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We present the theory of a supersymmetric ghost condensate coupled to N ¼ 1 supergravity. This is

accomplished using a general formalism for constructing locally supersymmetric higher-derivative chiral

superfield actions. The theory admits a ghost condensate vacuum in de Sitter spacetime. Expanded around

this vacuum, the scalar sector of the theory is shown to be ghost-free with no spatial gradient instabilities.

By direct calculation, the fermion sector is found to consist of a massless chiral fermion and a massless

gravitino. By analyzing the supersymmetry transformations, we find that the chiral fermion transforms

inhomogeneously, indicating that the ghost condensate vacuum spontaneously breaks local supersymme-

try with this field as the Goldstone fermion. Although potentially able to get a mass through the super-

Higgs effect, the vanishing superpotential in the ghost condensate theory renders the gravitino massless.

Thus local supersymmetry is broken without the super-Higgs effect taking place. This is in agreement

with, and gives an explanation for, the direct calculation.
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I. INTRODUCTION AND SUMMARY

It was shown in [1] that certain scalar field theories with
higher-derivative kinetic terms can, when coupled to grav-
ity, possess a vacuum that is ghost-free but violates the null
energy condition (NEC) of general relativity. These ‘‘ghost
condensate’’ vacua have a number of important applica-
tions. For example, ekpyrotic [2–4] and other bouncing
theories [5–8] of the early universe require that spacetime
‘‘bounce’’ from a contracting to an expanding phase, per-
haps even oscillating cyclically [9,10]. From the point of
view of low-energy effective field theory, these cosmolo-
gies require some form of matter that naturally violates the
NEC without introducing any ghosts or singularities in
spacetime. Such forms of matter are rare-ghost condensates
[1] and the closely related Galileons [11] are currently the
only known scalar field examples. Ghost condensates were
introduced in this context in new ekpyrotic cosmology
[12]. It was shown [12–14] that, given the appropriate
potential and kinetic energy functions, the early universe
can go through a contracting ekpyrotic phase where a
nearly scale-invariant spectrum of scalar perturbations is
produced [15] (with characteristic non-Gaussian signatures
[6,14,16–21]), followed by a ghost condensate phase where
the Universe bounces and enters the present epoch of
expansion.

All of the above theories involve scalar fields coupled
to gravity in the early universe and, hence, it seems essential
to understand their ultraviolet behavior. The quantum diver-
gences of both scalar theories and gravity are under better
control within the context of supersymmetry (SUSY),

supergravity and string theory. With this in mind, ghost
condensate theories were extended to global supersymmetry
in [22]. Specifically, the globally N ¼ 1 supersymmetric
Lagrangian of a single chiral supermultiplet—containing a
complex scalar with two real components � and �, a Weyl
fermion � and an auxiliary field F—was generalized
to include higher-derivative kinetic terms. This theory
manifested the ghost condensate vacuum which, due to
the appropriate choice of higher-derivative interactions,
retained the auxiliary field structure of F, was free of spatial
gradient instabilities of � and had a canonical kinetic
energy for the second real scalar �. The kinetic energy of
the fermion evaluated in this condensate vacuum is ghost-
free but has a negative spatial gradient term which, perhaps,
is physically acceptable. Be that as it may, to resolve this
last issue the global supersymmetry construction was
extended to more generic higher-derivative interactions in
[23]. This led naturally to a globallyN ¼ 1 supersymmetric
theory of conformal Galileons [23]. Within this context, it
was shown that the ghost condensate still persisted with all
of the appropriate properties of the original supersymmetric
theory but, now, with a correct-sign fermion kinetic energy
as well. A final, and important, property of the globally
supersymmetric ghost condensate vacuum is that it sponta-
neously breaks supersymmetry. This occurs, not through an
expectation value for the F-term, but, rather, due to the
explicit time dependence of the scalar condensate.
These globally supersymmetric condensate theories,

although using their eventual interaction with gravity as a
motivation for some of their properties, were not a com-
plete coupling to supergravitation. In this paper, we accom-
plish this by explicitly coupling the higher-derivative chiral
superfield Lagrangians introduced in [22] to local N ¼ 1
supergravity. Explicitly we will do the following. After
reviewing both scalar and globally supersymmetric ghost
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condensates in Secs. II and III respectively, the basic N¼1
supergravity ghost condensate Lagrangian is introduced.
This is accomplished in Sec. IV using the general formal-
ism of higher-derivative chiral superfield actions coupled
to N ¼ 1 supergravity introduced in [24,25]. We begin
by constructing the Lagrangian, both in superfields and
components, for a single chiral superfield with the simplest
higher-derivative kinetic term coupled to supergravity.
By appropriately choosing the Kähler potential—in the
present paper we do not require a superpotential—solving
for the auxiliary fields and Weyl rescaling, the proposed
component field supergravity Lagrangian for a ghost con-
densate theory is presented. This is shown to indeed admit
a ghost condensate vacuum in de Sitter spacetime with
vanishing gravitino and � fermions. The quadratic scalar
Lagrangian is evaluated in the condensate vacuum expos-
ing two possible problems—a potential gradient instability
in the scalar � and an unacceptable kinetic energy for its
partner scalar field �, which we address later in the paper.

In the following subsection, the gravitino and � kinetic
energies and mass terms are presented. By appropriate field
redefinition, these are diagonalized and shown to corre-
spond to a massless fermion � and a massless gravitino.
This result is then interpreted and explained within the
context of the fermion supergravity transformations, which
are reviewed in Appendix A. As in the global case, the
supergravity ghost condensate spontaneously breaks super-
symmetry due to the explicit time dependence of the
scalar �. This renders the supersymmetry transformation
of � inhomogeneous—the breaking of supersymmetry.
However, we show that, as in a Minkowski spacetime
vacuum, the gravitino can be redefined so that it transforms
homogeneously. Hence, � is the massless Goldstone fer-
mion. The super-Higgs effect is discussed in detail. We find
that, even though supersymmetry has been spontaneously
broken, the gravitino remains massless due to the vanishing
of the superpotential and thus the usual super-Higgs ef-
fect (by which the gravitino becomes massive) does not
take place. These results give an explanation for those
obtained by direct diagonalization of the quadratic fermion
Lagrangian. Having understood the fermion kinetic and
mass terms, we then return in the next subsection to the
problems of the � spatial gradient instability and the
wrong-sign � kinetic energy. We present explicit additional
supersymmetric terms that, when added to the supergravity
Lagrangian, solve both of these problems. Their effect
on the ghost condensate vacuum is to make a small shift
in the scales of both the condensate and the de Sitter
spacetime. The calculation of the requisite component field
Lagrangians is presented in detail in Appendix B. Finally,
it is shown that these additional terms, while possibly
modifying the coefficients of the diagonal gravitino and
� kinetic energies, still leave the gravitino and � as mass-
less fermions. This is accomplished using the generalized
fermion transformations presented in Appendix A.

The results of this paper prove the existence of a con-
sistent N ¼ 1 supergravity ghost condensate theory.
Although ghost-free, the � kinetic energy continues to
manifest a negative spatial gradient term. It is of interest,
therefore, to extended and generalize the results of this
paper to a theory of supersymmetric conformal Galileons
coupled to supergravitation—this will appear elsewhere. It
is of interest to note that conformal scalar Galileons can
occur on the world volume of branes [26] and AdS ‘‘kink’’
solitons [27]. Furthermore, it was shown in [28] that the
bosonic components of N ¼ 1 supergravity Galileons
also appear naturally on the world volume of half-
supersymmetric wrapped five-branes in heterotic super-
string constructions [29–33]. It is tempting to conjecture,
therefore, that string soliton world volume theories can
manifest a ghost condensate solution—naturally violating
the NEC in an ultraviolet complete superstring context. This
is presently under study.

II. SCALAR GHOST CONDENSATION

Let gmn be a ð� þþþÞ Lorentz signature metric of
four-dimensional spacetime with coordinates xm and con-
sider a real scalar field �. Denote its standard kinetic term
by X ¼ � 1

2 ð@�Þ2. A ghost condensate vacuum arises from

higher-derivative theories of the form

L ¼ ffiffiffiffiffiffiffi�g
p

PðXÞ; (2.1)

where PðXÞ is an arbitrary differentiable function of X. In a
flat Friedmann-Robertson-Walker (FRW) spacetime with
metric ds2 ¼ �dt2 þ aðtÞ2�ijdx

idxj, and assuming � to

be dependent on time alone, the scalar equation of motion
becomes

d

dt
ða3P;X

_�Þ ¼ 0: (2.2)

Clearly this has a trivial solution when � ¼ constant. Of
more interest is the solution with non-constant �, but for
which

X ¼ 1

2
_�2 ¼ constant; P;X ¼ 0: (2.3)

Denoting by Xext a constant extremum of PðXÞ, the equa-
tion of motion admits the ghost condensate solution

� ¼ ct; (2.4)

where c2 ¼ 2Xext.
The explicit time dependence of this solution spontane-

ously breaks Lorentz invariance and leads to a number of
interesting properties. First of all, evaluating the energy
and pressure densities one finds

� ¼ 2XP;X � P; p ¼ P ) �þ p ¼ 2XP;X: (2.5)

Since by definition X > 0, it follows that the null energy
condition (the NEC corresponds to the requirement
�þ p � 0) can be violated if P;X < 0. That is, if we are
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close to an extremum for PðXÞ, then on one side the NEC is
satisfied while on the other it is not. Correspondingly, since
Einstein’s equations imply _H ¼ � 1

2 ð�þ pÞ, it is now

possible to obtain a nonsingular bouncing universe—H
increases from negative to positive values. Crucial in de-
termining the viability of this theory is the question of
whether or not this NEC-violating solution is ‘‘stable.’’
To this end, let us expand Lagrangian (2.1) to quadratic
order in perturbations around the ghost condensate,

� ¼ ctþ ��ðxmÞ: (2.6)

We find that

Lffiffiffiffiffiffiffi�g
p ¼ 1

2
ðð2XP;XX þ P;XÞð _��Þ2 � P;X��

;i��;iÞ: (2.7)

As a result of Lorentz breaking, the coefficients in front of
the time and space pieces are unequal. By inspection, one
sees that the condition for the absence of ghosts is that

2XP;XX þ P;X > 0; (2.8)

which can be achieved around a local minimum

P;XX > 0; (2.9)

even in the NEC-violating region where P;X is small but

negative. Henceforth, one imposes (2.9) in addition to (2.3)
on the ghost condensate vacuum. This feature is arguably
the most striking property of ghost condensate theories,
namely, that the NEC can be violated without the appear-
ance of ghosts.

