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cally supersymmetric higher-derivative chiral superfield actions. The theory admits

a ghost condensate vacuum in de Sitter spacetime. Expanded around this vacuum,

the scalar sector of the theory is shown to be ghost-free with no spatial gradient in-

stabilities. By direct calculation, the fermion sector is found to consist of a massless
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formations, we find that the chiral fermion transforms inhomogeneously, indicating

that the ghost condensate vacuum spontaneously breaks local supersymmetry with

this field as the Goldstone fermion. Although potentially able to get a mass through

the super-Higgs effect, the vanishing superpotential in the ghost condensate theory

renders the gravitino massless. Thus local supersymmetry is broken without the
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for, the direct calculation.
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I. INTRODUCTION AND SUMMARY

It was shown in [1] that certain scalar field theories with higher-derivative kinetic terms

can, when coupled to gravity, possess a vacuum that is ghost-free but violates the Null Energy

Condition (NEC) of general relativity. These “ghost condensate” vacua have a number of

important applications. For example, ekpyrotic [2–4] and other bouncing theories [5–8] of the

early universe require that spacetime “bounce” from a contracting to an expanding phase,

perhaps even oscillating cyclically [9, 10]. From the point of view of low-energy effective

field theory, these cosmologies require some form of matter that naturally violates the NEC

without introducing any ghosts or singularities in spacetime. Such forms of matter are rare–

ghost condensates [1] and the closely related Galileons [11] are currently the only known

scalar field examples. Ghost condensates were introduced in this context in new ekpyrotic

cosmology [12]. It was shown [12–14] that, given the appropriate potential and kinetic

energy functions, the early universe can go through a contracting ekpyrotic phase where a

nearly scale-invariant spectrum of scalar perturbations is produced [15] (with characteristic

non-Gaussian signatures [6, 14, 16–21]), followed by a ghost-condensate phase where the

universe bounces and enters the present epoch of expansion.

All of the above theories involve scalar fields coupled to gravity in the early universe

and, hence, it seems essential to understand their ultra-violet (UV) behavior. The quantum

divergences of both scalar theories and gravity are under better control within the context

of supersymmetry, supergravity and string theory. With this in mind, ghost condensate

theories were extended to global supersymmetry in [22]. Specifically, the globally N = 1

supersymmetric Lagrangian of a single chiral supermultiplet–containing a complex scalar

with two real components φ and ξ, a Weyl fermion χ and an auxiliary field F–was generalized

to include higher-derivative kinetic terms. This theory manifested the ghost condensate

vacuum which, due to the appropriate choice of higher-derivative interactions, retained the

auxiliary field structure of F , was free of spatial gradient instabilities of φ and had a canonical

kinetic energy for the second real scalar ξ. The kinetic energy of the fermion evaluated in this

condensate vacuum is ghost-free but has a negative spatial gradient term which, perhaps, is

physically acceptable. Be that as it may, to resolve this last issue the global supersymmetry

construction was extended to more generic higher-derivative interactions in [23]. This led

naturally to a globallyN = 1 supersymmetric theory of conformal Galileons [23]. Within this



3

context, it was shown that the ghost condensate still persisted with all of the appropriate

properties of the original supersymmetric theory but, now, with a correct sign fermion

kinetic energy as well. A final, and important, property of the globally supersymmetric

ghost condensate vacuum is that it spontaneously breaks supersymmetry. This occurs, not

through an expectation value for the F term, but, rather, due to the explicit time-dependence

of the scalar condensate.

These globally supersymmetric condensate theories, although using their eventual in-

teraction with gravity as a motivation for some of their properties, were not a complete

coupling to supergravitation. In this paper, we accomplish this by explicitly coupling the

higher-derivative chiral superfield Lagrangians introduced in [22] to localN = 1 supergravity.

Explicitly we will do the following. After reviewing both scalar and globally supersymmetric

ghost condensates in Sections II and III respectively, the basic N = 1 supergravity ghost

condensate Lagrangian is introduced. This is accomplished in Section IV using the gen-

eral formalism of higher-derivative chiral superfield actions coupled to N = 1 supergravity

introduced in [24, 25]. We begin by constructing the Lagrangian, both in superfields and

components, for a single chiral superfield with the simplest higher-derivative kinetic term

coupled to supergravity. By appropriately choosing the Kähler potential–in the present pa-

per we do not require a superpotential–solving for the auxiliary fields and Weyl rescaling,

the proposed component field supergravity Lagrangian for a ghost condensate theory is pre-

sented. This is shown to indeed admit a ghost condensate vacuum in de Sitter spacetime

with vanishing gravitino and χ fermions. The quadratic scalar Lagrangian is evaluated in the

condensate vacuum exposing two possible problems–a potential gradient instability in the

scalar φ and an unacceptable kinetic energy for its partner scalar field ξ, which we address

later in the paper.

In the following subsection, the gravitino and χ kinetic energies and mass terms are pre-

sented. By appropriate field redefinition, these are diagonalized and shown to correspond to

a massless fermion χ and a massless gravitino. This result is then interpreted and explained

within the context of the fermion supergravity transformations, which are reviewed in Ap-

pendix A. As in the global case, the supergravity ghost condensate spontaneously breaks

supersymmetry due to the explicit time-dependence of the scalar φ. This renders the su-

persymmetry transformation of χ inhomogeneous–signaling the breaking of supersymmetry.

However, we show that, as in a Minkowski spacetime vacuum, the gravitino can be redefined
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so that it transforms homogeneously. Hence, χ is the massless Goldstone fermion. The

super-Higgs effect is discussed in detail. We find that, even though supersymmetry has been

spontaneously broken, the gravitino remains massless due to the vanishing of the superpoten-

tial and thus the usual super-Higgs effect (by which the gravitino becomes massive) does not

take place. These results give an explanation for those obtained by direct diagonalization of

the quadratic fermion Lagrangian. Having understood the fermion kinetic and mass terms,

we then return in the next subsection to the problems of the φ spatial gradient instability

and the wrong sign ξ kinetic energy. We present explicit additional supersymmetric terms

that, when added to the supergravity Lagrangian, solve both of these problems. Their effect

on the ghost condensate vacuum is to make a small shift in the scales of both the condensate

and the de Sitter spacetime. The calculation of the requisite component field Lagrangians

is presented in detail in Appendix B. Finally, it is shown that these additional terms, while

possibly modifying the coefficients of the diagonal gravitino and χ kinetic energies, still leave

the gravitino and χ as massless fermions. This is accomplished using the generalized fermion

transformations presented in Appendix A.

The results of this paper prove the existence of a consistent N = 1 supergravity ghost

condensate theory. Although ghost-free, the χ kinetic energy continues to manifest a negative

spatial gradient term. It is of interest, therefore, to extended and generalize the results of

this paper to a theory of supersymmetric conformal Galileons coupled to supergravitation–

this will appear elsewhere. It is of interest to note that conformal scalar Galileons can occur

on the worldvolume of branes [26] and AdS “kink” solitons [27]. Furthermore, it was shown

in [28] that the bosonic components of N = 1 supergravity Galileons also appear naturally

on the worldvolume of BPS wrapped five-branes in heterotic superstring constructions [29–

33]. It is tempting to conjecture, therefore, that string soliton worldvolume theories can

manifest a ghost condensate solution–thus naturally violating the NEC in a UV complete

superstring context. This is presently under study.

II. SCALAR GHOST CONDENSATION

Let gmn be a (− + ++) Lorentz signature metric of four-dimensional spacetime with

coordinates xm and consider a real scalar field φ. Denote its standard kinetic term by

X = −1
2
(∂φ)2. A ghost condensate vacuum arises from higher-derivative theories of the
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form

L =
√−gP (X) , (II.1)

where P (X) is an arbitrary differentiable function of X . In a flat Friedmann-Robertson-

Walker (FRW) spacetime with metric ds2 = −dt2 + a(t)2δijdx
idxj , and assuming φ to be

dependent on time alone, the scalar equation of motion becomes

d

dt

(

a3P,X φ̇
)

= 0 . (II.2)

Clearly this has a trivial solution when φ = constant. Of more interest is the solution with

non-constant φ, but for which

X =
1

2
φ̇2 = constant, P,X = 0 . (II.3)

Denoting by Xext a constant extremum of P (X), the equation of motion admits the ghost

condensate solution

φ = ct , (II.4)

where c2 = 2Xext.

The explicit time-dependence of this solution spontaneously breaks Lorentz invariance

and leads to a number of interesting properties. First of all, evaluating the energy and

pressure densities one finds

ρ = 2XP,X − P, p = P ⇒ ρ+ p = 2XP,X . (II.5)

Since by definition X > 0, it follows that the Null Energy Condition (the NEC corresponds

to the requirement ρ + p ≥ 0) can be violated if P,X < 0. That is, if we are close to

an extremum for P (X), then on one side the NEC is satisfied while on the other it is

not. Correspondingly, since Einstein’s equations imply Ḣ = −1
2
(ρ + p), it is now possible

to obtain a non-singular bouncing universe–where H increases from negative to positive

values. Crucial in determining the viability of this theory is the question of whether or not

this NEC-violating solution is “stable”. To this end, let us expand Lagrangian (II.1) to
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quadratic order in perturbations around the ghost condensate,

φ = ct + δφ(xm) . (II.6)

We find that
L√−g =

1

2

(

(2XP,XX + P,X)( ˙δφ)2 − P,Xδφ
,iδφ,i

)

. (II.7)

As a result of Lorentz breaking, the coefficients in front of the time and space pieces are

unequal. By inspection, one sees that the condition for the absence of ghosts is that

2XP,XX + P,X > 0 , (II.8)

which can be achieved around a local minimum

P,XX > 0 (II.9)

even in the NEC-violating region where P,X is small but negative. Henceforth, one imposes

(II.9) in addition to (II.3) on the ghost condensate vacuum. This feature is arguably the

most striking property of ghost condensate theories, namely, that the NEC can be violated

without the appearance of ghosts.

However, in the NEC violating region the coefficient in front of the spatial derivative

term in (II.7) has the wrong sign. Therefore, the theory suffers from gradient instabilities.

These can be softened by adding (small) higher-derivative terms–not of the P (X) type–to

the Lagrangian, such as −(�φ)2. These modify the dispersion relation for δφ at high mo-

menta and suppress instabilities for a short–but sufficient–period of time. In a cosmological

context, there are additional constraints arising from a study of the growth of cosmological

perturbations, which imply that a non-singular bounce must be fast in order to avoid per-

turbations from becoming uncontrollably large [34, 35]. The bottom line is that bouncing

universe solutions via a ghost condensate are admissible, but the bounce is required to occur

on a fast time-scale–for more details, see [12].
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III. REVIEW OF GLOBALLY N = 1 SUPERSYMMETRIC GHOST

CONDENSATION

A. Higher-Derivative Chiral Superfield Lagrangians

As shown in [22], the scalar ghost condensate theory can be extended to global N = 1

supersymmetry. In this paper, we will adopt the notation and conventions of Wess and Bag-

ger [36]. A point in flat N = 1 superspace is labelled by the ordinary spacetime coordinates

xm and the Grassmann spinor coordinates θα,θ̄α̇. One can define superspace derivatives

Dα =
∂

∂θα
+ iσm

αα̇θ̄
α̇∂m D̄α̇ = − ∂

∂θ̄α̇
− iθασm

αα̇∂m (III.1)

satisfying the supersymmetry algebra

{Dα, D̄α̇} = −2iσm
αα̇∂m . (III.2)

A chiral superfield Φ is defined by the constraint that

D̄α̇Φ = 0. (III.3)

It can be expanded in terms of θα,θ̄α̇ as

Φ = A+ iθσmθ̄A,m +
1

4
θθθ̄θ̄�A + θθF +

√
2θχ− i√

2
θθχ,mσ

mθ̄ , (III.4)

where the component fields are a complex scalar A(x), an auxiliary field F (x) and a spinor

χα(x), each being functions of the ordinary space-time coordinates xm. Spinor indices which

we do not write out explicitly are understood to be summed according to the convention

χθ = χαθα and χ̄θ̄ = χ̄α̇θ̄
α̇.

