais mirror reflection about the
vertical linep = (b — 1)/2 and about the horizontal line defined by the overall centesidrgy
e = (1/4)(b* — 1). This symmetry is due to the symmetry ©f(p, ¢) in € about the centroid
energyel(f]) (p), and to particle—hole symmetry which equatgé&p, £) with w,(b — p, ) except for
a shift by the diﬁerencego) (b—p)— 55)0) (p) of the centroid energies. For fixedws(p, ¢) displays
a maximum at” (p) = (1/2)p(b + 1) (except for the casgs = 1 andp = b — 1 not displayed
in the Figure). The location of the maximum increases lilyeaith p. This fact and the parabolic
form of the boundaries cause the quasi—elliptical shapaesolid line of constant,—values in
the colour plot. We note the enormous maximum values6p, gl(f])(p)) ~ 10'? attained for
p =~ 25. All these features are generic (i.e., independent of thimprance of the sixth—-moment
approximation) and apply likewise toy(h,¢’) and tow, (A, '), except for a rescaling of abscissa,
ordinate, and of the values of the densities.

Limitations of the sixth—-moment approximation become obgiwhen we consider the values
of wy(p, €) at the boundaries = (1/2)p(p + 1) ande = bp — (1/2)p(p — 1) where we obviously
must haveu,(p,€) ~ 1. The sixth—-moment approximation exceeds this value by ore® or-
ders of magnitude, see Fig. 3 below. (We should keep in mihdporse, that the values at the
boundaries predicted by the sixth—-moment approximatiersaraller by about( orders of mag-
nitude than the values in the maximum. The relative accupétye sixth—-moment approximation
is, therefore, excellent). The white dashed lines in Eighdwsat which values of ande¢ the
sixth—-moment approximation deviates by from the exact values. The inaccuracy affects only
the very tails of the density of states, symmetrically alibatcentroid energyl()o) (p). The dashed
lines thus follow the boundaries af,(p, ¢).

We test the performance of the sixth—-moment approximatiodeitail by a comparison with

exact numerical results. This can be done throughout thieardomain (where eithey ~ 1 or
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FIG. 1: Contour plot of the dimensionless level densjﬁj/) (p,e) for p particles inb = 51 equally spaced
single—particle states based on the sixth—-moment appatiim [17) versu® and versus dimensionless
energye. The white dashed lines define the boundary of the region ewbgr) (p,e) deviates byl0% or

more from the exact values. The full line presents the cmsimtourwg@ (p,e) = 10*.

p =~ b or wheree is close to the boundary of the spectrum) since this is easitgssible numeri-
cally. We calculate the exact valueswf(p, ) in two ways. (i) We directly use Ed.1(4). (ii) We
use the occupation—number representation defined abov@)Eand sum over all—dimensional
vectors{vy, s, ..., 1}, grouping the results according to particle numpet Zj v; and energy
e = >, jv;. Method (i) yieldsw,(p, €) for fixed b andp. Method (ii) yieldsw;(p, €’) for fixed
b and all values op ande’. The demand on computing time is obviously larger for mettipd
Particle—hole densities are then obtained from Eg. (18). r€sults agree with those of RﬁlO]
for the small numbers of particles and holes considerecther

For the comparison between our exact and approximate sesudt restrict ourselves to a few
central features. In Figl 2 we display the relative diffeebetween the exact result and the sixth—
moment approximation faf = 51 and various values of nearb/2. Significant deviations occur
only at the boundaries of the spectrum where the values aixtie-moment approximation are too

