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Abstract: Using (partial) curvature flows and the transitive action of subgroups of
O(d,Z) on the indices {1, . . . , d} of the components of the Yang–Mills curvature in
an orthonormal basis, we obtain a nested system of equations in successively higher
dimensions d, each implying the Yang–Mills equations on d-dimensional Riemannian
manifolds possessing special geometric structures. This ‘matryoshka’ of self-duality
equations contains the familiar self-duality equations on Riemannian fourfold as well as
their generalisations on complex Kähler threefold and on seven- and eight-dimensional
manifolds with G2 and Spin(7) holonomy. The matryoshka allows enlargement (‘oxida-
tion’) to a remarkable system in 12 dimensions, invariant under Sp(3). There are hints
that the underlying geometry is related to the sextonions, a six-dimensional algebra
between the quaternions and octonions.

1. Introduction

Many interesting examples of special geometric structures on d-dimensional Riemannian
manifolds (M, g) are provided by certain G-invariant covariantly constant (parallel) p-
forms ϕ ∈ �pT ∗M , where G = Hol , the restricted holonomy group of M . If p < d,
then G is clearly a proper subgroup of SO(d), since in the generic rotationally invariant
case, only the volume form is invariant.

For Riemannian manifolds which are locally neither a product of lower dimensional
spaces nor a symmetric space, Berger’s list [1] provides the most interesting examples
of restricted holonomy groups. These include U(n) ⊂ SO(2n), which leaves the Kähler
two-form ω on a 2n-dimensional Kähler manifold invariant. The SU(n) Calabi-Yau
specialisation has, in addition, an invariant complex n-form, the holomorphic volume
form. The group Sp(n) ⊂ SO(4n), d = 4n, of n × n matrices with quaternion elements
satisfying A† A = 1, has three invariant Kähler two-formsωα , combinable in a two-form,
ω = ω1i + ω2 j + ω3k, taking values in the imaginary quaternions. These characterise
hyper-Kähler geometry. The quaternionic Kähler generalisation has Hol = Sp(n) ·
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Sp(1) ⊂ SO(4n), with the three Kähler forms existing only locally. Globally, they
define an invariant parallel four-form

∑
ωα ∧ ωα . The two exceptional d = 7 and

8 geometries with Hol = G2 and Spin(7) have, respectively, an invariant three- and
four-form. In all these cases, the geometric information can be equally well encoded
uniformly in an invariant four-form: the two-forms afford squaring and the three-form
in seven dimensions has a Hodge-dual four-form. The Lie group inclusions

Sp(n) ⊂ SU(2n) ⊂ U(2n) ⊂ SO(4n)

imply corresponding inclusions of geometries: hyperkähler manifolds are Calabi-Yau
manifolds, the latter are Kähler, which in turn are orientable. The two exceptional cases
are also part of lower dimensional sets of inclusions:

U(2) ⊂ Sp(2) ⊂ SU(4) ⊂ Spin(7) ⊂ SO(8)

SU(3) ⊂ G2 ⊂ Spin(7) ⊂ SO(8).

The respective invariant tensors can be obtained by successive reductions of the
4n-dimensional volume form. For instance, the Spin(7) invariant four-form in eight
dimensions contracted with an arbitrary vector yields the G2-invariant three-form in
the orthogonal seven-dimensional space. Similarly, the latter yields an SU(3)-invariant
two-form on projection to the complex threefold orthogonal to an arbitrary vector.

For Riemannian manifolds (M, g) admitting a G-structure, a principle subbundle of
the frame bundle of M , with structure group G ⊂ GL(d,R), the tangent space at every
point admits an isomorphism with R

d . For every point p ∈ M there exists a choice of
local coordinates with p as the origin in which the Riemannian metric takes the euclidean
form d2s = gi j dxi dx j = ∑

i dxi dxi and the special geometric structure ϕ in these
coordinates is the constant G-invariant form

ϕ =
∑

(i1,...,i p)∈I+

dxi1,...,i p . (1)

where dxi1,...,i p := dxi1 ∧ · · · ∧ dxi p and I+ is a set of oriented subsets {i1, . . . , i p} ⊂
{1, . . . , d} with ϕi1...i p = 1 . Differential forms like ϕ have been called special demo-
cratic forms [2,3]. They are ‘special’ in the sense that they have components ϕμ1...μp

equal to +1,−1 or 0 in some orthonormal basis, just like the volume form vold =
dx1 ∧ dx2 ∧ · · · ∧ dxd =: dx12...d on a Euclidean vector space. More precisely, a
p-form ϕ is called special if it lies in the SO(d,R)-orbit of

ϕ =
∑

1≤μ1<···<μp≤d

ϕμ1···μp dxμ1···μp (2)

with components ϕμ1...μp ∈ {−1, 0, 1}. There are clearly only a finite number of or-
bits of special p-forms parametrised by the components ϕμ1...μp ∈ {−1, 0, 1} under
SO(d,R) or O(d,R). Distinct sets of components may give rise to special p-forms in
the same orbit, because the subgroups SO(d,Z) ⊂ SO(d,R) or O(d,Z) ⊂ O(d,R)
map the special form ϕ in Eq. (1) into a special form parametrised by different compo-
nents. These groups are isomorphic to the semidirect product of the permutation group
Sd acting naturally on d−1 or d copies of Z2, namely SO(d,Z) ∼= Sd � Z

d−1
2 or

O(d,Z) ∼= Sd � Z
d
2 . Thus, special p-forms which appear to be different may neverthe-

less be in the same orbit under SO(d,R) or O(d,R). The orbit of a special p-form may
always be labelled by a choice of a representative (1).
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A special p-form ϕ is called democratic if its set of nonzero components {ϕi1...i p } is
symmetric under the transitive action of a subgroup of O(d,Z) on the indices {1, · · · , d}.
The action of an element (σ, η1, · · · , ηd) ∈ Sd � Z

d
2 , on the components of ϕ being

given by

ϕi1 ··· i p �→ ηi1 . . . ηi p ϕσ(i1) ··· σ(i p), (3)

whereη2
i = 1, i = 1, · · · , d. So for a democratic form, no choice of indices is privileged.

We refer to [2,3] for further details. It was shown in [2] that knowledge of the above
symmetry groups allows an enlargement (oxidation) of the base space; the symmetries
may be used to remix the sets of indices {(i1 · · · i p)} of the nonzero components amongst
a larger set of indices {1, · · · , D}, D > d, thus defining special democratic P-forms in
D dimensions from special democratic p-forms in d dimensions for successively higher
P ≥ p and D ≥ d. In this paper, we consider two such oxidation maps:1

(a) Oxidation through remixing

This is a map ϕ ∈ �p
R

d → �p
R

D � � defining a special democratic p-form � in
D > d dimensions in terms of the components of a special p-form ϕ in d-dimensions
thus:

ϕ =
∑

(i1,...,i p)∈I+

dxi1,...,i p �−→ � =
∑

σ∈H⊂SD

∑

(i1,...,i p)∈I+

dxσ(i1) ... σ (i p), (4)

where H is some subgroup of the symmetric group SD acting on the D indices.

