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Abstract The goal of this article is to prove that on surfaces with asymptotically cusp ends
the relative determinant of pairs of Laplace operators is well defined. We consider a surface
with cusps (M, g) and a metric h on the surface that is a conformal transformation of the
initial metric g. We prove the existence of the relative determinant of the pair (�h,�g) under
suitable conditions on the conformal factor. The core of the paper is the proof of the existence
of an asymptotic expansion of the relative heat trace for small times. We find the decay of
the conformal factor at infinity for which this asymptotic expansion exists and the relative
determinant is defined. Following the paper by B. Osgood, R. Phillips, and P. Sarnak about
extremal of determinants on compact surfaces, we prove Polyakov’s formula for the relative
determinant and discuss the extremal problem inside a conformal class. We discuss necessary
conditions for the existence of a maximizer.

Keywords Surfaces with asymptotically cusp ends · Heat kernels ·
Asymptotic expansion of heat traces · Relative determinants

1 Introduction

In this paper, we study the relative determinant of Laplace operators on surfaces with asymp-
totically cusp ends and the asymptotic expansion of the corresponding relative heat traces
for small values of time. A surface with asymptotically cusp ends is defined in Sect. 2.4.

Regularized determinants of elliptic operators play an important role in many fields of
mathematics and mathematical physics. They were initially introduced by Ray and Singer [18]
in relation to R-torsion. The regularized determinant of the Laplace operator on a compact
Riemannian manifold is defined via a zeta function regularization process. It is an important
spectral invariant. For instance, in the two-dimensional case, B. Osgood, R. Phillips, and
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P. Sarnak (OPS)1 showed in [16] that the determinant, considered as a functional on the
space of metrics, has very interesting extremal properties. They proved the following result:
Let M be a closed surface, then in a given conformal class, among all metrics of unit area,
there exists a unique metric of constant curvature at which the regularized determinant attains
a maximum. They also proved a corresponding statement for compact surfaces with boundary
and suitable conditions at the boundary.

Relative determinants were introduced in a general setting by Müller in [14] as a way to
generalize regularized determinants in the compact case. Previously, a relative determinant
for admissible surfaces was introduced by Lundelius in [11], and for Dirac operators in R

n

by Bruneau in [4]. A good example of a non-compact space is a surface with cusps. A surface
with cusps is a two-dimensional complete Riemannian manifold (M, g) of finite area such
that outside a compact set the metric is hyperbolic. The hyperbolic ends are called cusps. The
Laplace operator �g associated to the metric g on M has continuous spectrum. Therefore,
its zeta regularized determinant cannot be defined in the same way as in the compact case.
Here is when relative determinants enter into the play. The relative determinant is defined for
a pair of non-negative self-adjoint operators (A, B) in a Hilbert space provided they satisfy
certain conditions. It is defined through a zeta function using the trace of the relative heat
semigroup Tr(e−t A − e−t B), t > 0.

For surfaces with cusps in [14], Müller proved that the relative determinant of the Lapla-
cian is well defined when the Laplacian is compared with a model operator defined on the
cusps. In this paper, we extend this result to surfaces with asymptotically cusp ends. We
also prove Polyakov’s formula for metrics for which the relative determinant of the corre-
sponding Laplacians is defined. The analysis of the extremal of the determinant in this case
is performed in the same way as in OPS [16]. Unfortunately, the maximizer (the metric of
constant curvature) is not always among the class of metrics for which we can define the
relative determinant.

The paper is organized as follows:
We start by fixing a surface with cusps and a class of metrics on M that are conformal to

g and that satisfy suitable conditions. Let h = e2ϕg be a metric in the conformal class of g; if
the cusps are “kept” but the metric h is not hyperbolic on them, then we say that (M, h) is a
surface with asymptotically cusp ends. Associated to the metric h, there is a Laplacian which
we denote by �h . We will consider the relative determinant of pairs of the form (�h,�g)

and (�h, �̄1,0), where �̄1,0 is a model operator over M that is associated to the cusps.
In Sect. 2, we introduce all the notation and background theory that we need throughout

the paper. In Sect. 3, we prove the trace class property of the relative heat operator for all
positive values of t , when the conformal factor ϕ as well as its derivatives up to second-order
decay as O(y−α), α > 0 as y goes to infinity; here, we are using coordinates (y, x) in the
cusps Z = [1,∞)× S1.

In Sect. 4, we prove the existence of an asymptotic expansion of the relative heat trace for
small values of t . Theorem 4.6 gives precise conditions for the existence of such an expansion
up to order ν ≥ 1. The expansion exists if the function ϕ|Z (y, x) and its derivatives up to
second order are O(y−k) as y goes to infinity, with k ≥ 5ν + 8; although if ν ≥ 3, more
derivatives of ϕ should decay at infinity as well. The precise decay of the higher derivatives
is given in the statement of the theorem.

The proof of this result is very technical but uses classical methods such as parametri-
ces, Duhamel’s principle, upper bounds of heat kernels, universal coverings, very particular
inequalities, and the explicit form of the local heat invariants. The idea of the proof is to

1 From now on, we abbreviate B. Osgood, R. Phillips, and P. Sarnak as OPS.
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write the relative heat trace as an integral over the manifold, and to split this integral into
three areas of integration: the compact part, a cutoff of the cusps, and the end of the cusps.
The cutoff is done at a height a > 1 that is fixed at the beginning. The conditions on the
conformal factor come from assumptions in different parts of the proof. Along the paper, we
will explain each of these assumptions in detail. The main point is that later in the proof we
let a be a function of t and take the limit as t → 0. Then, the integral over the cutoff will
have a complete asymptotic expansion as t → 0 (as a → ∞). The integral on the end of
the cusps is estimated by a term tν, ν > 0. The estimation is obtained using the trace norm
of some auxiliary operators. The order k ≥ 5ν + 8 in the decay condition of the conformal
factor comes from this bound.

In Sect. 5.1, we use the previous results to define the relative determinant of the pairs
(�h,�g) and (�h,�1,0) using relative zeta functions. In spite of not having an optimal
result in Sect. 4, the result is good enough to have a well-defined relative determinant for a
pair of metrics (h, g) satisfying the conditions above.

In Sect. 5.2, we study det(�h,�1,0) as a functional on metrics of a given area in a con-
formal class and look for its extremal values.

We give a proof of a Polyakov’s-type formula for det(�h,�1,0). The proof of this formula
follows the same lines as the proof of OPS in the compact case in [16] and the formula is the
same as the one obtained by Lundelius in [11] for heights of pairs of admissible surfaces.
However, let us point out that our methods are different from the ones in [11]. In the same
way as in [11] and [16], we see that if there exists a maximum it is attained at the metric
of constant curvature. The equation relating the curvature of the metrics g and h = e2ϕg
is Rh = e−2ϕ(�gϕ + Rg). The study of the associated differential equation for ϕ, together
with the constant curvature condition in the cusps for g and constant curvature everywhere
for h, leads to a precise decay for the function ϕ at infinity. Unfortunately, this decay is not
included in the conditions required to define the relative determinant. Therefore, the metric
of constant curvature will not be in the conformal class under consideration unless we start
with a metric of constant curvature.

In relation with this problem, there is a recent paper by Albin et al. [1]. We worked with
renormalized integrals to define renormalized determinants of Laplacians on surfaces that
have asymptotically hyperbolic ends, cusps as well as funnels (funnels involve infinite area).

An earlier version of this paper was published in the ArXiv, under the title “Relative
determinants of Laplacians on surfaces with asymptotically cusp ends.”

2 Notation and definitions

2.1 Relative determinants

Let us recall the definition of relative determinants introduced by Müller in [14]: The relative
determinant is defined for two self-adjoint, non-negative linear operators, H1 and H0, in a
separable Hilbert space H satisfying the following assumptions:

(1) For each t > 0, e−t H1 − e−t H0 is a trace class operator.
(2) As t → 0, there is an asymptotic expansion for the relative trace of the form:

Tr(e−t H1 − e−t H0) ∼
∞∑

j=0

k( j)∑

k=0

a jk tα j logk t,
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where −∞ < α0 < α1 < · · · and αk → ∞. Moreover, if α j = 0, we assume that
a jk = 0 for k > 0.

(3) Tr(e−t H1 − e−t H0) = h + O(e−ct ), as t → ∞ for some constant c > 0 where
h = dim ker H1 − dim ker H0.

These properties allow us to define the relative zeta function as

ζ(s; H1, H0) = 1

�(s)

∞∫

0

(Tr(e−t H1 − e−t H0)− h)t s−1dt. (2.1)

Using the meromorphic continuation of ζ(s; H1, H0) to the complex plane, the relative
determinant is defined as

det(H1, H0) : = e−ζ ′(0;H1,H0).

In a more general setting, condition (3) is replaced by an asymptotic expansion as t → ∞.
In that case, in order to define the relative zeta function, the integral in (2.1) has to be split in
two parts, see [14].

2.2 Surfaces with cusps

A surface with cusps (swc)2 is a two-dimensional Riemannian manifold that is complete,
non-compact, has finite volume, and is hyperbolic in the complement of a compact set.
Therefore, it admits a decomposition of the form

M = M0 ∪ Z1 ∪ · · · ∪ Zm,

where M0 is a compact surface with smooth boundary and for each i = 1, . . . ,m we assume
that

Zi ∼= [ai ,∞)× S1, g|Zi = y−2
i (dy2

i + dx2
i ), ai > 0

The subsets Zi are called cusps. Sometimes we denote Zi by Zai to indicate the “starting
point” ai . For simplicity, by S1 we mean the circle with radius 1/2π with length 1. Instances
of surfaces with cusps are quotients of the form �(N )\H, where H is the upper half plane and
�(N ) ⊆ SL2(Z) is a congruence subgroup, i.e., �(N ) = {γ ∈ SL2(Z)|γ ≡ Id (mod N )}.
These quotients play an important role in the theory of automorphic forms.

To any surface with cusps (M, g), we can associate a compact surface M such that (M, g)
is diffeomorphic to the complement of m points in M . Let p denote the genus of the compact
surface M ; then the pair (p,m) is called the conformal type of M .

We use later the following estimate of the Riemannian distance in the cusp Z

dg0(z, z′) ≥ | log(y/y′)|,
for z = (y, x), z′ = (y′, x ′), see, for example, [12].

For any oriented Riemannian manifold (M, g), the Laplace-Beltrami operator on functions
is defined as � f = −divgrad f . It is equal to � = d∗d . We consider positive Laplacians.
If (M, g) is complete, � has a unique closed extension that we denote by �g .

On a cusp Z , the Laplacian is given by

�Z = −y2
(
∂2

∂y2 + ∂2

∂x2

)
.

2 From now on, we abbreviate “surface with cusps” as swc.
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Let us consider the following operators:

Definition 2.1 Let a > 0, let �a,0 denote the self-adjoint extension of the operator

−y2 ∂
2

∂y2 : C∞
c ((a,∞)) → L2([a,∞), y−2dy)

with respect to Dirichlet boundary conditions at y = a. The domain of �a,0 is then given
by Dom(�a,0) = H1

0 ([a,∞)) ∩ H2([a,∞)), where H1
0 ([a,∞)) = { f ∈ H1([a,∞)) :

f (a) = 0}.
Let �̄a,0 = ⊕m

j=1�a j ,0 be defined as the direct sum of the self-adjoint operators �a j ,0

defined above. The operator �̄a,0 acts on a subspace of ⊕m
j=1L2([a j ,∞), y−2

j dy j ).

Now, let a > 0, let Za be endowed with the hyperbolic metric g and let �Za ,D be the
self-adjoint extension of

−y2
(
∂2

∂y2 + ∂2

∂x2

)
: C∞

c ((a,∞)× S1) → L2(Za, d Ag)

with respect to Dirichlet boundary conditions at {a}× S1. It is known that the operator�Za ,D

can be decomposed as follows: Put

L2
0(Za) = { f ∈ L2(Za, d Ag)|

∫

S1

f (y, x)dx = 0 for a. e. y ≥ a}. (2.2)

The orthogonal complement of L2
0(Za) in L2(Za, d Ag) consists of functions that are inde-

pendent of x ∈ S1.
Then we can decompose L2(Za, d Ag) as the orthogonal direct sum

L2(Za, d Ag) = L2([a,∞), y−2dy)⊕ L2
0(Za).

This decomposition is invariant under�Za ,D so in terms of this decomposition, we can write
�Za ,D = �a,0 ⊕�Za ,1, where �Za ,1 acts on L2

0(Za).

Remark 2.2 The operator�Za ,1 has compact resolvent; in particular, it has only point spec-
trum, see Lemma 7.3 in [15]. In addition, the counting function for �Za ,1, N�Za ,1

(λ) =
#{λ̃ j ≤ λ}, where {λ̃ j } are the eigenvalues of �Za ,1, satisfies N�Za ,1

(λ) ∼ λ
4π Ag . See [9,

Theorem 6]. This implies that the heat operator e−t�Za ,1 is trace class.

2.3 Spectral theory of surfaces with cusps

For the spectral theory of manifolds with cusps, we refer the reader to Müller [12], Colin
de Verdière [9], and the references therein. The results in [12] hold for any dimension. For
surfaces in particular, we refer to [13]. Here, we recall only the main facts and definitions
that we use in this article.

For a surface with cusps (M, g), the spectrum of the Laplacian σ(�g) is the union of
the point spectrum σp and the continuous spectrum σc. The point spectrum consists of a
sequence of eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ . . .
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Each eigenvalue has finite multiplicity, and the counting function N () = #{λ j |λ j ≤ 2}
for  > 0 satisfies lim sup N ()−2 ≤ Ag(4π)−1, where Ag denotes the area of (M, g).
Depending on the metric, the set of eigenvalues may be infinite or not.

The continuous spectrum σc of �g is the interval [ 1
4 ,∞) with multiplicity equal to the

number of cusps of M . For a proof of this fact, see for example [12, p. 206]. The spectral
decomposition of the absolutely continuous part of�g is described by the generalized eigen-
functions E j (z, s), for j = 1, . . . ,m with z ∈ M, s ∈ C. To each cusp, we can associate
such generalized eigenfunctions; they are also called Eisenstein functions by analogy with
the Eisenstein series on hyperbolic surfaces. They are closely related to the wave operators
W±(�g, �̄a,0) and to the scattering matrix S(λ). For details, see [12, Sect. 7]. The main
properties of the Eisenstein functions and the scattering matrix can be found in [12, Theorem
7.24].

2.4 Conformal transformations

In this section, we give few properties of metrics that are conformal to each other.
A conformal transformation of a metric g on M is a metric h defined as h = ρg where

ρ ∈ C∞(M) and ρ > 0. In this paper, we write the function ρ as ρ = e2ϕ with ϕ ∈ C∞(M).
We call the function ϕ the conformal factor. Depending on the case, the conformal factor may
have compact support or not. If the support is not compact we require ϕ as well as some of its
derivatives to decay at infinity. In what follows the metric h will always denote a conformal
transformation of g.

Two metrics g1, g2 are said to be quasi-isometric if there exist constants C1,C2 > 0
such that

C1g1(z) ≤ g2(z) ≤ C2g1(z), for all z ∈ M,

in the sense of positive definite forms.
Quasi-isometric metrics have equivalent geodesic distances. The associated L2-spaces

coincide as sets, thought the inner product is not the same.

Remark 2.3 Let h = e2ϕg. If the function ϕ is bounded on M , the metrics g and h are quasi-
isometric and the geodesic distances, dg and dh , are equivalent. If in addition the metric g is
complete, so is the metric h.

Let us first give a handwaving definition of what we mean by a surface with asymptotically
cusps ends. The reason to do that is that we need flexibility in the conditions on the conformal
factors:

A surface with asymptotically cusp ends (swac)3 is a surface (M, h) where the metric h
is a conformal transformation of the metric on a swc (M, g) such that the conformal factor
as well as some of its derivatives have a suitable decay in the cusps.

Now, let (M, g) be a swc and h be as above. A point z = (y, x) in a cusp has injectivity
radius injg(z) ∼ 1

y . If we assume that �gϕ = O(1) as y → ∞, the surface (M, h) has
bounded Gaussian curvature. Then by [15, Prop. 2.1], the injectivity radius of both metrics
are comparable. Thus, the injectivity radius of a swac also vanishes.