The highest (θθθ̄θ̄) component of a superfield is automatically invariant under supersym-

metry transformations (up to a total spacetime derivative) and, thus, can be used to define

a supersymmetric Lagrangian. To isolate the highest component, one can either integrate

over the four fermonic coordinates of superspace with the differential d4θ ≡ d2θd2θ̄, or act

on the superfield with four superspace derivatives D2D̄2. Both procedures are equivalent.
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As an example, the ordinary supersymmetric kinetic Lagrangian for chiral superfield (III.4)

is given by

LΦ†Φ =

∫

d4θΦ†Φ = Φ†Φ |θθθ̄θ̄= −∂A · ∂A∗ + F ∗F +
i

2
(χ,mσ

mχ̄− χσmχ̄,m) . (III.5)

Defining the complex scalar A in terms of two real scalars φ, ξ as

A =
1√
2
(φ+ iξ) , (III.6)

this Lagrangan becomes

LΦ†Φ = −1

2
(∂φ)2 − 1

2
(∂ξ)2 + F ∗F +

i

2
(χ,mσ

mχ̄− χσmχ̄,m) . (III.7)

Clearly (III.5) is the global N = 1 supersymmetric extension of X = −1
2
(∂φ)2 appearing in

the scalar ghost condensate Lagrangian.

To continue, one must provide a global supersymmetric extension of X2 as well. This

was analyzed in [22] and found, to quadratic order in the spinor χ, to be given by

LDΦDΦD̄Φ†D̄Φ† =
1

16
DΦDΦD̄Φ†D̄Φ†∣

∣

θθθ̄θ̄

= (∂A)2(∂A∗)2 − 2F ∗F∂A · ∂A∗ + F ∗2F 2

− i

2
(χσmσ̄lσnχ̄,n)A,mA

∗
,l +

i

2
(χ,nσ

nσ̄mσlχ̄)A,mA
∗
,l

+iχσmχ̄,nA,mA
∗
,n − iχ,mσnχ̄A,mA

∗
,n +

i

2
χσmχ̄(A∗

,m�A−A,m�A
∗) (III.8)

+
1

2
(F�A− ∂F∂A)χ̄χ̄+

1

2
(F ∗

�A∗ − ∂F ∗∂A∗)χχ

+
1

2
FA,m(χ̄σ̄

mσnχ̄,n − χ̄,nσ̄
mσnχ̄) +

1

2
F ∗A∗

,m(χ,nσ
nσ̄mχ− χσnσ̄mχ,n)

+
3i

2
F ∗F (χ,mσ

mχ̄− χσmχ̄,m) +
i

2
χσmχ̄(FF ∗

,m − F ∗F,m) .

Written in terms of φ, ξ using (III.6), the pure A term in this Lagrangian becomes

(∂A)2(∂A∗)2 =
1

4
(∂φ)4 +

1

4
(∂ξ)4 − 1

2
(∂φ)2(∂ξ)2 + (∂φ · ∂ξ)2. (III.9)

It follows that (III.8) is a gobal N = 1 supersymmetric extension of the X2 term in the scalar
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ghost condensate Lagrangian. As discussed in [37], there is an alternative supersymmetric

extensions of X2 given by

− 1

16
(Φ− Φ†)2D̄DΦDD̄Φ† . (III.10)

However, (III.8) has two properties that render it the appropriate choice. First, it uniquely

has the property that when the fermion χ is set to zero, the only non-vanishing term is the

top θθθ̄θ̄ component. This makes (III.8) useful in constructing higher-derivative terms that

include X2, a property we will need below. Second, when extended to supergravity–as we

will do in the next section–only (III.8) leads to minimal coupling of φ, ξ to gravity. The

Lagrangian (III.10), on the other hand, produces a derivative interaction φ2(∂ξ)2R of the

chiral scalars with the Ricci scalar R.

B. The Supersymmetric Ghost Condensate

Using (III.5),(III.7) and (III.8),(III.9), one can now present the global N = 1 supersym-

metric extension of the prototypical scalar ghost condensate Lagrangian P (X) = −X +X2,

with Xext =
1
2
. Since this scalar Lagrangian is purely kinetic with no potential energy, there

is no need to consider a superpotential W. This simplifies things, as

W = 0 ⇒ F = 0 (III.11)

in the supersymmetric extension. The result, to quadratic order in the fermion χ, is then

given by

LSUSY =
(

− Φ†Φ +
1

16
DΦDΦD̄Φ†D̄Φ†

)
∣

∣

∣

θθθ̄θ̄

= +
1

2
(∂φ)2 +

1

4
(∂φ)4 +

1

2
(∂ξ)2 +

1

4
(∂ξ)4 − 1

2
(∂φ)2(∂ξ)2 + (∂φ · ∂ξ)2 (III.12)

− i

2
(χ,mσ

mχ̄− χσmχ̄,m)−
1

2
(∂φ)2

i

2
(χ,mσ

mχ̄− χσmχ̄,m)

− φmφ,n
i

2
(χ,nσmχ̄− χσmχ̄,n).
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It was shown in [22] that the associated equations of motion continue to admit a ghost

condensate vacuum of the form

φ = ct , ξ = 0 , χ = 0 (III.13)

for arbitrary real constant c. Recalling, however, that P,X must vanish in a cosmological

context, we henceforth restrict to c = 1.

To assess the stability of the supersymmetric ghost condensate, one can expand in small

fluctuations around this background as

φ = t+ δφ(t, ~x) , ξ = δξ(t, ~x) , χ = δχ(t, ~x) . (III.14)

The result, to quadratic order, is

LSUSY = ( ˙δφ)2 + 0 · δφ,iδφ,i

+ 0 · (δ̇ξ)2 + δξ,iδξ,i (III.15)

+
1

2

i

2

(

δχ,0σ
0δχ̄− δχσ0δχ̄,0

)

− 1

2

i

2

(

δχ,iσ
iδχ̄− δχσiδχ̄,i

)

.

Each line illustrates an important issue to be addressed in supersymmetric ghost conden-

sation. Note from the first line that δφ has a ghost-free time derivative term, but that the

spatial gradient term is vanishing. This reproduces the standard result for a scalar ghost

condensate at the minimum of P (X). It follows from the discussion in Section II that δφ will

develop a small, negative spatial gradient term in the NEC violating region where P,X < 0.

For the scalar ghost condensate, this is easily cured by including other higher-derivative

terms not of the P (X) type–the simplest being −(�φ)2. This gradient stabilizing term can

be extended to global N = 1 supersymmetry using the fact, stated above, that when the

fermion χ is set to zero, the only non-vanishing term in DΦDΦD̄Φ†D̄Φ† is the top θθθ̄θ̄

component. The appropriate extension was computed in [22] and shown to be

− 1
211
DΦDΦD̄Φ†D̄Φ†

(

{D, D̄}{D, D̄}(Φ + Φ†)
)2∣
∣

∣

θθθ̄θ̄
= −(�φ)2

(

1
4
(∂φ)4 + 1

4
(∂ξ)4

+(∂φ · ∂ξ)2 − 1
2
(∂φ)2(∂ξ)2

)

, (III.16)
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where we have set F = 0 and kept only those terms required to analyze the existence and

stability of the ghost condensate. We have not displayed terms quadratic in the fermion χ

since each is multiplied by at least one power of �φ and, hence, will vanish in the condensate

vacuum. When this is added to Lagrangian (III.12), the modified equations of motion for

the component fields continue to admit the ghost condensate solution (III.13) with c = 1.

Expanding around this vacuum using (III.14) and (∂φ)2 = −1, we find to quadratic order

that (III.16) becomes

− 1

4
(�δφ)2 . (III.17)

Hence, the first line in the component field Lagrangian is now

LSUSY = ( ˙δφ)2 + 0 · δφ,iδφ,i −
1

4
(�δφ)2 + . . . , (III.18)

which softens gradient instabilities by modifying the dispersion relation for φ, just as in the

usual non-supersymmetric ghost condensate [1]. We note that the coefficient in front of the

(�φ)2 term has been chosen for convenience here. A wide range of numerical values is in

fact possible – see [12] for a detailed description of the associated bounds.

The second line in (III.15) indicates that the time derivative term in the δξ kinetic

energy vanishes, while the spatial gradient term has the wrong sign. This result is new to

the supersymmetric extension and, again, must be cured by adding supersymmetric higher-

derivative terms. Using the unique properties of DΦDΦD̄Φ†D̄Φ†, these were derived in [22]

and, to quadratic order in ξ, found to be

+
8

162
DΦDΦD̄Φ†D̄Φ†

(

{D, D̄}(Φ− Φ†){D, D̄}(Φ† − Φ)
)
∣

∣

∣

θθθ̄θ̄

− 4

163
DΦDΦD̄Φ†D̄Φ†

(

{D, D̄}(Φ + Φ†){D, D̄}(Φ− Φ†)
)(

{D, D̄}(Φ + Φ†){D, D̄}(Φ† − Φ)
)
∣

∣

∣

θθθ̄θ̄

= −2(∂φ)4(∂ξ)2 − (∂φ)4(∂φ · ∂ξ)2 . (III.19)

Again, we have displayed only those terms required to analyze the existence and stability

of the ghost condensate. When these are added to the Lagrangian, the modified equations

of motion continue to admit the ghost condensate vacuum (III.13) with c = 1. Expanding
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around this vacuum using (III.14), (III.19) becomes

− 2(∂δξ)2 − (δ̇ξ)2 . (III.20)

Hence, the second line in the component field Lagrangian is now

LSUSY = · · ·+ (δ̇ξ)2 − δξ,iδξ,i + . . . , (III.21)

which is a Lorentz invariant, correct sign kinetic energy for δξ.

Finally, consider the χ kinetic terms in the third line of (III.15). Although the coefficients

are of equal magnitude, the time derivative term is ghost-free while the spatial gradient

term has the wrong sign. Using globally supersymmetric extensions of P (X) theories, we

have been unable to change the sign of the fermion spatial gradient term while leaving the

time derivative term ghost-free. As discussed in [22], we remain agnostic about whether

or not this wrong sign spatial fermion kinetic term is a physical problem. This issue will

be further explored within the context of the spontaneous breaking of both global and

local supersymmetry. It might be worth pointing out though that by extending the ghost

condensate model to Galileon theories, the same vacuum solution admits correct-sign, ghost-

free fluctuations [23].

For completeness, we present the entire globally supersymmetric extension of the ghost

condensate theory, combining all of the terms discussed independently above. The result is

LSUSY = −Φ†Φ |θθθ̄θ̄ +
1

16
DΦDΦD̄Φ†D̄Φ† |θθθ̄θ̄

+DΦDΦD̄Φ†D̄Φ†

[

− 1

211

(

{D, D̄}{D, D̄}(Φ + Φ†)
)2

+
1

25
{D, D̄}(Φ− Φ†){D, D̄}(Φ† − Φ) (III.22)

− 1

210

(

{D, D̄}(Φ + Φ†){D, D̄}(Φ− Φ†)
)2
]
∣

∣

∣

∣

∣

θθθ̄θ̄

.

In components, writing out all the terms that are relevant for a stability analysis in a ghost

condensate background, this corresponds to

LSUSY = +
1

2
(∂φ)2 +

1

4
(∂φ)4 − 1

4
(∂φ)4(�φ)2
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+
1

2
(∂ξ)2 − 1

2
(∂φ)2(∂ξ)2 − 2(∂φ)4(∂ξ)2 + (∂φ · ∂ξ)2 − (∂φ)4(∂φ · ∂ξ)2 (III.23)

+
i

2
(χ,mσ

mχ̄− χσmχ̄,m)
(

− 1− 1

2
(∂φ)2

)

− φmφ,n
i

2
(χ,nσmχ̄− χσmχ̄,n) .

