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In this paper the model developed for estimation of the diffusion coefficient of the molecules in the triplet state is presented. The
model is based on the intuitive modification of the Smoluchowski equation for the time-dependent rate parameter. Since the sample
is irradiated with the spatially periodic pattern nonexponential effects can be expected in the areas of the constructive interference
of the exciting laser beams. This nonexponential effects introduce changes in the observed kinetics of the diffusion-controlled
triplet-triplet annihilation. Due to irradiation with so-called long excitation pulse these non-exponential effects are very weak, so
they can be described with introducing very simple correction to the kinetic model described in the first paper of this series. The
values of diffusion coefficient of anthracene are used to calculate the annihilation radius from the data for spatially homogeneous

excitation.

1. Introduction

The technique of measuring the diffusion coefficient using
spatially periodic excitation was first developed by Avakian
and Merrifield [1], Ern et al. [2], and Ern [3]. In those
papers the authors used a pattern that consists of parallel
slits to create the spatially inhomogeneous distribution of
the measured species, namely, triplet excitons in anthracene
crystals. The technique was modified by Nickel [4], instead
of the pattern with parallel slits the interference of two laser
beams was used to create spatially periodic distribution of
the density of the molecules in the T, state. In this way the
drawback of original Avakian’s method, the diffraction of the
light on the slits was avoided. This method was applied in
measurements of the diffusion coefficient of different organic
molecules [5, 6].

The main aim of this work is to take into account the
effect of the joined action of the first-order decay of the
molecules in the triplet state and diffusion-controlled triplet-
triplet annihilation (TTA) in the kinetic model that takes into
account the effects caused by spatially periodic excitation.
The starting points are the intuitive treatment of the spatially
homogeneous excitation [7] and the Nickel's model of TTA
with spatially periodic excitation [6]. The main aim of the
present approach is the introducing of the joined action of
TTA and first-order decay to the term describing the kinetics
of the TTA for inhomogeneous excitation—in the diffusional
relaxation term. The derived model was applied for the evalu-
ation of the diffusion coeflicient of anthracene in the T state.
The values obtained with the introduced model are compared
with the data obtained from the Nickel’s model developed in
the framework of standard Smoluchowski approach.



The temperature and viscosity dependence of diffusion
coefficient is another problem discussed in this paper.
The hydrodynamic theory of diffusion predicts the linear
dependence between the diffusion coefficient and the ratio
T /y—Stokes-Einstein (SE) model [8]. At the other side
the hole theory of diffusion [9] predicts that viscosity and
diffusion constant vary exponentially with the temperature.
In this model diffusion is described as a process that has an
activation barrier. To allow the molecule to diffuse a free
space (hole) must be created in the solute. The energy that
is necessary for the creation of this hole is described in terms
of the activation barrier. In the hole model the diffusion
coefficient tends to the limited value when temperature tends
to infinity, whereas in the SE model the diffusion coefficient
tends to infinity with the increase of temperature. The Stokes
theory of diffusion was modified by Gierer and Wirtz [8, 10].
Instead of the continuous medium they took into account
the finite dimensions of the solvent and solute molecules.
They introduced to the SE model a correction which is a
function of the radii of solvent and solute species.

In this work we postulate the equation for the diffusion
coefficient as dependent on the T/# which combines the finite
limit of the diffusion constant for large values of T/# as in
the hole theory of diffusion and the linear dependence of
the diffusion coefficient for small T/# as predicted by SE
equation.

2. Description of the Kinetic Model

2.1. Temporal Behavior of Delayed Fluorescence after Spa-
tially Periodic Excitation. The kinetic equation derived for
spatially periodic excitation within framework of standard
Smoluchowski model is the start position of the discus-
sion. In the case of strongly dominant first-order decay:
(4nR,Dyp,/kt) < 1% and for the spatial period d > R, the
equation for the delayed fluorescence intensity can be written
in the following way [6]:

R - _
Ipg (t) = CydnR 4 Dyp; (1 + \/%)e 2t (1 e ‘”),
T
(1)

where C, is the constant, R, is annihilation radius, Dy
is mutual diffusion coefficient, k. is the first-order rate
constant, p, is the density of the molecules in T, state at the
time t = 0, and b is the normalized parameter specifying
the degree of interference. Its value varies from 0—no inter-
ference to 1—complete interference. The parameter & (diffu-
sional relaxation constant) describes the diffusional relaxation
resulting from inhomogeneous (here spatially periodic) dis-
tribution of the molecules in the T, state at t = 0 and is a
function of the spatial period of excitation d and the absolute
diffusion coefficient D, (in the case of TTA D, = Dy /2):

2 \? 2n’
6=<7> D0=?DT (2)
Equation (1) can be divided into two parts:
Ipp (8) = Itll)oFmo (t) YPDCFHOd (t). (1)
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The first one describes the decay of the molecules in the
T, state after spatially homogeneous excitation in standard
Smoluchowski approach:

R
IS (t) = CydnR\ Dy (1 + ——A

)
\nDrt (3)
=k, (1) p* (1),

where the convention of the indications (kg 4 (1)) is the same
as in the paper [11] it means kg 4(t) is the time-dependent
rate parameters in the Smoluchowski original model. The
modification of the “homogeneous” kinetics was described
previously [7] for the case of strongly dominant first-order
decay and extended to nondominant first-order decay in the
first paper of this series [12].

The other term introduces the changes in the kinetics
caused by spatially periodic excitation, namely, describes the
diffusional relaxation of the inhomogeneous initial distribu-
tion of the molecules in the triplet state:

P (0= 14 2o, @)

This relaxation modifies the kinetics of homogeneous dis-
tribution of the molecules in the triplet state. Since TTA
do not contribute directly to this term the changes in time-
dependent intensity of the delayed fluorescence are caused
only by the average decay of the concentration of the mole-
cules in T} state in the sample. The changes in the local con-
centration involve the changes in the efficiency of the TTA in
different areas of the sample. The lack of the direct contribu-
tion of the TTA to the diffusional distribution manifest itself
by the absolute not relative diffusion coefficient appearing in
the term yPDanOd.