Let Ag denote the area of (M, g), d Ag the volume element, and Rg(z) its Gaussian curva-
ture. Let Ah, d Ah and Rh be the quantities corresponding to (M, h), for any conformal trans-
formation h of g. Let�h be the Laplacian associated to h. Then the following relations hold

d Ah = e2ϕd Ag, �h = e−2ϕ�g, Rh = e−2ϕ(�gϕ + Rg)

3 From now on, we abbreviate “surface with asymptotically cusp ends” as swac.
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The domains of the Laplacians�g and�h lie in different Hilbert spaces. Thus, sometimes
it is necessary to consider a unitary map between the spaces L2(M, d Ag) and L2(M, d Ah).
From the definition of the metrics and the transformation of the area element, the unitary
map is given by

T : L2(M, d Ag) → L2(M, d Ah), f �→ e−ϕ f. (2.3)

The Laplacians transform in the following way:

T −1�h T f = e−2ϕ
(
�g f + 2〈∇g f,∇gϕ〉g − (�gϕ + |∇gϕ|2g) f

)

T�gT −1 f = e2ϕ
(
�h f − 2〈∇hϕ,∇h f 〉h + (�hϕ − |∇hϕ|h) f

)
(2.4)

Note that the operators T −1�h T and T�gT −1 are self-adjoint in the corresponding
transformed domain.

Let us finish this section recalling Gauss–Bonnet theorem on a swc. The Euler character-
istic of a surface M with m cusps is given by χ(M) = (2 − 2p − m), where p is the genus of
the compact surface M defined in Sect. 2.2. A Gauss–Bonnet formula is valid in this setting:

∫

M

Rgd Ag = 2πχ(M),

where Rg denotes the Gaussian curvature of the metric g. The same formula is valid for the
metric h = e2ϕg when ϕ and �gϕ suitably decay at infinity, since

∫

M

Rh d Ah =
∫

M

e−2ϕ(�gϕ + Rg)e
2ϕ d Ag =

∫

M

Rg d Ag.

2.5 Heat kernels and their estimates

2.5.1 Heat kernels

The heat semigroup associated to a closed self-adjoint operator can be constructed using the
spectral theorem. For the existence and uniqueness of the heat kernel on a complete open
manifold with Ricci curvature bounded from below see Dodziuk [10]. For the main properties
of heat kernels, see [6] and [10].

Let (M, g) and h = e2ϕg be as above, and let e−t�h , e−t�g , e−t�a,0 denote the heat
semigroups associated to the Laplacians�h,�g and�a,0, respectively. Since the Laplacians
are positive, the heat equation is�+ ∂t = 0. Let Kh(z, z′, t) and Kg(z, z′, t) denote the heat
kernels corresponding to �h and �g , respectively. The heat kernel on a surface with cusps
was constructed by Müller in [12].

Like the Laplacians, the heat semigroups act on different spaces. The operator e−t�h

may act on L2(M, d Ag), but it is not self-adjoint with respect to this inner product. To
make e−t�h and e−t�g act on the same space and preserve self-adjointness, we use the
unitary map T defined by (2.3). The transformed operators T −1e−t�h T and T e−t�g T −1

are self-adjoint on the corresponding space. The integral kernel of the transformed operator
T −1e−t�h T : L2(M, d Ag) → L2(M, d Ag) is given by KT −1e−t�h T (z, z′, t) =
eϕ(z)Kh(z, z′, t)eϕ(z

′).
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2.5.2 Estimates of the heat kernels

In this section, we recall the bounds of the heat kernels, since we use them repeatedly. If the
manifold is closed, there exists a constant c > 0 such that for any fixed 0 < τ < ∞, the heat
kernel satisfies the following bounds:

K (x, y, t) � t−n/2e− cd(x,y)2

t , for t ≤ τ. (2.5)

If the manifold has a boundary, consider the closed self-adjoint extension of the Laplacian
with respect to Dirichlet boundary conditions. In this case, let K ⊂ M be compact and a
τ > 0, then there exist positive constants c, c′ such that

K D(x, y, t) ≤ c′t−n/2
(

e− cd(x,y)2

t + e− d(y,∂M)2

8t

)
,

for (x, y, t) ∈ K × M × (0, τ ], see [6, Chap. VII].
Now, let Z̃ = R

+ × S1 be the complete cusp. Let us consider the hyperbolic metric on it,
g0 = y−2(dy2 + dx2). Then (Z̃ , g0) is a complete Riemannian manifold and it is called a
horn. Let�1 be the unique self-adjoint extension of the Laplacian defined on C∞

c (R
+ × S1).

The notation �1 is arbitrary. The construction of the heat kernel for �1 on R
+ × S1 can be

found in [12]. We denote this heat kernel by K1.
Let τ > 0 be arbitrary, then there exist constants C, c > 0 such that for 0< t <τ, y, y′ ≥1,

and k, l,m ∈ N one has
∣∣∣∣
∂k

∂tk
dl

zdm
z′ K1(z, z′, t)

∣∣∣∣ ≤ C(yy′)
1
2 t−1−k−l−m exp

(
−cd2

g0
(z, z′)
t

)
, (2.6)

where dg0 the hyperbolic distance in the horn, and the constants depend on τ ,
see [12, Prop.2.32].

Let (M, g) be a surface with one cusp that we denote by Z , Z = [a,∞) × S1 for some
a ≥ 1. Let i(z) be the function given by

i(z) =
{

1, if z ∈ M \ Z;
y, if z ∈ Z and z = (y, x).

(2.7)

Given τ > 0, there exist C, c > 0 such that

|Kg(z, z′, t)| ≤ C(i(z)i(z′))
1
2 t−1 exp

(
−cd2

g (z, z′)
t

)
(2.8)

for 0 < t < τ , where dg is the Riemannian distance in (M, g), see [12, Eq. (4.12)].
Let us now go back to the metric h = e2ϕg. Its restriction to Z can be extended to a metric

on the horn Z̃ in the following way: On Z̃ , we have the hyperbolic metric g0, and g|Z = g0.
We start by extending the function ϕ|Z to a smooth function ϕ̃ on Z̃ that vanishes in a small
neighborhood of zero. Then on (0,∞) × S1, we define h as h := e2ϕ̃g0. It is a complete
metric and h = g0 close to the boundary {0} × S1. In this way, we can define the Laplacian
on (Z̃ , h). Denote its unique self-adjoint extension by �1,h . Clearly �1,h = e−2ϕ̃�1. The
heat kernel associated to �1,h is denoted by K1,h(z, z′, t), for z, z′ ∈ Z̃ and t > 0.

The estimates of the heat kernel of the operator �1,h can be derived from Theorems 4, 6,
and 7 in Cheng et al.’s paper [8]. However, in the estimates appears the injectivity radius to a
power α that depends only on the dimension of the manifold; from the proof in [8], it is not
clear how to determine the value α = 1 that we need. In order to pin down the value of α in
this particular case, we prove in Appendix A the following lemma.

123



Ann Glob Anal Geom (2013) 44:169–216 177

Lemma 2.4 Let h and g be as above and such that ϕ and �gϕ decay in the cusp. Then the
heat kernel Kh satisfies:

Kh(z, z′, t) � (i(z)i(z′))
1
2 t−1 exp

(
− c̃ d2

h (z, z′)
t

)
(2.9)

for 0 < t < τ , where c̃ > 0 is a constant.
Let ∗ denote the metric g or h, then derivatives of the heat kernel K∗ satisfy:

|∇K∗(z, z′, t)| ≤ c (i(z)i(z′))1/2t−3/2 exp

(
− c̃ d2∗ (z, z′)

t

)
, and (2.10)

|�∗K∗(z, z′, t)| ≤ C (i(z)i(z′))1/2t−2 exp

(
− c̃ d2∗ (z, z′)

t

)
, (2.11)

where the constants c, C depend on τ , the curvature, and the covariant derivatives of the
curvature. Even more, we can exchange the distances dg and dh in the exponentials on the
right-hand side by adjusting the constant in the exponential. In the same way, the heat kernel
K1,h and its derivatives satisfy the same estimates as Kh above.

For a surfaces with hyperbolic cusps, the estimates in the lemma above were established
in [12].

2.5.3 Heat kernels for other operators

In this part, we introduce the other heat operators that we will use throughout this article.
For a > 1, let �a,0 be the operator defined in Definition 2.1. The heat kernel pa(y, y′, t)

associated to �a,0 can be computed explicitly, see [5, Sect. 14.2] or [12, p.258]. It is given
by

pa(y, y′, t) = e−t/4

√
4π t

(yy′)1/2
{

e−(log(y/y′))2/4t − e−(log(yy′)−log(a2))2/4t
}
, (2.12)

for y, y′ > a. This is easy to verify by direct computation. Also, note that for
1 ≤ y ≤ a, pa(y, y′, t) = 0.

The operator e−t�a,0 acts on L2([a,∞), y−2dy). However, we can regard it as an operator
acting on L2([1,∞), y−2dy) by considering the corresponding inclusion and restriction.
Similarly, the operator e−t�1,0 can be regarded as acting on L2([a,∞), y−2dy).

Now, let us assume that M can be decomposed as M = M0 ∪ Z with Z = [1,∞)× S1.
Then we can make the operator e−t�a,0 act on L2(M, d Ag) in the following way:

e−t�a,0 f (z) =
∞∫

a

∫

S1

pa(y, y′, t) f |Za
(y′, x ′)dx ′ dy′

y′2 for z = (y, x) ∈ Za,

and zero otherwise. From the symmetry of pa(y, y′, t), is clear that the operator e−t�a,0

acting on L2(M, d Ag) is symmetric.
Recall the operator �Z ,D defined in Sect. 2.2. The kernel of the operator e−t�Z ,D is

constructed by a classical method (see [6, Chap. VII]) and it is given by

K Z ,D((y, x), (y′, x ′), t) = K1((y, x), (y′, x ′), t)+ p1,D((y, x), (y′, x ′), t), (2.13)
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where y, y′ ≥ 1, x, x ′ ∈ S1, t > 0, and p1,D((y, x), (y′, x ′), t) is a function that satisfies:
for every τ > 0, there exist constants C, c > 0 such that

|p1,D(z, z′, t)| ≤ Ct−1(i(z)i(z′))1/2e− c(dg (z,∂Z)+dg (z′,∂Z))2

t (2.14)

for all z, z′ ∈ Z and 0 < t < τ .
Now let �Z ,h be the self-adjoint extension of the operator

−e−2ϕ y2
(
∂2

y + ∂2
x

)
: C∞

c (Z) → L2(Z , d Ah)

obtained after imposing Dirichlet boundary conditions at {1}×S1. Let K Z ,h denote the kernel
of the operator e−t�Z ,h . As in the case of the heat kernel associated to the operator �Z ,D ,
given in (2.13), the kernel K Z ,h is given by

K Z ,h(z, z′, t) = K1,h(z, z′, t)+ ph,D(z, z′, t), (2.15)

for z, z′ ∈ Z and t > 0 where the term ph,D(z, z′, t) is determined by the boundary condition.
In the same way as above, ph,D(z, z′, t) satisfies, up to some constants, the same estimate as
the one in Eq. (2.14).

2.5.4 Duhamel’s principle

There are several ways to state and use Duhamel’s principle, see, for example, [6, VII. 3].
Duhamel’s principle can be applied in the non-compact setting under certain assumptions

on the decay of the functions. This is the case of the heat kernels on surfaces with cusps and
asymptotically cusp ends. In terms of the operators, Duhamel’s principle can be stated as

T −1e−t�h T − e−t�g =
t∫

0

T −1e−s�h T (�g − T −1�h T )e−(t−s)�g ds. (2.16)

3 Trace class property of relative heat operators

In this section, we prove Theorem 3.1, which says that the difference of the heat operators
corresponding to the metrics g and h is trace class. As we know, none of the heat operators
e−t�h nor e−t�g is trace class, which is the reason why we consider their difference. This is
the first step to define the relative determinant of the pair (�h,�g).

In the second part, we consider other relative heat traces that are naturally associated to a
surface with cusps.

3.1 Trace class property

Let (M, g),M0, Z as well as �g,�Z ,D , and �1 be as in Sect. 2. For simplicity, we assume
that M has only one cusp so it can be decomposed as M = M0 ∪ Z with M0 compact and
Z = [1,∞)× S1.

Theorem 3.1 Let h =e2ϕg, and assume that on the cusp Z the functionsϕ(y, x), |∇gϕ(y, x)|
and �gϕ(y, x) are O(y−α) with α > 0, as y → ∞. Let T be the unitary map defined in
Eq. (2.3). Then for any t > 0 the operator
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T −1e−t�h T − e−t�g

is trace class.

To prove this statement, we follow a procedure similar to that used by Müller and
Salomonsen in [15]. We use Duhamel’s principle which was stated in Sect. 2.5.4.

Let ‖ · ‖ denote the operator norm and ‖ · ‖1,g , (‖ · ‖1,h , resp.), denote the trace norm in
L2(M, d Ag), (in L2(M, d Ah), resp.). From Eq. (2.16), we have

‖T −1e−t�h T − e−t�g ‖1,g ≤
t/2∫

0

‖(�g − T −1�h T )e−(t−s)�g ‖1,g ds

+
t∫

t/2

‖e−s�h (T�gT −1 −�h)‖1,h ds (3.1)

When considering the trace of the operator on the right-hand side of (2.16) as an integral
using heat kernels and their estimates, one has to take two aspects into account. One is related
with the time singularity at t = 0 and the other one is related with the convergence of the
space integral. The idea of breaking up the integral in Eq. (3.1) comes from the need to avoid
the time singularities coming from the heat kernel Kh(z, z′, s) (Kg(z, z′, t − s)) close to
s = 0 (t − s = t) that do not integrate to something finite in a neighborhood of zero (of t).
Equation (3.1) reduces the proof of Theorem 3.1 to the following Proposition:

Proposition 3.2 Let 0 < a < b < ∞, under the same conditions of Theorem 3.1 we have
that for each t ∈ [a, b], the operators

(�g − T −1�h T )e−t�g and e−t�h (T�gT −1 −�h)

are trace class and each trace norm is uniformly bounded on [a, b].
Proof The proof follows in several steps. The idea is to decompose each operator as the
product of two Hilbert–Schmidt (HS)4 operators whose norms are uniformly bounded on t at
the corresponding interval. To prove the HS property, we use that if R is an integral operator
on M with kernel r , its HS norm is given by the L2(M × M)-norm of r . Let α be as in the
statement of Theorem 3.1, i.e., α denotes the decay of the conformal factor ϕ. Let β = α/2,
if α ∈ (0, 1), and β = 1/2 if α ≥ 1; so that 0 < β ≤ 1/2. Let us define an auxiliary function
φ that we will use repeatedly, such that φ ∈ C∞(M) satisfies φ > 0 and

φ(y, x) = y−β, (y, x) ∈ Z . (3.2)

Let Mφ and M−1
φ denote the operators multiplication by φ and φ−1, respectively. The moti-

vation to introduce the function φ is the fact that the heat operator e−t�g itself is not HS but
when multiplied by φ it becomes HS. The proof is given below.

Step 1. To proof the trace class property of (�g − T −1�h T )e−t�g , we write

(�g − T −1�h T )e−t�g =
(
(�g − T −1�h T )e−(t/2)�g M−1

φ

)
◦
(

Mφe−(t/2)�g
)
,

and prove that for every t > 0, (�g − T −1�h T )e−t�g M−1
φ and Mφe−t�g are HS operators.

Step 1.1. (�g − T −1�h T )e−t�g M−1
φ is HS. Equation (2.4) implies:

4 We use HS to abbreviate Hilbert–Schmidt.
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(�g − T −1�h T )e−t�g M−1
φ =

(
(1 − e−2ϕ(z))�g

)
e−t�g M−1

φ + e−2ϕ
(

− 2〈∇gϕ,∇g · 〉g

+ (�gϕ + |∇gϕ|2g)
)

e−t�g M−1
φ .

Let us start with the term ((1 − e−2ϕ(z))�g)e−t�g M−1
φ ; to prove that it is HS, we just

need to prove that the following integral is finite:

∫

M

∫

M

|(1 − e−2ϕ(z))�g,z Kg(z, z′, t)φ(z′)−1|2d Ag(z)d Ag(z
′).

Let us use the decomposition of M as M = M0 ∪ Z to split the integral as

∫

M

∫

M

· · · d Ag(z)d Ag(z
′) =

∫

M0

∫

M0

· · · d Ag(z)d Ag(z
′)

+
∫

M0

∫

Z

· · · d Ag(z)d Ag(z
′)+
∫

Z

∫

M0

· · · d Ag(z)d Ag(z
′)+
∫

Z

∫

Z

· · · d Ag(z)d Ag(z
′).