(b) Oxidation through heat flow

Alternatively, for D = d +q the nonzero components of a special democratic P = p+q-
form are given by a map ϕ ∈ �p

R
d → �p+q

R
d+q � � defined by

ϕ =
∑

(i1,...,i p)∈I+

dxi1,...,i p �−→ � =
∑

σ∈H⊂SD

∑

(i1,...,i p)∈I+

dxσ(i1) ... σ (i p)σ (d+1) ... σ (D).

(5)

Using these mappings, a nested structure of special forms in successively higher
dimensions emerges. This is reminiscent of a matryoshka (matrëxka), a set of nested
Russian dolls, traditionally carved in wood, where the inner surface of each doll is
basically a copy of the outer surface of the previous doll; but the outer surface can then
vary somewhat, depending on the geometry of the bulk.

A remarkable nested structure of special democratic forms was displayed in [2],
which included a U(3)-invariant two-form in six dimensions, a G2-invariant three-form in
seven dimensions, and a Spin(7)-invariant four-form in eight dimensions; corresponding
to the embeddings SU(3) ⊂ G2 ⊂ Spin(7) mentioned above. It was also shown that
this matryoshka with three dolls fits into even larger dolls and interesting properties of
a special democratic six-form in ten dimensions were presented.

Motivated by the discussion in [2] of nested special democratic forms, we shall
presently show that there exists a corresponding matryoshka of self-duality equations
in successively higher dimensions; each implying the Yang–Mills equations, just as

1 The notion of using the inverse of dimensional reduction as a means of searching for higher dimensional
parents of lower dimensional theories goes back to early work on supergravity by Julia [4].
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four-dimensional self-duality [5]. Successive sets of equations are ‘oxidised’ to higher
dimensions and ‘reduced’ to lower dimensions by enhancing or restricting the permu-
tation symmetries on the sets of indices of special geometric tensors. Remarkably, the
simplest case of the mapping (5), with q = D − d = 1 corresponds to equations for
(partial) curvature flows for the vector potentials, hence ‘Oxidation through heat flow’.
Solutions of the lower dimensional equations then provide initial values for the flow into
the extra dimension, the flow to the next doll of the matryoshka. We shall display oxi-
dations up to d = 16. The representation theory underlying the 12 dimensional system
seems to be related to a mathematical curiosity, the algebra of the sextonions [6,7], a
six-dimensional algebra between quaternions and octonions. This algebra gives rise to
a new row in Freudenthal’s magic chart, corresponding to a (non-simple) Lie algebra
between e7 and e8, which has been called e7 1

2
[7].

2. Generalised Duality for Gauge Fields in d > 4

Generalisations of the four-dimensional self-duality equations to higher dimensions
were introduced some time ago in [5], where it was shown that restrictions of the Yang–
Mills curvature two-form F to an eigenspace of a four-form T , implies the Yang–Mills
equations. In a standard orthonormal basis of T ∗M these take the form,

1

2
gkm glnTi jkl Fmn = λFi j , i, j, · · · = 1, . . . , d. (6)

Here Tmnpq is a covariantly constant tensor, g pr the inverse metric tensor and F =
d A + A ∧ A is the curvature of a connection D = d + A on a Riemannian d-fold
(M, g) with values in the Lie algebra of a real gauge group contained in GL(n,R).
These partial-flatness conditions on the curvature are first order equations for the vector
potentials A, so they are more amenable to solution than the second order Yang–Mills
equations. Indeed, many special solutions are known (see e.g. [9–11]). The usefulness
of the linear curvature constraints (6) follows from the observation [5]:

Theorem 1. For nonzero eigenvalues λ, the conditions (6) imply the Yang–Mills equa-
tions gi j Di Fjk = 0. Thus, potentials A satisfying these first order equations automati-
cally satisfy the Yang–Mills equations.

This result follows in virtue of the Bianchi identities D[i Fmn] ≡ 0 . In [5], constant four-
forms T in flat euclidean spaces were considered, but it is clear that, more generally [12],
it suffices for the consistency condition

gkm gln(gip∇pTi jkl)Fmn = 0 (7)

to hold, which follows if T is co-closed, gip∇pTi jkl = 0. The latter in turn follows if
T is parallel (i.e. covariantly constant) with respect to the Levi-Civita connection ∇.
In dimensions d > 4, the four-form T clearly breaks the d-dimensional rotational in-
variance of the Yang–Mills equations. Examples of four-forms and the corresponding
partial-flatness conditions (6) invariant under various subgroups G ⊂ SO(d) were stud-
ied in [5] for dimensions 4 < d ≤ 8. In particular, interesting examples invariant under
(SU(n)⊗U(1))/Z2 and SU(n), G2 and Spin(7), in dimensions d = 2n, 7, 8 were con-
structed. The example of Sp(n)⊗ Sp(1)/Z2 was discussed shortly thereafter in [13,14].
The above groups are precisely the holonomy groups of Calabi-Yau, quaternionic Kähler
and exceptional holonomy manifolds, so remarkably, the generalisations of self-duality
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for most of Berger’s special holonomy manifolds [1] were unwittingly constructed be-
fore the subject acquired widespread differential geometric interest (e.g. [12,15–20]).
On all the above manifolds, there exists a ∇-parallel four-form, so the above-mentioned
consistency condition on T is satisfied.

On a d-dimensional Riemannian manifold (M, g) the volume form volg , associated
to the metric and orientation, is given in local coordinates by volg = √

det(g)dx1 ∧
· · ·∧ dxd . The Hodge star operator on the space of p-forms ∗: �pT ∗M → �d−pT ∗M
is defined by α ∧ ∗β = (α, β) volg , where α, β ∈ �pT ∗M and (α, β) is the natural
inner product induced on p-forms by the metric; (α, β) = αi1...i pβ j1... jp gi1 j1 . . . gi p jp .
Given the existence of a G-invariant four-form T on M , the space of two-forms naturally
decomposes into its T -eigenspaces,�2T ∗M = ⊕

λ∈σT
Vλ , where σT is the spectrum of

T and the eigenspaces Vλ are G-modules. The endomorphism defined by the four-form
T on the space of two-forms is traceless, so

∑
λ∈σT

dλλ = 0 ; dλ := dim Vλ .
The Yang–Mills equations are the Euler–Lagrange equations for the Yang–Mills

functional defined on the space of vector potentials,

S = ‖F‖2 = 〈F, F〉 :=
∫

M
Tr (F, F) volg =

∫

M
Tr F ∧ ∗F. (8)

The topological functional associated with a co-closed four-form T yields a Chern–
Simons-like form on the boundary of M ,

Q =
∫

M
Tr ∗T ∧ F ∧ F =

∫

M
Tr d

(∗T ∧ (
A ∧ d A + 2

3 A ∧ A ∧ A
))
. (9)

This functional was used in [21] to construct examples of higher dimensional analogues
of topological field theories; its relation to the topology of the bundle for some specific
examples has been discussed, for instance, in [18,20]. The curvature decomposes into
its T -eigenspaces, F = ∑

λ∈σT
Fλ , where the components Fλ ∈ Vλ satisfy (6) and are

mutually orthogonal with respect to the L2 inner product in (8); i.e. 〈Fλ, Fμ〉 = 0 for λ �=
μ. Equation (6) may be expressed in terms of the projection operator P : �2T ∗M →
(Vλ)⊥ to the orthogonal complement of the eigenspace Vλ (see e.g. [22]),

F = Fλ ⇔ P I
i j Fi j = 0, I = 1, . . . , d̄λ, (10)

where the number of equations, d̄λ , is the codimension of the eigenspace Vλ with eigen-
value λ. Here, the projector P is the analogue of the ’t Hooft tensor in four dimensions
and we lower (raise) indices using the (inverse) Riemannian metric. The most interesting
sets of equations (10) correspond to the projections to the largest eigenspace of T ; these
being the least overdetermined systems. We choose the convenient orientation and nor-
malisation of the four-form T in which this largest eigenspace has eigenvalue λ = −1,
corresponding in four dimensions to anti-self-duality.