The diffusional relaxation will be influenced by the first-
order decay which decrease homogeneously the concentra-
tion of molecules in the triplet state. The diffusional relax-
ation constant depends on the gradient in the distribution
of molecules in the T, state between areas of the highest
and the lowest concentration of the reacting species. This
gradient is built by spatially periodic excitation, so one of
the factors influencing the parameter § is the spatial period
d. The mobility of the molecules is represented by absolute
diffusion coeflicient D,. However, due to homogeneous
decay of the molecules in the T, state via first-order decay
the initially built gradient will change with the time by joined
action of the redistribution and the first-order decay. We
assume that the first-order decay can be treated as domin-
ant and the diffusional relaxation is the function of the
mobility of molecules. That means that homogeneous decay
do not influence the redistribution process in other way as
changing the gradient via homogeneous decrease of the con-
centration of the molecules in the T, state. In such a case
the parameter § introduced as diffusional relaxation con-
stant should be corrected by time-dependent factor. Taking
into account the independence of first-order decay and
the redistribution of the molecules one can represent the
diffusional relaxation in terms of joined action of the first-
order decay and the diffusional redistribution by introducing
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the time-dependent parameter &' (t) = 8 exp(~kyt) instead of
d in the periodic term:

: b skt
Yhro (1) = 14 Se )

So intuitively the modified equation for the time-dependent
intensity of delayed fluorescence should have the form in the
case of dominant first-order decay:

R
Ing (t) = CodmR Dy (1 +—=

“2kyt
\mDytekrt ) ¢

X (1 + lzef&ikrtt>.
2

There is also one more point in the model that should
be discussed. Since, as mentioned before, in different places
in the sample one has different intensity of the exciting laser
light it cannot be excluded that in the areas with higher excit-
ing intensity small components of nonexponential behavior
of the sample exist. Due to irradiation with so-called long
excitation pulse, where the intensity is so small that by homo-
geneous excitation the nonexponential behavior of the kinet-
ics can be generally avoided, we expect to have the nonexpo-
nential behavior only in the part directly related to the TTA,

it means in homogeneous term of Ipp(¢). The most sensitive

part in Tho™(¢) in the context of nonexponential behavior is

p2 (t), because in k, 4 (t) the changes of p(t) contribute linearly
to the time-dependent rate parameter. So the most simple
way to test the nonexponential behavior of the spatially peri-
odic decay is to use the following modification of the model:

(6)

(1) the time-dependent rate parameter has the form as in
the case of the intuitively modified model with first-
order decay to be dominant:

- Ry
ko (t) = 4R, Dy (1 + JrD et ) , ™)

(2) the density of the molecules the T, state has the non-
exponential form:

—kt
e rr

01 + (4R, Dyp,/kr) (A) (1 - e‘th)’ ®

p(t)=p

where A donate (1 + R, /~/mDyte 1),

(3) the periodic part of Ipp(t) is the same as in (5).

The density described in point 2 has the form as in (4)
in the first paper of this series [12], but with kpp as time-
dependent rate parameter defined by (7).

To sum up: the time-dependent intensity of the delayed
fluorescence for nonexponential decay with spatially periodic
excitation should have the form:

Ing (t) = CyamR\ Dy (1 +

RA

—kept 2
e T

x< j o
1+ (4nR,Drpy/kr) (A) (1 — e7krt)

X (1 + lj{ée%ﬂt).
2

In the temperature above 150K the contribution of the
short time effect to the intensity of the delayed fluorescence
decreases very fast. If the spatial period of the irradiation is
enough large the diffusion relaxation resulting from inhomo-
geneous excitation takes place mainly for so large values
of the delay ¢, that the contribution of the nonstationary
part can be neglected. Since it takes place generally at the
temperatures, where the diffusion coefficient D is large the
nonexponential approximation equation (9) seems to be the
proper choice in this case. However due to negligible con-
tribution of the short-time effect the equation can be simpli-
fied by neglecting the contribution of the nonstationary term.
Neglecting the ratio:

R
A =~ 0, (10)

\/ﬂDTteith B

one obtains the simplified dependence of Iy (t) for spatially
periodic excitation in the case of nonnegligible contribution
of nonexponential effect to the kinetics:

2

Jert
1+ (4nR4Dypy/ky) (1 - e‘th)>

X (1 + lzefaeikﬂj )
2
(9"

2.2. Temperature and Viscosity Dependence of Diffusion Coef-
ficient. The basic model of the temperature and viscosity
dependence of the diffusion constant, SE model, assumes
that the particle moves in continuous medium. The diffusion
coefficient Dy is a linear function of the ratio temperature to

viscosity T'/#:
by ()= LT -
0 n _6711'7]’

Ipg (t) = C047TRADTP§(

where k is the Boltzmann constant and r is the radius of
the particle. Viscosity # is a function of temperature and it
decreases with the increase of T. In SE model D, — 0 if
T — 0and D, — +00if T — +00. The lower limit of Dy is
reasonable: with T — 0 the viscosity # — 00, so the mobi-
lity of the molecules should be very small. The other limit:
D, — +o00 seems to be artificial. This limit suggests that
at very high temperatures the process of diffusion should be



infinitively fast, it means the infinitively large mass should
diffuse through finite area within the finite time period. At
the other side the hole model of the diffusion postulate the
diffusion coefficient to tend to finite limit D, and to be
exponentially dependent on the temperature:

D, (T) = D e /¥, (12)

In this model the process of diffusion of solute molecule is
described as series of jumps between equilibrium positions
of the solute molecule. The equilibrium positions are sep-
arated by barriers. This equilibriums result from the finite
(nonzero) dimensions of the solvent and solute molecules.
The origin of the barrier is to create of the “hole” among
the solvent molecules. This “hole” is the free space where the
solute molecule can migrate. The energy W is the free energy
of the barrier which corresponds to the process of creating a
hole in the solvent. Since the energy W depends on viscosity,
the diffusion coefficient also depends on # even if it is not
written explicit in (12). The hole model of diffusion takes into
account the corpuscular nature of the solvent.

Since measured values of diffusion coefficient show non-
linear dependence as a function of T/# and the course of
the functions seems to tend to finite limit (see Section 4) it
would be sensible to postulate an equation for D, satisfying
following conditions:

(1) Dy — OforT/n — 0;

(2) for small T/# the new equation should be approxi-
mated by SE model;

(3) Dy = Dy, forT/n — +oo.