(3.3)

Now, we use the estimates of the derivatives of heat kernel Kg(z, z′, t) given in (2.11), the
fact that 1 − e−2ϕ(z) decays as y−α at infinity, and the definition of the function i(z) given
in (2.7). To estimate the resulting integrals, we use the equations in Observation B.1. For
simplicity, let us just write c instead of 2c for the constant in the exponential factor of the
estimates of the heat kernels.

For the first term in the sum in Eq. (3.3) which involves z ∈ M0 and z′ ∈ M0 we have

∫

M0

∫

M0

|(1 − e−2ϕ(z))�g,z Kg(z, z′, t)φ(z′)−1|2d Ag(z)d Ag(z
′)

�
∫

M0

∫

M0

t−4e− c
t d2

g (z,z
′) d Ag(z) d Ag(z

′) � t−4.

For the second term in the sum in (3.3) which involves z′ ∈ M0 and z ∈ Z we have:

∫

M0

∫

Z

|(1 − e−2ϕ(z))�g,z Kg(z, z′, t)φ(z′)−1|2d Ag(z)d Ag(z
′)

� t−4
∫

M0

∫

S1

∞∫

1

1

y1+2α e− c
t d2

g ((y,x),z
′) dy dx d Ag(z

′) � t−4.

The third term in the sum in Eq. (3.3) involves variables z ∈ M0 and z′ ∈ Z . In this case,
we use that the Riemannian distance satisfies dg(z, z′) ≥ dg(∂Z , z′) ≥ | log(y′)| from which
we infer
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∫

Z

∫

M0

|(1 − e−2ϕ(z))�g,z Kg(z, z′, t)φ(z′)−1|2d Ag(z)d Ag(z
′)

�
∞∫

1

∫

S1

∫

M0

y′1+2β t−4e− c
t d2

g (z,(y
′,x ′)) d Ag(z) dx ′ dy′

y′2

� t−4

∞∫

1

e− c
t (log(y′))2 dy′ = t−4

∞∫

0

e− c
t u2

eu du � t−7/2et/c′
.

Finally, for the last term in the sum in (3.3) in which the variables z, z′ lie in Z we have:
∫

Z

∫

Z

|(1 − e−2ϕ(z))�g,z Kg(z, z′, t)φ(z′)−1|2d Ag(z)d Ag(z
′)

� t−4

∞∫

1

∞∫

1

y−1−2α y′−1+2βe− c
t (log(y/y′))2 dy dy′ � t−7/2e

t
c ,

since α > β. Thus, we obtain:

‖(1 − e−2ϕ)�ge−t�g M−1
φ ‖2

2 � t−4 (1 + t1/2et/c) .

We proceed now with the operators e−2ϕ〈∇gϕ,∇g · 〉ge−t�g M−1
φ and e−2ϕ(�gϕ +

|∇gϕ|2g))e−t�g M−1
φ . Their integral kernels are given by

e−2ϕ(z)〈∇g,zϕ(z),∇g,z Kg(z, z′, t)〉gφ
−1(z′), and

e−2ϕ(z)(�gϕ(z)+ |∇g,zϕ(z)|2g)Kg(z, z′, t)φ−1(z′),

respectively. For which we have, respectively, the following estimates:

|e−2ϕ(z)〈∇g,zϕ(z),∇g,z Kg(z, z′, t)〉gφ
−1(z′)|2

� t−3i(z)i(z′)|∇gϕ(z)|2e− c
t d2

g (z,z
′)φ−1(z′)2, and

|e−2ϕ(z)(�gϕ(z)+ |∇g,zϕ(z)|2g Kg(z, z′, t)φ−1(z′)|2

� t−2(|�gϕ(z)| + |∇gϕ(z)|2g)2i(z)i(z′)e− c
t d2

g (z,z
′)φ−1(z′)2.

We split the integrals on M × M in the same way as in Eq. (3.3), and the integrals obtained
are very similar to those carried out in the previous part for the operator (1− e−2ϕ)�ge−t�g .
The main difference occurs in the power of t .

For the operator e−2ϕ〈∇gϕ,∇g · 〉ge−t�g M−1
φ , we use the estimates in (2.10) and the

decay of the function |ϕ| at infinity.
Now, for the operator e−2ϕ(�gϕ + |∇gϕ|2g))e−t�g M−1

φ , we use the estimate of the heat
kernel given in Eq. (2.8) and the decay of the functions involving ϕ. Let us only show the
integral on Z × Z . For z ∈ Z we have (�gϕ(z)+|∇g,zϕ(z)|2g)2 � (y−α + y−2α)2 � y−2α .
Then

∫

Z

∫

Z
|e−2ϕ(z)

(
�gϕ(z)+ |∇g,zϕ(z)|2g

)
Kg(z, z′, t)φ−1(z′)|2d Ag(z)d Ag(z′)

� t−2
∞∫

1

∞∫

1
y−1−2α y′−1+2βe− c

t (log(y/y′))2 dydy′ � t−3/2e
t
c .
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Thus, in the same way as above, we obtain

‖e−2ϕ〈∇gϕ,∇g · 〉ge−t�g M−1
φ ‖2

2 � t−3 (1 + t1/2et/c) , and

‖e−2ϕ(�gϕ + |∇gϕ|2g)e−t�g M−1
φ ‖2

2 � t−2 (1 + t1/2et/c) .

Step 1.2. The operator Mφe−t�g is HS. To see this, we have to prove that the following
integral is finite:

∫

M

∫

M

|φ(z)Kg(z, z′, t)|2d Ag(z)d Ag(z
′).

We decompose the integral as in Eq. (3.3), and proceed in the same way as above, using
in this case the estimates of Kg(z, z′, t) given in (2.8) and the definition of the functions φ
and i(z). Again, for the sake of simplicity, we just write c instead of 2c in the exponential
factor of the heat estimates. The computations are very similar to those in the previous case.

The integrals over M0 × M0,M0 × Z , and Z × M0 do not have any problem. As for the
last term, whose variables z, z′ lie in Z , we have

∫

Z

∫

Z

|φ(z)Kg(z, z′, t)|2d Ag(z
′)d Ag(z) �

∞∫

1

∞∫

1

y1−2β y′t−2e
−c
t (log(y/y′))2 dy′

y′2
dy

y2

= t−2

∞∫

1

∞∫

1

y−1−2β y′−1e
−c
t (log(y/y′))2 dy dy′

≤ t−3/2ec′t . (3.4)

Therefore,

‖Mφe−t�g ‖2
2 � t−2 + t−3/2et/4c.

In this way, we have that (�g − T −1�h T )e−t�g is a trace class operator and the trace
norm satisfies:

‖(�g − T −1�h T )e−t�g ‖1,g ≤ ‖(�g − T −1�h T )e−(t/2)�g M−1
φ ‖2 · ‖Mφe−(t/2)�g ‖2

� (t−2+t−3+t−4)1/2
(
1+t1/2et/c)1/2 (t−2+t−3/2et/c′)1/2 ;

the last expression is integrable for t in compact subsets of (0,∞).
Step 2. In this step, we prove that the operator e−t�h (T�gT −1 −�h) is trace class. The

proof is very similar to the proof for (�g − T −1�h T )e−t�g since the heat kernels satisfy
the same estimates, and the metrics are quasi-isometric. Let us write

e−t�h (T�gT −1 −�h) = (e−(t/2)�h Mφ) ◦ (M−1
φ e−(t/2)�h (T�gT −1 −�h)),

where φ ∈ C∞(M) is as above. Then we have to prove that for every t > 0, the kernels of
the operators e−t�h Mφ and M−1

φ e−t�h (T�gT −1 −�h) are square integrable.
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The operator M−1
φ e−t�h (T�gT −1 −�h) is HS. First of all, let us consider the kernel of

the operator e−t�h (T�gT −1 −�h). For f ∈ C∞
c (M), we have that

(
e−t�h (T�gT −1 −�h) f

)
(z) =

∫

M

Kh(z, z′, t) · (T�g,z′ T −1 −�h,z′) f (z′)d Ah(z
′)

=
∫

M

(
(T�g,z′ T −1 −�h,z′)Kh(z, z′, t)

) · f (z′)d Ah(z
′),

since the operators T�g,z′ T −1 and �h are symmetric on L2(M, d Ah). Now, let us use the
equation

T�gT −1 −�h = (e2ϕ − 1
)
�h − 2e2ϕ〈∇hϕ,∇h · 〉h +

(
�gϕ − |∇gϕ|2g

)
(3.5)

to write

M−1
φ (T�gT −1 −�h)e

−t�h = M−1
φ e−t�h

{
(e2ϕ − 1)�h − 2e2ϕ〈∇hϕ,∇h · 〉h

+ (�gϕ − |∇gϕ|2g)
}
.

It follows that M−1
φ e−t�h (T�gT −1 −�h) is HS if the following functions

(1) φ(z)−1(e2ϕ(z′)− 1)�h,z′ Kh(z, z′, t),
(2) φ(z)−1e2ϕ(z′)〈∇h,z′ϕ,∇h,z′ Kh〉h and
(3) φ(z)−1(�gϕ(z′)− |∇g,z′ϕ|2g)Kh(z, z′, t)

are in L2(M × M, d Ahd Ah).
We split again the integral in the same way as in Eq. (3.3) and use the estimates of the

heat kernel Kh(z, z′, t) and its derivatives given in Eqs. (2.9), (2.10), and (2.11). We also use
that for any function f ∈ L1(M, d Ah) we have

∫

M

| f |d Ah �
∫

M

| f |d Ag.

For the first function listed above, the integrals are almost the same as the ones corre-
sponding to the operator (1 − e−2ϕ)�ge−t�g M−1

φ . Then,
∫

M

∫

M

|φ(z)−1(e2ϕ(z′) − 1)�h,z′ Kh(z, z′, t)|2d Ah(z)d Ah(z
′) � t−4 + t−7/2et/c

for some constant c > 0.
Similarly, for the other two functions, we get bounds by t−3(1 + t1/2et/c) and t−2(1 +

t1/2et/c), respectively. Combining these estimates, we obtain

‖M−1
φ e−t�h

(
T�gT −1 −�h

) ‖2
2 � (

t−4 + t−3 + t−2) (1 + t1/2et/c) .

In the same way as in Step 1.2, we can prove that e−t�h Mφ is HS with HS norm satisfying:

‖e−t�h Mφ‖2
2 � t−2

(
1 + t1/2e

t
c

)
.

Finally, for the operator e−t�h (T�gT −1 −�h), we obtain

‖e−t�h (T�gT −1 −�h)‖1,h ≤ ‖e−(t/2)�h Mφ‖2 · ‖M−1
φ e−(t/2)�h (T�gT −1 −�h)‖2

� t−1 (t−4 + t−3 + t−2)1/2 (1 + t1/2et/c)

123



184 Ann Glob Anal Geom (2013) 44:169–216

This expression is clearly integrable for t on compact subsets of (0,∞).
This finishes the proofs of Proposition 3.2 and Theorem 3.1. ��

Corollary 3.3 Letψ satisfy the same conditions as ϕ in the statement of Theorem 3.1. Then,
for any t > 0, the operator ψe−t�h is trace class.

Proof To proof this corollary, we follow the same method as above. Namely, we use the
semigroup property of e−t�h to decompose the operator ψe−t�h as

ψe−t�h = ψe−(t/2)�h Mφ−1 Mφe−(t/2)�h ,

where φ is the function given by Eq. (3.2) and Mφ denotes the multiplication operator by φ.
We already proved that the operators ψe−t/2�h Mφ−1 and Mφe−t/2�h are HS. ��

3.2 Relative trace for other heat operators

In this section, we consider relative heat traces of some operators naturally associated to the
surface with cusps.

Proposition 3.4 The operator e−t�g − e−t�Z ,D is trace class for all t > 0, where e−t�Z ,D

is considered as acting on L2(M, d Ag).

This is a corollary of Proposition 6.4 in [12]. The statement of that proposition can be
rewritten in our notation as follows:

Assume that M can be decomposed as M = M0 ∪ Z with Z = [1,∞) × S1. Let
P0 be the orthogonal projection of L2(M, d Ag) onto L2([1,∞), y−2dy). Then for every
t > 0, e−t�g − e−t�1,0 P0 is a trace class operator.

To see that Proposition 3.4 follows from this statement, recall what we explained in
Sect. 2.2: the operator �Z ,D can be decomposed as �Z ,D = �1,0 ⊕ �Z ,1, where the heat
operator e−t�Z ,1 is trace class. So, we have

‖e−t�g − e−t�Z ,D ‖1 = ‖e−t�g − e−t�1,0‖1 + ‖e−t�Z ,1‖1

Now, let us consider the operator �a,0 for a > 1. To see that e−t�g − e−t�a,0 is trace
class, we will proceed by writing the difference as

e−t�g − e−t�a,0 = e−t�g − e−t�1,0 + e−t�a,0 − e−t�1,0 .

By Proposition 3.4, the first difference is trace class, so it suffices to show that e−t�a,0 −e−t�1,0

is trace class.

Proposition 3.5 For any a > 1 and t > 0, the operator e−t�a,0 − e−t�1,0 acting on
L2([1,∞), y−2dy) is trace class and the trace is given by

Tr
(
e−t�a,0 − e−t�1,0

) = − 1√
4π t

e−t/4 log(a).

As an operator on L2([a,∞), y−2dy), the trace is given by

Tr
(
e−t�a,0 − e−t�1,0

) = −e−t/4

√
4π

Erf
(

log(a)/
√

t
)
,

where Erf (s) = ∫ s
0 e−v2

dv.

123



Ann Glob Anal Geom (2013) 44:169–216 185

Proof Let us just sketch the proof. For the complete proof, see [2].
We use the explicit expression of each heat kernel given by Eq. (2.12) to prove that, for

each t > 0, e−t�a,0 −e−t�1,0 is a HS operator. We prove this by direct computation, showing
that the difference of the heat kernels is in L2([1,∞) × [1,∞),

dy′
y′2

dy
y2 ). The computations

are tiresome and involve functions of the form exp
(
− log(yy′/a2)2

4t

)
and exp

(
− log(y/y′)2

2t

)
that

should be properly bounded.
The second step is to decompose the difference as the following sum:

e−t�a,0 − e−t�1,0 = e−(t/2)�a,0 Mφ · M−1
φ (e−(t/2)�a,0 − e−(t/2)�1,0)

+ (e−(t/2)�a,0 − e−(t/2)�1,0)M−1
φ · Mφe−(t/2)�1,0 ,

where Mφ is multiplication by the function φ defined in Eq. (3.2) with β = 1/2. We then
prove that each term is HS in a similar fashion as we did in Sect. 3.1.

Now, let us compute the trace:

Tr(e−t�a,0 − e−t�1,0) =
∞∫

1

(pa(y, y, t)− p1(y, y, t))
dy

y2

= e−t/4

√
4π t

∞∫

a

(
e−(log(y2))2/4t − e−(log(y2)−log(a2))2/4t

) dy

y

− e−t/4

√
4π t

a∫

1

(
1 − e−(log(y2)

)2
/4t
)

dy

y

= − e−t/4

√
4π t

log(a).

If we consider e−t�a,0 − e−t�1,0 as an operator acting on L2([a,∞), y−2dy) we have that

Tr(e−t�a,0 − e−t�1,0) =
∞∫

a

(pa(y, y, t)− p1(y, y, t))
dy

y2

= − e−t/4

√
4π t

a∫

1

e−(log(y))2/t dy

y
.

��
Remark 3.6 The trace of e−t�a,0 − e−t�1,0 as an operator on L2([a,∞), y−2dy) has an
asymptotic expansion for small values of t . This follows from Proposition 3.5 and the fact
that Erf (x) has an expansion for x � 1. Taking into account only the first term, we have that

Erf (x) =
√
π

2 + O(x−1), as x → ∞ from which we infer that

Tr(e−t�a,0 − e−t�1,0)L2([a,∞),y−2dy) = −1

4
+ O(

√
t) as t → 0.

Remark 3.7 Let us study the case when the manifold M can be decomposed as M = M0∪ Za

with a ≥ 1 and we want to compare the operators e−t�g and e−t�1,0 . In this case, we could
consider the operator e−t�1,0 acting on L2(M, d Ag) in the way explained in Sect. 2.5.3.
However, it is more convenient and accurate to consider the extended space:
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L2(M, d Ag)⊕ L2([1, a], y−2dy) = L2(M0, d Ag)⊕ L2
0(Za)⊕ L2([a,∞), y−2dy)

⊕L2([1, a], y−2dy)

= L2(M0, d Ag)⊕ L2
0(Za)⊕ L2([1,∞), y−2dy),

where L2
0(Za) is the space defined in equation (2.2). Then the operators e−t�g and e−t�1,0

act on the extended space by being null where they are not defined. In this way, we have that

Tr(e−t�g − e−t�1,0)L2(M)⊕L2([1,a])
= Tr

(
e−t�g − e−t�a,0

)
L2(M) + Tr

(
e−t�a,0 − e−t�1,0

)
L2([1,∞))

, (3.6)

where for the sake of simplicity we dropped the densities in the notation of the L2 spaces.