Now, the eigenspace decomposition of F , together with Eq. (6), implies that

∗T ∧ F =
∑

λ∈σT

∗T ∧ Fλ =
∑

λ∈σT

λ ∗ Fλ.

So the topological functional in (9) has the spectral decomposition

Q =
∫

M
Tr ∗T ∧ F ∧ F =

∑

λ∈σT

λ ∗ Fλ ∧ Fλ =
∑

λ∈σT

λ ‖Fλ‖2. (11)
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Similarly, the Yang–Mills action takes the form S = ∑
λ∈σT

‖Fλ‖2. Picking out a
specific sector of the theory with eigenvalue μ, we may write

Q = μ‖Fμ‖2 +
∑

λ∈σT \{μ}
λ ‖Fλ‖2. (12)

It follows that

S = ‖Fμ‖2 +
∑

λ∈σT \{μ}
‖Fλ‖2 = 1

μ
Q +

∑

λ∈σT

(

1 − λ

μ

)

‖Fλ‖2. (13)

Thus, if (1 − λ
μ
) ≥ 0 for all λ ∈ σT , then the action is bounded below:

S = ‖F‖2 ≥ 1

μ
Q . (14)

This L2-bound on the curvature is saturated precisely when F is projected to the
eigenspace with eigenvalue μ. Vector potentials satisfying F(A) = Fμ(A) thus min-
imise the functional S, with the minimal action taking the value ‖Fμ(A)‖2. The bound
(14) shows that manifolds with a co-closed four-form T differ essentially from spheres.
It is known that a connection over M = Sd , d ≥ 5, with sufficiently small L2-norm is
necessarily flat [23,24]. This reflects the argument in [25] that in flat spaces of dimension
d ≥ 5, the only finite action Yang–Mills solutions are pure-gauge with F = 0. In the
case of more general compact manifolds M , curvature estimates have been discussed in
[26,27]. Using these results, Tian [20] has proven the existence of finite action solutions
to (6) on manifolds M with a co-closed four-form T satisfying certain conditions, in
particular when T is a certain calibrating form [28]. Further, in certain cases, the moduli
space of equivalence classes of solutions to (6) has also been shown to be a compact
manifold [20].

Note that if a := (1 − λ
μ
) does not have the same sign for every λ �= μ, so that

the difference of two sums of squares (the terms with a > 0 and those with a < 0)
gives the action plus a topological term, then the equation F(A) = Fμ(A) determines
saddle points of the Yang–Mills functional. This yields a theory with no finite lower
bound to the action and solutions A are necessarily unstable under those infinitesimal
deformations δA which contribute to curvature components Fλ, where λ/μ > 1. For
such solutions the second variation of the action functional δ2S/δA2 is not non-negative.
Particular examples of such systems of equations for saddle points of the Yang–Mills
action have been known for some time [29]. The quantum field theoretic significance of
negative eigenvalues of the second variation of the action has been discussed for instance
in [30,31].

In even dimensions, with d = 2n, if the manifold M admits a complex structure J ,
this provides, at any point p in M , a linear map Jp : T ∗

p M → T ∗
p M under which the

complexification T ∗
p M ⊗R C splits into the eigenspaces T (1,0)p M and T (0,1)p M , both of

which are isomorphic to C
n . This allows the choice of complex coordinates (z1, . . . , zn)

and (z1̄, . . . , zn̄). The complex (1,0)- and (0,1)-forms {dzα} and {dzα}, for α, α =
1, . . . , n, then provide bases for T (1,0)p M and T (0,1)p M respectively. Imposing the reality
conditions dzα = dzα , we may recover R

2n � C
n . The curvature two-form in this basis

has components Fαβ, Fαβ, Fαβ = Fαβ and the Riemannian metric locally takes the
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hermitian form d2s = gαβdzαdzβ = dzαdzα = ∑
α dzαdzα and the complex (n, 0)

volume form is given by � = dzα1...αn . In the complex setting, Eq. (6) is a G-invariant
equation, where the structure group G is a subgroup of GL(n,C) ⊂ GL(2n,R). For
the particularly important λ = −1 case, we shall use the following complex variant of
Theorem 1.

Theorem 2. On a Riemannian complex n-fold (M2n, g), with hermitian metric g =
gαβdzαdzβ and (4,0)-form �, the linear curvature constraints,

Fαβ + 1
2 gγ ηgδκ �αβγ δ Fηκ = 0, (15)

gαβFαβ = 0, (16)

gγ ηgδκ (gαρ∇ρ�αβγ δ) Fηκ = 0, (17)

imply the Yang–Mills equations gαρDρFαβ = gαρDρFαβ = 0.

Proof. Using (15) we have

gαρDρFαβ = DαFαβ = − 1
2 (∇α�αβγ δ) Fγ δ − 1

2�αβγ δ DαFγ δ = 0, (18)

the first term being the left side of (17) and the second vanishes in virtue of the Bianchi
identity DαFγ δ + cyclic permutations = 0. Similarly, using the Bianchi identity
between Dρ, Dβ and Da we have, DρFαβ = DβFαρ + DαFαρ. On contracting with

gαρ , the second term on the right yields the complex conjugate of the left side of (18)
and the first term contains the trace of the (1,1)-part of the curvature, which vanishes by
Eq. (16). ��

Already in [5], it was noticed that the lower dimensional cases, including four-
dimensional self-duality, the six-dimensional SU(3)⊗U(1))/Z2-invariant equations and
the seven-dimensional G2-invariant equations, were reductions of the eight-dimensional
Spin(7)-invariant set of equations. In the present paper, we show that using the results
of [2] these equations also admit a systematic ‘oxidation’ to higher dimensions starting
from the lower dimensional ones.

We consider two types of oxidation. The first is based on the map (4) and uses
cyclic permutations to remix the index sets appearing in the lower dimensional equations
amongst a larger set of indices. The second oxidation method is based on the heat flow
for some appropriate partial curvature. This is related to the D − d = 1 case of (5).
More specifically, if in (d−1)-dimensions, there exists a special set of d−1 curvature
constraints fi jk F jk = 0 , i = 1, . . . , d−1, where f is some appropriate tensor, then
we can consider the corresponding partial curvature flow

Ȧi = fi jk F jk, i = 1, . . . , d . (19)

Identifying the parameter of the variation or ‘time’ of the flow with a dth independent
variable xd , the left hand side is the Ad = 0 ‘temporal’ gauge form of the curvature
components Fdi , so that the flow equations (19) are in fact linear curvature constraints
of the form

Fdi = fi jk F jk . (20)
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Remarkably, in many interesting cases, these constraints may be reformulated in the
form (6), thus implying the Yang–Mills equations. The idea of choosing such a tem-
poral gauge to obtain a flow equation is not new. For instance, both Nahm’s equations
for magnetic monopoles [32] and the generalisations to higher dimensions of Euler’s
equations for a spinning top [33], arise from the imposition of precisely such a gauge
choice on equations of the form (6). Conversely, the flow equations can be written as
gauge covariant equations in one dimension higher by gauge un-fixing the component
of the gauge potential in the direction of the flow. This idea has also been used by Tao
[34] in the context of the full second order Yang–Mills gradient flow Ȧk = gi j Di Fjk .