We postulate the equation in the form:

DO(§> = A(1-¢ Py, (13)

The model defined by (13) will be named as combined model
because it has T'/# as an argument of the function as in the SE
model and has the exponential dependence of the diffusion
coefficient from the independent variable and finite limit of
the diffusion constant for high temperatures as in the hole
model.

Since the difference (1 — exp(—B(T'/%))) equals to 0 for
T/n=0,Dy(T/n=0)=0;forT/n - +oc0o Dy - A =D,
and the expansion of (13) in Taylor series around T/ = 0
gives

T T T
D, (—) ~ AB= = D_B—. (14)
n n n

From (11) and (14) one can obtain

k
D B=—. (15)
7 6nr
The finite limit of the diffusion coefficient when the value
of the argument of function tending to infinity is the great
advantage of the combined one. This kind of the dependence
of the diffusion coefficient shows that the mass transport
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tends to saturation at very high temperatures. This kind of
behavior, namely, the saturation of the efficiency of the pro-
cess for conditions tending to the limit is observed in the
case of other transport processes. The example of the setup
where the saturation is observed is charge transport in struc-
tures like Junction Field-Effect Transistors (JFET) or Metal
Semiconductor Field-Effect Transistors (MESFET) [13]. The
saturation effect in the electronic structures is observed for
drain current for JEFT and MESFET structures [13] and
as well for accumulation-mode (AM) p-channel silicon-
on-insulator (SOI) metal-oxide-semiconductor-fiels-effect-
transistor (MOSFET) or enhancement-mode (EM) n-chan-
nel SOI MOSFET [14]. The saturation effect in the case of
electronic devices is so important that the models of charge
transport developed for structures like SOI p-type MOSFET
[15] or high electron mobility transistors (HEMTs) based
on AlGaN/GaN [16] structures have this effect as an nec-
essary condition of correctness of the model. The sublinear
behavior of charge transfer with the tendency to satura-
tion is also observed for organic crystals that is for perylene
or deuterated naphtalene [17].

3. Experimental

3.1. Materials. The purification of the materials: anthracene
and cis- and transisomers of 2-methylcyclohexane (DMCH),
as well the preparation of the sample was described in pre-
vious articles [7, 11, 18].

3.2. Apparatus. The apparatus was described in details also
in previous papers [7, 11, 18] where so-called side excitation
was used. Here we will concentrate on the parts of the setup
that make possible to realize two way of excitation: the side
one and the bottom one. In this paper we will use the names:
illumination/excitation from the side (side excitation) or
from the bottom (bottom excitation). Special attention will
be focused on the elements necessary to excite the sample in
spatially periodic way.

In order to create the spatially periodic distribution of
the molecules in the T, state in the sample in wide range of
viscosity two options of the excitation were used. The details
of the part of the apparatus generating spatially inhomo-
geneous distribution of the molecules in the T, state are
presented in Figure 1. Starting from side illumination:
The laser beam prepared by the fast chopper [7, 11] was
reflected in the vertical direction towards mirror M8 (see
scheme of the setup in [7, 11, 12]). M8 was used to reflect
the laser beam horizontally to generate the homogeneous
or spatially periodic distribution of the molecules in the
T, state. One of the wall of the sample cell was partly
covered with the dielectric mirror reflecting back the laser
beam from Ar" laser. Since the coherence length of the
laser beam was 50mm and the pathway in the cuvette
was equal to 10 mm the reflection of the 30 us long pulse
generated the standing wave in the sample. In the case of
homogeneous excitation the cell was moved down and
the excitation beam was passing the sample over the top
edge of the dielectric mirror [7, 11, 18]. This option of
spatially periodic excitation is presented in Figure 1(a). The
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FIGURE 1: Two methods of creation of spatially periodic pattern of the exciting light: (a) excitation from the side: illumination with standing
wave, (b) excitation from the bottom: illumination with two crossing beams. n, is the refractive index of the cis-/trans-DMCH at the
wavelength equal to A, d: the spatial period in the case of side excitation, d: spatial period for excitation from the bottom, y—the angle
of the prism, and « 4 is the incident angle of the laser beam in the case of the bottom excitation.

other possibility of inhomogeneous excitation: the illumi-
nation from bottom is presented in Figure 1(b). The mirror
signed as M7 in [7, 11] was replaced by M7'. Mirror M7’
is adjusted in such a way that it directs the laser beam to
the mirror M8’ and then to the beamsplitter BS instead of
reflecting it in the vertical direction to the M8. Then the laser
beam was divided by beam splitter BS. Both beams were
reflected by mirror M0 and entered the cell through the prism
placed on the bottom wall of the cuvette. The prism angle was
equal to 60°. Due to refraction of both beams on the prism
walls the directions of both laser beams changed in such a
way that the beams crossed in the sample and generate the
spatially periodic distribution of the exciting light. In order
to measure the decay in the case of homogeneous excitation
from the bottom one of the crossing beam was cut-off. In
the case of interference of two laser beams having equal
intensities the light intensity in the maximum should be four
times larger than the intensity of each interfering beam. To
have the same intensity of the exciting light for homogeneous
excitation and in places of positive interference of laser beams
different energy of laser pulses were used for homogeneous
and spatially periodic excitation. The energy of the pulse
in the case of homogeneous excitation was 4 times larger
in comparison with the energy of the laser pulses used for
spatially periodic excitation.

The spatial period of the distribution of the exciting light
can be calculated from the following equation [4]:

A

" amsin(e) 1o

where A is the wavelength of the exciting laser light, #, the
refraction coefficient of the solvent for the wavelength A, and
(2¢) is the angle between two crossing beams in the solvent.
The angle ¢ = 7/2 corresponds to the standing wave (the
side illumination). The idea of spatially periodic excitation is
presented in Figure 2.