large. Even though the tails of the sixth—-moment approxioneadre suppressed by many orders of
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magnitude in comparison with the value at the center, thgpssion is not strong enough. This
is shown more clearly in Fig.l3 where we plot for= 51 the values ou§2> (p,e), of w1§4) (p,e),
and ofw£6) (p,e) (these functions are defined in and below Eql (17)) versas the boundary
of the spectrum fob = 51. With every additional moment included in the approximatithe
agreement with the correct valug ~ 1 is drastically improved. However, it would obviously
take even higher moments than the sixth one to reach quarditgreement at the boundary of the
spectrum. This can be done, although convergence may be Almmatively, we may calculate
wy(p, €) numerically for the critical values gf ande where the sixth—-moment approximation is
not sufficiently precise. These values lie at the boundarfebe spectrum shown in Figufé 1
where eithep ~ 1 orp =~ bore ~ (1/2)p(p + 1) ore ~ pb — (1/2)p(p — 1). In all these cases
the number of terms that contribute to Egl (4) is small, arel dhlculation is straightforward.
Furthermore, for energies close to the spectrum bounddhesiensity of states depends only on
p and not on the number of levels For the lower boundary that is the case fof2)p(p + 1) <

e < (1/2)p(p — 1) + b+ 1. The numerical calculation can then be performed convélyiéor

a smaller number of particle statéschosen such that,(p,c) = wy(p, ) for € in the energy
interval of interest. For the dashed lines in Hi§j. 1 definint)% deviation of our approximate
results, for instance, the exact values can be calculateenically using ~ p(b—p)/10+p—1.

It should also be borne in mind that in preequilibrium cadtidns one typically requires ratios
(and not absolute values) of densities. We expect that #wespredicted quite precisely by the
sixth—moment approximation even at the boundaries of thetapm.

We turn to the total level density,(A, <) of A particles distributed over equally spaced
single—particle states as a function of the dimensionl@sgation energy:. We have shown
thatw, (A, £) has approximately Gaussian shape, with a peak at half takewtitation energy
(1/2)A(u+1). The original calculation af,, (A, ¢) by Bethe|[5] effectively also used a constant—
spacing model but neglected the limitations due to finiteigarnumberA and finite numbe
of single—particle states. With energy measured in unithefsingle—particle level spacing, the

celebrated “Bethe formula” reads [5]

WBethe (€) = 5\}@ exp{m\/2¢/3} . (21)

We note thatup.in.(¢) does not contain any adjustable parameters. The singurit = 0 is
due to the Darwin—Fowler method. The ensuing approxim&tada at and near = 0. Beyond
this domain the Bethe formula yields a monotonically risfagction of excitation energy since

the underlying counting method assumes that the number afable single—particle states is

11



60 - . . ; . . .

p=16 -
50 ° p=10 = o
p:22 |
ol =, ot
’\\3 30. LI + = 4
3 20 .0, .
0 Lo s
w
O. -
N

-400 -300 -200 -100 O 100 200 300 400
8'

FIG. 2: Relative difference between the exact result andstkéai—moment approximatiothw(®) /w =
[wé(j) (p,e") — wp(p,€')]/ws(p,€’) versus energy’ for b = 51 and several values @f The spectral bound-

aries are indicated by the arrows on the abscissa.

unbounded. Thus, there exists an excitation energy beydndhvthe Bethe formula exceeds
wyu(A, e) by an ever growing amount. This fact was qualitatively peihout in Ref.[[20]. In
Fig.[4 we comparevp.n.(c) with the exact calculation for = 51 and A = 41 and with the
sixth—-moment approximation far = 250 and A = 200 (for the latter parameters the exact
density of state values are not available for the entireggngpectrum). The latter parameter set
mimics, very roughly, a heavy nucleus. Comparison with tteeecalculation shows thats ... (<)
underestimates the level density below the crossing pdibbth curves. We have found this to
be a systematic trend. Both parts of Hifj. 4 clearly displa&dtossing point and the increasing
discrepancy betweebg..(¢) andw, (A, €) ase increases beyond this point. We interpret the data
on the crossing points using the equilibrium distributida) = (1/A) 1/(1+exp{(e—A)/(kT)}

for A Fermions at temperatufgE with k7" < A and continuous single—particle energyWith

kT =~ /= wherez is the total excitation energy of the many—body system, wktfiat the crossing
points occur at an excitation energyhere the fraction of particles in states with energies

is of the order of a few percent. This is physically plausible a heavy nucleus this criterion
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FIG. 3: Second-, fourth—, and sixth—-moment approximatma{(p, <) at the lower spectrum boundary

Emin = (1/2)p(p + 1) versusp for b = 51.

corresponds to excitation energies aroend MeV.