However, in the NEC-violating region the coefficient
in front of the spatial derivative term in (2.7) has the
wrong sign. Therefore, the theory suffers from gradient
instabilities. These can be softened by adding (small)
higher-derivative terms—not of the PðXÞ type—to the
Lagrangian, such as �ðh�Þ2. These modify the dispersion
relation for �� at high momenta and suppress instabilities
for a short—but sufficient–period of time. In a cosmological
context, there are additional constraints arising from a study
of the growth of cosmological perturbations, which imply
that a nonsingular bounce must be fast in order to avoid
perturbations from becoming uncontrollably large [34,35].
The bottom line is that bouncing universe solutions via a
ghost condensate are admissible, but the bounce is required
to occur on a fast time scale—for more details, see [12].

III. REVIEW OF GLOBALLY N ¼ 1
SUPERSYMMETRIC GHOST CONDENSATION

A. Higher-derivative chiral superfield Lagrangians

As shown in [22], the scalar ghost condensate theory can
be extended to global N ¼ 1 supersymmetry. In this paper,
we will adopt the notation and conventions of Wess and
Bagger [36]. A point in flat N ¼ 1 superspace is labeled by
the ordinary spacetime coordinates xm and the Grassmann
spinor coordinates ��, �� _�. One can define superspace
derivatives

D� ¼ @

@��
þ i�m

� _�
�� _�@m; �D _� ¼ � @

@ �� _�
� i���m

� _�@m;

(3.1)

satisfying the supersymmetry algebra

fD�; �D _�g ¼ �2i�m
� _�@m: (3.2)

A chiral superfield � is defined by the constraint that

�D _�� ¼ 0: (3.3)

It can be expanded in terms of ��, �� _� as

� ¼ Aþ i��m ��A;m þ 1

4
�� �� ��hAþ ��F

þ ffiffiffi
2

p
��� iffiffiffi

2
p ���;m�

m ��; (3.4)

where the component fields are a complex scalar AðxÞ, an
auxiliary field FðxÞ and a spinor ��ðxÞ, each being func-
tions of the ordinary spacetime coordinates xm. Spinor
indices which we do not write out explicitly are understood
to be summed according to the convention �� ¼ ���� and
�� �� ¼ �� _�

�� _�.
The highest ð�� �� ��Þ component of a superfield is auto-

matically invariant under supersymmetry transformations
(up to a total spacetime derivative) and, thus, can be used to
define a supersymmetric Lagrangian. To isolate the highest
component, one can either integrate over the four fermi-
onic coordinates of superspace with the differential d4� �
d2�d2 ��, or act on the superfield with four superspace
derivatives D2 �D2. Both procedures are equivalent. As an
example, the ordinary supersymmetric kinetic Lagrangian
for chiral superfield (3.4) is given by

L�y� ¼
Z

d4��y� ¼ �y�j�� �� ��

¼ �@A � @A� þ F�Fþ i

2
ð�;m�

m ��� ��m ��;mÞ:
(3.5)

Defining the complex scalar A in terms of two real scalars
�, � as

A ¼ 1ffiffiffi
2

p ð�þ i�Þ; (3.6)

this Lagrangian becomes

L�y� ¼ � 1

2
ð@�Þ2 � 1

2
ð@�Þ2 þ F�F

þ i

2
ð�;m�

m ��� ��m ��;mÞ: (3.7)

Clearly (3.5) is the global N ¼ 1 supersymmetric exten-
sion of X ¼ � 1

2 ð@�Þ2 appearing in the scalar ghost con-

densate Lagrangian.
To continue, one must provide a global supersymmetric

extension of X2 as well. This was analyzed in [22] and
found, to quadratic order in the spinor �, to be given by
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LD�D� �D�y �D�y ¼ 1

16
D�D� �D�y �D�yj�� �� ��

¼ ð@AÞ2ð@A�Þ2 � 2F�F@A � @A� þ F�2F2 � i

2
ð��m ��l�n ��;nÞA;mA

�
;l

þ i

2
ð�;n�

n ��m�l ��ÞA;mA
�
;l þ i��m ��;nA;mA

�
;n � i�;m�n ��A;mA

�
;n þ i

2
��m ��ðA�

;mhA� A;mhA�Þ

þ 1

2
ðFhA� @F@AÞ �� ��þ 1

2
ðF�hA� � @F�@A�Þ��þ 1

2
FA;mð �� ��m�n ��;n � ��;n ��

m�n ��Þ

þ 1

2
F�A�

;mð�;n�
n ��m�� ��n ��m�;nÞ þ 3i

2
F�Fð�;m�

m ��� ��m ��;mÞ þ i

2
��m ��ðFF�

;m � F�F;mÞ:
(3.8)

Written in terms of�, � using (3.6), the pure A-term in this
Lagrangian becomes

ð@AÞ2ð@A�Þ2 ¼ 1

4
ð@�Þ4 þ 1

4
ð@�Þ4 � 1

2
ð@�Þ2ð@�Þ2

þ ð@� � @�Þ2: (3.9)

It follows that (3.8) is a global N ¼ 1 supersymmetric
extension of the X2-term in the scalar ghost condensate
Lagrangian. As discussed in [37], there is an alternative
supersymmetric extensions of X2 given by

� 1

16
ð���yÞ2 �DD�D �D�y: (3.10)

However, (3.8) has two properties that render it the
appropriate choice. First, it uniquely has the property that
when the fermion � is set to zero, the only nonvanishing
term is the top �� �� �� component. This makes (3.8) useful
in constructing higher-derivative terms that include X2, a
property we will need below. Second, when extended to

supergravity—as we will do in the next section—only (3.8)
leads to minimal coupling of �, � to gravity. The
Lagrangian (3.10), on the other hand, produces a derivative
interaction �2ð@�Þ2R of the chiral scalars with the Ricci
scalar R.

B. The supersymmetric ghost condensate

Using (3.5), (3.7), (3.8), and (3.9), one can now present
the global N ¼ 1 supersymmetric extension of the proto-
typical scalar ghost condensate Lagrangian PðXÞ ¼ �X þ
X2, with Xext ¼ 1

2 . Since this scalar Lagrangian is purely

kinetic with no potential energy, there is no need to con-
sider a superpotential W. This simplifies things, as

W ¼ 0 ) F ¼ 0 (3.11)

in the supersymmetric extension. The result, to quadratic
order in the fermion �, is then given by

LSUSY ¼
�
��y�þ 1

16
D�D� �D�y �D�y

�
j�� �� ��

¼ þ 1

2
ð@�Þ2 þ 1

4
ð@�Þ4 þ 1

2
ð@�Þ2 þ 1

4
ð@�Þ4 � 1

2
ð@�Þ2ð@�Þ2 þ ð@� � @�Þ2

� i

2
ð�;m�

m ��� ��m ��;mÞ � 1

2
ð@�Þ2 i

2
ð�;m�

m ��� ��m ��;mÞ ��m�;n

i

2
ð�;n�m ��� ��m ��;nÞ: (3.12)

It was shown in [22] that the associated equations of
motion continue to admit a ghost condensate vacuum of
the form

� ¼ ct; � ¼ 0; � ¼ 0; (3.13)

for arbitrary real constant c. Recalling, however, that P;X

must vanish in a cosmological context, we henceforth
restrict to c ¼ 1.

To assess the stability of the supersymmetric ghost
condensate, one can expand in small fluctuations around
this background as

�¼ tþ��ðt; ~xÞ; �¼��ðt; ~xÞ; �¼��ðt; ~xÞ: (3.14)

The result, to quadratic order, is

LSUSY ¼ ð _��Þ2 þ 0 � ��;i��;i þ 0 � ð _��Þ2

þ ��;i��;i þ 1

2

i

2
ð��;0�

0� ��� ���0� ��;0Þ

� 1

2

i

2
ð��;i�

i� ��� ���i� ��;iÞ: (3.15)

Each line illustrates an important issue to be addressed in
supersymmetric ghost condensation. Note from the first
line that �� has a ghost-free time derivative term, but
that the spatial gradient term is vanishing. This reproduces
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the standard result for a scalar ghost condensate at the
minimum of PðXÞ. It follows from the discussion in
Sec. II that �� will develop a small, negative spatial
gradient term in the NEC-violating region where P;X<0.
For the scalar ghost condensate, this is easily cured by
including other higher-derivative terms not of the PðXÞ

type—the simplest being �ðh�Þ2. This gradient stabiliz-
ing term can be extended to global N ¼ 1 supersymmetry
using the fact, stated above, that when the fermion � is set
to zero, the only nonvanishing term inD�D� �D�y �D�y is
the top �� �� �� component. The appropriate extension was
computed in [22] and shown to be

� 1

211
D�D� �D�y �D�yðfD; �DgfD; �Dgð�þ�yÞÞ2j�� �� ��¼�ðh�Þ2

�
1

4
ð@�Þ4þ1

4
ð@�Þ4þð@� �@�Þ2�1

2
ð@�Þ2ð@�Þ2

�
; (3.16)

where we have set F ¼ 0 and kept only those terms re-
quired to analyze the existence and stability of the ghost
condensate. We have not displayed terms quadratic in the
fermion � since each is multiplied by at least one power of
h� and, hence, will vanish in the condensate vacuum.
When this is added to Lagrangian (3.12), the modified
equations of motion for the component fields continue to
admit the ghost condensate solution (3.13) with c ¼ 1.
Expanding around this vacuum using (3.14) and ð@�Þ2 ¼
�1, we find to quadratic order that (3.16) becomes

� 1

4
ðh��Þ2: (3.17)

Hence, the first line in the component field Lagrangian is
now

LSUSY¼ð _��Þ2þ0 ���;i��;i�1

4
ðh��Þ2þ��� ; (3.18)

which softens gradient instabilities by modifying the

dispersion relation for �, just as in the usual

non-supersymmetric ghost condensate [1]. We note that

the coefficient in front of the ðh�Þ2-term has been chosen

for convenience here. A wide range of numerical values is

in fact possible—see [12] for a detailed description of the

associated bounds.