C. A New Form of Supersymmetry Breaking

The supersymmetric ghost condensate manifests another important property. Consider

the supersymmetry transformation of the spinor,

δχ = i
√
2σmζ̄∂mA+

√
2ζF . (III.24)

Ordinarily, spontaneous breaking of supersymmetry is achieved by having a non-zero, con-

stant vev of the dimension-two auxiliary field F , thus rendering the transformation inho-

mogeneous. The spinor χ then becomes the Goldstone fermion of the spontaneously broken

supersymmetry.

With the supersymmetric ghost condensate, we find ourselves in a new situation. In this

vacuum, the vev of F vanishes. Now, however, supersymmetry is broken by the scalar field

A getting a non-zero and, moreover, linearly time-dependent vev 〈Ȧ〉 = 〈φ̇〉/
√
2 = c/

√
2,

where we restore the arbitrary dimension-two constant. Therefore,

δχ = i
√
2σmζ̄∂mA = iσ0ζ̄c . (III.25)

As previously, the fermion transforms inhomogeneously and, hence, supersymmetry is spon-

taneously broken. For the ghost condensate, however, the inhomogeneous term arises from

the linear time-dependent vev of φ rather than from the F -term. The scale of supersym-

metry breaking corresponds to the scale of the ghost condensate. It is of interest to explore

this mechanism within the context of supergravity. There, one might expect the Goldstone

fermion to be eaten by the gravitino, and to render the latter massive. However, because

of the wrong-sign spatial kinetic term of the spinor and other properties of the ghost con-

densate background–as discussed in the previous subsection–there may well be subtleties

involved. We will return to this intriguing question in the next section.
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IV. THE GHOST CONDENSATE IN N = 1 SUPERGRAVITY

In this section, we couple the globally supersymmetric Lagrangian given in (III.22) to

N = 1 supergravity and discuss the ghost condensate vacuum in this context. As above, only

those terms in the component field Lagrangian that have up to two fermions are presented–

since this is all that is required to discuss the supergravity ghost condensate.

A. The Chiral Superfield Lagrangian in Supergravity

In [24], it was shown that a global N = 1 supersymmetric Lagrangian of the form

LSUSY = K(Φ,Φ†) |θθθ̄θ̄ +
1

16
DΦDΦD̄Φ†D̄Φ†T (Φ,Φ†, ∂mΦ, ∂nΦ

†) |θθθ̄θ̄

+
(

W (Φ) |θθ +W †(Φ†) |θ̄θ̄
)

, (IV.1)

where K is any real function of Φ,Φ†, T is an arbitrary hermitian function of Φ,Φ† with any

number of their spacetime derivatives (with all derivative indices contracted) and W is an

arbitrary holomorphic function of Φ, can be consistently coupled to supergravity1. This was

accomplished within the context of curved superspace, following the notation and formalism

introduced in [36]. Suffice it here to say that a point in curved N = 1 superspace is labelled

by (xm,Θα, Θ̄α̇) and that the chiral projector is D̄2−8R, where D̄α̇ is a spinorial component

of the curved superspace covariant derivative DA = (Da,Dα, D̄α̇) and R is the curvature

superfield2. In its component expansion, R contains the Ricci scalar R and the gravitino

ψm, as well as the auxiliary fields of supergravity–namely a complex scalar M and a real

vector bm. The components in the Θ expansion of R are

R = −1

6
M − 1

6
Θα

(

σαα̇
aσ̄bα̇βψabβ − iσαα̇

aψ̄a
α̇M + iψaαb

a
)

+ΘαΘα

( 1

12
R− 1

6
iψ̄a

α̇σ̄
bα̇βψabβ −

1

9
MM∗ − 1

18
baba +

1

6
iea

mDmb
a (IV.2)

− 1

12
ψ̄α̇ψ̄

α̇M +
1

12
ψa

ασαα̇
aψ̄c

α̇bc − 1

48
εabcd

[

ψ̄aα̇σ̄b
α̇βψcdβ + ψa

ασαα̇bψ̄cd
α̇
]

)

.

1 Related work of interest includes [38–44].
2 All covariant derivatives used in this paper contain the superspin connection only. The U(1) connection

associated with Kähler transformations–sometimes absorbed into the covariant derivatives in [36]–are, in

this paper, always written out explicitly.
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A second superfield that we will need is the chiral density E . This contains the determinant

of the vierbein eam, as well as M and ψm. Its component expansion is

2E = e
(

1 + iΘασαα̇
aψ̄a

α̇ −ΘαΘα

[

M∗ + ψ̄aα̇σ̄
abα̇

β̇ψ̄b
β̇
]

)

. (IV.3)

In terms of these quantities, the N = 1 supergravity extension of Lagrangian (IV.1) is

LSUGRA =

∫

d2Θ2E
[3

8
(D̄2 − 8R)e−K/3 − 1

8
(D̄2 − 8R)(DΦDΦD̄Φ†D̄Φ†T )

+W (Φ)
]

+ h.c. (IV.4)

Partially expanded in component fields, this becomes

LSUGRA =
[

− 3

32
e(D2D̄2e−K/3) + i

3

16
eψ̄aα̇σ̄

aα̇α(DαD̄2e−K/3)− 3

8
e
(

M∗ + ψ̄aσ̄
abψ̄b

)

(D̄2e−K/3)

−1

8
eM(D2e−K/3) + i

1

4
e(ψ̄aσ̄

a)α(Dαe
−K/3)− 1

4
e
(

ψabσ
bψ̄a + iMψ̄aσ̄

a + iψab
a
)α
(Dαe

−K/3)

+
1

32
eD2D̄2(DΦDΦD̄Φ†D̄Φ†T )− 1

16
ei(ψ̄aσ̄

a)αDαD̄2(DΦDΦD̄Φ†D̄Φ†T )

+
1

8
e
(

M∗ + ψ̄aσ̄
abψ̄b

)

D̄2(DΦDΦD̄Φ†D̄Φ†T ) +
1

24
eMD2(DΦDΦD̄Φ†D̄Φ†T )

]
∣

∣

∣
+ h.c.

+e
(

− 1

2
R− 1

3
|M |2 + 1

3
baba +

1

4
εabcd(ψ̄aσ̄bψcd − ψaσbψ̄cd)

)

e−K(A,A∗)/3 (IV.5)

+eF∂W (A) + eF ∗(∂W (A))∗ − 1

2
eχ2∂2W (A)− 1

2
eχ̄2(∂2W (A))∗

− 1√
2
eiχσaψ̄a∂W (A)− 1√

2
eiχ̄σ̄aψa(∂W (A))∗

−e
(

M∗ + ψ̄aσ̄
abψ̄b

)

W (A)− e
(

M + ψaσ
abψb

)

W (A)∗

where
∣

∣ specifies taking the lowest component of the superfield and

ψmn
α = D̃mψn

α − D̃nψm
α, D̃mψn

α = ∂mψn
α + ψn

βωmβ
α . (IV.6)

Since we are interested in the supergravity extension of the ghost condensate, we can, as in

the globally supersymmetric case, set W = 0. It then follows from their equations of motion

that both

F =M = 0 (IV.7)
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in our zero-fermion background. This simplifies the Lagrangian (IV.5), which now becomes

LSUGRA =
[

− 3

32
e(D2D̄2e−K/3) + i

3

16
eψ̄aα̇σ̄

aα̇α(DαD̄2e−K/3)− 3

8
eψ̄aσ̄

abψ̄b(D̄2e−K/3)

+i
1

4
e(ψ̄aσ̄

a)α(Dαe
−K/3)− 1

4
e
(

ψabσ
bψ̄a + iψab

a
)α
(Dαe

−K/3)

+
1

32
eD2D̄2(DΦDΦD̄Φ†D̄Φ†T )− 1

16
ei(ψ̄aσ̄

a)αDαD̄2(DΦDΦD̄Φ†D̄Φ†T )

+
1

8
eψ̄aσ̄

abψ̄bD̄2(DΦDΦD̄Φ†D̄Φ†T )
]
∣

∣

∣
+ h.c. (IV.8)

+e
(

− 1

2
R+

1

3
baba +

1

4
εabcd(ψ̄aσ̄bψcd − ψaσbψ̄cd)

)

e−K(A,A∗)/3 .

Note that the auxiliary field ba = ema bm remains undetermined. To proceed, one must

evaluate the lowest component of each superfield term.

Evaluating the first term in (IV.4), we find after integration by parts that

1

e
LSUGRA

K(Φ,Φ†) =
1

e

[

∫

d2Θ2E 3
8
(D̄2 − 8R)e−K/3

]

+ h.c.

=
(

− 1

2
R+

1

3
baba +

1

4
εabcd(ψ̄aσ̄bψcd − ψaσbψ̄cd)

)

e−K(A,A∗)/3

+ 3|∂A|2(e−K/3),AA∗ + iba
(

A,a(e
−K/3),A − A∗

,a(e
−K/3),A∗

)

− i
1√
2
ba
(

ψaχ(e
−K/3),A − ψ̄aχ̄(e

−K/3),A∗
)

−
√
2χσmnψmn(e

−K/3),A −
√
2χ̄σ̄mnψ̄mn(e

−K/3),A∗ (IV.9)

− i
3

2
ψaσ

abσcψ̄bA,c(e
−K/3),A − i

3

2
ψ̄aσ̄

abσ̄cψbA
∗
,c(e

−K/3),A∗

+
1

2
χσaχ̄ba(e

−K/3),AA∗ + i
3

2

(

χσaea
mDmχ̄ + χ̄σ̄aea

mDmχ
)

(e−K/3),AA∗

+
3

2

√
2A∗

,bψaσ
bσ̄aχ(e−K/3),AA∗ +

3

2

√
2A,bψ̄aσ̄

bσaχ̄(e−K/3),AA∗

− 3

2
(∂A)2(e−K/3),AA − 3

2
(∂A∗)2(e−K/3),A∗A∗

+ i
3

2
χσaχ̄

(

A∗
,a(e

−K/3),AA∗A∗ − A,a(e
−K/3),AAA∗

)

Note that this corresponds to the supergravitational −X term in (III.22) if one chooses

K(Φ,Φ†) = −ΦΦ† . (IV.10)

The second term in (IV.4) depends on the arbitrary hermitian function T . As a first step,
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let us choose T = τ/16 where τ is a real constant. For τ = 1, the second term in (IV.4)

corresponds to the supergravitational X2 term in (III.22). It is useful, however, to introduce

τ as a “marker” indicating the component terms arising from this part of the Lagrangian.

We will set τ = 1 at the end of the calculation. Evaluating this second term gives

1

e
LSUGRA

DΦDΦD̄Φ†D̄Φ†,τ =
1

e

(

− τ

27

∫

d2Θ2E(D̄2 − 8R)(DΦDΦD̄Φ†D̄Φ†)
)

+ h.c.

=
(

+
τ

29
D2D̄2(DΦDΦD̄Φ†D̄Φ†)− τ

28
i(ψ̄aσ̄

a)αDαD̄2(DΦDΦD̄Φ†D̄Φ†)

+
τ

27
ψ̄aσ̄

abψ̄bD̄2(DΦDΦD̄Φ†D̄Φ†)
)
∣

∣

∣
+ h.c.