4 Asymptotics of relative heat traces for small time

In this section, we prove the existence of an asymptotic expansion in t of the relative heat
trace Tr(T −1e−t�h T − e−t�g ) for small time. More precisely, we prove that for any ν ≥ 1,
there exists an expansion up to order ν of the relative heat trace as t → 0. By an expansion
up to order ν, we mean that the remainder term is an O(tν).

We give explicit conditions on the decay of the conformal factor and its derivatives that
guarantee the existences of such expansion.

4.1 Asymptotics for non-compactly supported perturbations

Let (M, g) be a swc. For the sake of simplicity, we assume that (M, g) has only one cusp
Z ∼= [1,∞) × S1 with the hyperbolic metric on it. We take g as the background metric on
M . Let h = e2ϕg. To start with, let us assume that for (y, x) ∈ Z , the functions ϕ(y, x) and
�gϕ(y, x) are O(y−1) as y → ∞.

Let n > 1, let us introduce the following notation:

Mn := M0 ∪ ([1, n] × S1), Z ′
n = [1, n] × S1, Zn = [n,∞)× S1. (4.1)

We start by constructing the kernel of a parametrix Qh(z, w, t) of the heat operator asso-
ciated to �h by patching together suitable heat kernels over Z ′

3 = M3 ∩ Z = [1, 3] × S1.
Let us consider the following kernels:

• K1,h(z, w, t): the heat kernel of �1,h on the horn Z̃ = R
+ × S1, as was defined in

Sect. 2.5.
• K Z ,h(z, w, t): the heat kernel for �Z ,h , as defined in Sect. 2.5.3. K Z ,h is given by

Eq. (2.15).
• For the compact part, we consider a closed manifold W containing M2 isometrically. Let
�W,h be the Laplacian on W and KW,h(z, w, t) be the kernel of the corresponding heat
operator e−t�W .

For any two constants 1 < b < c, let φ(b,c) be a smooth function on [1,∞) × S1

that is constant in the second variable, is non-decreasing in the first variable, and satisfies
φ(b,c)(y, x) = 0 for y ≤ b, and φ(b,c)(y, x) = 1 for y ≥ c. Letψ2 = φ

( 5
4 ,2)

andψ1 = 1−ψ2;

then {ψ1, ψ2} is a partition of unity on [1, 2] × S1. Let ϕ2 = φ(1, 9
8 )

and ϕ1 = 1 − φ
( 5

2 ,3)
,

so that ϕi = 1 on the support of ψi , i = 1, 2. Extend these functions to M in the obvious
way. Note that |∇hϕi (z)| � 1 and |�hϕi (z)| � 1, for i = 1, 2. For this choice of functions,
we have that
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• supp∇hϕ1 ⊆ [ 5
2 , 3] × S1, and, suppψ1 ⊆ M2.

• supp∇hϕ2 ⊆ [1, 9
8 ] × S1, and, suppψ2 ⊆ [ 5

4 ,∞)× S1.

Now, we put

Qh(z, w, t) = ϕ1(z)KW,h(z, w, t)ψ1(w)+ ϕ2(z)K1,h(z, w, t)ψ2(w). (4.2)

From the properties of the heat kernels, KW,h and K1,h , and the construction of the gluing
functions it is easy to see that Qh(z, w, t) → δw−z , as t → 0.

Lemma 4.1 There exist constants C ≥ 0 and c > 0 such that
∣∣∣∣

(
∂

∂t
+�h,z

)
Qh(z, w, t)

∣∣∣∣ ≤ Ce−c/t , for 0 < t ≤ 1.

Proof We use the estimates of the heat kernels given by Eqs. (2.9), (2.10), and (2.11) as well
as Theorem 3.1 and the equivalence of the geodesic distances dg and dh . From the definition
of Qh and the properties of the heat kernels, it follows that

∣∣∣∣

(
∂

∂t
+�h,z

)
Qh(z, w, t)

∣∣∣∣ � |(〈∇ϕ1,∇z KW,h〉 + (�hϕ1)KW,h)ψ1(w)|
+|(〈∇ϕ2,∇z K1,h〉 + (�hϕ2)K1,h)ψ2(w)|.

Note that
∣∣( ∂
∂t +�h,z

)
Qh(z, w, t)

∣∣ has compact support in z. We consider the following
terms separately:

S1 := |(〈∇ϕ1,∇z KW,h〉 + (�hϕ1)KW,h)ψ1(w)|,
S2 := |(〈∇ϕ2,∇z K1,h〉 + (�hϕ2)K1,h)ψ2(w)|.

S1 = 0 unless z ∈ supp∇ϕ1 and w ∈ suppψ1. In this case dg(z, w) ≥ log(5/4), then that
taking c′

1 = c log(5/4) we obtain:

S1 ≤ (|∇ϕ1(z)| |∇z KW,h(z, w, t)| + |�hϕ1(z)| |KW,h(z, w, t)|)χsuppψ1(w)

� t−3/2e−cd2
g (z,w)/t + t−1e−cd2

g (z,w)/t � e−c′
1/2t for t ∈ (0, 1].

In the same way as above, S2 = 0 unless z ∈ supp∇ϕ2 and w = (v, u) ∈ suppψ2 =
[ 5

4 ,∞)× S1. In this case dg(z, w) ≥ log(v/(9/8)) ≥ log(10/9). Therefore,

S2 � v1/2e−c(log(8v/9))2/2t (t−3/2 + t−1)e−c′
2/2t � e−c′

2/4t ,

where c′
2 = c log(10/9). This finishes the proof of the lemma. ��

Remark 4.2 Note that
(
∂

∂t
+�h,z

)
Qh(z, w, t)

∣∣∣∣
w=z

= 0.

In order that the expression above does not vanish, we need that

dg(z, w) ≥ min{log(5/4), log(10/9)} > 0.

We now prove that in the expression of asymptotic expansion of the relative heat trace,
we can replace the heat kernel Kh by the parametrix Qh defined above.
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Lemma 4.3 There exist constants C ≥ 0 and c3 > 0 such that, for any 0 < t ≤ 1:
∫

M

|Qh(z, z, t)− Kh(z, z, t)|d Ah(z) ≤ Ce− c3
t .

Proof Applying Duhamel’s principle to the heat kernel Kh and the parametrix Qh , we obtain:

Qh(z, z′, t)− Kh(z, z′, t) =
t∫

0

∫

M

Kh(z, w, s)

(
∂

∂t
+�h,w

)
Qh(w, z′, t − s) d Ah(w) ds.

Remark 4.2 implies that
∫

M

|Qh(z, z, t)− Kh(z, z, t)|d Ah(z)

≤
t∫

0

∫

M

∫

M

|Kh(z, w, s)

(
∂

∂t
+�h,w

)
Qh(w, z, t − s)| d Ah(w) d Ah(z) ds

=
t∫

0

⎛

⎜⎜⎝

∫

M2

∫

[ 5
2 ,3]×S1

· d Ah(w) d Ah(z)+
∫

Z 5
4

∫

[1, 9
8 ]×S1

· d Ah(w) d Ah(z)

⎞

⎟⎟⎠ ds.

The first integral on the right-hand side is bounded by

t∫

0

∫

M2

∫

[ 5
2 ,3]×S1

i(z)1/2s−1e− c2
s e− c′

t−s d Ah(w) d Ah(z) ds

�
⎛

⎝
t∫

0

e− c2
2s e− c′

t−s ds

⎞

⎠

⎛

⎜⎜⎝

3∫

5
2

dv

v2

⎞

⎟⎟⎠� te− c3
t � e− c3

t

since 0 < t ≤ 1.
For the second integral on the right-hand side above, recall that suppψ2 ⊂ [5/4,∞)× S1.

Thus
t∫

0

∫

Z 5
4

∫

[1, 9
8 ]×S1

|Kh(z, w, s)

(
∂

∂t
+�h,w

)
Qh(w, z, t − s)| d Ah(w) d Ah(z) ds

�
t∫

0

∞∫

5
4

9
8∫

1

y1/2e− c2
2s e− c1

t−s
dv

v2

dy

y2 ds ≤ te− c3
t ≤ e− c3

t .

��
Since the function e−2ϕ is bounded, the derivatives of the gluing functions ϕ1 and ϕ2 with

respect to the metric g satisfy the same bounds as the derivatives with respect to the metric
h. Then we can perform the same construction for the kernel Kg(z, w, t) to replace it by
Qg(z, w, t).

The relative heat trace is given by
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Tr
(
T −1e−t�h T − e−t�g

) =
∫

M

(Kh(z, z, t)e2ϕ(z) − Kg(z, z, t)) d Ag(z).

Using Lemma 4.3, we obtain:
∣∣∣∣∣∣

∫

M

(Kh(z, z, t)e2ϕ(z) − Kg(z, z, t))d Ag(z)−
∫

M

(Qh(z, z, t)e2ϕ(z) − Qg(z, z, t))d Ag(z)

∣∣∣∣∣∣

� e−c3/t .

Therefore, we have to determine the asymptotic expansion of the integral:
∫

M

Qh(z, z, t)e2ϕ(z) − Qg(z, z, t)d Ag(z).

The definitions of Qh and Qg induce a natural decomposition of the integral into two regions
of integration, the compact part and the cusp. However, when we use the local expansion
of the heat kernel in the cusp, we need to integrate the remainder term uniformly. For this
purpose, we decompose the cusp as in (4.1): Let a > 1, then

Z = Z ′
a ∪ Za .

Therefore, the integral decomposes as
∫

M

Qh(z, z, t)e2ϕ(z) − Qg(z, z, t)d Ag(z) = I0(t)+ I1(t)+ I2(t),

where

I0(t) =
∫

M

ψ1(z)(KW,h(z, z, t)e2ϕ(z) − KW,g(z, z, t))d Ag(z), (4.3)

I1(t) =
∫

Z ′
a

ψ2(z)(K1,h(z, z, t)e2ϕ(z) − K1,g(z, z, t))d Ag(z), (4.4)

I2(t) =
∫

Za

ψ2(z)(K1,h(z, z, t)e2ϕ(z) − K1,g(z, z, t))d Ag(z). (4.5)

For the moment we consider a fixed, but later we will assign to it a value depending on t .
The integral I0 has a complete asymptotic expansion in t . To see that, note that in the

local expansions of the kernels KW,g(z, z, t) and KW,h(z, z, t) the corresponding remainder
terms are uniformly bounded on compact sets, therefore, they can be integrated.

The other two integrals can be rewritten as traces of the operators:

A(t) = MχZ ′
a

Mψ2(T
−1e−t�1,h T − e−t�1,g ) and

B(t) = MχZa
Mψ2(T

−1e−t�1,h T − e−t�1,g ),

respectively. Propositions 4.4 and 4.5 below take care of these integrals.

Proposition 4.4 Under the conditions of Theorem 3.1, there is a complete asymptotic expan-
sion as t → 0 of the integral I1(t) in Eq. (4.3). The asymptotic expansion has the following
form:
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∫

[1,a]×S1

ψ2(z)(K1,h(z, z, t)e2ϕ(z) − K1,g(z, z, t)) d Ag(z) ∼ t−1
∞∑

j=0

â j t
j .

The coefficients â j depend on the parameter a. There is a remainder term that also depends

on a as O(e
− c

a4 t ), for a positive constant c.

Proof In order to deal with the integral I1(t), we first recall what K1,h and K1,g are. Recall
that h was extended to the horn Z̃ and that K1,h(z, w, t) denotes the heat kernel for �h on
Z̃ . The idea of this proof is to use the local asymptotic expansion of the corresponding heat
kernels and find a uniform bound on the remainder term.

The universal covering of Z̃ is Ẑ = R
+ × R with projection π : Ẑ → Z̃ and group

of deck transformations � = Z. The metric h on Z̃ induces a metric ĥ on Ẑ , that has the
same curvature properties as h. In addition, ĥ = e2ϕ̂ ĝ0, where ĝ0 is the lift of g0 to Ẑ and is
precisely the hyperbolic metric on H, and the function ϕ̂ is a lift of ϕ̃ (ϕ̃ the extension of ϕ
to Z̃ ), ϕ̂ = ϕ̃ ◦ π . It follows that ĥ and ĝ0 are quasi-isometric. Therefore, by Proposition 2.1
in [15], the injectivity radius of ĥ is bounded from below by a positive constant independent
of the point. In this way, (Ẑ , ĥ) has bounded geometry. Let kh denote the heat kernel of �ĥ

in Ẑ . It satisfies the following estimate:

kh (̃z, w̃, t) ≤ Ct−1e− c d2 (̃z,w̃)
t , (4.6)

where z̃, w̃ ∈ Ẑ and 0 < t ≤ 1, [8]. It is not difficult to verify that

K1,h(z, w, t) =
∑

m∈Z

kh (̃z, w̃ + m, t), (4.7)

where π(̃z) = z, π(w̃) = w.
The construction above can be performed for the kernel K1,g as well. Then the integral

I1(t) becomes:

a∫

1

1∫

0

ψ̃2 (̃z)

(
∑

m∈Z

kh (̃z, z̃ + m, t)e2ϕ̂(̃z+m) −
∑

l∈Z

kg (̃z, z̃ + l, t)

)
d Aĝ (̃z),

because F = R
+ × [0, 1] is a fundamental domain for � and the domain corresponding to

Z ′
a in F is [1, a] × [0, 1]; and ψ̃2 is the natural extension and lift of ψ2 to H. Thus

I1(t) =
a∫

1

1∫

0

ψ̃2 (̃z)(kh (̃z, z̃, t)e2ϕ̂(̃z) − kg (̃z, z̃, t)) d Aĝ (̃z)

+
a∫

1

1∫

0

ψ̃2 (̃z)
∑

m �=0

(kh (̃z, z̃ + m, t)e2ϕ̂(̃z+m) − kg (̃z, z̃ + m, t)) d Aĝ (̃z). (4.8)

We will start by estimating the second term on the right-hand side of (4.8). Note that
ϕ̂ = ϕ̃ ◦ π implies that the function e2ϕ̂ is bounded. This, the fact that the metrics ĥ and ĝ
are quasi-isometric and the estimate on the heat kernel kh imply that

∑

m �=0

kh (̃z, z̃ + m, t)e2ϕ̂(̃z+m) � t−1
∑

m �=0

exp

(
−

c1d2
ĝ (̃z, z̃ + m)

t

)
. (4.9)
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The explicit expression of the hyperbolic distance in the upper half plane gives

dĝ((̃x, ỹ), (̃x + m, ỹ)) = cosh−1
(

1 + m2

2 ỹ2

)
.

If s ≥ 1, cosh−1(s) = log(s + √
s2 − 1); this implies

dĝ((̃x, ỹ), (̃x + m, ỹ)) = log

⎛

⎝1 + m2

2 ỹ2 + |m|
ỹ

√
m2

4ỹ2 + 1

⎞

⎠ ≥ log

(
1 + m2

2 ỹ2

)
.

For ỹ = y ∈ [1, a], log(1 + m2

2 ỹ2 ) ≥ log(1 + 1
2a2 ). Thus

e− c1d2
ĝ
(̃z,̃z+m)

t ≤ e− c1 log(1+1/2a2)2

2t e− c1 log(1+m2/2 ỹ2)2

2t .