3.3. Evaluation Procedure. The data were fitted using the
following procedure. First the decies obtained for spatially

homogeneous excitation were fitted with intuitively modified
model [7]:

p —2t/P
Ipg (t) = Py + Py <1 ’ e—t/Pix/f>e i, (17)

where P, is a dark current, P, is the amplitude, P, will be
called Smoluchowski parameter (P, = R,/ (ﬂDT)l/ 2 and P,
is the first-order decay time (P; = k;'). Obtained from the
fits of homogeneously excited decies the parameters P, and
P; were used in the fitting of decies measured for spatially
periodic excited samples. To fit the periodically excited decies
the following functions were used:

P /Py -
Ipp (t) = Py + P, (1 + 72>(1 +Pe ) e, (18)
t

P (potIP ~
Ipg () = Py + P, <1+ = )(1 +P,e (te 3)/Ps>e 2/Ps

e P/t
(19)
P (40 1P3 P
Ipp (£) = Py+P, (1 + —e_t/é\/z>(l + Pt 5)
o t1Ps 2
X >
1+Pg (1+(P,/e/P2/(1))) (1 - e7t/Ps)
(20)

where P, describes the degree of the interference, P; is the

diffusion relaxation time (P5 = 8'), and P plays the role of
the indicator of nonexponential behavior and equals

Pg = 4mRADrpy (21)
kr

The function defined by (18) describes the model developed

by Nickel [4-6] within standard Smoluchowski approach. It

was used here as a reference. The function defined by (19) can

be treated as intuitively modified (18) and describes the con-

dition of strongly dominant first-order decay. The equation
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FIGURE 2: The idea of the creation of the spatially periodic excitation
in the sample. Two laser beams having the wavelength equal to A in
air cross each other in the sample and create the spatial pattern of
the light with period equal to d. The angle between crossing beams
equal 2¢, the refractive index of the sample equals to n,.

(20) introduces to (19) the nonexponential approximation on
the lowest possible level (see Section 2).

The functions given by (19) and (20) take into account
both components of the decay in intuitively modified model:
the short time part and the stationary part. The diffusional
relaxation has to play important role in the kinetics on differ-
ent time scale in comparison with short time effect. Other-
wise it will be impossible to differentiate between these two
components of the model in the case of analysis of the data
measured with spatially periodic excitation of the sample.

The measurements of the diffusion coefficient were per-
formed in the temperature range from 135K to 155K. The
viscosity of the mixture solvent changes over four orders of
magnitude. In the vicinity of the ends of the temperature
range the differences in time scales of the short time effect
and diffusional relaxation may be so large that the simplified
equation for the Ip(f) may offer more stable fit than (19) or
(20). Taking the diffusion coeflicients used in previous papers
[7, 11] and the approximate value of annihilation radius equal
to 1 nm and the spatial period of excitation as used in the
experiment one can estimate the contributions of the short
time term and the diffusional relaxation term to the whole
decay of the delayed fluorescence. The measurements were
done for two values of spatial radius: 119 nm and 305 nm. In
the next paragraph the estimation of the short time term and
the diffusional relaxation term will be presented.

In the case of low viscosity where the diffusion is fast the
short time effect decay also very fast. In order to have reason-
able time for the diffusional relaxation one should excite the
sample with enough large spatial period. For example, in the
case of the decay measured at T = 150K after the delay
equal to about 2ms the term describing short time effect
equals to about 0.06 whereas the diffusional relaxation term:
exp(—6t exp(—krt)) equals to ~0.60 if the spatial period of
excitation equals to about 305 nm. After the delay equal to
20 ms the short time term equals to 0.02 and the diffusional
relaxation equals to about 0.28. So, if the spatial period of
excitation is enough large the diffusional relaxation mainly
takes place in the delay range where flow can be approximated
with stationary part of the intuitively modified Smolu-
chowski equation. Since the bottom excitation gives small
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signal, because only small part of the illuminated part of
sample contributes to the measured signal the number of the
fitted parameter should be limited in order to make the fitting
procedure as stable as possible. In such a case (20) should be
simplified:

—t/P
Ipg () = Py + P, (1 +Pe 2)“’5)

o t/Ps 2
X ————— ] .
( 1+ Pg(1-e/Ps) )
At the other side in high viscosities the diffusional relax-
ation can also be important for longer delay than the short
time effect. For example, in the case of the decay measured at
135K and after the delay equal to about 3 ms the short time
term decreases to the value equal about 0.09 whereas the
diffusional relaxation term equals to about 0.95 if the spatial
period of excitation equals to 119 nm. After 20 ms the short
time term decreases to 0.06 and diffusional relaxation term
to about 0.80. So, as in the case of high temperature the main
part of diffusional relaxation takes place when the process
can be described with stationary part of the intuitively
modified Smoluchowski equation. Here the intensity of the
delayed fluorescence is low due to low mobility of the mole-
cules. In such conditions the fit of the function with mini-
mum number of important parameters can give more stable
results than the fit of the whole function defined by (19). The
simplified equation (19) has the following form:

(20')

Ipe (t) = Py + P, (1 +Pe ”PZ)/P5> 2P (19))

The other approximation used here is the same as in
previous papers [7, 11]: it means that modified initial con-
dition introduced by Nickel et al. [19] have significant influ-
ence on the initial part of the decay. In those papers the
decay was divided into anti-Smoluchowski and Smoluchowski
time ranges. Within the anti-Smoluchowski time range the
modified initial conditions introduce to the temporal behav-
ior of the decay significant changes in comparison with
standard Smoluchowski behavior. In the Smoluchowski time
range the course of the decay of the delayed fluorescence
is the same for both types of initial conditions. The points
are systematically cut off from the beginning of the decay of
spatially homogeneous excited samples. In this way the part
of the decay where the modified initial condition introduce
the important changes to the kinetics is removed. The para-
meters P, and P; were obtained from the evaluation of
the decies measured for the spatially homogeneous excited
samples. They are kept constant in the case of the fitting
of the spatially periodic excited samples. The values of the
parameters P,, Ps and in the case of nonexponential behav-
ior P, are obtained from Smoluchowski time range of spatially
periodic excited decay. The anti-Smoluchowski and Smolu-
chowski time ranges are assumed to be the same in the case
of homogeneously and spatially periodic excited samples.
The reason to avoid the anti-Smoluchowski time range in the
fitting procedure is the same as in previous papers:
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(i) the modified initial conditions do not affect the gen-
eral idea of the joined action of two processes: the
first-order decay and TTA;

(ii) the mathematical description of the kinetics is much
simpler for the standard Smoluchowski initial condi-
tions.