With increasing excitation energy, the constant—spacingehbecomes increasingly unreal-
istic. Indeed, the standard vallQ[JdL}x 13/A MeV for the average spacing of single—particle
levels near the Fermi energy in medium—weight and heavyenwstiongly underestimates the
single—particle level spacing in low—lying shells. We fétaat every subshell with spin con-
tributes(2; + 1) states t,(F) in Eq. (). As a consequence, the number of states available f
high—energy hole formation is smaller than predicted bydtestant—spacing model. Therefore,
the actual level density bends over more strongly with iasneg excitation energy and terminates
at a lower maximum energy than shown in Higj. 4, and the discrepwith the Bethe formula
is even bigger than presented there. The effect of an enéeggpendent single—particle level den-
sity was previously addressed, for instance, in Refs.|[2] albeit under neglect of the exclusion
principle.

To account for the shortcoming of the constant—spacing ineel@re in the process of improv-
ing our approach to calculate nuclear level densities. Weldithe energy intervdl = B + F

into several sections= 1, 2, ... with constant level spacing each but withd;, # d; for [ = [I'.
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FIG. 4: (a) Comparison of the exact level density(A, ) for v = 51, A = 41 versus energy with the

Bethe formulal(2l1). (b) The same for the sixth-moment agprasion andu = 250, A = 200.

Distributing p particles in all possible ways over these sections, so tiattarep, particles in
section/, we can use our results for the constant—spacing model im saation separately. For
a fixed distribution{p,} the level density is a convolution over a product of Gaussidrhe total
level density is the sum over all distributiofis; }. We note that it will no longer be a symmetric

function of energy.
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VI. CONCLUSIONS

Combining analytical and numerical methods, we have usedstant—spacing model for non—
interacting spinless Fermions to develop a global appre@eghrious nuclear level densities. This
approach is viable also for large particle numbers and/ott&xon energies where previous work
runs into difficulties. As representative example we hagpldiyed in detail the calculation of the
particle densityu,(p, €) as a function of particle numbgrand excitation energy. This function
is symmetric about the center of the spectrum and, except ferl andp = b — 1, displays a
maximum at the center. It also possesses particle—hole sympnThe shape of the boundaries
of the spectrum and the two symmetries are responsible éqtiasi—elliptical shape of the line
of constant density in Fig 1. With,(p,s) =~ 1 at the boundaries of the spectrum, the value of
wy(p, €) at the center increases dramatically with increasiegdp ~ b/2, reaching values near
10*2 already forb ~ 50 (and even larger values &ss further increased). The decreaselyor
more orders of magnitude from the center of the spectrumedthundary poses a considerable
challenge to viable analytical approximations. Guidedhmyfiact that fol > 1,p > 1 w,(p, ¢)
becomes asymptotically a Gaussian function of energy, we baed analytical expressions for
the low moments to determine a sixth—-moment approximatan tp, ). This approximation is
excellent except for values gfande near the boundaries of the spectrum. These are indicated
by the white dashed lines in Figl 1. Here the numerical cateu ofw,(p, c) based on EqL{4)
is easy and fast. Combining both approaches we obtain dlekad easy—to—handle method of
calculating the overall nuclear level density greparticleh—hole densities for medium—weight
and heavy nuclei for all particle numbers and at all ex@tatenergies. The results should be
realistic except for limitations due to the underlying ctamé—spacing model. Because of shell
effects the density of single—particle levels increasegatds the Fermi energy, and this fact is
not taken into account in the model. Work on a suitable gédizataon is under way. The Bethe
formula is seen to fail beyond an excitation energy that ameto approximatel200 MeV in

heavy nuclei.
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