In addition, 0 ≤ s ≤ 1 satisfies log(1 + s) ≥ s/2. Applying this to s = (2a2)−1 gives

∑

m �=0

e− c1d2
ĝ
(̃z ,̃z+m)

t ≤ e
− c1

25a4 t

∑

m �=0

e−
c1 log(1+ m2

2 ỹ2 )
2

2t ≤ e
− c2

a4 t

∑

m �=0

e−
c1 log(1+ m2

2a2 )
2

2t , (4.10)

with c2 a positive constant. In order to estimate the series, we compare it with an integral

using the fact that exp

(
− c1 log(1+ m2

2a2 )
2

2t

)
is a decreasing function of m. We proceed in the

following way:

∑

m �=0

e−
c1 log(1+ m2

2a2 )
2

2t �
∞∫

1

e−
c1 log(1+ u2

2a2 )
2

2t du

≤
√

2a∫

1

e−
c1 log(1+ u2

2a2 )
2

2t du +
∞∫

√
2a

e−
2c1 log( u√

2a
)2

t du

� (
√

2a − 1)+ a

∞∫

0

e− 2c1v
2

t evdv � a(1 + √
tect ) � a, (4.11)

where for the integral on the right-hand side, we used the change of variables v = log( u√
2a
);

and in the middle step, we used that for x ≥ 1, (log(x2 + 1))2 ≥ (log(x))2. Now we can use
(4.9) and the bounds above to estimate the second term on the right-hand side of equation
(4.8):

a∫

1

1∫

0

|ψ̃2 (̃z)
∑

m �=0

(kh (̃z, z̃ + m, t)e2ϕ̂(̃z+m) − kg (̃z, z̃ + m, t))| d Aĝ (̃z)

� t−1

a∫

1

1∫

0

|ψ̃2 (̃z)
∑

m �=0

e− c1d2
ĝ
(̃z,̃z+m)

t |d Aĝ (̃z)

� t−1e
− c2

a4 t

a∫

1

∑

m �=0

e−
c1 log(1+ m2

2a2 )
2

2t
dy

y2 � t−1ae
− c2

a4 t . (4.12)
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Let us remark that in Eq. (4.12), the right-hand side is a O(e−c/a4t ) as t → 0 with c > 0.
Now, let us denote the first term on the right-hand side of Eq. (4.8) by Ĩ1(t). The heat

kernels kh (̃z, z̃, t) and kg (̃z, z̃, t) have a uniform local asymptotic expansion as t → 0 of the
usual form:

k∗(̃z, z̃, t) = t−1
N∑

k=0

ak(∗̂, z̃)tk + RN (∗̂, z̃, t), for any N ≥ 0, (4.13)

where ∗ = g, h. For the remainder terms, there is a constant C > 0 such that

|RN (ĥ, z̃, t)| ≤ Ct N and |RN (ĝ, z̃, t)| ≤ Ct N (4.14)

independent of z̃. Replacing the corresponding expansion in Ĩ1(t), we obtain

Ĩ1(t) =
a∫

1

1∫

0

ψ̃2 (̃z)t
−1

(
N∑

k=0

ak(ĥ, z̃)e2ϕ̂(̃z) − ak(ĝ, z̃)

)
tkd Aĝ (̃z)

+
a∫

1

1∫

0

(RN (ĥ, z̃, t)e2ϕ̂(̃z) − RN (ĝ, z̃, t))d Aĝ (̃z). (4.15)

Note that each integral converges separately since the integrands are bounded and the domain
has finite area. So, strictly speaking, we do not need to consider relative objects in this part.
However, when we take a = t−1/5 and we take the limit as t → 0, the need of considering
the relative integral becomes clear.

We estimate the integrals of the remainder terms using Eq. (4.14):
∣∣∣∣∣∣

a∫

1

1∫

0

ψ̃2 (̃z)(RN (ĥ, z̃, t)e2ϕ̂(̃z) − RN (ĝ, z̃, t))d Aĝ (̃z)

∣∣∣∣∣∣

≤
a∫

1

1∫

0

(|RN (ĥ, z̃, t)e2ϕ̂(̃z)| + |RN (ĝ, z̃, t)|)d Aĝ (̃z) � t N

∞∫

1

dy

y2 � t N , (4.16)

for 0 < t ≤ 1. Note that this estimation is independent of a. This finishes the proof of
Proposition 4.4. ��
Proposition 4.5 Let ϕ|Z (z),�gϕ|Z (z), and |∇gϕ|g|Z (z) with z = (y, x), be O(y−k) as
y → ∞, with k ≥ 1. Then, for 0 < t ≤ 1, we have

|I2(t)| = |Tr(MχZa
Mψ2(T

−1e−t�1,h T − e−t�1,g ))| � a−k+1/2t−3/2. (4.17)

Proof To prove Proposition 4.5, we want to apply Duhamel’s principle on the cusp Z . How-
ever, the heat operators involved in the trace correspond to Laplacians in the horn Z̃ . Therefore,
in order to make the computations easier, we first replace them by the heat operators e−t�Z ,h

and e−t�Z ,g corresponding to the extensions of the Laplacians on the cusps with respect to
Dirichlet boundary conditions. Then, we apply Duhamel’s principle to e−t�Z ,h and e−t�Z ,g .
We have to take into account more terms, but we avoid the problem of the singularity at
y = 0. Using Eqs. (2.13) and (2.15) to replace the respective kernels, we obtain

Tr
(
MχZa

Mψ2

(
T −1e−t�1,h T − e−t�1,g

)) = Tr
(
MχZa

Mψ2(T
−1e−t�Z ,h T − e−t�Z ,g )

)

−
∫

M

χZa (z)ψ2(z)(ph,D(z, z, t)e2ϕ(z) − p1,D(z, z, t))d Ag(z).
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From Eq. (2.14) and supp(ψ2) = Z5/4, it follows that
∣∣∣∣∣∣

∫

M

ψ2(z)(ph,D(z, z, t)e2ϕ(z) − p1,D(z, z, t))d Ag(z)

∣∣∣∣∣∣

�
∫

Z 5
4

t−1 y

(
e− cdh (z,∂Z)

t + e− c′dg (z,∂Z)
t

)
d Ag(z) �

∞∫

5
4

t−1 ye− c1 log(y)2

t
dy

y2

≤ t−1e− c1 log(5/4)2

2t

∞∫

5
4

y−1e− c1 log(y)2

2t dy � e− c1 log(5/4)2

4t .

Let us now continue with the estimation of the trace of the operator:

MχZa
Mψ2

(
T −1e−t�Z ,h T − e−t�Z ,g

)
.

The kernel of T −1e−t�Z ,h T − e−t�Z ,g is given by

eϕ(z)K Z ,h(z, w, t)eϕ(w) − K Z ,g(z, w, t),

and for z = w it takes the form K Z ,h(z, z, t)e2ϕ(z) − K Z ,g(z, z, t). From the usual form of
Duhamel’s principle, we infer

K Z ,h(z, w, t)e2ϕ(w) − K Z ,g(z, w, t)

=
t∫

0

∫

M

K Z ,h(z, z′, s)e2ϕ(z′)(�Z ,g −�Z ,h)K Z ,g(z
′, w, t − s)d Ag(z

′) ds.

Then taking z = w in the equation above and using the transformation of the Laplacian, we
obtain

Tr
(
MχZa

Mψ2(T
−1e−t�Z ,h T − e−t�Z ,g )

)

=
∫

Za

ψ2(z)

t∫

0

∫

Z

{
K Z ,h(z, z′, s)e2ϕ(z′)(1 − e−2ϕ(z′))

�Z ,g K Z ,g(z
′, z, t − s)

}
d Ag(z

′) ds d Ag(z).

Recall that supp(ψ2) = Z5/4, let us first assume that a > 5/4, so 4a/5 > 1. Split the
integral as the sum of the following terms:

(1) J1 =
t∫

0

∫

Za

∫

[1, 4a
5 ]×S1

· · · d Ag(z′)d Ag(z)ds.

(2) J2 =
t/2∫

0

∫

Za

∫

Z 4a
5

· · · d Ag(z′)d Ag(z)ds.

(3) J3 =
t∫

t/2

∫

Za

∫

Z 4a
5

· · · d Ag(z′)d Ag(z)ds.
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In this part, we only describe the main lines of the proof. The proof of the estimation of
each integral is given in Appendix B2. The methods are very similar to the ones used to prove
Theorem 3.1.

Let k ≥ 1 and suppose that ϕ(y, x) = O(y−k) as y → ∞. Then so are ψ = 1 − e−2ϕ

and ψ̃ = e2ϕ − 1. Thus, for J1, we have

J1 =
t∫

0

∫

Za

∫

[1, 4a
5 ]×S1

ψ2(z)(K1,h(z, z′, s)+ ph,D(z, z′, s))e2ϕ(z′)

ψ(z′)�Z ,g(K1,g(z
′, z, t − s)+ p1,D(z

′, z, t − s)) d Ag(z
′) d Ag(z) ds. (4.18)

On this region a ≤ y < ∞ and 1 ≤ y′ ≤ 4a
5 . Thus, 1 < 5

4 ≤ y
y′ , so log(y/y′) is bounded

away from 0. Using the estimates of the heat kernels, we obtain

|J1| � ae− c′
t ,

for some constants c′ > 0.
For J2, let us use that the variable z′ ∈ Z 4a

5
to multiply the inside integral by the charac-

teristic function χZ 4a
5
(z′). Then,

J2 =
t/2∫

0

∫

Za

∫

Z 4a
5

ψ2(z)K Z ,h(z, z′, s)e2ϕ(z′)

χZ 4a
5
(z′)ψ(z′)�Z ,g K Z ,g(z

′, z, t − s)d Ag(z
′)d Ag(z)ds.

Writing this integral in terms of traces of the corresponding operators, we infer

|J2| =
∣∣∣∣∣∣

t/2∫

0

Tr(Mψ2 e−s�Z ,h Me2ϕ MχZ 4a
5

Mψ�Z ,ge−(t−s)�Z ,g )ds

∣∣∣∣∣∣

�
t/2∫

0

‖MχZ 4a
5

Mψ�Z ,ge−(t−s)�Z ,g ‖1ds

=
t∫

t/2

‖MχZ 4a
5

Mψ�Z ,ge−s�Z ,g ‖1ds.

To obtain a bound, we use a similar method as in Section 3.1. Let φ be the auxil-
iary function defined by Eq. (3.2) with β = 1/2. Then the trace norm of the operator
MχZ 4a

5

Mψ�Z ,ge−s�Z ,g satisfies:

‖MχZ 4a
5

Mψ�Z ,ge−s�Z ,g ‖1 ≤ ‖MχZ 4a
5

Mψ�Z ,ge−s/2�Z ,g M−1
φ ‖2‖Mφe−s/2�Z ,g ‖2.

The terms on the right-hand side can be estimated in a similar way as before to obtain

‖MχZ 4a
5

Mψ�Z ,ge−s/2�Z ,g M−1
φ ‖2 � s−7/4(a−k + a−k+1/2),

‖Mφe−s/2�Z ,g ‖2 � s−3/4.
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It follows that

|J2| �
t∫

t/2

s−7/4
(

a−k + a−k+1/2
)

· s−3/4ds � a−k+1/2t−3/2.

Now, for J3, we proceed in a similar way as for J2 to obtain

|J3| �
t∫

t/2

a−k+1/2s−7/4s−3/4ds � a−k+1/2t−3/2,

see Appendix B for all the details. From all the equations above, we obtain

|Tr
(
Mψ2

(
T −1e−t�Z ,h T − e−t�Z ,g

)) | � a−k+1/2t−3/2 + ae−c′/t � a−k+1/2t−3/2,

for 0 < t < 1. ��
Theorem 4.6 Let ν ≥ 1. Write z ∈ Z as z = (y, x). Let ϕ|Z (z),�gϕ|Z (z), and |∇gϕ|g|Z (z)
be O(y−k) as y → ∞ with k ≥ 5ν + 8. In addition, if ν ≥ 3 we require for 2 ≤ � ≤ ν

that |∇�ϕ|g|Z (z) = O(y−k) with k ≥ 5(ν− 2)− 1. Then under these conditions, there is an
expansion of the relative heat trace of the form:

Tr
(
T −1e−t�h T − e−t�g

) = t−1
ν∑

i=0

ai t
i + O(tν), as t → 0. (4.19)

Proof The argument of the proof started above. To complete the proof, we need to put together
the proofs of Propositions 4.4 and 4.5 in a consistent manner. First of all, we need to make
all our estimates independent of a. In particular, the estimate of Eq. (4.12). This particular
estimate is going to determine our result. In Eq. (4.12), the right-hand side is estimated by

t−1ae
− c2

a4 t . Taking a = t−1/5, we get a4t = t1/5. Therefore, Eq. (4.12) becomes:

t−1/5∫

1

1∫

0

|ψ̃2 (̃z)
∑

m �=0

(kh (̃z, z̃ + m, t)e2ϕ̂(̃z+m) − kg (̃z, z̃ + m, t))| d Aĝ (̃z) � e
− c2

2t1/5 .

The next step is to make sure that the asymptotic expansion in Eq. (4.15) is kept when we
pass to the limit as t → 0. Before we continue with the asymptotics of I1(t), let us consider
again the estimate of I2(t) and replace a = t−1/5 in Eq. (4.17). In order to have

|Tr
(
Mψ2

(
T −1e−t�Z ,h T − e−t�Z ,g

)) | � (t−1/5)−k+1/2t−3/2 � tν (4.20)

with ν ≥ 1/2 we need that k
5 − 1

10 − 3
2 ≥ ν. Thus, k should satisfy k ≥ 5ν+8. This condition

applies to the conformal factor and its derivatives up to second order.
Now, let us go back to the asymptotics of I1(t). Let ν ≥ 1. Replacing a = t−1/5 in

Eq. (4.15), Ĩ1(t) becomes:

Ĩ1(t) = t−1

t−1/5∫

1

1∫

0

ψ̃2 (̃z)
ν∑

j=0

t j
(

e2ϕ̂a j (ĥ, z̃)− a j (ĝ, z̃)
)

d Aĝ (̃z)

+
t−1/5∫

1

1∫

0

ψ̃2 (̃z)
(

e2ϕ̂Rν(ĥ, z̃, t)− Rν(ĝ, z̃, t)
)

d Aĝ (̃z). (4.21)
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The integral of the remainder terms was estimated in Eq. (4.16), independently of t and a.
In what follows, we set ψ̃2 = 1 and drop the hat in ϕ̂. To deal with the convergence of the
integrals in the first term on the right-hand side in Eq. (4.21) we fix j and split each integral
as follows:

t−1/5∫

1

1∫

0

(e2ϕa j (ĥ)− a j (ĝ))d Aĝ =
∞∫

1

1∫

0

(e2ϕa j (ĥ)− a j (ĝ))d Aĝ

−
∞∫

t−1/5

1∫

0

(e2ϕa j (ĥ)− a j (ĝ))d Aĝ

Our goal is to prove that for each j the integral over [1,∞)× [0, 1] converges and that the

integral over [t− 1
5 ,∞)× [0, 1] can be suitably estimated.

First of all, note that the region of integration [1,∞)×[0, 1] has finite area respect to both
metrics ĝ and ĥ. Since ĝ is the hyperbolic metric on H

2, the functions ak(ĝ, z̃) are bounded,
therefore integrable. Let us describe the general picture. Our goal is to prove the following
equation:

Ĩ1(t) = t−1
ν∑

j=0

t j

∞∫

1

1∫

0

(
e2ϕa j (ĥ, z̃)− a j (ĝ, z̃)

)
d Aĝ (̃z)

− t−1
ν∑

j=0

t j

∞∫

t−1/5

1∫

0

(
e2ϕa j (ĥ, z̃)− a j (ĝ, z̃)

)
d Aĝ (̃z)+ O(tν)

=
ν∑

j=0

(
t−1t j ã j + O(tν)

)
+ O(tν) =

ν∑

j=0

t−1t j ã j + O(tν), (4.22)

where the coefficients ã j are given by

ã j =
∞∫

1

1∫

0

(
e2ϕ̂a j (ĥ, z̃)− a j (ĝ, z̃)

)
d Aĝ (̃z).

For each j with 0 ≤ j ≤ ν, we find conditions on the decay of ϕ, on the number of
derivatives that should decay, and on the order of that decay such that the corresponding
integral converges or is suitably estimated. At the end, we impose the strongest condition on
ϕ and its derivatives coming from all the terms together.

At each level j (the subindex of the heat invariant), we assume that ϕ and its derivatives
(we will see each time how many derivatives we need) decay as y−k at infinity, then we find
k in terms of ν and j .

Let us proceed with the analysis of the heat invariants. We analyze the convergence and
estimation of the integrals simultaneously.

For a0, we have

∞∫

1

1∫

0

(
e2ϕ − 1

)
d Aĝ = Aĥ([1,∞)× [0, 1])− 1
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and

t−1

∞∫

t−1/5

1∫

0

|e2ϕ − 1|d Aĝ �
∞∫

t−1/5

y−k dy

y−2 = t−1 1

k + 1
t

k+1
5

In order to have t−1t
k+1

5 ≤ tν , we need ϕ to decay as k ≥ 5ν + 4.
For a1, the integrals are

∞∫

1

1∫

0

(
e2ϕRĥ − Rĝ

)
d Aĝ =

∞∫

1

1∫

0

((�ĝϕ + Rĝ)− Rĝ)d Aĝ

=
∞∫

1

1∫

0

�ĝϕ d Aĝ � 1

and

∞∫

t−1/5

1∫

0

|e2ϕ�ĝϕ|d Aĝ �
∞∫

t−1/5

y−k dy

y−2 = 1

k + 1
t

k+1
5 .