As we shall see, the juxtaposition of the two oxidation methods above yields the
advertised matryoshka of self-duality equations, starting from zero curvature in d = 2
and including the familiar four-dimensional self-duality, as well as its generalisations
to six, seven and eight dimensions mentioned above. Remarkably, the matryoshka af-
fords enlargement to even higher dimensions. We discuss an interesting 12 dimensional
extension and display its oxidation to 14 and 16 dimensions.

3. The Matryoshka of Self-Duality Equations

Let us begin in two dimensions with the flatness condition F12 = 0 for the sole compo-
nent of the curvature two-form. In the complex setting, the curvature only has a (1,1)-part,
Fzz̄ , where we use complex coordinates z = x1 + i x2 , z̄ = x1 − i x2 . The flatness
condition means that the curvature is in the kernel of the volume form. We therefore
have,

εi j Fi j = 0 ⇔ F12 = 0 ⇔ Fzz̄ = 0. (21)

Both real and complex forms of the equations are locally rotationally invariant, since
their respective invariance algebras so(2) and u(1) are isomorphic. The rich properties of
the solutions of these equations on Riemann surfaces have been investigated by Atiyah
and Bott [35].

We oxidise the equation F12 = 0 to a system in three dimensions by acting on the
indices by all permutations generated by the cycle σ = (1 2 3) ∈ S3 , so as to obtain a
system of equations invariant under these permutations:

{F12 = 0} −→ {Fσ p(1)σ p(2) = 0; σ = (1 2 3), p = 1, 2}. (22)

This of course yields flatness in three dimensions; the curvature lies in the kernel of the
three-dimensional volume form,

εi jk F jk = 0 ⇔ F12 = F23 = F31 = 0. (23)

Since this is a set of three equations for the three vector potentials Ai , i = 1, 2, 3, it
allows us to write the Yang–Mills curvature flow

∂

∂x4 Ai (x
i , x4) = 1

2εi jk F jk, i = 1, 2, 3, (24)

with initial (at x4 = 0) flat connection Ai (xi , 0) satisfying (23). This evolution equation
is the gradient flow of the Chern–Simons functional [36] on the space of connections

SC S =
∫

M3
Tr ( 1

2 Ad A + 1
3 A3) =

∫

M3
Tr ( 1

2 Ai∂ j Ak + 1
3 Ai A j Ak)dxi jk, (25)
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where dxi jk = dxi ∧ dx j ∧ dxk , the volume form. In his canonical quantisation of this
theory, Witten [36] considered the threefold to be of the form M3 = � × R

1, where
the data on the two-dimensional boundary�, a Riemann surface, satisfied the equations
(21).

Now applying an x4-dependent gauge transformation to the vector potentials

Aa(x
i , 0) �→ g−1(xi , x4)Aa(x

i , 0)g(xi , x4)+g−1(xi , x4)∂ag(xi , x4) , a =1, . . . , 4,

(26)

where A4(xi , 0) = 0, yields a pure-gauge form for the fourth vector potential, A4 =
g−1∂4g . The non-gauge covariant equation (24) now takes the gauge covariant form of
the four dimensional SO(4)-invariant anti-self-duality equations

Fab + 1
2εabcd Fcd = 0, a, b, c, d = 1, . . . 4 , (27)

a set of three equations for the four vector potentials. (The self-duality equations emerge
on reversing the x4-direction of the flow.)

Using a manifestlyu(2)-covariant notation for Yang’s complex coordinates (zα , zα :=
zα, α, α = 1, 2), these equations take the form [c.f. (21)] [37],

�αβFαβ = 0 ⇔ F1̄2̄ = 0 (28)

gαβFαβ = 0 ⇔ F11̄ + F22̄ = 0. (29)

This is a system consisting of one complex and one real equation, leaving as the sole
non-zero part, the trace-free part of the (1,1)-curvature. The U(2)-invariant metric on
C

2 � R
4 is given by gαβdzαdzβ = dz1dz1̄ + dz2dz2̄ =: dzαdzα and the symplectic

(2,0) volume form, invariant under SU(2), by� = �αβdzα∧dzβ = dz1 ∧dz2 =: dz12.
Now, complexifying all the data by dropping all reality conditions (see for instance

the discussion in [12]), we obtain the additional equation Fαβ = 0, which allows us to
choose the holomorphic gauge Aα = 0. The Eq. (29) then takes the form of a conservation
law [38]

gαβ∂αAβ = ∂β Aβ = 0, α, β = 1, 2, (30)

which has local solution Aβ = �βγ ∂
γ f , where � = �αβdzα ∧ dzβ = dz1̄2̄ is the

symplectic (0,2)-form. The remaining equation in (28) then takes the form of Leznov’s
wave equation [39]

� f + 1
2�

αβ [∂α f, ∂β f ] = 0, (31)

with Laplacian � = gαβ∂α∂β = ∂α∂α . Solutions provide stationary points of the Leznov
functional

SL =
∫

MC

Tr

(
1

2
f � f +

1

3
�αβ f ∂α f ∂β f

)

. (32)

whose gradient flow has the standard heat equation form,

∂

∂t
f = � f + 1

2�
αβ [∂α f, ∂β f ]. (33)
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Here t is the parameter of the infinitesimal variation, so stationary points correspond to
functions f (t, z, z) independent of t , i.e. solutions of Eq. (31). In the case of Eq. (33),
the left-hand-side does not allow interpretation as a (gauge-fixed) component of the
curvature.

In all the above cases, in dimensions d = 1, . . . , 4, the equations are fully SO(d)-
invariant. The special geometric structures characterising these equations are thus pre-
cisely the volume forms, which are trivially special democratic forms. The oxidised
volume form in d-dimensions vold = dx1...d may be obtained from lower dimensional
volume forms by taking successive wedge products with the additional basis one-forms,
vold = vold−1 ∧dxd .

4. From Four to Eight Dimensions

4.1. Permutation to d = 6. To proceed to higher dimensions, we now consider the
complex version (28), (29) of the four-dimensional equations. Following the previous
mapping from two to three dimensions (22), we now oxidise these equations from C

2 to
C

3 by requiring invariance under the cyclic permutations generated by σ = (1 2 3) ∈ S3 ,
where the indices are now complex;

{F1̄2̄ = 0} −→ {Fσ p(1̄)σ p(2̄) = 0 ; σ = (1 2 3) , p = 1, 2}. (34)

This yields the system [c.f. (23)]

�αβγ Fβγ = 0 ⇔ {F1̄2̄ = F2̄3̄ = F3̄1̄ = 0} (35)

gαβFαβ = 0 ⇔ F11̄ + F22̄ + F33̄ = 0, α, α = 1, 2, 3, (36)

a set of three complex and one real equation. Here gαβdzαdzβ is the U(3)-invariant her-

mitian metric and� = dz1 ∧dz2 ∧dz3 = dz123, the complex (3,0) volume form. These
equations were obtained in [5] as SU(3)⊗U(1))/Z2-invariant curvature constraints which
imply the second order Yang–Mills equations. They later made an appearance in work by
Donaldson [40], Uhlenbeck and Yau [15] as the equations for holomorphic connections
on three (complex) dimensional Kähler manifolds, g being the Kähler metric.