The second line in (3.15) indicates that the time de-

rivative term in the �� kinetic energy vanishes, while the

spatial gradient term has the wrong sign. This result is

new to the supersymmetric extension and, again, must be

cured by adding supersymmetric higher-derivative terms.

Using the unique properties of D�D� �D�y �D�y, these
were derived in [22] and, to quadratic order in �, found
to be

þ 8

162
D�D� �D�y �D�yðfD; �Dgð���yÞfD; �Dgð�y ��ÞÞj�� �� ��

� 4

163
D�D� �D�y �D�yðfD; �Dgð�þ�yÞfD; �Dgð���yÞÞðfD; �Dgð�þ�yÞfD; �Dgð�y ��ÞÞj�� �� ��

¼ �2ð@�Þ4ð@�Þ2 � ð@�Þ4ð@� � @�Þ2: (3.19)

Again, we have displayed only those terms required to
analyze the existence and stability of the ghost condensate.
When these are added to the Lagrangian, the modified
equations of motion continue to admit the ghost conden-
sate vacuum (3.13) with c ¼ 1. Expanding around this
vacuum using (3.14) and (3.19), becomes

� 2ð@��Þ2 � ð _��Þ2: (3.20)

Hence, the second line in the component field Lagrangian
is now

L SUSY ¼ � � � þ ð _��Þ2 � ��;i��;i þ � � � ; (3.21)

which is a Lorentz invariant, correct-sign kinetic energy for
��.

Finally, consider the � kinetic terms in the third line
of (3.15). Although the coefficients are of equal magni-
tude, the time derivative term is ghost-free while the

spatial gradient term has the wrong sign. Using globally
supersymmetric extensions of PðXÞ theories, we have
been unable to change the sign of the fermion spatial
gradient term while leaving the time derivative term
ghost-free. As discussed in [22], we remain agnostic
about whether or not this wrong-sign spatial fermion
kinetic term is a physical problem. This issue will be
further explored within the context of the spontaneous
breaking of both global and local supersymmetry. It
might be worth pointing out though that by extending
the ghost condensate model to Galileon theories, the
same vacuum solution admits correct-sign, ghost-free
fluctuations [23].
For completeness, we present the entire globally

supersymmetric extension of the ghost condensate theory,
combining all of the terms discussed independently above.
The result is
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LSUSY ¼ ��y�j�� �� �� þ
1

16
D�D� �D�y �D�yj�� �� �� þD�D� �D�y �D�y

�
� 1

211
ðfD; �DgfD; �Dgð�þ�yÞÞ2 þ 1

25
fD; �Dg

� ð���yÞfD; �Dgð�y ��Þ � 1

210
ðfD; �Dgð�þ�yÞfD; �Dgð���yÞÞ2

����������� �� ��
: (3.22)

In components, writing out all the terms that are relevant for a stability analysis in a ghost condensate background, this
corresponds to

LSUSY ¼ þ 1

2
ð@�Þ2 þ 1

4
ð@�Þ4 � 1

4
ð@�Þ4ðh�Þ2 þ 1

2
ð@�Þ2 � 1

2
ð@�Þ2ð@�Þ2 � 2ð@�Þ4ð@�Þ2 þ ð@� � @�Þ2

� ð@�Þ4ð@� � @�Þ2 þ i

2
ð�;m�

m ��� ��m ��;mÞ
�
�1� 1

2
ð@�Þ2

�
��m�;n

i

2
ð�;n�m ��� ��m ��;nÞ: (3.23)

C. A new form of supersymmetry breaking

The supersymmetric ghost condensate manifests another
important property. Consider the supersymmetry transfor-
mation of the spinor,

�� ¼ i
ffiffiffi
2

p
�m �	@mAþ ffiffiffi

2
p

	F: (3.24)

Ordinarily, spontaneous breaking of supersymmetry is
achieved by having a nonzero, constant vacuum expecta-
tion value (vev) of the dimension-two auxiliary field F,
thus rendering the transformation inhomogeneous. The
spinor � then becomes the Goldstone fermion of the spon-
taneously broken supersymmetry.

With the supersymmetric ghost condensate, we find
ourselves in a new situation. In this vacuum, the vev of F
vanishes. Now, however, supersymmetry is broken by the
scalar field A getting a nonzero and, moreover, linearly

time-dependent vev h _Ai ¼ h _�i= ffiffiffi
2

p ¼ c=
ffiffiffi
2

p
, where we re-

store the arbitrary dimension-two constant. Therefore,

�� ¼ i
ffiffiffi
2

p
�m �	@mA ¼ i�0 �	c: (3.25)

As before, the fermion transforms inhomogeneously and,
hence, supersymmetry is spontaneously broken. For the
ghost condensate, however, the inhomogeneous term
arises from the linear time-dependent vev of � rather
than from the F-term. The scale of supersymmetry
breaking corresponds to the scale of the ghost conden-
sate. It is of interest to explore this mechanism within
the context of supergravity. There, one might expect the
Goldstone fermion to be eaten by the gravitino, and to
render the latter massive. However, because of the
wrong-sign spatial kinetic term of the spinor and other
properties of the ghost condensate background—as dis-
cussed in the previous subsection—there may well be
subtleties involved. We will return to this intriguing
question in the next section.

IV. THE GHOST CONDENSATE IN N¼ 1
SUPERGRAVITY

In this section, we couple the globally supersymmetric
Lagrangian given in (3.22) to N ¼ 1 supergravity and

discuss the ghost condensate vacuum in this context.
As above, only those terms in the component field
Lagrangian that have up to two fermions are
presented—since this is all that is required to discuss
the supergravity ghost condensate.

A. The chiral superfield Lagrangian in supergravity

In [24], it was shown that a global N ¼ 1 supersym-
metric Lagrangian of the form

LSUSY¼Kð�;�yÞj�� �� ��

þ 1

16
D�D� �D�y �D�yTð�;�y;@m�;@n�

yÞj�� �� ��

þðWð�Þj��þWyð�yÞj �� ��Þ; (4.1)

where K is any real function of �, �y, T is an arbitrary
Hermitian function of �, �y with any number of their
spacetime derivatives (with all derivative indices con-
tracted) and W is an arbitrary holomorphic function of
�, can be consistently coupled to supergravity.1 This
was accomplished within the context of curved super-
space, following the notation and formalism introduced
in [36]. Suffice it here to say that a point in curved

N ¼ 1 superspace is labeled by ðxm;��; �� _�Þ and that

the chiral projector is �D2 � 8R, where �D _� is a spinorial
component of the curved superspace covariant derivative

DA ¼ ðDa;D�;
�D _�Þ and R is the curvature superfield.2

In its component expansion, R contains the Ricci scalar
R and the gravitino c m, as well as the auxiliary fields
of supergravity—namely a complex scalar M and a
real vector bm. The components in the � expansion of
R are

1Related work of interest includes [38–44].
2All covariant derivatives used in this paper contain the super-

spin connection only. The Uð1Þ connection associated with
Kähler transformations—sometimes absorbed into the covariant
derivatives in [36]—are, in this paper, always written out
explicitly.
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R ¼ � 1

6
M� 1

6
��ð�� _�

a ��b _�
c ab
 � i�� _�
a �c a

_�Mþ ic a�b
aÞ þ����

�
1

12
R� 1

6
i �c a

_� ��b _�
c ab
 � 1

9
MM�

� 1

18
baba þ 1

6
iea

mDmb
a � 1

12
�c _�

�c _�Mþ 1

12
c a

��� _�
a �c c

_�bc � 1

48
"abcd½ �c a _� ��b

_�
c cd
 þ c a
��� _�b

�c cd
_��
�
:

(4.2)

A second superfield that we will need is the chiral density E. This contains the determinant of the vierbein eam, as well asM
and c m. Its component expansion is

2E ¼ eð1þ i���� _�
a �c a

_� �����½M� þ �c a _� ��ab _�
_

�c b

_
�Þ: (4.3)

In terms of these quantities, the N ¼ 1 supergravity extension of Lagrangian (4.1) is

LSUGRA ¼
Z

d2�2E
�
3

8
ð �D2 � 8RÞe�K=3 � 1

8
ð �D2 � 8RÞðD�D� �D�y �D�yTÞ þWð�Þ

�
þ H:c: (4.4)

Partially expanded in component fields, this becomes

LSUGRA ¼
�
� 3

32
eðD2 �D2e�K=3Þþ i

3

16
e �c a _� ��a _��ðD�

�D2e�K=3Þ� 3

8
eðM� þ �c a ��

ab �c bÞð �D2e�K=3Þ

� 1

8
eMðD2e�K=3Þþ i

1

4
eð �c a ��

aÞ�ðD�e
�K=3Þ� 1

4
eðc ab�

b �c aþ iM �c a ��
aþ ic ab

aÞ�ðD�e
�K=3Þ

þ 1

32
eD2 �D2ðD�D� �D�y �D�yTÞ� 1

16
eið �c a ��

aÞ�D�
�D2ðD�D� �D�y �D�yTÞ

þ 1

8
eðM� þ �c a ��

ab �c bÞ �D2ðD�D� �D�y �D�yTÞþ 1

24
eMD2ðD�D� �D�y �D�yTÞ

���������þH:c:

þ e

�
�1

2
R� 1

3
jMj2þ 1

3
babaþ 1

4
"abcdð �c a ��bc cd� c a�b

�c cdÞ
�
e�KðA;A�Þ=3þ eF@WðAÞþ eF�ð@WðAÞÞ�

� 1

2
e�2@2WðAÞ� 1

2
e ��2ð@2WðAÞÞ� � 1ffiffiffi

2
p ei��a �c a@WðAÞ� 1ffiffiffi

2
p ei �� ��ac að@WðAÞÞ� � eðM� þ �c a ��

ab �c bÞWðAÞ

� eðMþ c a�
abc bÞWðAÞ�; (4.5)

where j specifies taking the lowest component of the superfield and

c mn
� ¼ ~Dmc n

� � ~Dnc m
�; ~Dmc n

� ¼ @mc n
� þ c n


!m

�: (4.6)

Since we are interested in the supergravity extension of the ghost condensate, we can, as in the globally supersymmetric
case, set W ¼ 0. It then follows from their equations of motion that both

F ¼ M ¼ 0 (4.7)

in our zero-fermion background. This simplifies the Lagrangian (4.5), which now becomes

LSUGRA ¼
�
� 3

32
eðD2 �D2e�K=3Þ þ i

3

16
e �c a _� ��a _��ðD�

�D2e�K=3Þ � 3

8
e �c a ��

ab �c bð �D2e�K=3Þ þ i
1

4
eð �c a ��

aÞ�

� ðD�e
�K=3Þ � 1

4
eðc ab�

b �c a þ ic ab
aÞ�ðD�e

�K=3Þ þ 1

32
eD2 �D2ðD�D� �D�y �D�yTÞ

� 1

16
eið �c a ��

aÞ�D�
�D2ðD�D� �D�y �D�yTÞ þ 1

8
e �c a ��

ab �c b
�D2ðD�D� �D�y �D�yTÞ

���������
þ H:c:þ e

�
� 1

2
Rþ 1

3
baba þ 1

4
"abcdð �c a ��bc cd � c a�b

�c cdÞ
�
e�KðA;A�Þ=3: (4.8)

Note that the auxiliary field ba ¼ ema bm remains undetermined. To proceed, one must evaluate the lowest component of
each superfield term.