= +τ(∂A)2(∂A∗)2 − 1

2

√
2τψ̄aσ̄

aσcχ̄A∗
,c(∂A)

2 − 1

2

√
2τχσcσ̄aψaA,c(∂A

∗)2

−
√
2τ(∂A∗)2A,mχψ

m −
√
2τ(∂A)2A∗

,mψ̄
mχ̄

− i

2
τχσaχ̄A,aeb

mDmA
∗
,b +

5

6
τχσaχ̄A,aA

∗
,bb

b (IV.11)

+
i

2
τχσaχ̄A∗

,aeb
mDmA,b +

5

6
τχσaχ̄A∗

,aA,bb
b

−iτ(Dmχ)σ
bχ̄A,mA∗

,b +
√
2τψ̄aσ̄

cσbχ̄A,aA∗
,bA,c +

1

3
τχ̄σ̄bσcσ̄aχb

cA,aA∗
,b

+iτχσb(Dmχ̄)A
∗,mA,b +

√
2τχσbσ̄cψaA

∗,aA,bA
∗
,c

− i

2
τχσaσ̄bσm(Dmχ̄)A,aA

∗
,b −

1

12
τχσaσ̄bσcχ̄bcA,aA

∗
,b

+
i

2
τ(Dmχ)σ

mσ̄bσaχ̄A∗
,aA,b −

1

12
τχσcσ̄bσaχ̄bcA

∗
,aA,b .

The basic N = 1 supergravity Lagrangian for the ghost condensate is obtained by adding

(IV.9) and (IV.11). Note that it contains the supergravity auxiliary field bm, which can be

eliminated from the Lagrangian using its equation of motion. This is found to be

bm =− 3

2
i
(

A,m(e
−K/3),A −A∗

,m(e
−K/3),A∗

)

eK/3 − 3

4
χσmχ̄(e

−K/3),AA∗eK/3

+
3

4

√
2i
(

ψmχ(e
−K/3),A − ψ̄mχ̄(e

−K/3),A∗
)

eK/3

− 5

4
τχσaχ̄

(

A,aA
∗
,m + A∗

,aA,m

)

eK/3 (IV.12)

+
1

2
τχσaσ̄mσ

bχ̄A,aA
∗
,be

K/3

+
1

8
τ
(

χσaσ̄bσmχ̄+ χσmσ̄
aσbχ̄

)

A,aA
∗
,be

K/3 .

Plugging (IV.12) back into the sum of the Lagrangians, and keeping only the terms contain-
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ing at most two fermions, this results in the expression

1

e
LSUGRA

T=τ/16 =
1

e

∫

d2Θ2E
[3

8
(D̄2 − 8R)e−K/3 − τ

27
(D̄2 − 8R)(DΦDΦD̄Φ†D̄Φ†)

]

+ h.c.

=
(

− 1

2
R+

1

4
εabcd(ψ̄aσ̄bψcd − ψaσbψ̄cd)

)

e−K(A,A∗)/3 + 3|∂A|2(e−K/3),AA∗

−
√
2χσmnψmn(e

−K/3),A −
√
2χ̄σ̄mnψ̄mn(e

−K/3),A∗

− i
3

2
ψaσ

abσcψ̄bA,c(e
−K/3),A − i

3

2
ψ̄aσ̄

abσ̄cψbA
∗
,c(e

−K/3),A∗

+ i
3

2

(

χσaea
mDmχ̄ + χ̄σ̄aea

mDmχ
)

(e−K/3),AA∗

+
3

2

√
2A∗

,bψaσ
bσ̄aχ(e−K/3),AA∗ +

3

2

√
2A,bψ̄aσ̄

bσaχ̄(e−K/3),AA∗

− 3

2
(∂A)2(e−K/3),AA − 3

2
(∂A∗)2(e−K/3),A∗A∗

+ i
3

2
χσaχ̄

(

A∗
,a(e

−K/3),AA∗A∗ −A,a(e
−K/3),AAA∗

)

+τ(∂A)2(∂A∗)2 − 1

2

√
2τψ̄aσ̄

aσcχ̄A∗
,c(∂A)

2 − 1

2

√
2τχσcσ̄aψaA,c(∂A

∗)2

−
√
2τ(∂A∗)2A,mχψ

m −
√
2τ(∂A)2A∗

,mψ̄
mχ̄

− i

2
τχσaχ̄A,aeb

mDmA
∗
,b +

i

2
τχσaχ̄A∗

,aeb
mDmA,b (IV.13)

−iτ(Dmχ)σ
bχ̄A,mA∗

,b +
√
2τψ̄aσ̄

cσbχ̄A,aA∗
,bA,c

+iτχσb(Dmχ̄)A
∗,mA,b +

√
2τχσbσ̄cψaA

∗,aA,bA
∗
,c

− i

2
τχσaσ̄bσm(Dmχ̄)A,aA

∗
,b +

i

2
τ(Dmχ)σ

mσ̄bσaχ̄A∗
,aA,b

+
3

4

(

(∂A)(e−K/3),A − (∂A∗)(e−K/3),A∗
)2
eK/3

− 3

4

√
2
(

A,m(e−K/3),A − A∗,m(e−K/3),A∗
)(

ψmχ(e
−K/3),A − ψ̄mχ̄(e

−K/3),A∗
)

eK/3

− 3

4
iχσaχ̄

(

A,a(e
−K/3),A − A∗

,a(e
−K/3),A∗

)

(e−K/3),AA∗eK/3

− 7

4
iτχσaχ̄

(

A∗
,a(∂A)

2(e−K/3),A −A,a(∂A
∗)2(e−K/3),A∗

)

eK/3

− 3

2
iτχσaχ̄

(

A,a(e
−K/3),A −A∗

,a(e
−K/3),A∗

)

|∂A|2eK/3 .

To go to Einstein frame and to render all fields canonically normalized, we now Weyl rescale

as

en
a WEYL−→ eK/6en

a
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χ
WEYL−→ e−K/12χ (IV.14)

ψm
WEYL−→ eK/12ψm

and shift

ψm
SHIFT−→ ψm + i

√
2

6
σmχ̄K,A∗ . (IV.15)

For the sum of terms not proportional to τ , this results in

1

e
LSUGRA

K(Φ,Φ†),Weyl =
1

e

[

∫

d2Θ2E 3
8
(D̄2 − 8R)e−K/3

]

Weyl
+ h.c.

=− 1

2
R−K,AA∗|∂A|2 (IV.16)

− iK,AA∗χ̄σ̄mDmχ+ εklmnψ̄kσ̄lD̃mψn

− 1

2

√
2K,AA∗A∗

,nχσ
mσ̄nψm − 1

2

√
2K,AA∗A,nχ̄σ̄

mσnψ̄m .

See [36] for details. After Weyl rescaling, the terms proportional to τ become

1

e
LSUGRA

DΦDΦD̄Φ†D̄Φ†,τ,Weyl =
1

e

[

∫

d2Θ2E(− τ

27
)(D̄2 − 8R)(DΦDΦD̄Φ†D̄Φ†)

]

Weyl
+ h.c.

= +τ(∂A)2(∂A∗)2 − 1

2

√
2τψ̄aσ̄

aσcχ̄A∗
,c(∂A)

2 − 1

2

√
2τχσcσ̄aψaA,c(∂A

∗)2

−
√
2τ(∂A∗)2A,mχψ

m −
√
2τ(∂A)2A∗

,mψ̄
mχ̄

− i

2
τχσaχ̄A,ae

bm(DmA
∗
,b) +

i

2
τχσaχ̄A∗

,ae
bm(DmA,b)

− i

6
τχσaχ̄A,aA

∗
,bK

,b +
i

6
τχσaχ̄A∗

,aA,bK
,b

−iτ(Dmχ)σnχ̄A
,mA∗,n +

√
2τψ̄aσ̄

cσbχ̄A,aA∗
,bA,c

+
i

12
τχσaχ̄A,bA

∗
,aK

,b +
i

6
τχσcbσaχ̄A,cA

∗
,aK,b (IV.17)

+iτχσb(Dmχ̄)A
∗,mA,b +

√
2τχσbσ̄cψaA

∗,aA,bA
∗
,c

− i

12
τχσaχ̄A∗

,bA,aK
,b − i

6
τχσaσ̄bcχ̄A∗

,cA,aK,b

− i

2
τχσpσ̄qσm(Dmχ̄)A,pA

∗
,q +

i

2
τ(Dmχ)σ

mσ̄pσqχ̄A,pA
∗
,q

+
i

6
τχσcσ̄bσaχ̄K,aA

∗
,bA,c −

i

6
τχσaσ̄bσcχ̄K,aA,bA

∗
,c

− 7

4
iτχσaχ̄

(

A∗
,a(∂A)

2(e−K/3),A −A,a(∂A
∗)2(e−K/3),A∗

)

eK/3

− 3

2
iτχσaχ̄

(

A,a(e
−K/3),A − A∗

,a(e
−K/3),A∗

)

|∂A|2eK/3 .
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To arrive at this result, we used

DnA,b
WEYL−→ e−K/6

(

DnA,b −
1

6
K,nA,b +

1

6
eb

lA,m(K,mgnl −K,lgnm)
)

Dnχ
α WEYL−→ e−K/12

(

Dnχ
α − 1

12
K,nχ

α +
1

12
χβ(σml)β

α(K,mgnl −K,lgnm)
)

(IV.18)

Dnχ̄
α̇ WEYL−→ e−K/12

(

Dnχ̄
α̇ − 1

12
K,nχ̄

α̇ − 1

12
(σ̄ml)α̇β̇χ̄

β̇(K,mgnl −K,lgnm)
)

.

This follows from the definitions

ωnβ
α =

1

2
(σml)β

αωnml, Dnχ
α = ∂nχ

α + χβωnβ
α (IV.19)

and the fact that under (IV.14)

ωnml
WEYL−→ eK/3(ωnml +

1

6
K,mgnl −

1

6
K,lgnm) . (IV.20)

The effect of the shift (IV.15) on (IV.17) actually sums to zero.

B. The N = 1 Supergravity Ghost Condensate

The supergravity extension of the prototype scalar ghost condensate P (X) = −X +X2

is the sum of (IV.16) and (IV.17), where we take

K(Φ,Φ†) = −ΦΦ†, τ = 1 . (IV.21)

That is,

LSUGRA
T=1/16,Weyl =

1

8

[

∫

d2Θ2E(D̄2 − 8R)
(

3eΦΦ†/3 − 1

24
(DΦDΦD̄Φ†D̄Φ†)

)]

Weyl
+ h.c. (IV.22)

It follows from (IV.16), (IV.17) and (IV.21) that the purely bosonic part of this Lagrangian

is
1

e
LSUGRA

T=1/16,Weyl = −1

2
R+ |∂A|2+(∂A)2(∂A∗)2 + . . . (IV.23)
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Defining A = 1√
2
(φ+ iξ), this becomes3

1

e
LSUGRA

T=1/16,Weyl = −1

2
R+

1

2
(∂φ)2 +

1

4
(∂φ)4 (IV.24)

+
1

2
(∂ξ)2 +

1

4
(∂ξ)4 − 1

2
(∂φ)2(∂ξ)2 + (∂φ · ∂ξ)2 + . . .

The remaining terms in the Lagrangian are at least quadratic in the fermions χ, ψm. The

Einstein and gravitino equations can be solved in a flat FRW spacetime ds2 = −dt2 +

a(t)2δijdx
idxj with a vanishing gravitino ψm = 0. The φ, ξ and χ equations of motion

continue to admit a ghost condensate vacuum of the form

φ = ct , ξ = 0 , χ = 0 (IV.25)

where, to be consistent with the coupling to dynamical a(t), one must set c = 1. The scale

factor is that of a de Sitter spacetime, which–in its flat slicing–is given by

a(t) = e
± 1√

12
t
. (IV.26)

The choice of the ± sign corresponds to an expanding or contracting space respectively; in

this paper, we focus on the expanding branch. To assess the stability of the supergravity

ghost condensate, one can expand in small fluctuations around this background. Considering

scalar fluctuations

φ = t+ δφ(t, ~x) , ξ = δξ(t, ~x) (IV.27)

only, the result to quadratic order is

1

e
LSUGRA

T=1/16,Weyl = ( ˙δφ)2 + 0 · δφ,iδφ,i

+ 0 · (δ̇ξ)2 + δξ,iδξ,i . (IV.28)

3 Our conventions for gravity are adapted to those of Wess and Bagger [36]: in terms of affine connections,

the Riemann tensor is defined as Rmn
p
s ≡ −∂mΓp

ns + ∂nΓ
p
ms − Γp

mtΓ
t
ns + Γp

ntΓ
t
ms, and the Ricci tensor

is given by Rmn = Rp
npm. In terms of the spin connection, the Riemann tensor is Rmn

ab ≡ ∂mωn
ab −

∂nωm
ab + ωm

acωnc
b − ωn

acωmc
b.
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As in the globally supersymmetric case, both lines illustrate important issues to be ad-

dressed in supergravity ghost condensation–that is, the δφ spatial gradient instability and

the unacceptable δξ kinetic terms respectively. We will present the solution to both of these

problems later in the paper. Now, however, we turn to a discussion of the fermions in the

background of the ghost condensate.