In the six real coordinates, xα := Re zα, xα+3 = Im zα, α = 1, 2, 3, the equations
take the form (6), with the special democratic four-form (see [5])

T(6) = dx1425 + dx1436 + dx2536. (37)

This is invariant under the group S3 of permutations of the 3 ordered pairs ({1, 4}, {2, 3},
{4, 5}), or, equivalently, the symmetries generated by the permutation σ = (123)(456) ∈
S6. The stabiliser of T(6) in SO(6) is the group SU(3) × U(1)/Z2 and under this, the
space of two-forms has the following decomposition into eigenspaces of T(6) [5]:

�2
R

6 = (
su(3)0, λ = −1

) ⊕ (
V 3

2 ⊕ V
3
−2, λ = 1

) ⊕ (
Rω0, λ = 2

)
, (38)

where (V n
q , λ) is the n-dimensional irreducible representation of SU(3), the index q

denotes the U(1) charge, λ the eigenvalue of T(6) andω0 = gαβdzα∧dzβ is the invariant
metric form associated with g. Two-forms parallel to ω0 are contained in the λ = 2
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eigenspace. Under the action of T(6) the curvature tensor therefore decomposes into
T(6)-eigenspaces according to

F = (
Fγ δ − 1

3 gγ δF0, λ = −1
) ⊕ (

Fαβ ⊕ Fαβ, λ = 1
) ⊕ (

F0, λ = 2
)
, (39)

where F0 denotes the trace gαβFαβ . The set of seven equations (35), (36) thus projects
the curvature to the eight-dimensional su(3) part, the λ = −1 eigenspace. We note that
solutions of the set of nine equations projecting to the six-dimensional λ = 1 eigenspace
are saddle points of the Yang–Mills action in accordance with Eq. (13).

Analogously to (29), complexifying the Yang–Mills fields, Eq. (36), in the holomor-
phic gauge Aα = 0, α = 1, 2, 3, can be locally solved in terms of three prepotentials
taking values in the complexification of the gauge group:

Aα = �αβγ ∂
γ f β. (40)

The remaining conditions (35) provide extrema of the Chern–Simons action

S =
∫

MC

Tr ( Ā∂̄ Ā + Ā3) ∧ ∗�

=
∫

MC

Tr ( 1
2 Aα∂β Aγ + 1

3 AαAβ Aγ ) dzαβγ . (41)

Inserting (40) in (35) yields a wave equation analogous to (31) for the triplet of complex
prepotentials fβ ,

∂β∂[α fβ] + 1
2�

βδη[∂δ fη , ∂[α fβ]] = 0. (42)

The associated gradient flow for the functional (41) takes the heat equation form,

∂

∂t
fα = ∂β∂[α fβ] + 1

2�
βδη [∂δ fη , ∂[α fβ]]. (43)

The reduction of (35), (36) to the missing d = 5 case involves choosing a constant
unit vector in R

6 and projecting to the five-dimensional space orthogonal to it. Without
loss of generality, we may simply choose one of the basis vectors, say e6, effectively
deleting the variables x6 and yielding an SO(4)-invariant four-form T = dx1245. The
corresponding equations (see [5]) are an embedding of four-dimensional self-duality (27)
in five dimensional space. A five dimensional reduction of the Chern–Simons action (41)
and corresponding flow equations were discussed some time ago by Nair and Schiff [41].

4.2. Flow to d = 7 and d = 8. Since the three complex equations (35) have an action
(41), we may write down the partial curvature flow, for the three complex potentials Aα ,
now depending on seven variables (zα, zα, x7):

∂

∂x7 Aα = �αβγ Fβγ , α = 1, 2, 3. (44)

This being the gradient flow for the functional (41). Now, analogously to the four-
dimensional case (26), an x7-dependent gauge transformation yields the fully gauge
covariant form of this partial curvature flow

F7α = �αβγ Fβγ ⇔ {F71 = F2̄3̄, F72 = F3̄1̄, F73 = F1̄2̄}. (45)
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Here ∂/∂x7 denotes the real vector field (the ‘time’ of the flow) and α, β, γ = 1, 2, 3
are complex indices. The three complex equations (45) together with the real equation,

gαβFαβ = F11̄ + F22̄ + F33̄ = 0, (46)

imply the Yang–Mills equations in seven dimensions. Choosing real coordinates
(x1, . . . , x7), these equations they take the manifestly G2-invariant form [5]

ψi jk F jk = 0, i, j, k = 1, . . . , 7. (47)

Here ψ is the G2-invariant Cayley three form whose components ψi jk provide structure
constants of the algebra of imaginary octonions. Choosing the first six real coordinates as
the real and imaginary parts of the complex coordinates as follows, zα = xα+i xα+3, α =
1, 2, 3, we obtain,

ψ = dx367 + dx257 + dx147 + dx465 + dx243 + dx135 + dx162. (48)

Its four-form dual is given by

ϕ := ∗ψ = dx1245 + dx1346 + dx2356 + dx7123 + dx1567 + dx7246 + dx3457, (49)

in terms of which the equations (47) take the form,

Fi j + 1
2ϕi jkl Fkl = 0, i, j, k = 1, . . . , 7, (50)

which projects the curvature to the λ = −1 eigenspace of ϕ; the eigenspace decompo-
sition of the space of two-forms being [5]

�2
R

7 = (g2, λ = −1)⊕ (R7, λ = 3). (51)

Since the system (47) consists of seven equations for seven potentials and has the
Chern–Simons type action

SC S =
∫

M7
Tr (Ad A + A3) ∧ ∗ψ =

∫

M7
Tr ( 1

2 Ai∂ j Ak + 1
3 Ai A j Ak) ψ

i jk, (52)

we can immediately write down the corresponding partial curvature flow in eight di-
mensions analogous to (24):

∂

∂x8 Ai = 1
2ψi jk F jk, i = 1, . . . , 7 . (53)

This is the temporal gauge (A8 = 0) form of the Spin(7)-invariant equations in eight
dimensions, which were discovered in [5] and shown there to arise as the projection of
the curvature form to the λ = −1 eigenspace of the Spin(7)-invariant four-form φ,

Fab + 1
2φabcd Fcd = 0, a, b, c, d = 1, . . . 8, (54)

where in terms of the seven dimensional forms ψ, ϕ in (47) and (50) the four-form
φ in eight dimensions is given by φ = dx8 ∧ ψ + ϕ. The decomposition �2

R
8 into

eigenspaces of this four-form is given by

�2
R

8 = (spin7, λ = −1)⊕ (R7, λ = 3). (55)
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In complex coordinates, zα = xα + i xα+4, α = 1, 2, 3, 4, the Eq. (54) take the form
(see [5]) incorporating (45),

Fαβ + 1
2�αβγ δ Fγ δ = 0 ⇔ {F41 = F2̄3̄, F42 = F3̄1̄, F43 = F1̄2̄}

gαβFαβ = 0 ⇔ F11̄ + F22̄ + F33̄ + F44̄ = 0, (56)

where g is the U(4)-invariant hermitian metric on C
4 � R

8 and � = dz1234 is the
SU(4)-invariant volume form in C

4. In the complex ‘temporal’ gauge, A4 = 0, the
three complex equations in (56) therefore take the form of a partial curvature flow with
complex flow parameter z4,

∂

∂z4 Aα = 1
2�αβγ Fβγ (57)

∂

∂z4 A4̄ = gαβ3 Fαβ (58)

where�αβγ , gαβ3 are the volume form and inverse metric of the complex 3-space orthog-
onal to the complex vector field ∂/∂z4. The Eq. (57) thus gives the complex variation of
the Chern–Simons action (41).