Evaluating the first term in (4.4), we find after integration by parts that
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1

e
LSUGRA

Kð�;�yÞ ¼
1

e

�Z
d2�2E

3

8
ð �D2 � 8RÞe�K=3

�
þ H:c:

¼
�
� 1

2
Rþ 1

3
baba þ 1

4
"abcdð �c a ��bc cd � c a�b

�c cdÞ
�
e�KðA;A�Þ=3

þ 3j@Aj2ðe�K=3Þ;AA� þ ibaðA;aðe�K=3Þ;A � A�
;aðe�K=3Þ;A� Þ � i

1ffiffiffi
2

p baðc a�ðe�K=3Þ;A � �c a ��ðe�K=3Þ;A� Þ

� ffiffiffi
2

p
��mnc mnðe�K=3Þ;A � ffiffiffi

2
p

�� ��mn �c mnðe�K=3Þ;A� � i
3

2
c a�

ab�c �c bA;cðe�K=3Þ;A

� i
3

2
�c a ��

ab ��cc bA
�
;cðe�K=3Þ;A� þ 1

2
��a ��baðe�K=3Þ;AA� þ i

3

2
ð��aea

mDm ��þ �� ��aea
mDm�Þðe�K=3Þ;AA�

þ 3

2

ffiffiffi
2

p
A�

;bc a�
b ��a�ðe�K=3Þ;AA� þ 3

2

ffiffiffi
2

p
A;b

�c a ��
b�a ��ðe�K=3Þ;AA� � 3

2
ð@AÞ2ðe�K=3Þ;AA

� 3

2
ð@A�Þ2ðe�K=3Þ;A�A� þ i

3

2
��a ��ðA�

;aðe�K=3Þ;AA�A� � A;aðe�K=3Þ;AAA� Þ: (4.9)

Note that this corresponds to the supergravitational �X-term in (3.22) if one chooses

Kð�;�yÞ ¼ ���y: (4.10)

The second term in (4.4) depends on the arbitrary Hermitian function T. As a first step, let us choose T ¼ �=16where � is a
real constant. For � ¼ 1, the second term in (4.4) corresponds to the supergravitational X2-term in (3.22). It is useful,
however, to introduce � as a ‘‘marker’’ indicating the component terms arising from this part of the Lagrangian. Wewill set
� ¼ 1 at the end of the calculation. Evaluating this second term gives

1

e
LSUGRA

D�D� �D�y �D�y;�¼
1

e

�
� �

27

Z
d2�2Eð �D2�8RÞðD�D� �D�y �D�yÞ

�
þH:c:

¼
�
þ �

29
D2 �D2ðD�D� �D�y �D�yÞ� �

28
ið �c a ��

aÞ�D�
�D2ðD�D� �D�y �D�yÞ

þ �

27
�c a ��

ab �c b
�D2ðD�D� �D�y �D�yÞ

���������þH:c:

¼þ�ð@AÞ2ð@A�Þ2�1

2

ffiffiffi
2

p
� �c a ��

a�c ��A�
;cð@AÞ2�1

2

ffiffiffi
2

p
���c ��ac aA;cð@A�Þ2� ffiffiffi

2
p

�ð@A�Þ2A;m�c
m

� ffiffiffi
2

p
�ð@AÞ2A�

;m
�c m ��� i

2
���a ��A;aeb

mDmA
�
;bþ

5

6
���a ��A;aA

�
;bb

bþ i

2
���a ��A�

;aeb
mDmA;b

þ5

6
���a ��A�

;aA;bb
b� i�ðDm�Þ�b ��A;mA�

;bþ
ffiffiffi
2

p
� �c a ��

c�b ��A;aA�
;bA;cþ1

3
� �� ��b�c ��a�b

cA;aA�
;b

þ i���bðDm ��ÞA�;mA;bþ
ffiffiffi
2

p
���b ��cc aA

�;aA;bA
�
;c� i

2
���a ��b�mðDm ��ÞA;aA

�
;b

� 1

12
���a ��b�c ��bcA;aA

�
;bþ

i

2
�ðDm�Þ�m ��b�a ��A�

;aA;b� 1

12
���c ��b�a ��bcA

�
;aA;b: (4.11)

The basic N ¼ 1 supergravity Lagrangian for the ghost condensate is obtained by adding (4.9) and (4.11). Note that it
contains the supergravity auxiliary field bm, which can be eliminated from the Lagrangian using its equation of motion.
This is found to be

bm ¼ � 3

2
iðA;mðe�K=3Þ;A � A�

;mðe�K=3Þ;A� ÞeK=3 � 3

4
��m ��ðe�K=3Þ;AA�eK=3 þ 3

4

ffiffiffi
2

p
iðc m�ðe�K=3Þ;A � �c m ��ðe�K=3Þ;A� ÞeK=3

� 5

4
���a ��ðA;aA

�
;m þ A�

;aA;mÞeK=3 þ 1

2
���a ��m�

b ��A;aA
�
;be

K=3 þ 1

8
�ð��a ��b�m ��þ ��m ��a�b ��ÞA;aA

�
;be

K=3:

(4.12)

Plugging (4.12) back into the sum of the Lagrangians, and keeping only the terms containing at most two fermions, this
results in the expression
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1

e
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T¼�=16 ¼
1

e

Z
d2�2E

�
3
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ð �D2 � 8RÞe�K=3 � �

27
ð �D2 � 8RÞðD�D� �D�y �D�yÞ
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þ H:c:

¼
�
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2
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4
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2
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3

2
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3
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2
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2
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2

p
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� ffiffiffi
2

p
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2

p
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2
���a ��A;aeb

mDmA
�
;b þ

i

2
���a ��A�

;aeb
mDmA;b

� i�ðDm�Þ�b ��A;mA�
;b þ

ffiffiffi
2

p
� �c a ��

c�b ��A;aA�
;bA;c þ i���bðDm ��ÞA�;mA;b þ

ffiffiffi
2

p
���b ��cc aA

�;aA;bA
�
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� i

2
���a ��b�mðDm ��ÞA;aA

�
;b þ

i

2
�ðDm�Þ�m ��b�a ��A�

;aA;b þ 3

4
ðð@AÞðe�K=3Þ;A � ð@A�Þðe�K=3Þ;A� Þ2eK=3
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4

ffiffiffi
2

p ðA;mðe�K=3Þ;A � A�;mðe�K=3Þ;A� Þðc m�ðe�K=3Þ;A � �c m ��ðe�K=3Þ;A� ÞeK=3 � 3

4
i��a ��ðA;aðe�K=3Þ;A

� A�
;aðe�K=3Þ;A� Þðe�K=3Þ;AA�eK=3 � 7

4
i���a ��ðA�

;að@AÞ2ðe�K=3Þ;A � A;að@A�Þ2ðe�K=3Þ;A� ÞeK=3

� 3

2
i���a ��ðA;aðe�K=3Þ;A � A�

;aðe�K=3Þ;A� Þj@Aj2eK=3: (4.13)

To go to Einstein frame and to render all fields canonically normalized, we now Weyl rescale as

en
a 			!WEYL

eK=6en
a; � 			!WEYL

e�K=12�; c m 			!WEYL
eK=12c m; (4.14)

and shift

c m 			!SHIFT
c m þ i

ffiffiffi
2

p
6

�m ��K;A� : (4.15)

For the sum of terms not proportional to �, this results in

1

e
LSUGRA

Kð�;�yÞ;Weyl
¼ 1

e

�Z
d2�2E

3

8
ð �D2 � 8RÞe�K=3

�
Weyl

þ H:c:

¼ � 1

2
R� K;AA� j@Aj2 � iK;AA� �� ��mDm�þ "klmn �c k ��l

~Dmc n

� 1

2

ffiffiffi
2

p
K;AA�A�

;n��
m ��nc m � 1

2

ffiffiffi
2

p
K;AA�A;n �� ��m�n �c m: (4.16)

See [36] for details. After Weyl rescaling, the terms proportional to � become

1

e
LSUGRA
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¼ 1
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d2�2E

�
� �
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�
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ffiffiffi
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2

p
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m

� ffiffiffi
2

p
�ð@AÞ2A�
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�c m ��� i

2
���a ��A;ae

bmðDmA
�
;bÞ þ

i

2
���a ��A�
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�
;bK
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;aðe�K=3Þ;A� Þj@Aj2eK=3: (4.17)

To arrive at this result, we used

DnA;b 			!WEYL
e�K=6

�
DnA;b � 1

6
K;nA;b þ 1

6
eb

lA;mðK;mgnl � K;lgnmÞ
�
;

Dn�
� 			!WEYL

e�K=12
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Dn�
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� þ 1
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ð�mlÞ
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�
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e�K=12
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12
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_
ðK;mgnl � K;lgnmÞ
�
:

(4.18)

This follows from the definitions

!n

� ¼ 1

2
ð�mlÞ
�!nml; Dn�

� ¼ @n�
� þ �
!n


�;

(4.19)

and the fact that under (4.14)

!nml 			!WEYL
eK=3

�
!nml þ 1

6
K;mgnl � 1

6
K;lgnm

�
: (4.20)

The effect of the shift (4.15) on (4.17) actually sums to
zero.