Here, we need �ĝϕ to decay as k ≥ 5ν − 1.
The second heat invariant a2 is given in [17] as a2 = π

60

∫

M
R2d A. In our case, we obtain

∞∫

1

1∫

0

(
e2ϕR2

ĥ
− R2

ĝ

)
d Aĝ =

∞∫

1

1∫

0

e−2ϕ(�ĝϕ + Rĝ)
2 − R2

ĝ d Aĝ

=
∞∫

1

1∫

0

e−2ϕ(�ĝϕ)
2 + e−2ϕ(�ĝϕ)Rĝ d Aĝ � 1.

For integral over [t−1/5,∞)× [0, 1], we have

t

∞∫

t−1/5

1∫

0

|e−2ϕ(�ĝϕ)
2 + e−2ϕ(�ĝϕ)Rĝ d Aĝ| � t

2k+1
5 +1

2k + 1
+ t

k+1
5 +1

k + 1

The left-hand side is bounded by tν if k+1
5 + 1 ≥ ν, i.e if k ≥ 5ν− 6. In this case ν ≥ 2, and

we need two derivatives.
Now, let us go one step forward and consider the third heat invariant as it is given in [19]:

a3 = 1

4π

∫

M

−9|∇ R|2 + 4R3d A
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Before we proceed, let us perform some computations:

∇ĥ Rĥ = −2e−2ϕ(�ĝϕ − 1)(∇ĥϕ)+ e−2ϕ∇ĥ(�ĝϕ)

|∇ĥ Rĥ |2
ĥ

= 4e−4ϕ(�ĝϕ − 1)2|∇ĥϕ|2
ĥ

− 4e−4ϕ(�ĝϕ − 1)〈∇ĥϕ,∇ĥ(�ĝϕ)〉ĥ

+ e−4ϕ |∇ĥ(�ĝϕ)|2ĥ
R3

ĥ
= e−6ϕ(�ĝϕ + Rĝ)

3 = e−6ϕ((�ĝϕ)
3 − 3(�ĝϕ)

2 + 3(�ĝϕ)− 1)

Plugging the expressions above in the integrals under consideration, we obtain:

∞∫

1

1∫

0

e2ϕ
(
−9|∇ĥ Rĥ |2

ĥ
+ 4R3

ĥ

)
−
(
−9|∇ Rĝ|2 + 4R3

ĝ

)
d Aĝ

= 4

∞∫

1

1∫

0

e−4ϕ ((�ĝϕ)
3 − 3(�ĝϕ)

2 + 3(�ĝϕ)
)+ (1 − e−4ϕ) d Aĝ

−9

∞∫

1

1∫

0

e−4ϕ {4(�ĝϕ − 1)2|∇ϕ|2 − 4(�ĝϕ − 1)〈∇ϕ,∇(�ĝϕ)〉 + |∇(�ĝϕ)|2
}

d Aĝ

Since |∇ĥϕ|2
ĥ

= e−2ϕ |∇ĝϕ|2ĝ and we drop the subindice when we consider the metric ĝ. In
the first integral of the last equality, all functions decay at infinity. For convergence of the
second integral, it is enough to require boundedness of the integrand, i.e., |∇(�ϕ)| � 1.

Now, we estimate the integrals on the region [t− 1
5 ,∞)× [0, 1]. As above, let us assume

that |∇�
ĝϕ| = O(y−k), for 0 ≤ � ≤ 3 then |�ĝϕ − 1| � 1, e−4ϕ − 1 = O(y−k), and

t2

∞∫

t−1/5

1∫

0

|e2ϕ
(
−9|∇ Rĥ |2 + 4R3

ĥ

)
−
(
−9|∇ Rĝ|2 + 4R3

ĝ

)
|d Aĝ

� t2

∞∫

t−1/5

1∫

0

(|�ĝϕ|3 + |�ĝϕ|2 + |�ĝϕ| + |1 − e−4ϕ |

+ |∇ϕ|2 + |∇ϕ||∇(�ĝϕ)| + |∇(�ĝϕ)|2
)

d Aĝ

� t2

∞∫

t−1/5

(
y−3k + y−2k + y−k

) dy

y2

= t
3k+1

5 +2

3k + 1
+ t

2k+1
5 +2

2k + 1
+ t

k+1
5 +2

k + 1
.

In the same way as in the previous case, we need that k+1
5 + 2 ≥ ν. This is achieved if

k ≥ 5ν − 11, (ν ≥ 3).
General formulas for the coefficients in the expansion of the heat kernel are very com-

plicated and only known explicitly for few of them. However, it is known that the functions
ak(ĥ, z̃) are polynomials of degree 2k in the scalar curvature (2Rĥ) and half powers of the
Laplacian. The leading coefficients of this polynomials are described in [17] and in a more
explicit form by Branson et al. in [3]. We refer to Lemma 1.3 and Eq. (1.4) in [3].
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a j (�) =
∫

M

( j ( j − 1)c j )|∇ j−2 R|2 + polynomial(R,∇ R, . . .∇ j−3 R),

for j ≥ 3. These are the heat coefficients for a closed Riemann surface (in [3] R denotes the
scalar curvature). Applying this to our case, we require at least |∇ j−2

ĥ
Rĥ | to be bounded for

0 ≤ � ≤ j − 2. In terms of the conformal factor, this condition translates to |∇�ϕ| � 1 for
2 ≤ � ≤ j . Under these requirements, the integrals defining the coefficients ã j converge.

Now let us estimate the integral over [t−1/5,∞)×[0, 1], assuming that |∇�ϕ| = O(y−k)

for 2 ≤ � ≤ j :

∞∫

t−1/5

1∫

0

( j ( j − 1)c j )
(

e2ϕ |∇ j−2

ĥ
Rĥ |2 − |∇ j−2

ĝ Rĝ|2
)

+ e2ϕpolynomial
(

Rĥ,∇ĥ Rĥ, . . .∇ j−3

ĥ
Rĥ

)

− polynomial
(

Rĝ,∇ĝ Rĝ, . . .∇ j−3
ĝ Rĝ

)
d Aĝ (̃z) (4.23)

If j ≥ 3,∇ j−2
ĝ Rĝ = 0, therefore the leading term is of the form |∇ j−2

ĥ
Rĥ |2 = O(y−2k).

Now, let us consider the terms involved in the polynomial. For that, we assume that the
polynomial is of the form:

p2 j (x1, . . . , xr ) =
∑

ai1...ir x i1
1 · · · xir

r ,

then we have terms of the form:

e2ϕai1...ir Ri1

ĥ

(∇ĥ Rĥ

)i2 · · ·
(
∇ j−3

ĥ
Rĥ

)ir − ai1...ir Ri1
ĝ

(∇ĝ Rĝ
)i2 · · ·

(
∇ j−3

ĝ Rĝ

)ir

If i j �= 0 for some j > 1, the second term vanishes. So we are left only with

e2ϕai1...ir Ri1

ĥ

(∇ĥ Rĥ

)i2 · · ·
(
∇ j−3

ĥ
Rĥ

)ir

that involve at least one derivative of Rĥ : ∇�

ĥ
Rĥ = (∇�

ĥ
(�ϕ + Rĝ))

i j = (∇�

ĥ
(�ϕ))i j =

O(y−k·i j ).
If i j = 0 for all j > 1, we have terms of the form:

ai1...ir

(
e2ϕRi1

ĥ
− Ri1

ĝ

)
= ai1...ir

(
e2(1−i1)ϕ(�ϕ + Rĝ)

i1 − Ri1
ĝ

)

= ai1...ir

(
e2(1−i1)ϕ

i1∑

�=0

(
i1

�

)
(�ϕ)�(Rĝ)

i1−� − Ri1
ĝ

)

|ai1...ir (e
2ϕRi1

ĥ
− Ri1

ĝ )| �
(

i1∑

�=1

y−k�

)
+
(

e2(1−i1)ϕ − 1
)

Ri1
ĝ ,

and recall that 1 − e−2�ϕ = O(y−k). Therefore,

t j−1

∞∫

t−1/5

1∫

0

(
e2ϕa j (ĥ)− a j (ĝ)

)
d Aĝ � t j−1t

k+1
5 ,
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the last term is bounded by tν if k ≥ 5ν − 5( j − 1) − 1. We have finished the proof of
Eq. (4.22).

It is interesting to see how, as we want to have more terms in the expansion, although more
derivatives need to be considered, the conditions on their decay become weaker. However,
this fact does not have any implication on our purposes of defining relative determinants. We
could try to further refine the requirements to minimize conditions on ϕ but that will imply
a deeper analysis of the heat invariants that is beyond the purpose of this article. ��
Corollary 4.7 If the conformal factor ϕ and all its derivatives decay at infinity to infinite
order, then there is a complete asymptotic expansion of the relative heat trace as t → 0:

Tr
(
T −1e−t�h T − e−t�g

) = t−1
∞∑

j=0

a j t
j .

Corollary 4.8 Let h = e2ϕg withϕ|Z (z),�gϕ|Z (z), and |∇gϕ|g|Z (z) be O(y−k) as y → ∞
with k ≥ 11. Then the relative heat trace has an expansion of the form:

Tr
(
T −1e−t�h T − e−t�g

) = a0t−1 + a1 + O(
√

t) as t → 0. (4.24)

We will see in Sect. 5.1 that this condition is sufficient to define the relative determinant.

Proof The condition k ≥ 11 comes from taking ν = 1/2 in Eq. (4.20). In the part corre-
sponding to Ĩ1(t), we take ν = 1. The heat invariants a0 and a1 require ϕ to decay at least as
k = 9 and �ϕ to decay as k = 4. The strongest condition is then determined by I2. ��

To compute the coefficients in the expansion (4.19), we use that the coefficients in the
local expansion of the heat kernels are given by universal functions. Taking ν = 2, we have
that

Tr
(
T −1e−t�h T − e−t�g

) = t−1

4π
(Ah − Ag)+ t

π

60

⎛

⎝
∫

M

R2
h(z)d Ah(z)−

∫

M

R2
g(z)d Ag(z)

⎞

⎠

+O(t2), as t → 0, (4.25)

where the constant term vanishes due to Gauss–Bonnet’s theorem. Equation (4.24) becomes:

Tr(T −1e−t�h T − e−t�g ) = t−1

4π
(Ah − Ag)+ O(

√
t), as t → 0, (4.26)

4.2 Asymptotics of other relative heat traces

Let us consider again surfaces with several cusps. Let (M, g) be a swc of genus p and with m
cusps. Assume that M can be decomposed as M = M0 ∪ Za1 ∪ · · · ∪ Zam , where ai ≥ 1 for
1 ≤ i ≤ m. Let �̄a,0 be the direct sum ⊕m

j=1�a j ,0 of the Dirichlet Laplacians�a j ,0 defined
in Definition 2.1.

Proposition 6.4 in [12] establishes that the operator e−t�g − e−t�̄a,0 is trace class and its
trace has the following asymptotic expansion as t → 0:

Tr
(

e−t�g − e−t�̄a,0
)

= Ag

4π
t−1 +

⎛

⎝γm

2
+

m∑

j=1

log(a j )

⎞

⎠ 1√
4π t

+m

2

log(t)√
4π t

+ χ(M)

6
+ m

4
+ O(

√
t), (4.27)
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where γ is the Euler constant. A close examination of the proof of Eq. (4.27) in [12] shows

that the term
∑m

j=1
log(a j )√

4π t
can be replaced by e−t/4∑m

j=1
log(a j )√

4π t
.

In particular, we can consider the relative determinant of the pair (�g, �̄1,0). To that

purpose we consider the trace Tr(e−t�g − e−t�̄1,0), where the trace is taken in an extended
L2 space that is given by

L2(M, d Ag)⊕ ⊕m
j=1L2([1, a j ], y−2dy) = L2(M0, d Ag)⊕

⊕m
j=1

(
L2

0(Za j )⊕ L2([1,∞), y−2dy)
)
.

(4.28)

Thus, using Proposition 3.5 and Eqs. (3.6) and (4.27) we obtain the following asymptotic
expansion as t → 0:

Tr(e−t�g − e−t�̄1,0) = Ag

4π
t−1 + γm

2

1√
4π t

+ m

2

log(t)√
4π t

+ χ(M)

6
+ m

4
+ O

(√
t
)
.

(4.29)

Together with Eq. (4.26), this gives

Tr
(

T −1e−t�h T − e−t�̄1,0
)

= Ah

4π
t−1 + γm

2

1√
4π t

+ m

2

log(t)√
4π t

+χ(M)
6

+ m

4
+ O

(√
t
)
, (4.30)

where the transformation T is the identity in the space ⊕m
j=1L2([1, a j ], y−2dy).

5 Relative determinants on surfaces with asymptotically cusp ends

5.1 Definition

The relative determinant on a surface with hyperbolic cusps was already considered by Müller
in [14]. Therefore, we restrict our attention to the definition and properties of the relative
determinant on asymptotically hyperbolic surfaces. Let (M, g) be a swc and let h = e2ϕg.
In order to define the relative determinant of the pairs (�h,�g), and (�h,�1,0), we need to
verify that the conditions given in Sect. 2.1 are satisfied. Let k ≥ 1, let us define the following
set of functions:

Fk := {ψ ∈ C∞(M)| ψ(z), |∇gψ |(z) and �gψ(z) are O(i(z)−k) as y = i(z) → ∞}.

Sections 3.2 and 4 establish that the first and second conditions are fulfilled provided that
ϕ ∈ F1 and ϕ ∈ F11, respectively.

The third condition in Sect. 2.1 is about the behavior of the relative heat trace for big values
t . The trace class property together with the fact that σac(�1,0) = [1/4,∞) and Lemma 2.22
in [14] give the existence of a constant C1 > 0 such that
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Tr(T −1e−t�h T − e−t�1,0) = 1 + O(e−C1t ), as t → ∞, (5.1)

where the value 1 on the right-hand side comes from dim ker�h −dim ker�1,0 and the trace
is taken in L2(M, d Ag). This condition is satisfied even when ϕ ∈ F1.

Let us prove that the condition ϕ ∈ F11 suffices to define the relative determinant of
(�h,�1,0). The relative zeta function ζ(s;�h,�1,0) converges on Re(s) > 1. It follows
from the asymptotic expansions (4.30) and (5.1) that the function ζ(s;�h,�1,0) has a mero-
morphic continuation to the complex plane, that it is regular at s = 0. This continuation is
denoted again by ζ . The proof of the existence of the continuation and regularity at s = 0 is
classical in the literature. However, we include it here to remark that it is enough to have a
truncated asymptotic expansion.

For the sake of simplicity, let us take m = 1 and let us fix the notation in Eq. (4.30) above:

a0 = Ah

4π
, a10 = γ

4
√
π
, a11 = 1

4
√
π
, a2 = χ(M)

6
+ 1

4
.

Now, let us write ζ(s;�h,�1,0) as ζ1(s)+ ζ2(s) with

ζ1(s) := 1

�(s)

1∫

0

t s−1 (Tr(T −1e−t�h T − e−t�1,0)− 1
)

dt and

ζ2(s) := 1

�(s)

∞∫

1

t s−1 (Tr(T −1e−t�h T − e−t�1,0)− 1
)

dt.

Equation (5.1) implies that ζ2(s) is analytic at s = 0. As for ζ1(s) and Re(s) > 1, we
have that:

ζ1(s) = 1

�(s)

1∫

0

t s−1(a0t−1 + (a10 + a11 log t)t−1/2 + a2 − 1 + ϑ(t))dt

= 1

�(s)

(
a0

s − 1
+ a10

s − 1/2
− a11

(s − 1/2)2
+ a2 − 1

s
+ ϑ1(s)

)
,

where ϑ(t) = O(
√

t)) and ϑ1(s) is a function that is analytic at s = 0.
Therefore, we can define the (regularized) relative determinant of (�h,�1,0) as in

Sect. 2.1:

det(�h,�1,0) = exp

(
− d

ds
ζ(s;�h,�1,0)

∣∣∣
s=0

)
.

Note that we only need to require that the function ϕ and its derivatives up to order two, have
a decay of order 11 at infinity. The definition of det(�h,�g) is done in the same way.