All the above duality equations in dimensions up to eight are more or less well-known
[5]. Our main result is that the pattern of successive dimensional oxidation actually
continues to higher dimensions. Proceeding further, we see that a particularly interesting
12-dimensional system results.

5. Self-Duality in 12 Dimensions

Following the method of oxidising the duality equations from R
4 to R

6, we now extend
the system (56) in C

4 to C
6 by juxtaposing two additional complex variables z5, z6

and then remixing the six complex indices by requiring symmetry under permutations
generated by σ = (135)(246) ∈ S6. We thus obtain the equations,

gαβFαβ = F11̄ + F22̄ + F33̄ + F44̄ + F55̄ + F66̄ = 0, (59)

together with

F12 + F3̄4̄ + F5̄6̄ = 0, F34 + F5̄6̄ + F1̄2̄ = 0, F56 + F1̄2̄ + F3̄4̄ = 0 (60)

F13 + F4̄2̄ = 0, F14 + F2̄3̄ = 0, F15 + F6̄2̄ = 0

F16 + F2̄5̄ = 0, F35 + F6̄4̄ = 0, F36 + F4̄5̄ = 0. (61)

These equations imply the 12-dimensional Yang–Mills equations! The proof follows
from Theorem 2 and the observation that these equations allow expression in the form
(15), (16), with the (4,0)-form � taking the form

� = dz1234 + dz1256 + dz3456. (62)

This four-form is thus given by � = ω2, where ω is the symplectic (2,0)-form

ω = dz12 + dz34 + dz56 ∈ �2
C

6. (63)
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This is analogous to the R
6 case, except that now everything is complex. The (4,0)-form

� is manifestly invariant under the action of Sp(3) ⊂ SU(6) ⊂ Spin(12).
The three conditions in (60) are equivalent to the four real equations,

Im(F1̄2̄) = Im(F3̄4̄) = Im(F5̄6̄) = 0,

Re(ωαβFαβ) = Re(F1̄2̄ + F3̄4̄ + F5̄6̄) = 0, (64)

where the symplectic (0,2)-formω = ωαβdzα∧dzβ = dz1̄2̄+dz3̄4̄+dz5̄6̄ andωαβωβγ =
δαγ . The system of equations thus consists of five real equations, (59) and (64), together
with six complex equations (61), a total of 17 real equations.

The entire system (59),(60),(61) in real coordinates for 12-dimensional euclidean
space given by xi = Re zi , xi+6 = Im zi , i = 1, . . . , 6, takes the following form. Here
we denote the indices 10,11,12 by 0, a, b respectively.

F12 + F34 + F56 + F87 + F09 + Fba = 0 (65)

F17 + F28 + F39 + F40 + F5a + F6b = 0 (66)

F13 + F42 + F97 + F80 = 0

F14 + F23 + F07 + F98 = 0

F15 + F62 + Fa7 + F8b = 0

F16 + F25 + Fb7 + Fa8 = 0

F35 + F64 + Fa9 + F0b = 0

F36 + F45 + Fb9 + Fa0 = 0

F19 + F73 + F84 + F20 = 0

F10 + F74 + F92 + F38 = 0

F1a + F75 + F86 + F2b = 0

F1b + F76 + Fa2 + F58 = 0

F3a + F95 + F06 + F4b = 0

F3b + F96 + Fa4 + F50 = 0 (67)

F18 + F72 = 0

F30 + F94 = 0

F5b + Fa6 = 0 (68)

These equations have the familiar form (6), with the four-form T(12) ∈ �4
R

12 being
given by the special democratic form

T(12) = dx1234 + dx1256 + dx1287 + dx1209 + dx12ba + dx1397 + dx1380

+dx1407 + dx1498 + dx15a7 + dx158b + dx16b7 + dx16a8 + dx2307

+dx2398 + dx2479 + dx2408 + dx25b7 + dx25a8 + dx267a + dx26b8

+dx3456 + dx3487 + dx3409 + dx34ba + dx35a9 + dx35b0 + dx36b9

+dx36a0 + dx45b9 + dx45a0 + dx469a + dx46b0 + dx5687 + dx5609

+dx56ba + dx7890 + dx78ab + dx90ab, (69)

which has a set of 39 non-zero components. The characteristic polynomial of this Sp(3)-
invariant four-form, acting on the space of two-forms has been calculated using Maple.
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The eigenspace decomposition of the space of two-forms in terms of Sp(3) representa-
tions (see e.g. [42,43]) is given by

�2
R

12 = (
sp3 ⊕ V 14(π2)⊕ V 14(π2), λ = −1

) ⊕ (
V 14(π2), λ = 3

)

⊕ (Cω, λ = 5) ⊕ (Rω0, λ = −3). (70)

Here, ω is the symplectic form (63) and ω0 the metric form ω0 = gαβdzα ∧ dzβ .

V 14(π2) denotes the 14-dimensional representation with highest weight π2, the second
fundamental weight of sp3. The four-form T(12) is in fact one of six Sp(3)-invariant four-
forms in 12 dimensions. The 17 equations , (65)–(67) project the curvature two-form
to the 49-dimensional eigenspace with eigenvalue λ = −1. The other eigenspaces have
rather small dimensions compared with dim(�2

R
12) = 66. We therefore expect the

corresponding solutions to be rather trivial. Sp(3), the stabiliser of the four-form T(12)
is a maximal subgroup of SU(6).

The similarity of the equations (59), (60), and (61) to the three and six dimensional
systems in R

3 and C
3 � R

6 discussed above suggests that this is the counterpart in
three dimensional quaternionic space H

3 � C
6. The imaginary quaternion units satisfy

i2 = j2 = k2 = −1 and i j = − j i = k, together with the relations which result on
cyclically permuting (i, j, k). We consider C to be an R-vector space spanned by (1, i)
and H a C-vector space spanned by (1, j). Scalar multiplication of z ∈ C with the
quaternionic basis element j satisfies z j = j z, so quaternions may be written in the
form

q := z + jw = z + w j, q ∈ H, z, w ∈ C . (71)

The conjugate quaternion is then given by

q := z − w j = z − jw, q ∈ H, z, w ∈ C. (72)

The conjugate imaginary units are clearly given by i = −i, j = − j, k = −k .
Quaternions being noncommutative, conjugation is an involutive antiautomorphism,
i.e. q = q and q1q2 = q2q1. There exist related involutive automorphisms given by
conjugation with the quaternion units,

id : q �→ q = z + w j,

α : q �→ −iqi = z − w j,

β : q �→ − jq j = z + w j,

γ : q �→ −kqk = z − w j,

(73)

in terms of which the real and imaginary parts of q can be expressed as linear combina-
tions of q, α(q), β(q), γ (q) (see e.g. [44]).