B. The N ¼ 1 supergravity ghost condensate

The supergravity extension of the prototype scalar ghost
condensate PðXÞ ¼ �Xþ X2 is the sum of (4.16) and
(4.17), where we take

Kð�;�yÞ ¼ ���y; � ¼ 1: (4.21)

That is,

LSUGRA
T¼1=16;Weyl

¼1
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�Z
d2�2Eð �D2�8RÞ
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�
3e��y=3� 1

24
ðD�D� �D�y �D�yÞ

��
Weyl

þH:c:

(4.22)

It follows from (4.16), (4.17), and (4.21), that the purely
bosonic part of this Lagrangian is

1

e
LSUGRA

T¼1=16;Weyl ¼ � 1

2
Rþ j@Aj2 þ ð@AÞ2ð@A�Þ2 þ � � � :

(4.23)

Defining A ¼ 1ffiffi
2

p ð�þ i�Þ, this becomes3

1

e
LSUGRA

T¼1=16;Weyl ¼ � 1

2
Rþ 1

2
ð@�Þ2 þ 1

4
ð@�Þ4 þ 1

2
ð@�Þ2

þ 1

4
ð@�Þ4 � 1

2
ð@�Þ2ð@�Þ2

þ ð@� � @�Þ2 þ � � � : (4.24)

The remaining terms in the Lagrangian are at least qua-
dratic in the fermions �, c m. The Einstein and gravitino
equations can be solved in a flat FRW spacetime ds2 ¼
�dt2 þ aðtÞ2�ijdx

idxj with a vanishing gravitino c m ¼ 0.

The �, � and � equations of motion continue to admit a
ghost condensate vacuum of the form

� ¼ ct; � ¼ 0; � ¼ 0; (4.25)

where, to be consistent with the coupling to dynamical
aðtÞ, one must set c ¼ 1. The scale factor is that of a de
Sitter spacetime, which—in its flat slicing—is given by

3Our conventions for gravity are adapted to those of Wess and
Bagger [36]: in terms of affine connections, the Riemann tensor
is defined as Rmn

p
s � �@m�

p
ns þ @n�

p
ms � �p

mt�
t
ns þ �p

nt�
t
ms,

and the Ricci tensor is given by Rmn ¼ Rp
npm. In terms of

the spin connection, the Riemann tensor is Rmn
ab � @m!n

ab �
@n!m

ab þ!m
ac!nc

b �!n
ac!mc

b.
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aðtÞ ¼ e
� 1ffiffiffi

12
p t

: (4.26)

The choice of the � sign corresponds to an expanding or
contracting space respectively; in this paper, we focus on the
expanding branch. To assess the stability of the supergravity
ghost condensate, one can expand in small fluctuations
around this background. Considering scalar fluctuations

� ¼ tþ ��ðt; ~xÞ; � ¼ ��ðt; ~xÞ; (4.27)

only, the result to quadratic order is

1

e
LSUGRA

T¼1=16;Weyl ¼ ð _��Þ2 þ 0 � ��;i��;i þ 0 � ð _��Þ2

þ ��;i��;i: (4.28)

As in the globally supersymmetric case, both lines illus-
trate important issues to be addressed in supergravity
ghost condensation—that is, the �� spatial gradient
instability and the unacceptable �� kinetic terms respec-
tively. We will present the solution to both of these
problems later in the paper. Now, however, we turn to
a discussion of the fermions in the background of the
ghost condensate.

C. The fermion Lagrangian and the super-Higgs effect

For a discussion of the fermions in the ghost
condensate vacuum, the relevant part of Lagrangian
(4.22) is4

1

e
LSUGRA

T¼1=16;Weyl ¼ � � � þ 1

2
"klmnð �c k ��l

~Dmc n � c k�l
~Dm

�c nÞ þ i

2
ð��mDm ��þ �� ��mDm�Þ

�
1þ 1

2
ð@�Þ2

�

þ i

2
�;m�;nð �� ��nðDm�Þ þ ��nðDm ��ÞÞ þ 1

2
ð��m ��nc p

þ �� ��m�n �c pÞ
�
gmp�;n þ 1

2
gmn�;pð@�Þ2 � 1

2
gnp�;mð@�Þ2

�
þ � � � ; (4.29)

where gmn is the FRW metric. For the time-dependent vev
� ¼ t, ð@�Þ2 ¼ �1. Hence, the first and second or third
lines correspond to unmixed c m and � kinetic energies
respectively. However, the ghost condensate induces a
mass mixing term between � and c m. Using �m ��n ¼
�gmn þ 2�mn, the mass term can be rewritten as

1

4
�;mð�c mþ �� �c mÞ�1

2
�;mð��mnc nþ �� ��mn �c nÞ (4.30)

or, more simply,

� 1

4
�;mð��m ��nc n þ �� ��m�n �c nÞ: (4.31)

Let us try to eliminate this mass mixing by redefining the
gravitino. As we will discuss below, the supersymmetry
transformations suggest the field redefinition

c m� ¼ ~c m� � 2i

ð@�Þ2 Dmð�;n�
n
� _� �� _�Þ: (4.32)

Using the fact that the second partial derivative on �
vanishes, the c m kinetic term transforms into

1

2
"klmnð �c k ��l

~Dmc n � c k�l
~Dm

�c nÞ

¼ 1

2
"klmnð ~�c k ��l

~Dm
~c n � ~c k�l

~Dm
~�c nÞ þ 2i"klmnð ~�c k ��lDmDnð�;p�

p ��Þ � ~c k�lDmDnð�;p ��p�ÞÞ
þ 2"klmnðDkð��p�;pÞ ��lDmDnð�;q�

q ��Þ �Dkð �� ��p�;pÞ�lDmDnð�;q ��
q�ÞÞ: (4.33)

Furthermore, employing the relation

ðDmDn �DnDmÞ� ¼ �R
12

�mn�; (4.34)

which is valid for maximally symmetric spacetimes, and the fact thatR ¼ �1 for our de Sitter background, the c m kinetic
term becomes

4To find the ghost condensate background, it is consistent to set the auxiliary fields M ¼ F ¼ 0 since M and F are sourced only by
terms of quadratic and higher order in fermions. However, one might wonder whether it is necessary to include the M- and F-terms in
the calculation of quadratic fermionic fluctuations around this background. Luckily, we do not have to do this. In the absence of a
superpotential, all terms arising from the substitution ofM and F into the action are fourth-order and higher in fermions and, hence, do
not contribute to the present calculation. This follows from the results of Appendix B and from the analysis of the equation of motion
for F detailed in [24].
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1

2
"klmnð �c k ��l

~Dmc n � c k�l
~Dm

�c nÞ

¼ 1

2
"klmnð ~�c k ��l

~Dm
~c n � ~c k�l

~Dm
~�c nÞ þ 1

4
�;pð ~�c k ��

k�p ��þ ~c k�
k ��p�Þ

þ i

4
ð�ð@�Þ2Dk��

k ��þ 2�;p�
;kDk��

p ��� ð@�Þ2Dk �� ��k�þ 2�;p�
;kDk �� ��p�Þ: (4.35)

Since we are only working to quadratic order in fermions,
the second term on the right-hand side can be written as

1

4
�;pð ~�c k ��

k�p ��þ ~c k�
k ��p�Þ

¼ þ 1

4
�;mð��m ��nc n þ �� ��m�n �c nÞ þ � � � ; (4.36)

where we have anti commuted the fermions, used the
definition of ��m and relabeled indices. Note that this
term exactly cancels the �, c m mass mixing term (4.31).
Furthermore, the remaining terms in (4.35) do not intro-
duce mixing of the ~c m, � kinetic energies. It follows that
in the ghost condensate vacuum, using ð@�Þ2 ¼ �1 and
the redefined gravitino ~c m, the quadratic fermion terms in
(4.29) reduce to

1

e
LSUGRA

T¼1=16;Weyl

¼ � � � þ 1

2
"klmnð ~�c k ��l

~Dm
~c n � ~c k�l

~Dm
~�c nÞ

þ i

2
ð��mDm ��þ �� ��mDm�Þ

þ i�;m�;nð �� ��nðDm�Þ þ ��nðDm ��ÞÞ þ � � � :
(4.37)

This Lagrangian describes (a) a massless gravitino ~c m

with Lorentz covariant kinetic energy and (b) a massless
fermion � with kinetic terms whose Lorentz invariance is
broken in the ghost condensate background. We note that
after the field redefinition of the gravitino, the kinetic terms
for � now appear with an additional overall multiplicative
factor of 2.

Given this result, one can analyze the super-Higgs effect
within the context of the supergravity ghost condensate.
We know from the discussion in Sec. III C that the ghost
condensate spontaneously breaks global N ¼ 1 supersym-
metry. What happens when this is generalized to super-
gravity? We showed in [22] and Appendix A that the
variations of the fermions � and c m under local super-
symmetry—after Weyl rescaling and using the solutions
for the supergravity auxiliary fields M and bm appropriate
to a bosonic background—are given by

�� ¼ i
ffiffiffi
2

p
�m �	@mAþ ffiffiffi

2
p

eK=6	F; (4.38)

�c m¼2

�
Dmþ1

4
ðK;A@mA�K;A�@mA

�Þ
�
	þ ieK=2W�m

�	;

(4.39)

for arbitrary Kähler potential K, superpotential W and
chiral auxiliary field F. Since we are interested in super-
symmetry breaking in the vacuum, we have ignored all
terms proportional to the component fermions on the right-
hand side of the variations. In pure two-derivative chiral
theories coupled to supergravity—that is, not in the ghost
condensate case—spontaneous breaking of supersymmetry
is achieved as follows. One chooses a nonvanishing W for
which (1) the potential energy is minimized by having the
scalar A be a constant, and (2) when evaluated at this

minimum F ¼ �K;AA�
eK=3ðDAWÞ� � 0, where DAW is

the Kähler covariant derivative of W. The nonvanishing
F-term in (4.38) then renders the � transformation inho-
mogeneous, spontaneously breaking supersymmetry, while

the transformation of a redefined gravitino ~c m vanishes.