5.2 Polyakov’s formula for the relative determinant. Extremals

In [16], the authors proved that on compact surfaces, with and without boundary and under
suitable restrictions, the regularized determinant of the Laplace operator has an extremum.
In this section, we discuss the generalization of the extremal property of determinants given
by OPS to certain cases of surfaces with asymptotically cusp ends. The main tool to study
extremal properties of determinants is Polyakov’s formula that relates the determinant of
a given metric to the determinant of a conformal perturbation of it. The formula obtained
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here for relative determinants is the same as the one for regularized determinants on compact
surfaces given in [16]. The proofs of the variational formula and of Polyakov’s formula follow
the main lines of the corresponding proofs in [16] but we focus in the technical details that
allow us to perform each step in the main proof.

5.2.1 Polyakov’s formula

In this section, we first consider ϕ,ψ ∈ Fk with k ≥ 11 and u ∈ R, let us define the family
of metrics:

hu := e2(ϕ+uψ)g = e2uψh.

The corresponding Laplace operators and area elements are given by the equations:

�u := �hu = e−2uψ�h, d Au := d Ahu = e2uψd Ah .

Let us consider the family of unitary maps given by

Tu : L2(M, d Au) → L2(M, d Ah), f �→ f euψ,

and the following functional:

F : Fk → C, ψ �→ Fs(ϕ + uψ) := ζ(s;�u,�1,0),

ζ(s;�u,�1,0) = 1

�(s)

∞∫

0

t s−1 (Tr(Tue−t�u T −1
u − T e−t�1,0 T −1)− 1

)
dt,

where the trace is taken in L2(M, d Ah). The variation of ζ at ϕ in the direction of ψ is
defined as

δζ

δψ
(s;�h,�1,0) := ∂

∂u
Fs(ϕ + uψ)

∣∣∣∣
u=0

.

In order to proceed with the computation of the derivative in the equation above, we need
the following lemma:

Lemma 5.1

d

du
Tr
(
Tue−t�u T −1

u − T e−t�1,0 T −1)
∣∣∣∣
u=0

= −tTr(�̇he−t�h ),

where �̇h ≡ ∂
∂u �u

∣∣
u=0 = −2ψ�h.

Proof Let Hu = Tu�u T −1
u . Then Hu is a family of self-adjoint operators acting on

L2(M, d Ah). Note that e−t Hu = Tue−t�u T −1
u . It is also clear that

d

du
Tr(Tue−t�u T −1

u − T e−t�1,0 T −1) = Tr

(
d

du
e−t Hu

)
.

Let u1, u2 > 0, with u1 > u2. Let us apply Duhamel’s principle in terms of the operators:

e−t Hu1 − e−t Hu2 =
t∫

0

−e−s Hu1 Hu1 e−(t−s)Hu2 + e−s Hu1 Hu2 e−(t−s)Hu2 ds.
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Dividing by u1 − u2 the previous equation and letting u2 → u1, we obtain

d

du
e−t Hu

∣∣∣∣
u=u1

= −
t∫

0

e−s Hu1

(
d

du
Hu

∣∣∣∣
u=u1

)
e−(t−s)Hu1 ds.

Therefore, we get

d

du
Tr
(
Tue−t�u T −1

u − T e−t�1,0 T −1) = −tTr
(

Ḣue−t Hu
)
. (5.2)

Let us compute the derivative Ḣu :

d

du
Hu = ψTu�u T −1

u + Tu

(
d

du
�u

)
T −1

u − Tu�uψT −1
u .

Thus, we get

Tr
(

Ḣue−t Hu
)

= Tr
(
ψ�ue−t�u

)+ Tr
(
�̇ue−t�u

)− Tr
(
�uψe−t�u

)
.

From the rate of decay assumed for ψ and �gψ , we have that the operators ψe−t�u and
�uψe−t�u are trace class. Using in addition that e−t�u�u is bounded for all t > 0, we obtain

Tr
(
�uψe−t�u

) = Tr
(

e− t
2�u�uψe− t

2�u
)

= Tr
(
ψe−t�u�u

) = Tr
(
ψ�ue−t�u

)
.

In this way, we get

Tr
(

Ḣue−t Hu
)

= Tr
(
�̇ue−t�u

) = −2Tr
(
ψ�ue−t�u

)
.

Taking u = 0 in the previous equation together with Eq. (5.2) implies the statement of the
lemma. ��

We are ready to compute the variation of the relative zeta function:

δζ

δψ

(
s;�h,�1,0

)

= 1

�(s)

∞∫

0

t s−1 d

du

(
Tr(Tue−t�u T −1

u − T e−t�1,0 T −1)− 1
)∣∣∣∣

u=0
dt

= −1

�(s)

∞∫

0

t sTr(−2ψ�he−t�h )dt = −2

�(s)

∞∫

0

t s ∂

∂t
Tr(ψe−t�h )dt.

Since

∂

∂t
ψe−t�h = ∂

∂t
ψ
(
e−t�h − Pker(�h)

)
,

we have that

δζ

δψ
(s;�h,�1,0) = −2

�(s)

∞∫

0

t s ∂

∂t
Tr(ψ(e−t�h − Pker(�h)))dt. (5.3)

In the classical proof of the variational formula of the spectral zeta function, the next step
is to do integration by parts in Eq. (5.3). Before we do that, we have to verify the good decay
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of Tr(ψ(e−t�h − Pker(�h))) for big and small values of t . In addition, we need to make sure
that we can obtain an expansion of the trace, for small values of t , whose remainder term can
be integrated. We accomplish that in the following two lemmas:

Lemma 5.2 There exists a constant c > 0 such that

Tr(ψ(e−t�h − Pker(�h))) = O(e−ct ), as t → ∞.

Proof Let t > 1 and let us write

ψ(e−t�h − Pker(�h)) = ψe− 1
2�h (e−(t− 1

2 )�h − Pker(�h)),

where we used that e− 1
2�h Pker(�h) = Pker(�h). By Corollary 3.3, we have that ψe− 1

2�h is
trace class. On the other hand, for f ∈ L2(M, d Ah), the spectral theorem implies that

e−t�h f − Pker(�h) f = e−t (�h−Pker(�h )) f.

Note that σess(�h) = [1/4,∞) implies that 0 is an isolated eigenvalue of�h and σ(�h −
Pker(�h)) ⊆ [c1,∞) for some c1 ∈ (0, 1/4]. Thus

‖e−t (�h−Pker(�h ))‖L2(M,h) ≤ e−c1t

for any t > 0. If t > 1, t − 1
2 > 0; therefore, the trace satisfies the desired estimate:

|Tr(ψ(e−t�h − Pker(�h)))| ≤ ‖ψe− 1
2�h (e−(t− 1

2 )�h − Pker(�h))‖1

≤ ‖ψe− 1
2�h ‖1‖e−(t− 1

2 )(�h−Pker(�h ))‖L2(M,h) � e−c1t .

This proves Lemma 5.2. ��
Lemma 5.3 For 0 < t ≤ 1, the trace of the operator ψ(e−t�h − Pker(�h)) has the following
expansion:

Tr(ψ(e−t�h − Pker(�h))) =
∫

M

ψ(z)

(
1

4π t
+ Rh(z)

12π
− 1

Ah

)
d Ah + O(t)

as t → 0.

Proof In order to prove Lemma 5.3, we use a method similar to the one used in Sect. 4.1 to
prove the existence of the expansion of the relative heat trace Tr(e−t�h − e−t�g ) for small t .
We start by considering the parametrix kernel Qh(z, z′, t) defined by Eq. (4.2):

Qh(z, w, t) = ϕ1(z)KW,h(z, w, t)ψ1(w)+ ϕ2(z)K1,h(z, w, t)ψ2(w),

where the functions ϕi and ψi , i = 1, 2, are defined in Sect. 4.1. From Lemma 4.3, we can
restrict our attention to

∫
M ψ(z)(Qh(z, z, t) − 1

Ah
)d Ah(z) and split the integral as the sum

of the following two terms:

L1(t) =
∫

M2

ψ(z)ψ1(z)

(
KW,h(z, z, t)− 1

Ah

)
d Ah(z)

L2(t) =
∫

Z 5
4

ψ(z)ψ2(z)

(
K1,h(z, z, t)− 1

Ah

)
d Ah(z).
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Using the asymptotic expansion of the kernel KW,h(z, z, t), we obtain

L1(t) =
∫

M2

ψ(z)ψ1(z)

(
1

4π t
+ Rh(z)

12π
− 1

Ah
+ R1(z, t)

)
d Ah(z). (5.4)

For L2(t), we use the same construction and notation as in the proof of Proposition 4.4.
Now, let a > 5/4 and let us split the integral L2(t) as the sum L2 = J̃1(t)+ J̃2(t)+ J̃3(t),
where the J̃i , i = 1, 2, 3, are given by

J̃1(t) =
∞∫

5
4

1∫

0

ψ̂ (̃z)ψ̂2 (̃z)

(
kh (̃z, z̃, t)− 1

Ah

)
d Aĥ (̃z),

J̃2(t) =
a∫

5
4

1∫

0

ψ̂ (̃z)ψ̂2 (̃z)
∑

m �=0

kh (̃z, z̃ + m, t)d Aĥ (̃z),

J̃3(t) =
∞∫

a

1∫

0

ψ̂ (̃z)ψ̂2 (̃z)
∑

m �=0

kh (̃z, z̃ + m, t)d Aĥ (̃z).

For J̃1, we use the local asymptotic expansion of the heat kernel kh (̃z, z̃, t), whose remainder
term is uniformly bounded, see [7]:

J̃1(t) =
∞∫

5
4

1∫

0

ψ̂ (̃z)ψ̂2 (̃z)

(
1

4π t
+ Rĥ (̃z)

12π
− 1

Ah
+ R1,1(̃z, t)

)
d Aĥ (̃z) (5.5)

For J̃2(t), in the same way as in the proof of Proposition 4.4, we can estimate the series as
in Eq. (4.10). Then we estimate the integral in the same way as in Eqs. (4.11) and (4.12):

J̃2(t) �
a∫

5
4

y−11e
− c2

a4 t

∑

m �=0

e−
c1 log(1+ m2

2a2 )
2

2t
dy

y2

� e
− c2

a4 t

a∫

5
4

y−11

∞∫

1

e−
c1 log(1+ u2

2a2 )
2

2t du
dy

y2 � ae
− c2

a4 t . (5.6)

The integral J̃3 can be bounded as

J̃3(t) ≤
∫

Za

ψ(z)ψ2(z)K1,h(z, z, t)d Ah(z)

� t−1

∞∫

a

y−12dy � t−1a−11. (5.7)
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Taking a = t−1/5 in the same way as we did in the proof of Theorem 4.6 and putting
Eqs. (5.4), (5.5), (5.6), and (5.7) together, we obtain:

Tr(ψ(e−t�h − Pker(�h)))

=
∫

M2

ψ(z)ψ1(z)

(
1

4π t
+ Rh(z)

12π
− 1

Ah
+ R1(z, t)

)
d Ah(z)

+
∞∫

5
4

1∫

0

ψ̂ (̃z)ψ̂2 (̃z)

(
1

4π t
+ Rĥ (̃z)

12π
− 1

Ah
+ R1,1(̃z, t)

)
d Aĥ (̃z)+ O(t),

where O(t) is clearly independent of z. Now we know that |R1(z, t)| � t and |R1,1(̃z, t)| � t
uniformly in z. Therefore, we can make the following estimate:

∫

M2

ψ(z)ψ1(z)R1(z, t)d Ah(z)+
∞∫

5
4

1∫

0

ψ̂ (̃z)ψ̂2 (̃z)R1,1(̃z, t)d Aĥ (̃z) � t.

This finishes the proof of Lemma 5.3. ��
The rest of the proof now follows the same lines as in [16]. Let us mention the main steps

of it. Going back to the variation of the relative zeta function, we may now apply integration
by parts in Eq. (5.3) to obtain for Re(s) > 0:

δζ

δψ
(s;�h,�1,0) = 2s

�(s)

∞∫

0

t s−1Tr(ψ(e−t�h − Pker(�h)))dt.

We split this integral as

δζ

δψ
(s;�h,�1,0) = 2s

�(s)

⎛

⎝
1∫

0

t s−1Tr(ψ(e−t�h − Pker(�h)))dt

+
∞∫

1

t s−1Tr(ψ(e−t�h − Pker(�h)))dt

⎞

⎠ . (5.8)

From Lemma 5.2, the integral in second term on the right-hand side of Eq. (5.8) is an
entire function of s. Since �(s)−1 ∼ s, it follows that

d

ds

2s

�(s)

∞∫

1

t s−1Tr(ψ(e−t�h − Pker(�h)))dt
∣∣∣
s=0

= 0

Using Lemma 5.3, the first term on the right-hand side of (5.8), becomes:

2s

�(s)

1∫

0

t s−1Tr(ψ(e−t�h − Pker(�h)))dt

= 2s

�(s)

⎧
⎨

⎩
1

s

∫

M

ψ(z)

(
Rh(z)

12π
− 1

Ah

)
d Ah + analytic in s near 0

⎫
⎬

⎭ .
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The next step is to take the derivative with respect to s at s = 0. Using 1
�(s) = s + O(s2),

we have

d

ds

2s

�(s)

1∫

0

t s−1Tr(ψ(e−t�h − Pker(�h)))dt
∣∣∣
s=0

=
∫

M

2ψ(z)

(
Rh(z)

12π
− 1

Ah

)
d Ah .

Thus,

δ

δψ
log det(�h,�1,0) = − δ

δψ

d

ds
ζ(s;�h,�0)

∣∣
s=0

= − 1

6π

∫

M

ψ(�gϕ + Rg) d Ag + δ

δψ
log Ah . (5.9)

Finally, it is very easy to show that any ψ in the domain of F satisfies:

1

2

∂

∂u

∫

M

|∇g(ϕ + uψ)|2 d Ag

∣∣∣∣∣∣
u=0

= 〈ψ,�gϕ〉,

∂

∂u

∫

M

Rg (ϕ + uψ) d Ag

∣∣∣∣∣∣
u=0

=
∫

M

Rg ψ d Ag,

Integrating (5.9), we obtain

log det(�h,�1,0) = − 1

12π

∫

M

|∇gϕ|2 d Ag − 1

6π

∫

M

Rg ϕ d Ag + log Ah + C.

Notice that if ϕ = 0,�h = �g . Therefore, the last equation implies C = log det(�g,�1,0).
In this way, we have proved Polyakov’s formula:

Theorem 5.4 Let (M, g) be a surface with cusps and let h = e2ϕg be a conformal transfor-
mation of g with ϕ ∈ F11. For the corresponding relative determinants, we have the following
formula:

log det(�h,�1,0) = − 1

12π

∫

M

|∇gϕ|2 d Ag − 1

6π

∫

M

Rg ϕ d Ag

+ log Ah + log det(�g,�1,0). (5.10)

5.2.2 Extremal properties of the relative determinant

Given Polyakov’s formula for the relative determinant, the study of the extremal properties
of it is exactly the same as in OPS [16] for the case when χ(M) < 0. We assume now that
χ(M) < 0. Let us recall the analysis in [16] as we adapt it to our case. On F11 consider the
following functional:

�(ϕ) = 1

2

∫

M

|∇gϕ|2 d Ag +
∫

M

Rg ϕ d Ag − πχ(M) log

⎛

⎝
∫

M

e2ϕd Ag

⎞

⎠. (5.11)
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It is straightforward that � is translation invariant and that minimizing � is the same
as maximizing log det(�h,�1,0) for metrics of constant area. Since we are considering
χ(M)< 0, we have that � is convex. In the same way as in [16], we have that

�(ϕ) = −6π log det(�h,�1,0)+ π(6 − χ(M)) log(Ah).

Let us drop the constraint Ah = 1. Then, if ϕ is a minimizer of� the equation δ�
δψ
(ϕ) = 0

holds for all ψ ∈ F11. This implies that

Rh = e−2ϕ(�gϕ + Rg) = 2πχ(M)∫
M e2ϕd Ag

,

i.e., Rh should be constant. If Ah = 2π(2p + m − 2), it follows that Rh = −1, where p is
the genus of M and m is the number of cusps.

On the other hand, if Rh = constant we have that

δ�

δψ
(ϕ) =

∫

M

e2ϕψRhd Ag − πχ(M)

Ah

∫

M

2ψe2ϕd Ag

=
∫

M

e2ϕψ

Ah
(Rh Ah − 2πχ(M))d Ag = 0,

because of Gauss–Bonnet theorem. Thus, the critical points of� are the metrics of constant
curvature. The convexity of � assures that the critical points are minima.