The Smoluchowski, anti-Smoluchowski time range are pre-
sented in Figure 3 together with the delay range of particular
interest.

The values of the parameters P,, Ps, and eventually Py
were obtained as follows. The functions defined by (18) + (20)
were fitted to the measured decies with the systematic cutting
off the points from the beginning. Using this procedure one
obtains the parameters as functions of the delay, . In the case
of (19) for exponential behavior or (20) in the case of non-
exponential behavior one should obtain the constant values
(within the accuracy of the measurement and the fitting pro-
cedure) of parameters P,, Ps, and eventually P in the time
range of particular interest (see Figure 3). In the case of the
decies measured near the limits of the temperature range the
simplified functions: equation (19') for exponential behavior
and (20’) for nonexponential case were fitted and the results
were compared with the fits performed for the whole func-
tions (see (19) and (20)). The option giving more stable fit and
precise results were taken to the further analysis. The values
of parameters P, and P obtained from the fitting of (18)
were taken as reference. The values of the parameters were
averaged over the range of particular interest. The mutual
diffusion coeflicient was calculated from the parameter P-:

2 2
d _p=-4 @
5

where the spatial period d was calculated for the wavelength
of the Ar" laser A = 363.3nm and the refractive index of
cis/trans-DMCH. The refractive index n, of the mixture
solvent was measure and published previously [20].

The temperature and viscosity dependence of the diffu-
sion coefficient was examined with the following procedure.
First the linear functions was fitted to the values of the
absolute diffusion coefficient calculated from (22):

(23a)

(23b)

Since in the SE model Dy((T/%) = 0) = 0 the coefficients
a, and a, obtained from fits of (23a) and (23b) should be
equal within experimental error. The coefficient b; can be
treated as an additional component of the standard devia-
tion of D,. The contribution of this component should be
important in high viscosities. Also the other model of tem-
perature/viscosity dependence of the diffusion constant was
fitted to the experimental points:

Dy by (T/n)
—~ =D,=a,(1-e7""). 24
- =Dy =ay ( ) (24)
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FI1GURE 3: The influence of the modified initial conditions and the
spatially periodic excitation. The main picture: the intensity of the
delayed fluorescence of anthracene measured at 143 K. The upper
curve presents spatially periodic excitation, lower—homogeneous.
The ordinate is presented in logarithmic scale in order to expand
the initial period where the differences between the temporal
behavior of the homogeneously and spatially periodic excited
sample are significant. The anti-Smoluchowski time range the extent
of the delay where modified (Nickel’s) initial conditions introduce
significant changes to the kinetics of diffusion controlled TTA, the
Smoluchowski time range the extent of the delay where the temporal
behavior of the sample is the same for both type of initial conditions.
The time range of particular interest the extent of the Smoluchowski
time range where the temporal behavior of homogeneously and
spatially periodic excited sample are significantly different. Insert:
the initial part of the main picture with the ordinate in linear scale.

The values of diffusion coefficient were calculated from both
models: SE model (see (23a), (23b), and combined model
(24)).

The annihilation radius R, was calculated from P,
(Smoluchowski) parameter obtained from the fits of the
decies of homogeneously excited sample:

R, = P,\/nDy, (25)

using values of Dy calculated from the both models of
temperature/viscosity dependence of the diffusion coeffi-
cient. The values of R, calculated for the experimental data
resulting from measurements for short and middle excita-
tion pulses are compared with those obtained for the long
excitation pulse [7, 11]. Also the values of the annihilation
radius calculated with the diffusion coefficient obtained from
SE and combined models are compared with each other.

4. Results and Discussion

4.1. Comparison of the Nickel's and Modified Approaches,
Exponential Decay. In Figure 4 there is presented the com-
parison of the fit of two models: original Nickel’s approach
(18) and intuitively modified one (19). Since the parameters
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The insert presents y” function as dependent on t,.

P, and P; were taken from the fit of homogeneously excited
decay they are not presented here. The comparison is reduced
to the diffusional relaxation time P, —Figure 4(a) and the
degree of interference P,—Figure 4(b). Both parameters were
obtained from the fitting procedure performed for the decay
measured at 142 K. The parameters P, and P are presented
as dependent on the delay, t,. The course of the parameters
are similar for both models. In the case of P (Figure 4(a))
after the decrease for ¢, <~500 us the values reach shallow
minimum which can be treated constant within the accuracy
of the measurement and fitting procedure. For ¢, > ~2500 us
the diffusional relaxation time has clear tendency to grow up
with the increase of the delay. The values of P5 obtained from
the intuitive model are about 500 s smaller than those from
Nickel’s original approach in the range of t,, where the plateau
is reached. The course of the parameter P, (Figure 4(b)) as
a function of the delay corresponds to the course of P5. For
ty < 500 us the values of the degree of interference increase
with the increase of the delay. In the range 500 us < t; <
2500 us there is a shallow maximum where the values can
be treated as constant. For t, > 2500 us the values of P,
decrease with the increase of the delay. The insert in Figure
4(b) presents x” as a function of t,. For the delay larger than

500 us the values of the y* can be treated as constant and
equal to about 1.2 for both models.

In Figure 5 there are presented the values of diffusion
coefficient Dy (average values) calculated from original
Nickel's and intuitively modified model as a function of
T/n in the range below 0.12 K/mPas (what corresponds to
the temperature below 149K). The experimental data are
presented together with the fit of SE model. The measure-
ments performed in the range T/ < 0.055K/mPas (the
temperature below 145 K) were done for the side excitation.
In the case of higher temperatures the larger spatial period
of excitation was necessary. These measurements were done

x10°
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T T T
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T
0.04

T T
0 0.02
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® Nickel’s approach

FIGURE 5: The mutual diffusion coefficient D; as dependent on
the ratio T'/n for abscissa below 0.12. The experimental points are
compared with fitted SE model. The values of D} calculated from
Nickel’s approach have the tendency to deviate from the SE model
for T/ >~0.018. The results from intuitively modified model
show better agreement with SE model. Within the range ~0.018 <
T/ <~0.07 the experimental results from modified model still
show the difference from SE model.

for bottom excitation. From the course of the experimental
values can be deduced that original Nickel’s approach gives
the values of the diffusion coefficient that have a tendency
to deviate from the linear SE model. This tendency can
be corrected introducing the intuitive modification to the
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The insert presents the indicator of nonexponential behavior as a function of the delay.