Therefore, � is the massless Goldstone fermion while ~c m

is the physical gravitino. Generically, W � 0 in the vac-
uum giving the gravitino a nonvanishing mass

m3=2 ¼ eK=2jWj: (4.40)

As first discussed in [45], in the process the Goldstone
fermion � gets ‘‘eaten’’ by the now massive gravitino. This
is the super-Higgs effect. Note, however, that if W ¼ 0 in
the vacuum—but with DW � 0—the gravitino mass van-
ishes even though supersymmetry is spontaneously broken.
Although this is generically not the case, it is possible to
find theories where this does occur.
Let us now return to the supergravity ghost condensate

vacuum. In this case we choose the holomorphic
function W ¼ 0, from which it follows that F ¼ 0.
However, A now develops a nonzero, linearly time-

dependent vev hAi ¼ h�i= ffiffiffi
2

p ¼ ct=
ffiffiffi
2

p
, where we restore

the dimension-two constant c. The � transformation in
(4.38) then becomes

�� ¼ i
ffiffiffi
2

p
�m �	@mA ¼ i�0 �	c: (4.41)

As before, the fermion transforms inhomogeneously and,
hence, supersymmetry is spontaneously broken. For the
ghost condensate, however, the inhomogeneous term
arises from the linear time-dependent vev of � rather
than from the F-term. Now consider the gravitino trans-
formation (4.39). Recalling that we choose K ¼ ���y
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in the ghost condensate, and using W ¼ 0 and hAi ¼
ct=

ffiffiffi
2

p
, it follows from (4.39) that

�c m ¼ 2

�
Dm þ 1

4
ðK;A@mA� K;A�@mA

�Þ
�
	 ¼ 2Dm	:

(4.42)

Note that, in addition to the term proportional to W
vanishing, the factor K;A@mA� K;A�@mA

� in the first

term is also zero in this vacuum. Be this as it may, the
de Sitter spacetime covariant derivative Dm	� ¼
@m	� � 1

2!mplð�plÞ�
	
 does not vanish, as

!i0j ¼ gijH; (4.43)

and, hence, c m transforms inhomogeneously. However,
in analogy with the ordinary two-derivative case, let us
redefine the gravitino as in (4.32). It is straightforward to
shown that in the ghost condensate background

� ~c m ¼ 0: (4.44)

This then identifies � as the massless Goldstone fermion

and ~c m as the physical gravitino. The generic expression
for the gravitino mass was given by (4.40). In the ghost
condensate, however, W ¼ 0 and, hence,

m3=2 ¼ 0: (4.45)

That is, the breaking of local supersymmetry via a ghost
condensate is analogous to two-derivative supergravity
theories with a superpotential for which DW � 0 but
W ¼ 0 in the vacuum. This result for the supergravity
ghost condensate is completely consistent with—and
gives a physical explanation for—the above calculation
of the quadratic fermion Lagrangian (4.37). There we
found, after appropriate redefinition of the gravitino, that

the mixed �, ~c m mass terms exactly canceled and that

there were no diagonal �� or ~c ~c masses—as expected
from the variations (4.41), (4.44), and (4.45).

D. Scalar field stability analysis

Recall from (4.28) that, when expanded around the
ghost condensate vacuum, the quadratic �� part of the
Lagrangian is

1

e
LSUGRA

T¼1=16;Weyl ¼ ð _��Þ2 þ 0 � ��;i��;i þ � � � : (4.46)

This is analogous to the globally supersymmetric case
discussed in Sec. III B and, for the same reasons as dis-
cussed there, � will develop a small, negative spatial
gradient term in the NEC-violating region where P;X<0.
This problem was overcome in the global supersymmetry
case by adding the term (3.16) to LSUSY. It is straightfor-
ward to generalize this to the supergravity case with the
addition of the term

� 1

8

Z
d2�2Eð �D2 � 8RÞðD�D� �D�y �D�yT�Þ þ H:c:;

(4.47)

where

T� ¼ �

29
ðfD�; �D _�gfD�;

�D _�gð�þ�yÞÞ2; (4.48)

and where � is a real number. Note that in Sec. III B we
(somewhat arbitrarily) set the parameter � ¼ �1=4. This
reflected the fact that, in the globally supersymmetric case,
the exact value of this parameter is irrelevant to the dis-
cussion. However, as we will see, this is not the case when
coupled to supergravity. We calculate (4.47) and (4.48) in
terms of component fields for F ¼ M ¼ 0 and to quadratic
order in fermions � and c m in Appendix B. It suffices here
to present only those terms required to analyze the exis-
tence and stability of the ghost condensate. These are

� 1

8e

�Z
d2�2Eð �D2� 8RÞD�D� �D�y �D�yT�

�
Weyl

þH:c:¼ �ðh�Þ2ðð@�Þ4þð@�Þ4� 2ð@�Þ2ð@�Þ2þ 4ð@� �@�Þ2Þ:

(4.49)

The remaining terms are at least quadratic in the fermions � and c m. When this is added to the Lagrangian (4.24), the
equations of motion for the component fields are modified. We restrict our attention to gravity and the scalar�, since these
are the only nonvanishing fields in the ghost condensate background. The relevant part of the Lagrangian is

1ffiffiffiffiffiffiffi�g
p L ¼ �R

2
þ 1

2
ð@�Þ2 þ 1

4
ð@�Þ4 þ �ð@�Þ4ðh�Þ2: (4.50)

The associated equations of motion are

0 ¼ �h�ð1þ ð@�Þ2Þ � 2�;mn�;m�;n � 8��;mn�;m�;nðh�Þ2 � 4�ð@�Þ2ðh�Þ3 � 8�ð@�Þ2h��;n
nm�;m

þ 16��;pn�;mn�;p�
;mh�þ 8�ð@�Þ2h��;mn�;mn þ 8�ð@�Þ2h��;n�;nm

m þ 8�ð@�Þ2�;n�;nm�;p
pm

þ 8�ð@�Þ2�;pm�;p�
;n
nm þ 2�ð@�Þ4�;n

n
m
m; (4.51)
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Gmn ¼ �;m�;nð1þ ð@�Þ2 þ 4�ð@�Þ2ðh�Þ2Þ
� 1

2
gmnð@�Þ2

�
1þ 1

2
ð@�Þ2 � 2�ð@�Þ2ðh�Þ2 � 16�h��;rs�;r�;s � 4�ð@�Þ2�;s

sr�;r

�

� 8�ð@�Þ2h��;rð�;rm�;n þ�;rn�;mÞ � 2�ð@�Þ4ð�;r
rm�;n þ�;r

rn�;mÞ; (4.52)

where Gmn is the Einstein tensor.5 We are interested in the
question of whether these equations of motion still admit a
ghost condensate or de Sitter solution. Therefore, we look
for a solution where _� is constant and the metric is a de
Sitter space with constant Hubble parameter H. With this
ansatz, the equations of motion greatly simplify to

0 ¼ 1� _�2 � 9� _�6 þ 6� _�8; (4.54)

12H2 ¼ 3 _�2 � 2 _�4: (4.55)

The first equation is quartic in _�2, where the solution of
interest is the one that reduces to _�2 ¼ 1 as � ! 0. This
solution then allows one to calculate the Hubble rate using
the second equation. For small �—which, from an effec-
tive field theory point of view, is the case of real interest–a
perturbative solution is easy to derive. It is given by

h _�i2 ¼ 1� 3�þOð�2Þ; (4.56)

hHi2 ¼ 1

12
þ 1

4
�þOð�2Þ: (4.57)

Thus, the effect of adding the stabilizing term for � is to
shift the parameters of the ghost condensate or de Sitter
solution without altering its qualitative features.6 We now
explicitly demonstrate the stability of �. Expanding about
this new vacuum using (4.27), the � part of the component
field Lagrangian becomes

LSUGRA ¼ 1

2
ð3h _�i2 � 1Þð _��Þ2

þ 1

2a2
ð1� h _�i2Þ��;i��;i þ �ðh��Þ2 þ � � � :

(4.58)

For small �, this leads to the dispersion relation

!2 	 ��

�
3

2
k2 þ k4

�
: (4.59)

Thus, to tame instabilities, one must require (1) � < 0 and
(2) that j�j be sufficiently large. For a discussion of the
allowed phenomenological range of �, see [12]. Happily,
the required values of j�j are still sufficiently small to
allow the above perturbative expansion. To apply ghost
condensate theory to models of a bouncing universe, one
introduces a potential which causes h _�i2 to be slightly
lowered. This has the consequence that the NEC is then
violated. In this case, it may happen that the k2-term in the
dispersion relation (4.59) switches sign. This signals a
gradient instability at long wavelengths and, correspond-
ingly, the bounce must occur on a fast time scale. However,
at short wavelength (large k) one can see that the intro-
duction of the ðh�Þ2-term indeed stabilizes the ghost
condensate.
We now turn our attention to the second scalar, �. The

second line

1

e
LSUGRA

T¼1=16;Weyl ¼ � � �þ 0 � ð _��Þ2 þ��;i��;i þ �� � : (4.60)

in (4.28) indicates that, when expanded around the ghost
condensate, the time derivative term in the �� kinetic
energy vanishes, while the spatial gradient term has the
wrong sign. This result is analogous to the globally super-
symmetric case discussed in Sec. III B, and was cured by
adding the supersymmetric higher-derivative terms (3.19)
to LSUSY. It is straightforward to generalize this to the
supergravity case by adding

� 1

8

Z
d2�2Eð �D2 � 8RÞðD�D� �D�y �D�yT�Þ þ H:c:;

(4.61)

where

T� ¼ þ2�5fD�; �D _�gð���yÞfD�;
�D _�gð�y ��Þ

� 2�10ðfD�; �D _�gð�þ�yÞfD�;
�D _�gð���yÞÞ2;

(4.62)

5To derive the Einstein equations, the identity

�

�gmn

Z ffiffiffiffiffiffiffi�g
p

fh�

¼
Z ffiffiffiffiffiffiffi�g

p �
� 1

2
gmnfh�þ �f

�gmn h�þ f�;mn

� 1

2
rmðf�;nÞ � 1

2
rnðf�;mÞ þ 1

2
gmnrpðf�;pÞ

�
(4.53)

is useful—where f is a scalar function of the fields. The first
term on the right-hand side arises from varying

ffiffiffiffiffiffiffi�g
p

, while the
second line comes from varying the metric inside of the con-
nection in the h� term.