Now, let M be a three quaternionic-dimensional (i.e. 12 real-dimensional) space. In
a local coordinate frame Tp M � H

3 � C
6. We define three quaternionic coordinates

q A, A = 1, 2, 3, in terms of pairs of the complex coordinates zα := xα + i xα+6, α =
1, . . . , 6 used above,

q1 := z1 + z2 j = x1 + i x7 + j x2 + kx8,

q2 := z3 + z4 j = x3 + i x9 + j x4 + kx0,

q3 := z5 + z6 j = x5 + i xa + j x6 + kxb

(74)

and we denote the conjugate coordinates as q A = q A.
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For any two quaternionic vector fields Q1, Q2 the curvature components F(Q1,

γ (Q2)) and F(Q2, γ (Q1)) have the same content in terms of real curvature components,
since γ is an involutive automorphism. We now denote the basis vectors of the coordinate
vector fields on M by Q A := ∂/∂q A, their quaternionic conjugates by Q A := Q A =
∂/∂q A and their α, β, γ -conjugates by Qα(A) := α(Q A), etc. The hermitian metric in

local quaternionic coordinates is given by d2s = gABdq Adq B = dq1dq1 + dq2dq2 +

dq3dq3.

Proposition 1. On a three quaternionic dimensional Riemannian manifold, the follow-
ing eight quaternionic curvature constraints are equivalent to the system (65), (66), (67)
and (68) of self-duality equations in 12 dimensions:

g AB F(Q B, Qα(A)) =
3∑

A=1

F(Q A, Qα(A)) = 0 (75)

g AB F(Q B, Qβ(A)) =
3∑

A=1

F(Q A, Qβ(A)) = 0 (76)

F(Q1, Qγ (2)) = F(Q2, Qγ (3)) = F(Q3, Qγ (1)) = 0 (77)

F(Q1, Qγ (1)) = F(Q2, Qγ (2)) = F(Q3, Qγ (3)) = 0 . (78)

Proof. The equivalence to the 17 equations (65)–(68), or equivalently to the complex
form (59)–(61) follows from a direct expansion of the quaternionic vector fields in the
basis (1, j). ��

6. Flowing to 14 Dimensions

The similarity between the three quaternionic equations in (77), the three complex equa-
tions in (35) and the 3 real equations in (23) immediately suggests that in analogy to
the flows (24) and (44), we may write down flows for the three quaternionic partial
curvatures in (77) into a further complex direction, with coordinate z7. We write, in
M = M3

H
× C with coordinates (q1, q2, q3, z7), in analogy with (57) and (58),

∂

∂z7 A(Q1) = −F(Q2, Qγ (3))

∂

∂z7 A(Q2) = −F(Q3, Qγ (1))

∂

∂z7 A(Q3) = −F(Q1, Qγ (2))

∂

∂z7 A(Z7) =
3∑

A=1

F(Q A, Qα(A))

(79)

together with (76), considered as an equation in 14 dimensions,

3∑

A=1

F(Q A, Qβ(A)) = 0 . (80)
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Writing the quaternionic vector fields Q A, A = 1, . . . , 3 in terms of complex vector
fields Zα, α = 1, . . . , 6 according to the choice in (74) and unravelling the A(Z7) = 0
gauge, we obtain the system

F(Z7, Z1 + Z2 j) + F(Z3 − j Z4, Z5 − Z6 j) = 0

F(Z7, Z3 + Z4 j) + F(Z5 − j Z6, Z1 − Z2 j) = 0

F(Z7, Z5 + Z6 j) + F(Z1 − j Z2, Z3 − Z4 j) = 0

F(Z7, Z7)−
3∑

α=1

F(Z2α−1 − j Z2α, Z2α−1 − j Z2α) = 0

3∑

α=1

F(Z2α−1 − j Z2α, Z2α−1 + j Z2α) = 0

(81)

Expanding the quaternionic vector fields in the basis (1, j), we obtain equations on C
7,

which are contained in the system

Fαβ + 1
2�αβγ δ Fγ δ = 0 (82)

gαβFαβ = 0 (83)

with � given by the GC

2 -invariant (4,0)-form

� = dz1234 + dz1256 + dz3456 + dz1375 + dz1467 + dz2367 + dz2457. (84)

By Theorem 2 we therefore have a system of equations which implies the Yang–Mills
equations in 14 dimensions.

Unlike the previous analogous cases, the equations (82) are not equivalent to the
set (81). The former set contains more equations than the latter. More precisely, (82)
includes, for instance, the three equations

F71 + F3̄5̄ + F6̄4̄ = F71 + F3̄5̄ + F64 = F71 + F35 + F6̄4̄ = 0 . (85)

Under the GC

2 -invariant four-form �, both real and imaginary parts of Fαβ split into
their 7- and 14-dimensional irreducible parts. The equations of the form (85) imply that
under (82) the real part is projected to the 14-dimensional piece (seven equations) and
the imaginary part is zero (21 equations). The real form of the system (82), (83) is given
by the set of 29 equations,

F18 + F29 + F30 + F4a + F5b + F6c + F7d = 0

F12 + F34 + F56 − F89 − F0a − Fbc = 0

F13 − F24 − F80 + F9a + Fbd + F75 = 0

F14 + F23 − F8a − F90 − Fcd − F76 = 0

F15 − F26 − F8b + F9c − F0d − F73 = 0

F16 + F25 − F8c − F9b + Fad + F74 = 0

F17 − F35 + F46 − F8d + F0b − Fac = 0

F72 − F36 − F45 + F9d + F0c + Fab = 0 (86)

F78 − F1d = F79 − F2d = F70 − F3d = 0
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F7a − F4d = F7b − F5d = F7c − F6d = 0

F19 − F28 = F10 − F38 = F1a − F48 = 0

F1b − F58 = F20 − F39 = F2a − F49 = 0

F3a − F40 = F2b − F59 = F3b − F50 = 0

F4b − F5a = F1c − F68 = F2c − F69 = 0

F3c − F60 = F4c − F6a = F5c − F6b = 0 . (87)

These 29 equations correspond to the λ = −1 eigenspace of the special democratic
four-form given by

T(14) = dx1234 + dx1256 + dx1298 + dx12a0 + dx12cb + dx1375 + dx13bd

+ dx1308 + dx139a + dx14a8 + dx1409 + dx1467 + dx14dc + dx15b8

+ dx159c + dx15d0 + dx16c8 + dx16b9 + dx1ad6 + dx170b + dx1a7c

+dx2367 + dx23a8 + dx2309 + dx23dc + dx2457 + dx2480 + dx24a9

+ dx24db + dx25c8 + dx25b9 + dx2ad5 + dx268b + dx26c9 + dx20d6

+ dx207c + dx2a7b + dx3456 + dx3498 + dx34a0 + dx34cb + dx35b0

+ dx35ac + dx835d + dx93d6 + dx36c0 + dx36ba + dx83b7 + dx937c

+ dx94d5 + dx45c0 + dx45ba + dx460b + dx46ca + dx84d6 + dx847c

+dx947b + dx5698 + dx56a0 + dx56cb + dx9a75 + dx8a76 + dx9076

+ dx890a + dx89bc + dx8057 + dx80db + dx8acd + dx90cd + dx9abd

+ dx0abc + dx187d + dx297d + dx307d + dx4a7d + dx5b7d + dx6c7d .