C. The Fermion Lagrangian and the Super-Higgs Effect

For a discussion of the fermions in the ghost condensate vacuum, the relevant part of

Lagrangian (IV.22) is4

1

e
LSUGRA

T=1/16,Weyl = · · ·+ 1

2
εklmn

(

ψ̄kσ̄lD̃mψn − ψkσlD̃mψ̄n

)

+
i

2

(

χσmDmχ̄+ χ̄σ̄mDmχ
)

(

1 +
1

2
(∂φ)2

)

(IV.29)

+
i

2
φ,mφ,n

(

χ̄σ̄n(Dmχ) + χσn(Dmχ̄)
)

+
1

2

(

χσmσ̄nψp + χ̄σ̄mσnψ̄p
)

(

gmpφ,n +
1

2
gmnφ,p(∂φ)

2 − 1

2
gnpφ,m(∂φ)

2

)

+ . . .

where gmn is the FRW metric. For the time-dependent vev φ = t, (∂φ)2 = −1. Hence, the

first and second/third lines correspond to unmixed ψm and χ kinetic energies respectively.

However, the ghost condensate induces a mass mixing term between χ and ψm. Using σ
mσ̄n =

−gmn + 2σmn, the mass term can be rewritten as

1

4
φ,m(χψ

m + χ̄ψ̄m)− 1

2
φ,m(χσ

mnψn + χ̄σ̄mnψ̄n) (IV.30)

or, more simply,

− 1

4
φ,m(χσ

mσ̄nψn + χ̄σ̄mσnψ̄n). (IV.31)

4 To find the ghost condensate background, it is consistent to set the auxiliary fields M = F = 0 since M

and F are sourced only by terms of quadratic and higher order in fermions. However, one might wonder

whether it is necessary to include theM - and F -terms in the calculation of quadratic fermionic fluctuations

around this background. Luckily, we do not have to do this. In the absence of a superpotential, all terms

arising from the substitution of M and F into the action are fourth-order and higher in fermions and,

hence, do not contribute to the present calculation. This follows from the results of Appendix B and from

the analysis of the equation of motion for F detailed in [24].
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Let us try to eliminate this mass mixing by redefining the gravitino. As we will discuss

below, the supersymmetry transformations suggest the field redefinition

ψmα = ψ̃mα − 2i

(∂φ)2
Dm(φ,nσ

n
αα̇χ̄

α̇) . (IV.32)

Using the fact that the second partial derivative on φ vanishes, the ψm kinetic term trans-

forms into

1

2
εklmn

(

ψ̄kσ̄lD̃mψn − ψkσlD̃mψ̄n

)

=
1

2
εklmn

(

˜̄ψkσ̄lD̃mψ̃n − ψ̃kσlD̃m
˜̄ψn

)

+ 2iεklmn
(

˜̄ψkσ̄lDmDn(φ,pσ
pχ̄)− ψ̃kσlDmDn(φ,pσ̄

pχ)
)

(IV.33)

+ 2εklmn
(

Dk(χσ
pφ,p)σ̄lDmDn(φ,qσ

qχ̄)−Dk(χ̄σ̄
pφ,p)σlDmDn(φ,qσ̄

qχ)
)

.

Furthermore, employing the relation

(DmDn −DnDm)χ = −R
12
σmnχ, (IV.34)

which is valid for maximally symmetric spacetimes, and the fact that R = −1 for our de

Sitter background, the ψm kinetic term becomes

1

2
εklmn

(

ψ̄kσ̄lD̃mψn − ψkσlD̃mψ̄n

)

=
1

2
εklmn

(

˜̄ψkσ̄lD̃mψ̃n − ψ̃kσlD̃m
˜̄ψn

)

+
1

4
φ,p

(

˜̄ψkσ̄
kσpχ̄+ ψ̃kσ

kσ̄pχ
)

(IV.35)

+
i

4

(

− (∂φ)2Dkχσ
kχ̄+ 2φ,pφ

,kDkχσ
pχ̄− (∂φ)2Dkχ̄σ̄

kχ+ 2φ,pφ
,kDkχ̄σ̄

pχ
)

.

Since we are only working to quadratic order in fermions, the second term on the right-hand

side can be written as

1

4
φ,p

(

˜̄ψkσ̄
kσpχ̄+ ψ̃kσ

kσ̄pχ
)

= +
1

4
φ,m(χσ

mσ̄nψn + χ̄σ̄mσnψ̄n) + . . . , (IV.36)

where we have anti-commuted the fermions, used the definition of σ̄m and relabeled indices.

Note that this term exactly cancels the χ, ψm mass mixing term (IV.31). Furthermore, the

remaining terms in (IV.35) do not introduce mixing of the ψ̃m, χ kinetic energies. It follows

that in the ghost condensate vacuum, using (∂φ)2 = −1 and the redefined gravitino ψ̃m, the
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quadratic fermion terms in (IV.29) reduce to

1

e
LSUGRA

T=1/16,Weyl = · · ·+ 1

2
εklmn

(

˜̄ψkσ̄lD̃mψ̃n − ψ̃kσlD̃m
˜̄ψn

)

+
i

2

(

χσmDmχ̄+ χ̄σ̄mDmχ
)

(IV.37)

+ iφ,mφ,n (χ̄σ̄
n(Dmχ) + χσn(Dmχ̄)) + . . .

This Lagrangian describes a) a massless gravitino ψ̃m with Lorentz covariant kinetic energy

and b) a massless fermion χ with kinetic terms whose Lorentz invariance is broken in the

ghost condensate background. We note that after the field redefinition of the gravitino, the

kinetic terms for χ now appear with an additional overall multiplicative factor of 2.

Given this result, one can analyze the super-Higgs effect within the context of the super-

gravity ghost condensate. We know from the discussion in Subsection III C that the ghost

condensate spontaneously breaks global N = 1 supersymmetry. What happens when this is

generalized to supergravity? We showed in [22] and Appendix A that the variations of the

fermions χ and ψm under local supersymmetry–after Weyl rescaling and using the solutions

for the supergravity auxiliary fields M and bm appropriate to a bosonic background–are

given by

δχ = i
√
2σmζ̄∂mA+

√
2eK/6ζF , (IV.38)

δψm = 2
(

Dm +
1

4
(K,A∂mA−K,A∗∂mA

∗)
)

ζ + ieK/2Wσmζ̄ , (IV.39)

for arbitrary Kähler potential K, superpotential W and chiral auxiliary field F . Since

we are interested in supersymmetry breaking in the vacuum, we have ignored all terms

proportional to the component fermions on the right-hand side of the variations. In pure two-

derivative chiral theories coupled to supergravity–that is, not in the ghost condensate case–

spontaneous breaking of supersymmetry is achieved as follows. One chooses a non-vanishing

W for which 1) the potential energy is minimized by having the scalar A be a constant,

and 2) when evaluated at this minimum F = −K ,AA∗
eK/3(DAW )∗ 6= 0, where DAW is

the Kähler covariant derivative of W . The non-vanishing F -term in (IV.38) then renders

the χ transformation inhomogeneous, spontaneously breaking supersymmetry, while the

transformation of a redefined gravitino ψ̃m vanishes. Therefore, χ is the massless Goldstone

fermion while ψ̃m is the physical gravitino. Generically, W 6= 0 in the vacuum giving the
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gravitino a non-vanishing mass

m3/2 = eK/2|W | . (IV.40)

As first discussed in [45], in the process the Goldstone fermion χ gets “eaten” by the now

massive gravitino. This is the super-Higgs effect. Note, however, that if W = 0 in the

vacuum–but with DW 6= 0–the gravitino mass vanishes even though supersymmetry is

spontaneously broken. Although this is generically not the case, it is possible to find theories

where this does occur.

Let us now return to the supergravity ghost condensate vacuum. In this case we choose

the holomorphic function W = 0, from which it follows that F = 0. However, A now

develops a non-zero, linearly time-dependent vev 〈A〉 = 〈φ〉/
√
2 = ct/

√
2, where we restore

the dimension-two constant c. The χ transformation in (IV.38) then becomes

δχ = i
√
2σmζ̄∂mA = iσ0ζ̄c . (IV.41)

As previously, the fermion transforms inhomogeneously and, hence, supersymmetry is spon-

taneously broken. For the ghost condensate, however, the inhomogeneous term arises from

the linear time-dependent vev of φ rather than from the F -term. Now consider the gravitino

transformation (IV.39). Recalling that we choose K = −ΦΦ† in the ghost condensate, and

using W = 0 and 〈A〉 = ct/
√
2, it follows from (IV.39) that

δψm = 2
(

Dm +
1

4
(K,A∂mA−K,A∗∂mA

∗)
)

ζ = 2Dmζ . (IV.42)

Note that, in addition to the term proportional to W vanishing, the factor K,A∂mA −
K,A∗∂mA

∗ in the first term is also zero in this vacuum. Be this as it may, the de Sitter

spacetime covariant derivative Dmζα = ∂mζα − 1
2
ωmpl(σ

pl)α
βζβ does not vanish, as

ωi0j = gijH, (IV.43)

and, hence, ψm transforms inhomogeneously. However, in analogy with the ordinary two-

derivative case, let us redefine the gravitino as in (IV.32). It is straightforward to shown
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that in the ghost condensate background

δψ̃m = 0 . (IV.44)

This then identifies χ as the massless Goldstone fermion and ψ̃m as the physical gravitino.

The generic expression for the gravitino mass was given by (IV.40). In the ghost condensate,

however, W = 0 and, hence,

m3/2 = 0 . (IV.45)

That is, the breaking of local supersymmetry via a ghost condensate is analogous to two-

derivative supergravity theories with a superpotential for which DW 6= 0 but W = 0 in the

vacuum. This result for the supergravity ghost condensate is completely consistent with–and

gives a physical explanation for–the above calculation of the quadratic fermion Lagrangian

(IV.37). There we found, after appropriate redefinition of the gravitino, that the mixed χ,

ψ̃m mass terms exactly cancelled and that there were no diagonal χχ or ψ̃ψ̃ masses–exactly

as expected from the variations (IV.41),(IV.44) and (IV.45).

D. Scalar Field Stability Analysis

Recall from (IV.28) that, when expanded around the ghost condensate vacuum, the

quadratic δφ part of the Lagrangian is

1

e
LSUGRA

T=1/16,Weyl = ( ˙δφ)2 + 0 · δφ,iδφ,i + . . . . (IV.46)

This is analogous to the globally supersymmetric case discussed in Subsection III B and,

for the same reasons as discussed there, φ will develop a small, negative spatial gradient

term in the NEC violating region where P,X < 0. This problem was overcome in the global

supersymmetry case by adding the term (III.16) to LSUSY . It is straightforward to generalize

this to the supergravity case with the addition of the term

− 1

8

∫

d2Θ2E(D̄2 − 8R)(DΦDΦD̄Φ†D̄Φ†Tφ) + h.c. (IV.47)
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where

Tφ =
κ

29

(

{Dα, D̄α̇}{Dα, D̄α̇}(Φ + Φ†)
)2

(IV.48)

and where κ is a real number. Note that in Subsection III B we (somewhat arbitrarily) set

the parameter κ = −1/4. This reflected the fact that, in the globally supersymmetric case,

the exact value of this parameter is irrelevant to the discussion. However, as we will see,

this is not the case when coupled to supergravity. We calculate (IV.47),(IV.48) in terms of

component fields for F =M = 0 and to quadratic order in fermions χ and ψm in Appendix

B. It suffices here to present only those terms required to analyze the existence and stability

of the ghost condensate. These are

− 1

8e

[

∫

d2Θ2E(D̄2 − 8R)DΦDΦD̄Φ†D̄Φ†Tφ

]

Weyl
+ h.c.