Nickel’s formula for the temporal dependence of the intensity
of delayed fluorescence. The correction gives the results
consistent with SE model in the range 0.055 K/m Pas < T'//5 <
0.12 K/m Pas. The difference between experimental diffusion
coefficient and SE model in the range ~0.015K/mPas <
T/n < ~0.055K/m Pas is not fully corrected with the intuitive
modification of the Nickel’s equation. The additional differ-
ence between the experimental values and SE model results
from nonexponential decay of the spatially periodic excited
sample. This is due to the side excitation of the sample within
this range of T'/# where the energy of the exciting pulse was
significantly larger than in the case of bottom excitation (see
Section 3).

4.2. Nonexponential Contribution to the Modified Model in the
Case of Spatially Periodic Excitation. The parameters P; and
P, as a function of the delay are presented in Figure 6, where
the values obtained from exponential and nonexponential
models (see Description of the model, part Temporal behavior
of delayed fluorescence after spatially periodic excitation)
are compared. In Figure 6(a) there is presented diffusional
relaxation time P; as a function of the delay. For exponential
model the values of P; decrease with the increase of the delay
for t, <~400us. For ~400 us < t;, <~1300us the values
obtained from exponential model show shallow minimum.
The values within this range of t, can be treated as constant
within experimental error. For ¢, >~1300us the rapid
increase of P; with the delay is observed. In the case of
nonexponential the course of Ps is similar to the exponential
case: for £, <~400 us the decrease of P; with the increase
of the delay is observed. For ~400 us < t, <~1400 us the
values of P can be treated as scattered around the constant.
For t, > ~1400 ps the parameter P5 has tendency to decrease
with the increase of t,. Also the increase of the standard

deviation AP; is observed for ¢, >~2200 us. The behavior
of degree of interference—Figure 6(b) corresponds to that
of diffusional relaxation time. For ¢, <~400 us the values of
P, obtained from both types of modified model (exponential
and nonexponential) increase with the increase of the delay.
In the case of exponential fit parameter P, reaches the shallow
maximum for ~400 us < t, <~600us and for larger ¢, the
decrease of the value of P, with the increase of the delay is
observed. The values of P, resulting from nonexponential fit
can be treated as constant within the accuracy of the measure-
ment and fitting procedure for ~400 us < t, <~1000 us. For
to > ~1000 us the values of the parameter P, are scattered and
the standard deviation AP, is much larger than for the delay
below 1 ms. The insert in Figure 6(b) presents the indicator of
nonexponential behavior—P,. Although the values are very
small (not larger than 0.003) they can be treated as constant
within the presented accuracy for the delay between ~400 us
and a few milliseconds.

In Figure 7 there is presented diffusion coefficient
obtained from kinetic model with taking into account the
nonexponential character of the decay in the range ~0.015 K/
mPas < T/ <~0.055K/m Pas. The presented values were
calculated from exponential: T/y# <~0.015K/mPas and
nonexponential: ~0.015K/mPas < T/# <~0.055K/mPas
fits. The “experimental” values of the diffusion constant are
presented together with the SE model. The range of T/y
from 0.003 to 0.052 K/m Pa s corresponds to the temperature
range 135K + 145 K. The difference between SE model and
the result of the fitting of exponential modified model of
the periodically excited delayed fluorescence increases with
the increase of T'/. The nonexponential model of the decay
seems to reproduce better the SE dependence of the diffusion
coefficient than the exponential approximation of the decay.
The effect is small but the tendency seems to be unequivocal.
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4.3. Negligible Short Time Effect. As mentioned in Evaluation
procedure in some cases the short time effect can be neglected
and the simplified functions of Ipp(t) can be used. In Figure
8 there is presented an example of evaluation of the decay
measured at 155 K. Here the results of the fitting procedure
obtained from whole and simplified kinetic models are
compared. The course of the parameters obtained with or
without the contribution of the short term are almost the
same. The diffusional relaxation time (Figure 8(a)) shows the
increase of the value of the parameter Ps for ¢, <~250 us.
For the delay from the range ~250 ys to ~1 ms the values are
scattered around the constant. For f, > 1 ms the increase of
the standard deviation AP5 and the value of P5 is observed.
The increase of AP reflects the decrease of the contribution
of the diffusional relaxation to the total decay. The values
obtained for the P, parameter (Figure 8(b)) show the decrease
as a function of the delay in the range: t, <~250 us. For
~250 us < t;, <~700 us the values of P, can be treated as
scattered around the constant. The dispersion of the values
obtained with the neglecting of the short time effect (20') is
significantly smaller in comparison with the data resulting
from the fit of (20). For ¢, >~700 us the the values of P,
decrease with the increase of the delay. The parameter P,
tends asymptotically to zero. The values of y* are presented