Its characteristic polynomial is given by

χ(T(14)) = (λ + 1)62(λ− 3)14(λ + 3)7(λ− 5)7(λ− 6) (88)

and the above 29 equations correspond to the projection to 62-dimensional λ= − 1
eigenspace.

Deleting all terms containing the 14th index d from the above equations yields the
13-dimensional reduction, corresponding to a flow along a real parameter rather than the
complex one chosen in (79). This is also a set of 29 equations, projecting the curvature to
the 49-dimensional λ = −1 eigenspace of the corresponding reduction of the four-form
T(14). The reduced four-form has characteristic polynomial

χ(T(13)) = (λ + 1)49(λ− 3)8(λ + 3)(λ− 5)2(λ− 4)6(λ2 + λ− 4)6 . (89)

7. Oxidation to 16 Dimensions

Analogously to the oxidations (53), (57) and (58) to eight real dimensions, we may
oxidise the system (82), (83) in C

7 to one in C
8 by taking gαβ to be the C

8-metric and

the (4,0)-form � to be given by the Spin(7)C-invariant,

� = dz1234 + dz1256 + dz1278 + dz3456 + dz3478 + dz5678 + dz1368 (90)

+dz1375 + dz1467 + dz1458 + dz2367 + dz2457 + dz2358 + dz2486. (91)
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The corresponding system includes the flow equations based on (81),

F(Z8, Z1 j − Z2) + F(Z7, Z1 + Z2 j) + F(Z3 − j Z4, Z5 − Z6 j) = 0

F(Z8, Z3 j − Z4) + F(Z7, Z3 + Z4 j) + F(Z5 − j Z6, Z1 − Z2 j) = 0

F(Z8, Z5 j − Z6) + F(Z7, Z5 + Z6 j) + F(Z1 − j Z2, Z3 − Z4 j) = 0

F(Z8, Z8) + F(Z7, Z7)−
3∑

α=1

F(Z2α−1 − j Z2α, Z2α−1 − j Z2α) = 0

4∑

α=1

F(Z2α−1 − j Z2α, Z2α−1 + j Z2α) = 0 .

(92)

The real form of the full system of equations with (4,0)-form� given in (91) is given
by

F12 + F34 + F56 + F78 − F90 − Fab − Fcd − Fef = 0

F13 − F24 − F57 + F68 − F9a + F0b + Fce − Fd f = 0

F14 + F23 + F58 + F67 − F9b − F0a − Fcf − Fde = 0

F15 − F26 + F37 − F48 − F9c + F0d − Fae + Fbf = 0

F16 + F25 − F38 − F47 − F9d − F0c + Fa f + Fbe = 0

F17 − F28 − F35 + F46 − F9e + F0 f + Fac − Fbd = 0

F18 + F27 + F36 + F45 − F9 f − F0e − Fad − Fbc = 0

F19 + F20 + F3a + F4b + F5c + F6d + F7e + F8 f = 0

F79 − F1e = F80 − F2 f = F5a − F3c = F6b − F4d = 0

F70 − F2e = F3d − F6a = F4c − F5b = F1 f − F89 = 0

F69 − F1d = F2c − F50 = F3 f − F8a = F7b − F4e = 0

F1c − F59 = F2d − F60 = F3e − F7a = F8b − F4 f = 0

F1b − F49 = F5 f − F8c = F2a − F30 = F6e − F7d = 0

F6 f − F8d = F5e − F7c = F40 − F2b = F39 − F1a = 0

F7 f − F8e = F5d − F6c = F10 − F29 = F3b − F4a = 0 .

(93)

The corresponding four-form T(16) ∈ �4
R

16 has characteristic polynomial

χ(T(16)) = (λ + 1)84(λ− 3)21(λ− 7)8(λ + 5)7, (94)

so the above 36 equations correspond to the vanishing of the imaginary part of Fαβ (28
equations), the seven-dimensional irreducible piece of the real part of Fαβ and the singlet
trace condition on the (1,1)-curvature.

Deleting all terms containing f , the 16th index, from the above equations yields 36
equations in 15 dimensions which projects the curvature to the 69-dimensional λ = −1
eigenspace of the corresponding four-form T(15), which has characteristic polynomial

χ(T(15)) = (λ + 1)69(λ− 6)8(λ− 3)14(λ2 + 3λ− 6)7 . (95)
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8. The Reductions to 8 < d < 12

We now briefly comment on some reductions of the above 12-dimensional system to the
lower dimensions which were missed out in the discussion above.

d = 11

Deleting all terms containing dxb in (65), (66) and (67) yields a set of 17 equations
in 11-dimensions. The correspondingly reduced four-form T(11) := T(12)|dxb=0 has
characteristic polynomial

χ(T(11)) = (λ + 1)38(λ− 2)8(λ− 3)5(λ− 4)2(λ2 + λ− 4). (96)

d = 10

Reducing the above 11-dimensional four-form further to the 10-dimensional hypersur-
face defined, for instance, by x6 = 0 yields a four-form with characteristic polynomial

χ(T(10)) = (λ + 1)30(λ− 1)8(λ− 3)6(λ− 4). (97)

The λ = −1 eigenspace corresponds to a set of 15 equations amongst the 45 curvature
components. This case is the complex counterpart of the d = 5 case discussed at the
end of Sect. 4.1. In C

5, these equations take the form (15), (16) with α, β = 1, . . . , 5
and the complex (4,0)-form given by the contraction of the (5,0) volume form with a
constant unit (0,1)-vector. This (4,0)-form is the SU(4)-invariant volume form in the
four-dimensional complex space orthogonal to this vector. Choosing, this vector, for
instance in the direction of the z5-axis, we obtain � = dz1234, yielding the following
equations on C

5

F11̄ + F22̄ + F33̄ + F44̄ + F55̄ = 0

F12 + F3̄4̄ = F13 + F4̄2̄ = F14 + F2̄3̄ = 0

F15 = F25 = F35 = F45 = 0 .

(98)

d = 9

The most symmetric reduction of (98) to nine-dimensions, making z5 real, is a trivial
embedding of the Spin(7)-invariant set of equations (56) in nine dimensions.

9. Some Open Questions

An intriguing open problem is the relation of the 12-dimensional system to sextonions
and to the ‘missing row’ of the Freudenthal magic square related to E

7 1
2

(see [7,13]).

It remains to be seen whether interesting solutions to the higher dimensional equa-
tions presented here can be found. The simplest solutions are embeddings of known
solutions in dimensions d ≤ 8 in the higher dimensional theories. Do such solutions
allow oxidation to nontrivial solutions in higher dimensions? In particular, when the
duality equations describe (partial) curvature flows, to what extent do solutions in the
bulk arise from solutions on the initial value surface (boundary) of the flow? For in-
stance, can the known four-dimensional solutions of the self-duality equations (27) be
seen as arising from a flow which has a flat 3D connection as its initial value, or do the
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known solutions of the eight-dimensional Spin(7)-invariant equation [9,10,46] arise as
solutions of the flow equation (53) from solutions (e.g. [45]) of the G2-invariant equation
(47) on the initial value sevenfold?
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