=κ(�φ)2
(

(∂φ)4 + (∂ξ)4 − 2(∂φ)2(∂ξ)2 + 4(∂φ · ∂ξ)2
)

. (IV.49)

The remaining terms are at least quadratic in the fermions χ and ψm. When this is added

to the Lagrangian (IV.24), the equations of motion for the component fields are modified.

We restrict our attention to gravity and the scalar φ, since these are the only non-vanishing

fields in the ghost condensate background. The relevant part of the Lagrangian is

1√−gL = −R
2
+

1

2
(∂φ)2 +

1

4
(∂φ)4 + κ(∂φ)4(�φ)2. (IV.50)

The associated equations of motion are

0 = −�φ
(

1 + (∂φ)2
)

− 2φ;mnφ,mφ,n − 8κφ;mnφ,mφ,n(�φ)
2 − 4κ(∂φ)2(�φ)3

−8κ(∂φ)2�φ φ;n
nmφ,m + 16κφ;pnφ;mnφ,pφ

,m
�φ+ 8κ(∂φ)2�φ φ;mnφ;mn

+8κ(∂φ)2�φ φ,nφ;nm
m + 8κ(∂φ)2φ,nφ;nmφ;p

pm

+8κ(∂φ)2φ;pmφ,pφ
;n
nm + 2κ(∂φ)4φ;n

n
m

m , (IV.51)

Gmn = φ,mφ,n

(

1 + (∂φ)2 + 4κ(∂φ)2(�φ)2
)

−1

2
gmn(∂φ)

2
(

1 +
1

2
(∂φ)2 − 2κ(∂φ)2(�φ)2 − 16κ�φ φ;rsφ,rφ,s − 4κ(∂φ)2φ;s

srφ,r

)

−8κ(∂φ)2�φ φ,r(φ;rmφ,n + φ;rnφ,m)− 2κ(∂φ)4(φ;r
rmφ,n + φ;r

rnφ,m) (IV.52)



28

where Gmn is the Einstein tensor5. We are interested in the question of whether these

equations of motion still admit a ghost condensate/de Sitter solution. Therefore, we look

for a solution where φ̇ is constant and the metric is a de Sitter space with constant Hubble

parameter H. With this Ansatz, the equations of motion greatly simplify to

0 = 1− φ̇2 − 9κφ̇6 + 6κφ̇8, (IV.54)

12H2 = 3φ̇2 − 2φ̇4. (IV.55)

The first equation is quartic in φ̇2, where the solution of interest is the one that reduces to

φ̇2 = 1 as κ→ 0. This solution then allows one to calculate the Hubble rate using the second

equation. For small κ–which, from an effective field theory point of view, is the case of real

interest–a perturbative solution is easy to derive. It is given by

〈φ̇〉2 = 1− 3κ+O(κ2), (IV.56)

〈H〉2 =
1

12
+

1

4
κ+O(κ2). (IV.57)

Thus, the effect of adding the stabilizing term for φ is to shift the parameters of the ghost

condensate/de Sitter solution without altering its qualitative features6. We now explicitly

demonstrate the stability of φ. Expanding about this new vacuum using (IV.27), the φ part

of the component field Lagrangian becomes

LSUGRA =
1

2
(3〈φ̇〉2 − 1)( ˙δφ)2 +

1

2a2
(1− 〈φ̇〉2)δφ,iδφ,i + κ(�δφ)2 + . . . . (IV.58)

5 To derive the Einstein equations, the identity

δ

δgmn

∫ √−gf�φ =

∫ √−g
(

− 1

2
gmnf�φ+

δf

δgmn
�φ+ fφ;mn

−1

2
∇m(fφ,n)−

1

2
∇n(fφ,m) +

1

2
gmn∇p(fφ,p)

)

(IV.53)

is useful–where f is a scalar function of the fields. The first term on the right-hand side arises from varying√−g, while the second line comes from varying the metric inside of the connection in the �φ term.
6 One might ask what the solution becomes for large κ. By inspection, we see that in this regime the

solution is approximately φ̇2 ≈ 3/2 with H2 very small. Thus, for large κ, one obtains a kind of ghost

condensate in Minkowski spacetime. However, one should refrain from taking the (�φ)2 term too seriously

when κ is large–since it leads to fourth-order equations of motion. Hence, it only makes sense from an

effective field theory point of view, in which case its coefficient must be small for consistency.
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For small κ, this leads to the dispersion relation

ω2 ≈ −κ
(3

2
k2 + k4

)

. (IV.59)

Thus, to tame instabilities, one must require 1) κ < 0 and 2) that |κ| be sufficiently large.

For a discussion of the allowed phenomenological range of κ, see [12]. Happily, the required

values of |κ| are still sufficiently small to allow the above perturbative expansion. To apply

ghost condensate theory to models of a bouncing universe, one introduces a potential which

causes 〈φ̇〉2 to be slightly lowered. This has the consequence that the NEC is then violated.

In this case, it may happen that the k2 term in the dispersion relation (IV.59) switches sign.

This signals a gradient instability at long wavelengths and, correspondingly, the bounce

must occur on a fast time-scale. However, at short wavelength (large k) one can see that

the introduction of the (�φ)2 term indeed stabilizes the ghost condensate.

We now turn our attention to the second scalar, ξ. The second line

1

e
LSUGRA

T=1/16,Weyl = · · ·+ 0 · (δ̇ξ)2 + δξ,iδξ,i + . . . . (IV.60)

in (IV.28) indicates that, when expanded around the ghost condensate, the time derivative

term in the δξ kinetic energy vanishes, while the spatial gradient term has the wrong sign.

This result is analogous to the globally supersymmetric case discussed in Subsection III B,

and was cured by adding the supersymmetric higher-derivative terms (III.19) to LSUSY . It

is straightforward to generalize this to the supergravity case by adding

− 1

8

∫

d2Θ2E(D̄2 − 8R)(DΦDΦD̄Φ†D̄Φ†Tξ) + h.c., (IV.61)

where

Tξ = +2−5{Dα, D̄α̇}(Φ− Φ†){Dα, D̄α̇}(Φ† − Φ)

−2−10
(

{Dα, D̄α̇}(Φ + Φ†){Dα, D̄α̇}(Φ− Φ†)
)2

, (IV.62)

to LSUGRA. Note that each of the two terms can be multiplied by an independent real

coefficient. However, modulo the comment below, this is not necessary to understand the

their effect on the ghost condensate and, to leading order, the ξ kinetic energy. Hence, as



30

in the globally supersymmetric case, we set them to unity for simplicity. One can calculate

(IV.61),(IV.62) in terms of component fields for F = M = 0 and to quadratic order in

fermions χ and ψm . It suffices here to present only those terms required to analyze the

existence and stability of the ghost condensate. These are

− 1

8e

[

∫

d2Θ2E(D̄2 − 8R)DΦDΦD̄Φ†D̄Φ†Tξ

]

Weyl
+ h.c.

= −2(∂φ)4(∂ξ)2 − (∂φ)4(∂φ · ∂ξ)2 . (IV.63)

The remaining terms are at least quadratic in the fermions χ and ψm. When these are

added to the Lagrangian, the modified equations of motion continue to admit the same

ghost condensate/de Sitter vacuum as the one derived above in Eqs. (IV.56) and (IV.57).

Expanding around this vacuum using (IV.27), the fluctuation Lagrangian for ξ becomes

1

e
LSUGRA = · · ·+

(

− 1

2
+

1

2
〈φ̇〉2 + 2〈φ̇〉4 − 〈φ̇〉6

)

(δ̇ξ)2 +
(1

2
+

1

2
〈φ̇〉2 − 2〈φ̇〉4

)

δξ,iδξ,i + . . .

= · · ·+
(

1− 9

2
κ+O(κ2)

)(

(δ̇ξ)2 − δξ,iδξ,i

)

+ . . . (IV.64)

Thus the scalar ξ is rendered completely stable by the addition of these terms. Moreover, for

small |κ| the fluctuations are approximately canonical. In fact, one can make them exactly

canonical by choosing appropriate, κ-dependent coefficients for the two terms in Tξ. These

enter the overall factor multiplying (δ̇ξ)2 − δξ,iδξ,i and can be adjusted to set this factor to

unity.

E. The Modified Fermion Lagrangian and Super-Higgs Effect

Having resolved the δφ spatial gradient and δξ wrong sign kinetic problems in the super-

gravity context, one must re-examine the question of the fermion Lagrangian and the super-

Higgs effect in the presence of the additional terms (IV.47),(IV.48) and (IV.61),(IV.62). In

principle, this is a difficult calculation, requiring the evaluation of all terms quadratic in

the fermions χ and ψm. As can be seen, for example, by examining the Tφ Lagrangian in

Appendix B, although some fermion terms vanish in the ghost condensate vacuum, some,

both kinetic and mass terms, are non-zero. Evaluating each of these, inserting them into

the complete supergravity Lagrangian and then diagonalizing all fermion kinetic energy and
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mass terms is a lengthy undertaking. Happily, to understand the essential physics, it is

unnecessary to carry this out.

Recall from the discussion in Subsection IV C that one can decide the fermion masses by

analyzing the behavior of their transformations under local supersymmetry. In (IV.41) and

(IV.42) we presented the supersymmetry transformations in the ghost condensate situation

where W = F = M = bm = 0. Since (IV.25) continues to be valid, and since (in a

bosonic background) the bm equation of motion is unchanged by the higher-derivative terms

(IV.47),(IV.48) and (IV.61),(IV.62), it follows that the χ and ψm variations remain

δχ = i
√
2σmζ̄∂mA = iσ0ζ̄c (IV.65)

and

δψm = 2Dmζ . (IV.66)

respectively. As previously, it is straightforward to define a new physical gravitino ψ̃m

which transforms homogeneously. The required definition is given by Eq. (IV.32) but where

now φ̇ and the connection ωm are evaluated in the shifted vacuum. Since the fermion

transformation (IV.65) is inhomogeneous, supersymmetry is spontaneously broken with a

massless Goldstone fermion χ. Furthermore, since W = 0 in the ghost condensate vacuum,

the mass of the physical gravitino ψ̃m is

m3/2 = 0 . (IV.67)

We can conclude from these arguments that, even in the presence of the additional terms, the

quadratic fermion Lagrangian will describe a massless Goldstone fermion χ and a massless

gravitino ψ̃m with diagonal kinetic energies.
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Appendix A: The Weyl Rescaled Fermion Supersymmetry Transformations

Prior to Weyl rescaling, the fermion supersymmetry transformations–see equations 18.23

and 19.14 in Wess and Bagger [36]–are given by

δχ = i
√
2σmζ̄∂mA+

√
2ζF, (A.1)

δψm = 2Dmζ − iem
a

(

1

3
Mσaζ̄ + baζ +

1

3
bcζσcσ̄a

)

, (A.2)

where we have dropped all component fermions on the right-hand side of the variations since

these vanish in the vacua of interest and ζ is the supersymmetry parameter. Note that our

parameter is minus the one in equations 18.23 and 19.14 of Wess and Bagger–a convention

adopted later in their book. Weyl rescaling is performed via

ean
WEYL−→ eK/6ean ,

χ
WEYL−→ e−K/12χ , (A.3)

ψm
WEYL−→ eK/12ψm

and

ζ
WEYL−→ eK/12ζ . (A.4)