in the insert in Figure 8(b). The values of y° are constant and
equal to about 1.05 for both version of the kinetic model.
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In Figure 9 there is presented similar comparison as in
Figure 8. Here however, the evaluation was performed for
the decay measured at 136 K. The complete function of the
kinetic model was defined by (19), the simplified one by (19").
In Figure 9(a) the diffusional relaxation time is presented
as dependent on the delay. In the case of the fit with short
time term included only first two points are presented in
the plot. The other values obtained from the fit of (19) are
much larger than the scale and their standard deviation is
larger than the value of the parameter. So they are omitted
in the plot. The results of the fit of (19") show the decrease
of P with the increase of the delay for ¢, <~800 ys. For ~
800 ys < t, < ~8000 us the values of the diffusional relaxation
time can be treated as scattered around the constant. The
standard deviation AP; grow up with the delay. This behavior
reflects the decrease of the contribution of the diffusional
relaxation to the whole decay with the increase of the delay.
For t, >~8ms the decrease of the Py with the increase
of the delay is observed. The degree of interference shows
similar behavior—Figure 9(b). The data obtained from fit
of (19) (with short-time term included) are not presented
due to the standard deviation overcoming 100% of the value
of the parameter. In the case of the analysis neglecting
short time effect the values of P, are scattered around the
constant for t, < 8 ms. The exception is the first point which
standard deviations is larger than the value. The increase of
the standard deviation AP, is observed as in the case of the
diffusional relaxation time. This increase is very clear for the
delay above ~5.5ms. For t, >~8ms the increase of the P,
with the increase of the delay is observed. Also the increase of
AP, for the delay above 8 ms is much more significant. From
the course of P, and the ratio AP, /P, one can deduce that the
contribution of the diffusional relaxation to the whole decay
decreases significantly within the delay range ~5.5ms < t; <
8 ms. For the delay larger than 8 ms this contribution seems
to be negligible. The insert in the Figure 9(b) presents the
x° as dependent on the delay. The value obtained for the fit
of (19) are spread between 1 and 2.4, whereas the values of
x° resulting from fit of (19') are constant and equal to 1 for
tg > ~500 ps.

It seems that in the case of periodically excited samples in
some cases the simplified functions with reduced number of
parameters give better results than the complete one. This is
due to the complicated temporal dependence of the delayed
fluoresce which is described with function having up to 7
parameters. In some cases simplification of fitted function
results in avoiding the parameters that values are negligible.
This gives in turn more stable fit and more reasonable results.

4.4. Viscosity and Temperature Dependence of the Diffusion
Coefficient. In Figure 10 there is presented the diffusion
coefficient Dy as dependent on T'/#. Together with experi-
mental points fitted models are presented: SE model and a
combined model. The course of experimental points shows
that the both models give the similar values of the diffusion
coefficient up to T/y# =~0.15K/mPas. For larger values
of T/n the diffusion coeflicient shows the deviation from
SE model towards lower values. The other model seems to
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the values of y° equal to about 1.05 for t, > ~500 us, whereas for the other case the values of x” are spread between 1 and 2.5.

reproduce better than the SE model the course of the experi-
mental points. The values of D extrapolated to the room
temperature with different models are as follows,

(1) SE model: (1.50 +£0.02) x 10° nm*s ' =
10 em?s™,

(1.50 £0.02) x

(2) combined model: (1.43 + 0.16)x10° nm? s~

0.16) x 10 * cm?s™!

=(1.43%

Let us compare the diffusion coefficient measured for
organic molecules (having the size similar to anthracene) in
organic solvents at room temperature with the data extra-
polated with both models. The collection of the anthracene
absolute diffusion coefficients (D;) in different solvents

can be found in (6 ] The values at 25°C are in hexanle

(3.15+ 318)><10 cm’s” 1noctane197 2.04x107° cm?s ™,
in hexadecane 0.536 + 0.545 x 10°cm’s’, in perfluo-
rorohexane (1.80 + 0.03) x 10 em’s™!, and in
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methylcyclo-hexane (1.61 + 0.03) x 10 cm®s . The
diffusion constant of pyrene and 9,10-diphenylanthracene
in hexane equal to (2.93 + 0.04) x 10 cm®s™ and
(1.80 + 0.02) x 10 cm*s ), respectively. Taking into
account that Dy = 2D, the cited data can be summed up:
the absolute diffusion coefficient at room temperature in

the range between 10> and 10 cm®s™". The value of D,

extrapolated with the combined model ~0.7 x 10™* cm®s™

can be treated as reasonable, whereas the values calculated
with SE model overestimate the experimental day by a few
orders of magnitude.

The expansion in the Taylor series of the combined model
gives the product of the coefficients a; and b (see (24)) equal
to (5.3 £ 1.1) x 10° nm? K (mPa sz)fl, where the standard
deviation A(a;b;) was calculated from

A(asbs) = (Aa2 +A82)"". (26)

The slope obtained from the fit of SE model equals to (4.51 +
0.05) x 10° nm? K (mPa 52)71. Taking into account standard
deviations of the above discussed quantities both presented
above values can be treated as equal.

4.5. Annihilation Radii. Using the diffusion coefficients Dy
obtained from both discussed above models the annihilation
radii were calculated. In Figure 11 there are presented
annihilation radii obtained for the measurements with short
excitation pulse and spatially homogeneous excitation. The
data presented in Figure 11 consist of values calculated
from exponential and nonexponential approaches of the
temporal dependence of the delayed fluorescence intensity.
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In Figure 11(a) the values of annihilation radii calculated
with Dy from SE model are presented. For the temperature
range 132K + 146K the values of R, are calculated from
parameter P, obtained from exponential fit of Ipp(f)
(squares). In the case of the temperature range 142 K + 150 K
the values are taken from nonexponential fit (circles). The
values calculated from exponential model of the kinetics of
TTA can be treated as constant for the temperature range
138K + 144 K. For the temperatures below 138K the the
values of R, decrease with the decrease of the temperature.
The increase of the standard deviation AR 4 with the decrease
of the temperature in the range 132K + 138K reflects the
growing up uncertainty of the diffusion coefficient Dy with
the decrease of the temperature. For the temperatures 145K
and 146 K the R, obtained from exponential kinetics has
the tendency to grow up with the temperature. In the case of
the temperature above 146 K the values of the annihilation
radii were not average, because there was no range of the
delay ¢, (for t, <~10ms) where P, parameter can be treated
as constant in the case of exponential model. In the case of
nonexponential fit the values of R, were calculated for the
decies measured in the temperature range 142K + 150 K.
The values obtained from nonexponential fit are constant
within this temperature range. For the temperature between
142 K and 144 K the values of R, resulting from exponential
and nonexponential models of the decay are equal. In Figure
11(b) there is presented annihilation radius calculated from
the combined model. The values of R, are presented as
dependent on the temperature. The behavior of R, as a
function of the temperature is practically the same in the
case of Figure 11(b) as described above for Figure 11(a).
The only difference between Figures 11(a) and 11(b) is the
behavior of standard deviation AR, in the temperature range
132K + 138 K. In the case of Figure 11(b) it is constant what
shows that the standard deviation of Dy does not increase
with the drop of the temperature as in the case of SE model.