Our problem is to find a maximizer of the relative determinant among metrics inside the
following conformal class:

Conf1,11(g) = {h|h = e2ψg, with ψ ∈ F11 and Ah = 2π(2p + m − 2)}.
If the initial metric g on M is a metric of negative constant curvature g = τ with

Rτ = −1, and we take the conformal class Conf1,11(τ ), τ itself is the maximizer of the
relative determinant and τ ∈ Conf1,11(τ ). The maximizer trivially exists inside the confor-
mal class. However, if the starting metric g on M is a metric that is hyperbolic only in the
cusps, the differential equation for the curvature on the cusps is

−e2ϕ = �gϕ − 1.

This implies that in the cusps the function ϕ should decay at infinity as y−1. In this case, the
function ϕ is outside the conformal class under consideration. Therefore, in order to have
a maximizer of the relative determinant inside the conformal class, we need to be able to
define the relative determinant for Laplacians whose metrics have conformal factors e2ϕ with
ϕ having a decay as y−1 at infinity.

As it was mentioned in the introduction, in [1], Albin et al. consider renormalized determi-
nants of Laplacians on more general surfaces that also include swac. In that case, the authors
use Vaillant’s results in [20] to have an asymptotic expansion of the renormalized trace. The
conditions on the conformal factor imposed by Vaillant are different to ours, but conformal
factors that decay as y−1 at infinity are included. Then Ricci flow is used to prove existence
of the maximizer.

We could use the fact that if an operator is trace class, its trace coincides with its renormal-
ized trace. Thus, we could use Vaillant’s result to define our relative determinant in terms of
the renormalized determinant of the Laplacian and of the one of our model operator. However,
in the Ricci flow proof in [1], two different rescalings take place. When we consider relative
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determinants, re-scaling implies to modify the model operator as well. This is an interesting
open problem.

Acknowledgments This article is registered at the MPG, AEI-2012-200. This paper expands part of my
doctoral thesis. I thank my supervisor Werner Müller for his guidance. I am grateful to Rafe Mazzeo, Eugenie
Hunsicker, and Sylvie Paycha for helpful discussions and their interest in this work. The author thanks an
anonymous referee for the suggestions and comments. Finally, the author thanks the Mathematical Institute
at the University of Bonn for hosting her during her graduate studies.

Appendix A

In this appendix, we give the proof of Lemma 2.4. We prove the estimate of K1,h . The
estimate of Kh then follows by a standard gluing parametrix construction. We use the notation
introduced in Sect. 4.1 and Proposition 4.4. Let us recall Eq. (4.7):

K1,h(z, w, t) =
∑

m∈Z

kh (̃z, w̃ + m, t),

where π(̃z) = z, π(w̃) = w, and z̃ = (x1, y1) and w̃ = (x2, y2) can be chosen so that
0 ≤ xi ≤ 1.

We know that dh(z, w) = infm∈Z dĥ (̃z, w̃+m) ≤ dĥ (̃z, w̃+m) for all m ∈ Z. Then using
the estimate in Eq. (4.6) with constant c1 > 0 corresponding to the metric h, we obtain

K1,h(z, w, t) � t−1
∑

m∈Z

exp

(
−

c1d2
ĥ
(̃z, w̃ + m)

t

)

≤ t−1e− c1d2
h (z,w)
2t

∑

m∈Z

e−
c1d2

ĥ
(̃z,w̃+m)

2t

≤ t−1e− c1d2
h (z,w)
2t

⎛

⎝e− c2d2
ĝ
(̃z,w̃)

2t +
∑

m �=0

e− c2d2
ĝ
(̃z,w̃+m)

2t

⎞

⎠

Now we use the formula for the hyperbolic distance to estimate it; for m �= 0, we have

dĝ((x1, y1), (x2 + m, y2)) = cosh−1
(

1 + (x1 − x2 − m)2 + (y1 − y2)
2

2y1 y2

)

≥ log

(
1 + (x1 − x2 − m)2

2y1 y2

)
≥ log

(
1 + (|m| − 1)2

2y1 y2

)

since −1 ≤ x1 − x2 ≤ 1 and (|m| − 1)2 ≤ (x1 − x2 − m)2 ≤ (|m| + 1)2, if |m| �= 0. We
proceed now to estimate the series in the same way as in (4.11), but we do not need to restrict
the values of y1 and y2 to [1, a] any more. We keep the value y1 y2 in the estimates instead
of using the bound a2
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∑

|m|≥2

e− c2d2
ĝ
(̃z,w̃+m)

t ≤
∑

|m|≥1

e−
c2 log(1+ m2

2y1 y2
)2

2t

�
∞∫

1

e−
c2 log(1+ u2

2y1 y2
)2

2t du

� y1/2
1 y1/2

2 (1 + √
tect ) ≤ C(τ )y1/2

1 y1/2
2

for some constant C(τ ) that depends on τ, 0 < t ≤ τ . Putting all the terms together, we
obtain

K1,h(z, w, t) � t−1e− c1d2
h (z,w)
2t

⎛

⎝2 + e− c2d2
ĝ
(̃z,w̃)

2t +
∑

m �=0

e−
c1 log(1+ m2

2y1 y2
)2

2t

⎞

⎠

� t−1 y1/2
1 y1/2

2 e− c1d2
h (z,w)
2t .

For the derivatives of the heat kernel, we apply the results by Cheng et al. in [8, Theorems
6, 7], to (H, ĥ) that has bounded geometry. The fist two derivatives of the heat kernel K1,h

can be estimated in the same way as we did for the heat kernel. As the authors point out in [8],
the constant in each estimate will depend on the curvature of M and its covariant derivatives.

Appendix B

B1 Observation

In the proof of Theorem 3.1, we repeatedly make use of the following elementary facts:

(1) For any a > 0, and b, n,m ∈ R, we have that

m∫

n

e−ax2−bx dx = eb2/4a

√
a

√
a(m+ b

2a )∫

√
a(n+ b

2a )

e−v2
dv ≤

√
πeb2/4a

√
a

.

(2) For any c > 0, 0 < t ≤ T, k, � ≥ 0 with k + � > 2 we have

∞∫

1

∞∫

1

y−k y′−�e− c
t log(y/y′)2 dydy′ ≤ √

te(1−k)2t/c. (5.12)

(3) Let ϕ ∈ C∞(M), ψ = e−2ϕ − 1 and ψ̃ = e2ϕ − 1. If ϕ|Z (y, x),�gϕ|Z (y, x) and
|∇gϕ|g|Z (y, x) are O(y−k) as y → ∞, then so are ψ |Z (y, x),�gψ |Z (y, x), |∇gψ |g|Z

(y, x) and the analogs functions corresponding to ψ̃ .
(4) For a, b, c>0, the function f (t)= t−ae−ct−b

is bounded on (0,∞) and limt→0 f (t)=0.
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B2 Proof of the bounds of the integrals J1, J2 and J3 in Proposition 4.5

Let us start with J1 that is given by Eq. (4.18):

J1 =
t∫

0

∫

Za

∫

[1, 4a
5 ]×S1

ψ2(z)(K1,h(z, z′, s)+ ph,D(z, z′, s))e2ϕ(z′)

ψ(z′)�Z ,g(K1,g(z
′, z, t − s)+ p1,D(z

′, z, t − s)) d Ag(z
′) d Ag(z) ds.

Note that on this region a ≤ y < ∞ and 1 ≤ y′ ≤ 4a
5 , log(y/y′) is bounded away from

zero. Using the estimates of the heat kernels and their derivatives, we obtain

|J1| �
t∫

0

∞∫

a

4a
5∫

1

s−1(t − s)−2 y

(
e− c log(y/y′)2

s + e− c log(y)2

s e− c log(y′)2
s

)

y′−k+1
(

e− c log(y/y′)2
t−s + e− c log(y)2

t−s e− c log(y′)2
t−s

)
dy′

y′2
dy

y2 ds

� at−2

t/2∫

0

∞∫

a

s−1 y−1
(

e− c log(5y/4a)2

s + e− c log(y)2

s

)
dyds

+ at−1

t∫

t/2

∞∫

a

(t − s)−2 y−1
(

e− c log(5y/4a)2

t−s + e− c log(y)2

t−s

)
dyds.

Since y ≥ a > 5
4 , we have an estimate in s:

e− c log(5y/4a)2

s + e− c log(y)2

s ≤ e− c log(5/4)2

2s

(
e− c log(5y/4a)2

2s + e− c log(y)2

2s

)

and
∫∞

a y−1e− c log(5y/4a)2

2s dy = ∫∞
5
4
v−1e− c log(v)2

2s dv � √
s. We get a similar estimate for

t − s, and together these give

|J1| � at−2

t/2∫

0

s−1e− c log(5/4)2

2s

∞∫

5
4

y−1e− c log(y)2

2s dyds

+ at−1

t∫

t/2

(t − s)−2e− c log(5/4)2

2(t−s)

∞∫

5
4

y−1e− c log(y)2

2(t−s) dyds

� at−2

t/2∫

0

s−1/2e− c log(5/4)2

2s ds + at−1

t∫

t/2

(t − s)−3/2e− c log(5/4)2

2(t−s) ds

� at−2e− c log(5/4)2

4t

t/2∫

0

ds + at−1e− c log(5/4)2

2t

t∫

t/2

ds � a(t−1 + 1)ec1/t � ae− c′
t ,

for some constants c1, c′ > 0, where we also used part (4) of Observation B.1.
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For J2, we had reduced the problem to the following estimate:

|J2| �
t∫

t/2

‖MχZ 4a
5

Mψ�Z ,ge−(s/2)�Z ,g M−1
φ ‖2‖Mφe−(s/2)�Z ,g ‖2ds.

Now we proceed to estimate each of the HS norms appearing as integrand on the right-hand
side as follows:

‖MχZ 4a
5

Mψ�Z ,ge−(s/2)�Z ,g M−1
φ ‖2

2

=
∫

Z 4a
5

∫

Z

|ψ(z)�Z ,g K Z ,g(z, z′, s/2)φ(z′)−1|2d Ag(z
′)d Ag(z)

�
∞∫

4a
5

∞∫

1

y−2k yy′s−4
(

e− 4c
s (log(y/y′))2 + e− 4c

s (log(yy′))2
)

y′ dy′

y′2
dy

y2

= s−4

∞∫

4a
5

∞∫

1

y−2k−1e− 4c
s (log(y′/y))2 dy′dy

+ s−4

∞∫

4a
5

∞∫

1

y−2k−1e− 4c
s (log(y′))2 dy′dy.

The first integral in the last equality above can be estimated by fixing y and making the
change of variables v = log(y′/y), y′ = yev, dy′ = yevdv:

s−4

∞∫

4a
5

∞∫

− log(y)

y−2keve
−4c

s v2
dv dy � s−4e

s
4c

√
s

∞∫

4a
5

y−2k

∞∫

−∞
e−v2

dv dy

� s−7/2a−2k+1e
s

4c .

As for the second integral, we obtain in a similar way:

s−4

∞∫

4a
5

∞∫

1

y−2k−1e− 4c
s (log(y′))2 dy′ dy � s−7/2e

s
4c a−2k .

Thus,

‖MχZ 4a
5

Mψ�Z ,ge−s/2�Z ,g M−1
φ ‖2 � s−7/4

(
a−k + a−k+1/2

)
.
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For the operator Mφe−(s/2)�Z ,g , using Eq. (3.4) we have

‖Mφe−(s/2)�Z ,g ‖2
2

�
∞∫

1

∞∫

1

s−2 y−1 yy′ (e− 2c
s (log(y/y′))2 + e− 2c

s (log(yy′))2
)2 dy′

y′2
dy

y2

�
∞∫

1

∞∫

1

s−2 y′−1 y−2
(

e− 4c
s (log(y/y′))2 + e− 4c

s (log(yy′))2
)

dy′dy

� s−2√ses/4c + s−2

∞∫

1

y′−1e− 4c
s (log(y′))2 dy′ � s−3/2 (1 + es/4c) .

Since s ≤ t ≤ 1 we have that ‖Mφe−(s/2)�Z ,g ‖2 � s−3/4. It follows that

|J2| �
t∫

t/2

s−7/4(a−k + a−k+1/2) · s−3/4ds � a−k+1/2t−3/2.

Now, for J3, we have

J3 =
t∫

t/2

∫

Za

∫

Z 4a
5

ψ2(z)K Z ,h(z, z′, s)e2ϕ(z′)χZ 4a
5
(z′)

(�Z ,g −�Z ,h)z′ K Z ,g(z
′, z, t − s)d Ag(z

′)d Ag(z)ds.

Remember that �Z ,g − �Z ,h = (e2ϕ(z′) − 1)�Z ,h = ψ̃(z′)�Z ,h , so the previous equation
becomes:

J3 =
t∫

t/2

∫

Za

∫

Z 4a
5

{ψ2(z)K Z ,h(z, z′, s)χZ 4a
5
(z′)ψ̃(z′)

(�Z ,h K Z ,g(z
′, z, t − s))e−2ϕ(z)} d Ah(z

′) d Ah(z) ds

=
t∫

t/2

∫

Za

∫

Z 4a
5

{ψ2(z)(�Z ,h K Z ,h(z, z′, s)ψ̃(z′))χZ 4a
5
(z′)

K Z ,g(z
′, z, t − s)e−2ϕ(z)} d Ah(z

′) d Ah(z) ds

=
t∫

t/2

∫

Za

∫

Z 4a
5

{ψ2(z)e
−2ϕ(z)K Z ,g(z, z′, t − s)χZ 4a

5
(z′)

(�Z ,hψ̃(z
′)K Z ,h(z

′, z, s))} d Ah(z
′) d Ah(z) ds.
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Writing this in terms of the corresponding operators, we obtain

J3 =
t∫

t/2

Tr(Mψ2 Me−2ϕ e−(t−s)�Z ,g MχZ 4a
5

�Z ,h Mψ̃e−s�Z ,h )ds,

|J3| ≤
t∫

t/2

‖MχZ 4a
5

�Z ,h Mψ̃e−s�Z ,h ‖1 ds.

We are now working in L2(M, d Ah) therefore to simplify notation, we do not write the
subindex h in the trace and the HS norms. In the same way as above, we have

‖MχZ 4a
5

�Z ,h Mψ̃e−s�Z ,h ‖1 ≤ ‖MχZ 4a
5

�Z ,h Mψ̃e−s�Z ,h/2 Mφ−1‖2‖Mφe−s�Z ,h/2‖2

The kernel of the operator MχZ 4a
5

�Z ,h Mψ̃e−s�Z ,h/2 Mφ−1 is

χZ 4a
5
(z′)(�Z ,h(ψ̃(z

′)K Z ,h(z
′, z, s))φ(z)−1.

Using the decay assumptions on ϕ and its derivatives, we have that

|�Z ,h(ψ̃K Z ,h)|2 � |ψ̃�Z ,h K Z ,h |2 + |K Z ,h�Z ,hψ̃ |2 + 2|〈∇ψ̃,∇K Z ,h〉|2

� y′−2k+1 y(s−4 + s−2 + s−3)
(

e− c
s (log(y/y′))2 + e− c

s (log(yy′))2
)2
.

Since for 0 < s < 1 we have that s−4 + s−2 + s−3 � s−4, we can estimate the HS norm by

‖MχZ 4a
5

�Z ,h Mψ̃e−s�Z ,h/2 Mφ−1‖2
2

=
∫

Z

∫

Z

|χZ 4a
5
(z′)ψ̃(z′)�h,z′ Kh(z

′, z, s/2)φ(z)−1|2d Ah(z
′)d Ah(z)

� s−4

∞∫

1

∞∫

4a
5

y2 y′−2k+1
(

e− 2c
s (log(y/y′))2 + e− 2c

s (log(yy′))2
)2 dy′

y′2
dy

y2

� s−4

∞∫

4a
5

∞∫

1

(
y′−2k−1e− 4c

s (log(y/y′))2 + y′−2k−1e− 4c
s (log(y))2

)
dy dy′

� (a−2k+1 + a−2k)s−7/2es/4c � a−2k+1s−7/2.

We finally obtain

‖M−1
φ e−(s/2)�Z ,h ψ̃�h‖2 ≤ a−k+1/2s−7/4.

For the operator e−(s/2)�Z ,h Mφ , the proof goes in the same way as for the operator
Mφe−(s/2)�Z ,g . At the end, we obtain

‖e−s�Z ,h Mφ‖2 =
⎛

⎝
∫

Z

∫

Z

|K Z ,h(z, z′, s/2)φ(z′)|2d Ah(z
′)d Ah(z)

⎞

⎠
1/2

� s−3/4.
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In this way,

|J3| �
t∫

t/2

a−k+1/2s−7/4s−3/4ds � a−k+1/2t−3/2.
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