6One might ask what the solution becomes for large �. By
inspection, we see that in this regime the solution is approxi-
mately _�2 	 3=2 with H2 very small. Thus, for large �, one
obtains a kind of ghost condensate in Minkowski spacetime.
However, one should refrain from taking the ðh�Þ2-term too
seriously when � is large—since it leads to fourth-order equa-
tions of motion. Hence, it only makes sense from an effective
field theory point of view, in which case its coefficient must be
small for consistency.
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toLSUGRA. Note that each of the two terms can bemultiplied
by an independent real coefficient. However, modulo the
comment below, this is not necessary to understand the their
effect on the ghost condensate and, to leading order, the �
kinetic energy. Hence, as in the globally supersymmetric

case, we set them to unity for simplicity. One can calculate
(4.61) and (4.62) in terms of component fields forF¼M¼0
and to quadratic order in fermions� and c m. It suffices here
to present only those terms required to analyze the existence
and stability of the ghost condensate. These are

� 1

8e

�Z
d2�2Eð �D2 � 8RÞD�D� �D�y �D�yT�

�
Weyl

þ H:c: ¼ �2ð@�Þ4ð@�Þ2 � ð@�Þ4ð@� � @�Þ2: (4.63)

The remaining terms are at least quadratic in the fermions � and c m. When these are added to the Lagrangian, the
modified equations of motion continue to admit the same ghost condensate or de Sitter vacuum as the one derived above in
Eqs. (4.56) and (4.57). Expanding around this vacuum using (4.27), the fluctuation Lagrangian for � becomes

1

e
LSUGRA ¼ � � � þ

�
� 1

2
þ 1

2
h _�i2 þ 2h _�i4 � h _�i6

�
ð _��Þ2 þ

�
1

2
þ 1

2
h _�i2 � 2h _�i4

�
��;i��;i þ � � �

¼ � � � þ
�
1� 9

2
�þOð�2Þ

�
ðð _��Þ2 � ��;i��;iÞ þ � � � : (4.64)

Thus the scalar � is rendered completely stable by the
addition of these terms. Moreover, for small j�j the fluc-
tuations are approximately canonical. In fact, one can
make them exactly canonical by choosing appropriate,
�-dependent coefficients for the two terms in T�. These
enter the overall factor multiplying ð _��Þ2 � ��;i��;i and
can be adjusted to set this factor to unity.

E. The modified fermion Lagrangian
and super-Higgs effect

Having resolved the �� spatial gradient and �� wrong-
sign kinetic problems in the supergravity context, one must
reexamine the question of the fermion Lagrangian and the
super-Higgs effect in the presence of the additional terms
(4.47), (4.48), (4.61), and (4.62). In principle, this is a
difficult calculation, requiring the evaluation of all terms
quadratic in the fermions � and c m. As can be seen, for
example, by examining the T� Lagrangian in Appendix B,

although some fermion terms vanish in the ghost conden-
sate vacuum, some, both kinetic and mass terms, are non-
zero. Evaluating each of these, inserting them into the
complete supergravity Lagrangian and then diagonalizing
all fermion kinetic energy and mass terms is a lengthy
undertaking. Happily, to understand the essential physics,
it is unnecessary to carry this out.

Recall from the discussion in Sec. IVC that one can decide
the fermion masses by analyzing the behavior of their trans-
formations under local supersymmetry. In (4.41) and (4.42)we
presented the supersymmetry transformations in the ghost
condensate situation where W ¼ F ¼ M ¼ bm ¼ 0. Since
(4.25) continues to be valid, and since (in a bosonic back-
ground) thebm equationofmotion is unchangedby thehigher-
derivative terms (4.47), (4.48), (4.61), and (4.62), it follows that
the � and c m variations remain

�� ¼ i
ffiffiffi
2

p
�m �	@mA ¼ i�0 �	c; (4.65)

and

�c m ¼ 2Dm	; (4.66)

respectively. As before, it is straightforward to define a new

physical gravitino ~c m which transforms homogeneously. The

required definition is given byEq. (4.32) butwhere now _� and
the connection!m are evaluated in the shifted vacuum. Since
the fermion transformation (4.65) is inhomogeneous, super-
symmetry is spontaneously brokenwith amassless Goldstone
fermion�. Furthermore, sinceW ¼ 0 in the ghost condensate

vacuum, the mass of the physical gravitino ~c m is

m3=2 ¼ 0: (4.67)

We can conclude from these arguments that, even in the
presence of the additional terms, the quadratic fermion
Lagrangian will describe a massless Goldstone fermion �

and a massless gravitino ~c m with diagonal kinetic energies.
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APPENDIX A: THE WEYL RESCALED FERMION
SUPERSYMMETRY TRANSFORMATIONS

Prior to Weyl rescaling, the fermion supersymmetry
transformations—see Eqs. (18.23) and (19.14) in Wess
and Bagger [36]—are given by

�� ¼ i
ffiffiffi
2

p
�m �	@mAþ ffiffiffi

2
p

	F; (A1)
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�c m ¼ 2Dm	 � iem
a

�
1

3
M�a

�	 þ ba	 þ 1

3
bc	�c ��a

�
; (A2)

where we have dropped all component fermions on the right-hand side of the variations since these vanish in the vacua of
interest and 	 is the supersymmetry parameter. Note that our parameter is minus the one in Eqs. (18.23) and (19.14) ofWess
and Bagger—a convention adopted later in their book. Weyl rescaling is performed via

ean 			!WEYL
eK=6ean; � 			!WEYL

e�K=12�; c m 			!WEYL
eK=12c m; (A3)

and

	 			!WEYL
eK=12	: (A4)

Then the Weyl rescaled variations are

e�K=12��WEYL ¼ i
ffiffiffi
2

p
�aea

me�K=6 �	eK=12@mAþ ffiffiffi
2

p
	eK=12F; (A5)

eK=12�c mWEYL ¼ 2eK=12

�
Dm	 þ 1

12
K;m	 � 1

6
ð	�nlÞK;ngml

�

� iem
aeK=6

�
1

3
M�a

�	eK=12 þ bnea
ne�K=6	eK=12 þ 1

3
ec

nbne
�K=6	�c ��ae

K=12

�
: (A6)

It is important to note that there are additional terms that arise from Weyl rescaling the covariant derivative Dm	
� ¼

@n	
� þ 	
!n


� with !n

� ¼ 1

2 ð�mlÞ
�!nml using

!nml 			!WEYL
eK=3

�
!nml þ 1

6
K;mgnl � 1

6
K;lgnm

�
: (A7)

As discussed previously, the gravitino must also be shifted as

c m 			!SHIFT
c m þ i

ffiffiffi
2

p
6

K;A��m �� (A8)

in order for the fermionic kinetic terms to be in canonical form. For the supersymmetry transformation of c m, thismeans that

�c mWEYL!�c mWEYLþSHIFTþ i

ffiffiffi
2

p
6
K;A��m� ��WEYL: (A9)

Therefore

�c �
mWEYLþSHIFT¼�c �

mWEYL� i

ffiffiffi
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p
6
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� ��

_

WEYL
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�þ 1
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3
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���m� _
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� _�@nA

�þ ffiffiffi
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��1

3
ieK=6
���m� _


�	
_
K;A�F�

¼2Dm	
��1
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��

_
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m ðK;A@nA�K;A�@nA
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� i
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�þ1

3
bn	��n� _
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_
�
m

�
: (A10)

In the case of pure two-derivative chiral supergravity coupled to a superpotential, the solutions forF,M andbm are given by

F ¼ �K;AA�
eK=3ðDAWÞ�; (A11)

Mþ K;A�F� ¼ N ¼ �3eK=3W; (A12)

bm ¼ i

2
ðK;A@mA� K;A�@mA

�Þ: (A13)
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Plugging these solutions into (A5) and (A10), we obtain

��WEYL ¼ i
ffiffiffi
2

p
�m �	@mA� ffiffiffi

2
p

K;AA�
eK=2ðDAWÞ�	; (A14)

�c mWEYLþSHIFT ¼ 2

�
Dm þ 1

4
ðK;A@mA� K;A�@mA

�Þ
�
	

þ ieK=2W�m
�	: (A15)

These reproduce the � and c m supersymmetry variations
given in Eqs. (23.5) and (23.6) of [36].

For the higher-derivative supergravity Lagrangians
coupled to a superpotential introduced in [24]—and used
to discuss the ghost condensate vacuum in this paper—
solutions of the M and bm equations of motion, when all
component fermions are set to zero, continue to be given
by (A12) and (A13). This was proven in [24] for any
higher-derivative addition to the Lagrangian of the form

D�D� �D�y �D�yT, where T is an arbitrary Hermitian
function of �, �y with any number of their spacetime
derivatives. For example, note that in the T ¼ �=16 case
discussed in Sec. IVA of this paper, the solution for the bm
equation of motion is given in (4.12). When the component
fermions are set to zero, this becomes

bm ¼ � 3

2
i
�
A;mðe�K=3Þ;A � A�

;mðe�K=3Þ;A�
�
eK=3

¼ i

2
ðK;A@mA� K;A�@mA

�Þ; (A16)

which is identical to (A13). However, as discussed in detail
in [24,25], the equation of motion for the auxiliary field F
is now generically cubic and is no longer solved by (A11).
Putting (A12) and (A13) into (A5) and (A10), but for an
arbitrary solution F, the fermion variations become

��WEYL ¼ i
ffiffiffi
2

p
�m �	@mAþ ffiffiffi

2
p

eK=6	F; (A17)

�c mWEYLþSHIFT ¼ 2

�
Dm þ 1

4
ðK;A@mA� K;A�@mA

�Þ
�
	

þ ieK=2W�m
�	; (A18)

for any Kähler potentialK and superpotentialW. These are
the transformations used in (4.38) and (4.39) in the text to
analyze supersymmetry breaking and the fermion masses
in the supergravitational ghost condensate theory.