In Figure 12 there is presented the annihilation radius R,
as a function of temperature for the short excitation pulse and
the model based on the non-Fickian treatment of TTA [11].
The partition of the temperature range between exponential
and nonexponential part is the same as in Figure 11. Parts (a)
and (b) present the data calculated for the same model of the
viscosity and/or temperature dependence of D as in the case
of Figure 11:

(i) part (a): Dy calculated from SE model;

(ii) part (b): Dy calculated from combined model.

In the case of Figures 12(a) and 12(b) the course of R, as
a function of the temperature is similar to that presented
in Figures 11(a) and 11(b). The are two differences between
the behavior presented in Figures 12(a) and 12(b), and
Figures 11(a) and 11(b). First the annihilation radii calculated
from the non-Fickian treatment are larger in comparison
with that from the intuitive modification of Smoluchowski
equation. The average value for the “intuitive” R, equals
to about 0.6 nm, whereas the non-Fickian approach gives
the value of annihilation radius equal to about 1 nm. This
discrepancy was already discussed in previous paper [11]. It
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of exponential and nonexponential versions of the I'p.(¢). The experimental data were measured with the short excitation pulse.

results from the screening effect of the first coordination shell
which is reproduced in the non-Fickian approach. The other
difference is the scattering of the values of the annihilation
radius in the range 132K + 134K which is not observed
in the case of intuitively modified model. At the other
side, the values of R, calculated for P, parameter obtained
for intuitively modified kinetic model has the tendency to
decrease with the decrease of the temperature in the range
132K + 134 K. In the case of non-Fickian kinetic model this
tendency is not observed.

In Figure 13 there is presented the annihilation radius
R, as dependent on the temperature. Here the values were
calculated for middle excitation pulse and intuitively modi-
fied model of temporal behavior of the intensity of delayed
fluorescence. The convention is the same as in the case of
Figures 11 and 12. It means: in Figure 13(a) the values of
R, are calculated using the diffusion coefficients from SE
model and in Figure 13(b)—from combined model. The
course of the annihilation radius as a function of temperature
presented in Figure 13 is very similar to that shown in
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FIGURE 13: The annihilation radius calculated using the values of mutual diffusion coeflicient obtained from spatially periodic excitation and
different models of temperature and/or viscosity dependence of D;: (a) SE model and (b) combined model. The P, parameter was calculated
from the intuitively modified Smoluchowski model [7] of temporal behavior of the intensity of delayed fluorescence. The plots present the
combination of exponential and nonexponential versions of the I, (t). The experimental data were measured with the middle excitation
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FIGURE 14: The annihilation radius calculated using the values of mutual diffusion coefficient obtained from spatially periodic excitation
and different models of temperature and/or viscosity dependence of D;: (a) SE model and (b) combined model. The P, parameter was
calculated from the non-Fickian model [11] of temporal behavior of the intensity of delayed fluorescence. The plots present the combination
of exponential and nonexponential versions of the I'yp(¢). The experimental data were measured with the middle excitation pulse.

Figure 11. The changes of the standard deviation AR, shows
the same behavior as a function of temperature for short
and middle excitation pulses. It means that the main factor
contributing to the accuracy of R is the standard deviation
of the mutual diffusion coefficient—ADy.. Also the average
value of R, in the temperature range where annihilation
radius can be treated as constant is for both kind of excitation
pulse equal within the accuracy of the measurement and the
accuracy of the evaluation procedure.

In Figure 14 there is presented the temperature depen-
dence of R, in the case of middle excitation pulse and
the non-Fickian model of the temporal behavior of the
intensity of delayed fluorescence. The convention is the same
as in Figures 11, 12, and 13: part (a) presents values of R,
calculated with Dy from SE model and part (b)—with Dy
from combined model. The behavior presented in Figure 14 is
similar to that one presented in Figure 12 for short excitation
pulse. There is only one difference: the average value of R,
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in the temperature range where the annihilation radius can
be treated as constant equals to about 0.7 nm for middle
excitation pulse. This value is slightly smaller than average
R, for short excitation pulse and the same model of temporal
behavior of Ipg(t).

5. Concluding Remarks

The introduction of the nonexponential modification to the
model describing the temporal behavior of the intensity of
delayed fluorescence allowed to enlarge the range of the
applicability of the model. In the case exponential model
to obtain a good fit one has to perform the experiment in
such condition that the measurement of single decay takes
very long time (several hours). The measurement of the
kinetics of TTA taking long time is extremely difficult because
the temperature of the sample must be stabilized within
the range of £0.1 K. Otherwise the fluctuations of viscosity
are too large to get reasonable values of parameters. In the
case of application of exponential model the mathematical
condition: k,,(t — ©00)/kr < 0.01 must be satisfied. In
the case of nonexponential approach one can obtain good fit
for the same parameter equal up to about 0.06. The values of
the annihilation radius obtained from nonexponential model
are in a good agreement with that from literature and from
modified exponential models 7, 11].

It seems that the combined model reproduces quite
well the dependence between the diffusion coefficient and
the ratio temperature to viscosity over several orders of
magnitude. This treatment also removes the artificial upper
limit of the diffusion coefficient in SE model: D, — oo when
T/n — oo. In the case of very high viscosities application
combined or SE model to calculate R, from intuitively
modified Smoluchowski equation results in the decrease of
annihilation radius with the decrease of temperature. This
kind of decrease of R is not observed for the data calculated
from non-Fickian kinetic approach. In the case of SE model
the increase of AR, with the decrease of the temperature
for T < 136K is observed. The reason for this behavior is
increasing contribution of the uncertainty concerning with
the constant factor from (23b).

There are two limits of the discussed model of the kinetics
of TTA. First, the nonexponential modifications are based on
time-dependent rate parameter k,,(t) from Smoluchowski
equation. So in the matter of fact it contains the traces of
the time-dependent rate parameter applied for the case of
dominant first-order decay [7, 11, 18]. The other limit is
concerned with the case of spatially periodic excitation. The
evaluation of spatially periodic excited samples is performed
as for the spherically symmetric problem, although this
irradiation introduces the cylindrical symmetry to the sample
which axis is perpendicular to direction of the changes of the
intensity of exciting light.
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