Then the Weyl rescaled variations are

e−K/12δχWEYL = i
√
2σaea

me−K/6ζ̄eK/12∂mA+
√
2ζeK/12F, (A.5)

eK/12δψmWEYL = 2eK/12
(

Dmζ +
1

12
K,mζ −

1

6
(ζσnl)K,ngml

)

(A.6)

−iem
aeK/6

(

1

3
Mσaζ̄e

K/12 + bnea
ne−K/6ζeK/12 +

1

3
ec

nbne
−K/6ζσcσ̄ae

K/12

)

It is important to note that there are additional terms that arise from Weyl rescaling the

covariant derivative Dmζ
α = ∂nζ

α + ζβωnβ
α with ωnβ

α = 1
2
(σml)β

αωnml using

ωnml
WEYL−→ eK/3(ωnml +

1

6
K,mgnl −

1

6
K,lgnm). (A.7)
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As discussed previously, the gravitino must also be shifted as

ψm
SHIFT−→ ψm + i

√
2

6
K,A∗σmχ̄ (A.8)

in order for the fermionic kinetic terms to be in canonical form. For the supersymmetry

transformation of ψm, this means that

δψmWEYL → δψmWEYL+SHIFT + i

√
2

6
K,A∗σmδχ̄WEYL . (A.9)

Therefore

δψα
mWEYL+SHIFT

= δψα
mWEYL

− i

√
2

6
K,A∗ǫαγσmγβ̇δχ̄

β̇
WEYL

= 2
(

Dmζ
α +

1

12
K,mζ

α − 1

6
ζβ(σnl)β

α
K,ngml

)

− i

(

1

3
MeK/6ǫαγσmγβ̇ ζ̄

β̇ + bmζ
α +

1

3
bcζγσcγβ̇ σ̄

β̇α
m

)

− i

√
2

6
K,A∗ǫαγσmγβ̇

(

− i
√
2ζδǫβ̇γ̇σn

δγ̇∂nA
∗ +

√
2ζ̄ β̇eK/6F ∗

)

= 2
(

Dmζ
α − 1

12
ζβσn

ββ̇
σ̄β̇α
m K,n

)

(A.10)

− i

(

1

3
MeK/6ǫαγσmγβ̇ ζ̄

β̇ + bmζ
α +

1

3
bcζγσcγβ̇ σ̄

β̇α
m

)

+
1

3
ζβσn

ββ̇
σ̄β̇α
m K,A∗∂nA

∗ − 1

3
ieK/6ǫαγσmγβ̇ ζ̄

β̇K,A∗F ∗

= 2Dmζ
α − 1

6
ζβσn

ββ̇
σ̄β̇α
m (K,A∂nA−K,A∗∂nA

∗)

− 1

3
ieK/6ǫαγσmγβ̇ ζ̄

β̇(M +K,A∗F ∗)− i

(

bmζ
α +

1

3
bnζγσnγβ̇ σ̄

β̇α
m

)

.

In the case of pure two-derivative chiral supergravity coupled to a superpotential, the

solutions for F , M and bm are given by

F = −K ,AA∗
eK/3(DAW )∗ (A.11)

M +K,A∗F ∗ = N = −3eK/3W (A.12)

bm =
i

2
(K,A∂mA−K,A∗∂mA

∗). (A.13)
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Plugging these solutions into (A.5) and (A.10), we obtain

δχWEYL = i
√
2σmζ̄∂mA−

√
2K ,AA∗

eK/2(DAW )∗ζ , (A.14)

δψmWEYL+SHIFT = 2
(

Dm +
1

4
(K,A∂mA−K,A∗∂mA

∗)
)

ζ + ieK/2Wσmζ̄ . (A.15)

These reproduce the χ and ψm supersymmetry variations given in equations 23.5 and 23.6

of [36].

For the higher-derivative supergravity Lagrangians coupled to a superpotential introduced

in [24]–and used to discuss the ghost-condensate vacuum in this paper–the solutions of the

M and bm equations of motion, when all component fermions are set to zero, continue to be

given by (A.12) and (A.13). This was proven in [24] for any higher-derivative addition to

the Lagrangian of the form DΦDΦD̄Φ†D̄Φ†T , where T is an arbitrary hermitian function

of Φ,Φ† with any number of their spacetime derivatives. For example, note that in the

T = τ/16 case discussed in Subsection IV A of this paper, the solution for the bm equation

of motion is given in (IV.12). When the component fermions are set to zero, this becomes

bm = −3

2
i
(

A,m(e
−K/3),A − A∗

,m(e
−K/3),A∗

)

eK/3 =
i

2
(K,A∂mA−K,A∗∂mA

∗) (A.16)

which is identical to (A.13). However, as discussed in detail in [24, 25], the equation of

motion for the auxiliary field F is now generically cubic and is no longer solved by (A.11).

Putting (A.12), (A.13) into (A.5) and (A.10), but for an arbitrary solution F , the fermion

variations become

δχWEYL = i
√
2σmζ̄∂mA+

√
2eK/6ζF , (A.17)

δψmWEYL+SHIFT = 2
(

Dm +
1

4
(K,A∂mA−K,A∗∂mA

∗)
)

ζ + ieK/2Wσmζ̄ (A.18)

for any Kähler potential K and superpotential W . These are the transformations used in

(IV.38) and (IV.39) in the text to analyze supersymmetry breaking and the fermion masses

in the supergravitational ghost-condensate theory.
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Appendix B: Component Expansions

In this Appendix, we provide details about the component expansions of the higher-

derivative superfield expressions that we employ in this paper. For completeness and poten-

tial future use, we will at first keep the terms that involve the auxiliary fieldsM and F. Note

that we work only to quadratic order in fermions throughout. The component expansion of

a general higher-derivative term in our formalism is given by

− 1

8e

∫

d2Θ2E(D̄2 − 8R)(DΦDΦD̄Φ†D̄Φ†T ) + h.c.

=+ 16
{

(∂A)2(∂A∗)2 − 2|∂A|2|F |2 + |F |4
}

T
∣

∣

− 4
{

M(∂A∗)2χ2 +M∗(∂A)2χ̄2
}

T
∣

∣+ 4iχσaχ̄
{

MFA∗
,a −M∗F ∗A,a

}

T
∣

∣

− 4
√
2
{

(∂A)2A∗
,bψ̄aσ̄

aσbχ̄+ (∂A∗)2A,bψaσ
aσ̄bχ

}

T
∣

∣+ i4
√
2|F |2

{

F ∗ψ̄aσ̄
aχ + Fψaσ

aχ̄
}

T
∣

∣

+ 4
√
2|F |2

{

A,bψ̄aσ̄
aσbχ̄+ A∗

,bψaσ
aσ̄bχ

}

T
∣

∣+ i4
√
2A,bA

∗
,c

{

F ∗ψ̄aσ̄
aσcσ̄bχ+ Fψaσ

aσ̄bσcχ̄
}

T
∣

∣

+ i8bd
{

F ∗A∗,dχ2 − FA,dχ̄2
}

T
∣

∣− 8
{

F,dA
,dχ̄2 + F ∗

,dA
∗,dχ2

}

T
∣

∣

+ 8
{

F ∗χ2ea
mDmA

∗
,a + Fχ̄2ea

mDmA,a

}

T
∣

∣− 16
√
2
{

(∂A)2A∗,aχ̄ψ̄a + (∂A∗)2A,aψaχ
}

T
∣

∣

− 8χσaχ̄ba|F |2 + 23iχσaχ̄
{

FF ∗
,a − F ∗F,a

}

T
∣

∣+
40

3
eχσbχ̄ba

{

A,aA
∗
,b + A,bA

∗
,a

}

T
∣

∣

+ i8χσaχ̄
{

A∗
,aeb

mDmA,b − A,aeb
mDmA

∗
,b

}

T
∣

∣− i16A,aA
∗
,b

{

(D̂aχ)σbχ̄+ (D̂aχ̄)σ̄bχ
}

T
∣

∣

+
16

3
χσaσ̄cσbχ̄A,aA

∗
,bbcT

∣

∣− i24|F |2
{

χσc(D̂cχ̄) + χ̄σ̄c(D̂cχ)
}

T
∣

∣

+ 32
{

F ∗A∗
,aχσ

ab(D̂bχ) + FA,aχ̄σ̄
ab(D̂bχ̄)

}

T
∣

∣− i8A,aA
∗
,b

{

χσaσ̄bσc(D̂cχ̄) + χ̄σ̄bσaσ̄c(D̂cχ)
}

T
∣

∣

− i
8

3
εabcdχσdχ̄A,aA

∗
,bbcT

∣

∣+
8

3
χσaχ̄ba|∂A|2T

∣

∣− 24
√
2|F |2

{

A,aχ̄ψ̄a + A∗,aψaχ
}

T
∣

∣

+ i8
√
2
{

(∂A)2A∗
,b(χ̄σ̄

b)αDαT
∣

∣+ (∂A∗)2A,a(χσ
a)α̇D̄α̇T

∣

∣

}

− 8
√
2A,aA

∗
,b

{

F ∗(χσaσ̄b)αDαT
∣

∣+ F (χ̄σ̄bσa)α̇D̄α̇T
∣

∣

}

− i8
√
2|F |2

{

A,a(χ̄σ̄
a)αDαT

∣

∣+ A∗
,a(χσ

a)α̇D̄α̇T
∣

∣

}

− 8
√
2|F |2

{

F ∗χαDαT
∣

∣ + Fχ̄α̇D̄α̇T
∣

∣

}

+ 2(∂A)2χ̄2DαDαT
∣

∣+ 2(∂A∗)2χ2D̄α̇D̄α̇T
∣

∣− 2(F ∗)2χ2DαDαT
∣

∣− 2F 2χ̄2D̄α̇D̄α̇T
∣

∣

+ i4χσaχ̄
{

F ∗A,aDαDαT
∣

∣− FA∗
,aD̄α̇D̄α̇T

∣

∣

}

− i2
{

F ∗A∗
,aχ

2 − FA,aχ̄
2
}{

σa
αα̇DαD̄α̇T

∣

∣+ σa
αα̇DαD̄α̇T

∣

∣

†}

− 4A,aA
∗
,b(χσ

a)α̇
{

DαD̄α̇T
∣

∣+DαD̄α̇T
∣

∣

†}
(σbχ̄)α

− 4|F |2
{

χαDαD̄α̇T
∣

∣χ̄α̇ + χ̄α̇DαD̄α̇T
∣

∣

†
χα

}

(B.1)
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With M and F set to zero, this expression reduces to

− 1

8e

∫

d2Θ2E(D̄2 − 8R)(DΦDΦD̄Φ†D̄Φ†T )M=F=0 + h.c.