APPENDIX B: COMPONENT EXPANSIONS

In this Appendix, we provide details about the compo-
nent expansions of the higher-derivative superfield expres-
sions that we employ in this paper. For completeness and
potential future use, we will at first keep the terms that
involve the auxiliary fields M and F. Note that we work
only to quadratic order in fermions throughout. The com-
ponent expansion of a general higher-derivative term in our
formalism is given by
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With M and F set to zero, this expression reduces to
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The stabilizing terms that we require in order for the scalar field fluctuations to be well behaved correspond to the choice
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We will split this up according and first consider [cf. (4.48)],
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Since we restrict to terms with at most two fermions overall, we see from (B1) that we need to evaluate the expressions
DaDa�j2f ,D�DaDa�j1f ,D�D�DaDa�j0f to the order in fermions indicated by the subscript (e.g. ‘‘2f’’ standing for
‘‘two fermions’’). We obtain

D aDa�j2f ¼ eamDmA;a � i

12

ffiffiffi
2

p
M��a �c a � 1

2

ffiffiffi
2

p ðD̂a�Þc a � i

6

ffiffiffi
2

p
c a�ba þ i

24

ffiffiffi
2

p
c a�

a ��c�bc; (B7)

D�DaDa�j1f ¼ 1

9

ffiffiffi
2

p jMj2�� þ i

3

ffiffiffi
2

p
bbf��


�ab � ð�a ��bÞ�
gðD̂a�
Þ þ i

6

ffiffiffi
2

p ðeamDmbbÞf��

�ab � ð�a ��bÞ�
g�


� i

6
Fbbf��


�ab � ð�b ��aÞ�
gc a
 � 1

6
A;d�

d
� _�bbf� _�

_

�ab � ð ��b�aÞ _�

_

g �c _


a

� 1

36

ffiffiffi
2

p
��b

aba þ
ffiffiffi
2

p
eamDmD̂a�� þ 1

6
M�A;bð�b ��ac aÞ� � c a�F

;a

� i

6
MFð�a

�c aÞ� � iðeamDmA;bÞð�b �c aÞ�; (B8)

D�DaDa�
yj1f ¼ �

ffiffiffi
2

p
6

M�bað�a ��Þ� � i

6

ffiffiffi
2

p
M�ð�aD̂a ��Þ� � i

6

ffiffiffi
2

p
M�

;að�a ��Þ�; (B9)

D�D�DaDa�j0f ¼ 16

9
Fbaba � 8

9
FjMj2 þ 16

9
iA;ab

aM� � 16

3
ibaF;a � 4

3
M�eamDmA;a

� 8

3
iFeamDmba � 2

3
A;mM�

;m � 4eamDmF;a; (B10)

MICHAEL KOEHN, JEAN-LUC LEHNERS, AND BURT OVRUT PHYSICAL REVIEW D 87, 065022 (2013)

065022-18



D�D�DaDa�
yj0f ¼ 8

9
FðM�Þ2 þ 4

9
iA�

;ab
aM� þ 4

3
M�eamDmA

�
;a þ 2

3
A�;mM�

;m; (B11)

D �
�D _�DaDa�j0f ¼

�
� 2

9
MFba � i

2

9
jMj2A;a þ i

2

3
MF;a þ i

3
M;aF

�
�a

� _�; (B12)

D�
�D _�DaDa�

yj0f ¼
�
� 2

9
M�F�ba � i

4

9
jMj2A�

;a � i
2

3
M�F�

;a � i

3
M�

;aF
� � i

4

9
bdbdA

�
;a þ i

4

9
A�

;cb
cba

� 2iebmDmðebnDnA
�
;aÞ þ i

4

3
"a

0bcd�aa0bced
mDmA

�
;b þ i

2

3
"a

0bcd�aa0A
�
;bed

mDmbc

�
�a

� _�:

(B13)

Then

T�j2f ¼ �

8

n
�ðeamDmðA;a þ A�

;aÞÞ2 � 8kebmDmA;bDaDa�j2f þ 2ebmDmA
�
;bD

aDa�
yj2f

� 8kebmDmA;bDaDa�j2f þ 2ebmDmA
�
;bD

aDa�
yj2f

o
; (B14)

D �T�j1f ¼ �

4
ebmDmðA;b þ A�

;bÞfD�DaDa�j1f þD�DaDa�
yj1f�; (B15)

D�D�T�j0f ¼ �

4
ebmDmðA;b þ A�

;bÞfD�D�DaDa�j0f þD�D�DaDa�
yj0f�; (B16)

D�
�D _�T�j0f ¼ �

4
ebmDmðA;b þ A�

;bÞfD�
�D _�DaDa�j0f þD�

�D _�DaDa�
yj0fg; (B17)

i.e.

T�j2f ¼ �

4
ðebmDmðA;b þ A�

;bÞÞ


1

2
eamDmðA;a þ A�

;aÞ � i

12

ffiffiffi
2

p
M��a �c a � 1

2

ffiffiffi
2

p ðD̂a�Þc a � i

6

ffiffiffi
2

p
c a�ba

þ i

24

ffiffiffi
2

p
c a�

a ��c�bc � i

12

ffiffiffi
2

p
M� �� ��ac a � 1

2

ffiffiffi
2

p
�c aðD̂a ��Þ þ i

6

ffiffiffi
2

p
�� �c aba � i

24

ffiffiffi
2

p
�c a ��

a�c ��bc

�
; (B18)

D�T�j1f ¼ �

4
ecmDmðA;c þ A�

;cÞ


1

9

ffiffiffi
2

p jMj2�� þ i

3

ffiffiffi
2

p
bbf��


�ab � ð�a ��bÞ�
gðD̂a�
Þ

þ i

6

ffiffiffi
2

p ðeamDmbbÞf��

�ab � ð�a ��bÞ�
g�
 � i

6
Fbbf��


�ab � ð�b ��aÞ�
gc a
 � 1

6
A;d�

d
� _�bbf� _�

_

�ab

� ð ��b�aÞ _�
_

g �c _


a � 1

36

ffiffiffi
2

p
��b

aba þ
ffiffiffi
2

p
eamDmD̂a�� þ 1

6
M�A;bð�b ��ac aÞ� � c a�F

;a � i

6
MFð�a

�c aÞ�

� iðeamDmA;bÞð�b �c aÞ� �
ffiffiffi
2

p
6

M�bað�a ��Þ� � i

6

ffiffiffi
2

p
M�ð�aD̂a ��Þ� � i

6

ffiffiffi
2

p
M�

;að�a ��Þ�
�
; (B19)

D�D�T�j0f ¼�

4
ecmDmðA;cþA�

;cÞ


16

9
Fbaba�8

9
FjMj2þ16

9
iA;ab

aM��16

3
ibaF;a�4

3
M�eamDmA;a�8

3
iFeamDmba

�2

3
A;mM�

;m�4eamDmF;aþ8

9
FðM�Þ2þ4

9
iA�

;ab
aM�þ4

3
M�eamDmA

�
;aþ2

3
A�;mM�

;m

�
; (B20)

D�
�D _�T�j0f ¼ �

4
eemDmðA;e þ A�

;eÞ


� 2

9
MFba � i

2

9
jMj2A;a þ i

2

3
MF;a þ i

3
M;aF� 2

9
M�F�ba � i

4

9
jMj2A�

;a

� i
2

3
M�F�

;a � i

3
M�

;aF
� � i

4

9
bdbdA

�
;a þ i

4

9
A�

;cb
cba � 2iebmDmðebnDnA

�
;aÞ

þ i
4

3
"a

0bcd�aa0bced
mDmA

�
;b þ i

2

3
"a

0bcd�aa0A
�
;bed

mDmbc

�
�a

� _�: (B21)

GHOST CONDENSATE IN N ¼ 1 SUPERGRAVITY PHYSICAL REVIEW D 87, 065022 (2013)

065022-19



The T�-terms from (4.62) read in components

T� ¼ �2�2ðDa��Da�yÞðDa��Da�
yÞ � 2�4ðDa�Da��Da�yDa�

yÞ2; (B22)

T�j2f ¼ �2�2ðA;m � A�;mÞðA;m � A�
;mÞ þ 2�2

ffiffiffi
2

p ðA;m � A�;mÞðc m�� �� �c mÞ � 2�4ðA;mA;m � A�;mA�
;mÞ2

þ 2�3
ffiffiffi
2

p ðA;mA;m � A�;mA�
;mÞðA;nc n�� A�;n �� �c nÞ; (B23)

D�T� ¼ �2�1ðD�Da�Da�þD�Da�yDa�
y �D�Da�Da�

y �Da�D�Da�
yÞ

� 2�2ðDa�Da��Da�yDa�
yÞðD�Da�Da��D�Da�yDa�

yÞ; (B24)

D�T�j1f ¼ �2�1

� ffiffiffi
2

p
D̂a�� þ i

1

24

ffiffiffi
2

p
bdð�d ��a�Þ� þ i

1

4

ffiffiffi
2

p
ba�� � i

1

8

ffiffiffi
2

p
bdð�a ��

d�Þ� þ i
1

6

ffiffiffi
2

p ð�a ��Þ�M�
�
ðA;a � A�

;aÞ

� 2�2ðA;aA;a � A�;aA�
;aÞ
�� ffiffiffi

2
p

D̂a�� þ i
1

24

ffiffiffi
2

p
bdð�d ��a�Þ� þ i

1

4

ffiffiffi
2

p
ba�� � i

1

8

ffiffiffi
2

p
bdð�a ��d�Þ�

�
A;a

þ i
1

6

ffiffiffi
2

p ð�a ��Þ�M�A�
;a

�
; (B25)

D�D�T�j0f ¼ �2�1ðA;a � A�;aÞðD�D�Da�j0f �D�D�Da�
yj0fÞ

� 2�2ðA;aA;a � A�;aA�
;aÞðD�D�Da�Da�j0f �D�D�Da�yDa�

yj0fÞ (B26)

¼ 2�1ðA;a � A�;aÞ
�
i
8

3
Fba þ 4F;a þ 2

3
M�½A;a þ A�

;a�
�

þ 2�2ðA;aA;a � A�;aA�
;aÞ
�
i
8

3
FbbA;b þ 4F;bA;b þ 2

3
M�½ð@AÞ2 þ ð@A�Þ2�

�
: (B27)

One can see explicitly see from the above expressions that the contributions of the T�- and T�-terms to the equation of

motion of bm vanish in the ghost condensate background, where � ¼ � ¼ c ¼ M ¼ F ¼ 0.
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