=+ 16(∂A)2(∂A∗)2T
∣

∣+ i8χσaχ̄
{

A∗
,aeb

mDmA,b − A,aeb
mDmA

∗
,b

}

T
∣

∣

− 4
√
2
{

(∂A)2A∗
,bψ̄aσ̄

aσbχ̄ + (∂A∗)2A,bψaσ
aσ̄bχ

}

T
∣

∣+
8

3
χσaχ̄ba|∂A|2T

∣

∣

− 16
√
2
{

(∂A)2A∗,aχ̄ψ̄a + (∂A∗)2A,aψaχ
}

T
∣

∣− i16A,aA
∗
,b

{

(D̂aχ)σbχ̄+ (D̂aχ̄)σ̄bχ
}

T
∣

∣

+
16

3
χσaσ̄cσbχ̄A,aA

∗
,bbcT

∣

∣+
40

3
eχσbχ̄ba

{

A,aA
∗
,b + A,bA

∗
,a

}

T
∣

∣

− i8A,aA
∗
,b

{

χσaσ̄bσc(D̂cχ̄) + χ̄σ̄bσaσ̄c(D̂cχ)
}

T
∣

∣− i
8

3
εabcdχσdχ̄A,aA

∗
,bbcT

∣

∣

+ i8
√
2
{

(∂A)2A∗
,b(χ̄σ̄

b)αDαT
∣

∣+ (∂A∗)2A,a(χσ
a)α̇D̄α̇T

∣

∣

}

+ 2(∂A)2χ̄2DαDαT
∣

∣+ 2(∂A∗)2χ2D̄α̇D̄α̇T
∣

∣

− 4A,aA
∗
,b(χσ

a)α̇
{

DαD̄α̇T
∣

∣+DαD̄α̇T
∣

∣

†}
(σbχ̄)α (B.2)

The stabilizing terms that we require in order for the scalar field fluctuations to be well-

behaved correspond to the choice

T =− 2−11
[

{Dα, D̄α̇}{Dα, D̄α̇}(Φ + Φ†)
]2

+ 2−5{Dα, D̄α̇}(Φ− Φ†){Dα, D̄α̇}(Φ† − Φ)

− 2−10
[

{Dα, D̄α̇}(Φ + Φ†){Dα, D̄α̇}(Φ− Φ†)
]2

(B.3)

=− 2−5
[

DaDa(Φ + Φ†)
]2

+ 2−2Da(Φ− Φ†)Da(Φ
† − Φ)

− 2−4
[

Da(Φ + Φ†)Da(Φ− Φ†)
]2

(B.4)

=− 2−5
[

DaDaΦ +DaDaΦ
†
]2

− 2−2
[

DaΦDaΦ +DaΦ†DaΦ
† − 2DaΦDaΦ

†
]

− 2−4
[

DaΦDaΦ−DaΦ†DaΦ
†
]2

. (B.5)

We will split this up according and first consider( cf. (IV.48)),

Tφ ≡ κ

29

(

{Dα, D̄α̇}{Dα, D̄α̇}(Φ + Φ†)
)2

=
κ

8

[

DaDa(Φ + Φ†)
]2

(B.6)

Since we restrict to terms with at most two fermions overall, we see from (B.1) that we need

to evaluate the expressions DaDaΦ
∣

∣

2f
, DαDaDaΦ

∣

∣

1f
, DαDαDaDaΦ

∣

∣

0f
to the order in fermions
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indicated by the subscript (e.g. “2f” standing for “two fermions”). We obtain

DaDaΦ
∣

∣

2f
=eamDmA,a −

i

12

√
2Mχσaψ̄a −

1

2

√
2(D̂aχ)ψ

a

− i

6

√
2ψaχba +

i

24

√
2ψaσ

aσ̄cχbc (B.7)

DαDaDaΦ
∣

∣

1f
=
1

9

√
2|M |2χα +

i

3

√
2bb

{

δα
βηab − (σaσ̄b)α

β
}

(D̂aχβ)

+
i

6

√
2
(

eamDmbb
){

δα
βηab − (σaσ̄b)α

β
}

χβ −
i

6
Fbb

{

δα
βηab − (σbσ̄a)α

β
}

ψaβ

−1

6
A,dσ

d
αα̇bb

{

δα̇β̇η
ab − (σ̄bσa)α̇β̇

}

ψ̄β̇
a − 1

36

√
2χαb

aba +
√
2eamDmD̂aχα

+
1

6
M∗A,b(σ

bσ̄aψa)α − ψaαF
,a − i

6
MF (σaψ̄

a)α − i
(

eamDmA,b

)

(σbψ̄a)α

(B.8)

DαDaDaΦ
†∣
∣

1f
=−

√
2

6
M∗ba(σ

aχ̄)α − i

6

√
2M∗(σaD̂aχ̄)α − i

6

√
2M∗

,a(σ
aχ̄)α (B.9)

DαDαDaDaΦ
∣

∣

0f
=
16

9
Fbaba −

8

9
F |M |2 + 16

9
iA,ab

aM∗ − 16

3
ibaF,a −

4

3
M∗eamDmA,a

−8

3
iFeamDmba −

2

3
A,mM∗

,m − 4eamDmF,a (B.10)

DαDαDaDaΦ
†∣
∣

0f
=
8

9
F (M∗)2 +

4

9
iA∗

,ab
aM∗ +

4

3
M∗eamDmA

∗
,a +

2

3
A∗,mM∗

,m (B.11)

DαD̄α̇DaDaΦ
∣

∣

0f
=
[

− 2

9
MFba − i

2

9
|M |2A,a + i

2

3
MF,a +

i

3
M,aF

]

σa
αα̇ (B.12)

DαD̄α̇DaDaΦ
†∣
∣

0f
=
[

− 2

9
M∗F ∗ba − i

4

9
|M |2A∗

,a − i
2

3
M∗F ∗

,a −
i

3
M∗

,aF
∗

−i
4

9
bdbdA

∗
,a + i

4

9
A∗

,cb
cba − 2iebmDm(eb

nDnA
∗
,a)

+i
4

3
εa

′bcdηaa′bced
mDmA

∗
,b + i

2

3
εa

′bcdηaa′A
∗
,bed

mDmbc

]

σa
αα̇ (B.13)

Then

Tφ
∣

∣

2f
=
κ

8

{

−
(

eamDm(A,a + A∗
,a)
)2

− 8κebmDmA,bDaDaΦ
∣

∣

2f
+ 2ebmDmA

∗
,bDaDaΦ

†∣
∣

2f

− 8κebmDmA,bDaDaΦ
†∣
∣

2f
+ 2ebmDmA

∗
,bDaDaΦ

∣

∣

2f

}

(B.14)

DαTφ
∣

∣

1f
=
κ

4
ebmDm(A,b + A∗

,b)
{

DαDaDaΦ
∣

∣

1f
+DαDaDaΦ

†∣
∣

1f

]

(B.15)

DαDαTφ
∣

∣

0f
=
κ

4
ebmDm(A,b + A∗

,b)
{

DαDαDaDaΦ
∣

∣

0f
+DαDαDaDaΦ

†∣
∣

0f

]

(B.16)

DαD̄α̇Tφ
∣

∣

0f
=
κ

4
ebmDm(A,b + A∗

,b)
{

DαD̄α̇DaDaΦ
∣

∣

0f
+DαD̄α̇DaDaΦ

†∣
∣

0f

}

(B.17)
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i.e.

Tφ
∣

∣

2f
=
κ

4

(

ebmDm(A,b + A∗
,b)
){1

2
eamDm(A,a + A∗

,a)

− i

12

√
2Mχσaψ̄a −

1

2

√
2(D̂aχ)ψ

a

− i

6

√
2ψaχba +

i

24

√
2ψaσ

aσ̄cχbc

− i

12

√
2M∗χ̄σ̄aψa −

1

2

√
2ψ̄a(D̂aχ̄)

+
i

6

√
2χ̄ψ̄aba −

i

24

√
2ψ̄aσ̄

aσcχ̄bc

}

(B.18)

DαTφ
∣

∣

1f
=
κ

4
ecmDm(A,c + A∗

,c)
{1

9

√
2|M |2χα +

i

3

√
2bb

{

δα
βηab − (σaσ̄b)α

β
}

(D̂aχβ)

+
i

6

√
2
(

eamDmbb
){

δα
βηab − (σaσ̄b)α

β
}

χβ −
i

6
Fbb

{

δα
βηab − (σbσ̄a)α

β
}

ψaβ

−1

6
A,dσ

d
αα̇bb

{

δα̇β̇η
ab − (σ̄bσa)α̇β̇

}

ψ̄β̇
a − 1

36

√
2χαb

aba +
√
2eamDmD̂aχα

+
1

6
M∗A,b(σ

bσ̄aψa)α − ψaαF
,a − i

6
MF (σaψ̄

a)α − i
(

eamDmA,b

)

(σbψ̄a)α

−
√
2

6
M∗ba(σ

aχ̄)α − i

6

√
2M∗(σaD̂aχ̄)α − i

6

√
2M∗

,a(σ
aχ̄)α

}

(B.19)

DαDαTφ
∣

∣

0f
=
κ

4
ecmDm(A,c + A∗

,c)
{16

9
Fbaba −

8

9
F |M |2 + 16

9
iA,ab

aM∗

− 16

3
ibaF,a −

4

3
M∗eamDmA,a

−8

3
iFeamDmba −

2

3
A,mM∗

,m − 4eamDmF,a

+
8

9
F (M∗)2 +

4

9
iA∗

,ab
aM∗ +

4

3
M∗eamDmA

∗
,a +

2

3
A∗,mM∗

,m

}

(B.20)

DαD̄α̇Tφ
∣

∣

0f
=
κ

4
eemDm(A,e + A∗

,e)
{

− 2

9
MFba − i

2

9
|M |2A,a + i

2

3
MF,a +

i

3
M,aF

− 2

9
M∗F ∗ba − i

4

9
|M |2A∗

,a − i
2

3
M∗F ∗

,a −
i

3
M∗

,aF
∗

− i
4

9
bdbdA

∗
,a + i

4

9
A∗

,cb
cba − 2iebmDm(eb

nDnA
∗
,a)

+ i
4

3
εa

′bcdηaa′bced
mDmA

∗
,b + i

2

3
εa

′bcdηaa′A
∗
,bed

mDmbc

}

σa
αα̇ (B.21)

The Tξ-terms from (IV.62) read in components

Tξ =− 2−2
(

DaΦ−DaΦ†)(DaΦ−DaΦ
†)

− 2−4
(

DaΦDaΦ−DaΦ†DaΦ
†)2 (B.22)

Tξ
∣

∣

2f
=− 2−2

(

A,m −A∗,m)(A,m −A∗
,m

)

+ 2−2
√
2
(

A,m −A∗,m)(ψmχ− χ̄ψ̄m

)
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− 2−4
(

A,mA,m −A∗,mA∗
,m

)2

+ 2−3
√
2
(

A,mA,m − A∗,mA∗
,m

)(

A,nψnχ−A∗,nχ̄ψ̄n

)

(B.23)

DαTξ =− 2−1
(

DαDaΦDaΦ+DαDaΦ†DaΦ
† −DαDaΦDaΦ

† −DaΦDαDaΦ
†)

− 2−2
(

DaΦDaΦ−DaΦ†DaΦ
†)(DαDaΦDaΦ−DαDaΦ†DaΦ

†) (B.24)

DαTξ
∣

∣

1f
=− 2−1

(
√
2D̂aχα + i

1

24

√
2bd(σ

dσ̄aχ)α + i
1

4

√
2baχα − i

1

8

√
2bd(σaσ̄

dχ)α

+ i
1

6

√
2(σaχ̄)αM

∗)(A,a −A∗
,a

)

− 2−2
(

A,aA,a − A∗,aA∗
,a

)(

[
√
2D̂aχα + i

1

24

√
2bd(σ

dσ̄aχ)α

+ i
1

4

√
2baχα − i

1

8

√
2bd(σ

aσ̄dχ)α]A,a + i
1

6

√
2(σaχ̄)αM

∗A∗
,a

)

(B.25)

DαDαTξ
∣

∣

0f
=− 2−1

(

A,a −A∗,a)(DαDαDaΦ
∣

∣

0f
−DαDαDaΦ

†∣
∣

0f

)

− 2−2
(

A,aA,a − A∗,aA∗
,a

)(

DαDαDaΦDaΦ
∣

∣

0f
−DαDαDaΦ†DaΦ

†∣
∣

0f

)

(B.26)

= 2−1
(

A,a −A∗,a)(i
8

3
Fba + 4F,a +

2

3
M∗[A,a + A∗

,a]
)

+ 2−2
(

A,aA,a − A∗,aA∗
,a

)(

i
8

3
FbbA,b + 4F ,bA,b +

2

3
M∗[(∂A)2 + (∂A∗)2]

)

(B.27)

One can see explicitly see from the above expressions that the contributions of the Tφ-

and Tξ-terms to the equation of motion of bm vanish in the ghost condensate background,

where ξ = χ = ψ =M = F = 0.
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