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Effect of retardation on the dynamics of entanglement between atoms
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The role of retardation in the entanglement dynamics of tistadt atoms interacting with a multi-mode field
of a ring cavity is discussed. The retardation is associattta finite time required for light to travel between
the atoms located at a finite distance and between the atathecavity boundaries. We explore features in
the concurrence indicative of retardation and show howetfestures evolve depending on the initial state of the
system, distance between the atoms and the number of modséctothe atoms are coupled. In particular, we
consider the short-time and the long time dynamics for duéhmulti- and sub-wavelength distances between the
atoms. It is found that the retardation effects can qualabt modify the entanglement dynamics of the atoms
not only at multi- but also at sub-wavelength distances. @llew the temporal evolution of the concurrence
and find that at short times of the evolution the retardatimuces periodic sudden changes of entanglement.
To analyze where the entanglement lies in the space spanni Istate vectors of the system, we introduce
the collective Dicke states of the atomic system that eitfyliaccount for the sudden changes as a periodic
excitation of the atomic system to the maximally entanglgdraetric state. At long times, the retardation gives
rise to periodic beats in the concurrence that resembletteegmenon of collapses and revivals in the Jaynes-
Cummings model. In addition, we identify parameter values iaitial conditions at which the atoms remain
separable or are entangled without retardation during miieeeevolution time, but exhibit the phenomena of
sudden birth and sudden death of entanglement when thdagtar is included.

PACS numbers: 42.65.5f, 42.50.Nm, 42.60.Da, 04.80.Nn

I. INTRODUCTION the systems to the external environment can lead to the ir-
reversible loss of the transferred entanglement. In this co

Entanglement is one of the most familiar phenomena renection, one would expect that the coupling of the systems
sulting from the presence of non classical correlations bet© local environments, with a Markovian assumption of the
tween quantum systems P]. A large number of studies have Process, could lead to an exponential decay of the entangle-
demonstrated that entanglement can be created in variety §t€nt from its initial value. However, there are some entan-
systems ranging from simple systems such as single photogged states, particularly those involving at least two &xci
or atoms to more complex systems such as spin chains or iONS, that may decay in an essentially non-exponentiakman
ological samples. The presence of an entanglement betwe&g" resulting in the disappearance of the entanglement in a
systems has been tested experimentally in various optieal efinite time. This effect, known as sudden death of entangle-
periments. For example, slowly moving atoms can be entarient (SDE), has been studied in a numerous number of pa-
gled while passing through a cavit§][ and the entanglement Pers B, 11-19], and has recently been observed in experi-
between the atoms can be detected by probing the atomic stdients involving photons1, 17] and atoms 18]. Further-
of the atoms after leaving the cavit,[5]. Another common  More, theoretical treatment of the coupling of sub-systems
setup is the entanglement of photons obtained from a dowr® common (non-local) environment has predicted that the al-
conversion process]. In this case, the entanglement betweenr€ady destroyed entanglement could suddenly revigeZ3]
the photons can be verified, e.g., by detecting correlatiens OF initially separable systems could become entangled afte
tween their polarizations[ 8]. finite time, the phenomenon known as sudden birth of entan-

Apart from the issue of creating entanglement, also a dedlement (SBE).
tailed analysis of the dynamics of an entangled system is ) ) ) ) ]
of importance. One motivation for this is the possibility From experimental point of view, in particular the study
for transferring entanglement between distant quantum sy the generation of entanglement in systems confined within
tems P]. Such transfers have become especially interestingg"?fal or microwave cavitiesd] 5, 24-26] is of importance.
since a number of experiments have succeeded in the creatibrRvities provide a well-defined mode spectrum and a rela-
of quantum gates necessary for the implementation of quarjively loss-free environment such that the atom-field iater
tum networks L0]. However, if one examines the dynamics ions can have anomalously large coupling strengths, headi
of an entangled system coupled to a network of quantum sy§9 reversible, non-Markovian type dynamics of the system.

tems, it becomes apparent that the unavoidable coupling ¢S & consequence, the already dead entanglement can revive
even if in the equivalent free-space situation no revivakres

dicted 11, 12, 23, 27-33]. However, calculations based on
deriving the master equation for the reduced density operat
* qurrat-ul-ain@mpi-hd.mpg.de of two atoms, both placed inside a cavity, frequently assume
T zficek@kacst.edu.sa a large distance between the atoms such that there is no direc
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assume that each atom influences the other instantaneoustyultiplets of time required for the photon to travel between
For this, there is no time delay or equivalently no phase difthe atoms or to take the round trip in the cavity. The effect
ference between the oscillating atomic dipole momentdtresu of the retardation on the phenomena of sudden death, revival
ing in an effective coupling between the atoms independent cand sudden birth of entanglement is also discussed. Ircparti
their distance. It turns out that these non-retarded mddels ular, we identify parameters and initial conditions, in oHi
physical systems are suitable if the atoms interact witta si the atoms remain separable without retardation througheut
gle cavity mode. A more interesting parameter regime arisesntire evolution time, but exhibit sudden birth and deatérof

if the atom couples to a large number of cavity modes. In thiganglement with retardation, and vice versa. Both, thetshor
case, retardation effects become import88%#-B7]. These time and the long time dynamics are analyzed, and we also
effects are associated with a finite time required for light t study time-averaged concurrences. We also study the destan
travel, e.g., from the atom to the boundary of the cavity anddependence on two scales: First, in integer multiples of the
back to the atom after being reflected from the cavity mirrorwavelength, corresponding to different positions in aqaid

This leads to the interference between instantaneousli emipotential, and second on a sub-wavelength scale.

ted photon and the retarded waves that are reflected from the We begin in Secll by introducing the model and derive
cavity walls. the equations of motion for the probability amplitudes imtw

In an early study Milonni and Knight34, 35] discussed cases of single and double excitations present in the system
the effect of the retardation on the collective behaviomedt  These equations are obtained by considering a multi-mode
atoms. They demonstrated that that retardation effectsein t rather than a single-mode interaction of the atoms with the
interaction between two atoms in free space become impogavity field. Then, in Sedll C we apply the solutions for the
tant for distances larger than the half-wavelength of tHe.fie Probability amplitudes to the problem of the time evolution
Recent studies of the interaction of atoms with multi-modeof the populations and the concurrence. Throughout, we as-
cavities have predicted strong non-Markovian and retardasume that the atoms interact with a finite number of the cavity
tion effects in the population dynamic3€, 37). The multi- ~ modes. The numerical results for various special casesof th
mode cavity field can be treated as a small environment to thiéme evolution of the concurrence are illustrated in S&c.
atoms B8]. This leads to a spatial modulation of the field am- We also present there the qualitative discussion of thet shor
plitude which significantly alters the nature of the inteime ~ and long time behaviors of the concurrence. Finally, in Sec.
between the atoms and the field. we summarize our results.

While most of the studies on SDE and SBE assumed the
Markovian approximation such that a backaction of the envi-
ronment on the atoms is effectively excluded, recently, -how
ever, also the non-Markovian case has received consigerabl
attention L1, 12, 23, 27-33). In particular those explicitly tak- We consider two identical atoms, located inside a ring cav-
ing into account the distance between the particles arel-of reity at fixed positionst; ands, with distancez, — | = =.
evance 39-41]. In these works it was shown that for certain The atoms are modeled as two-level systems with excited
initial states, the distance between the qubits can qtiéitg ~ Statele;) and ground statgy;) (i € {1,2}) separated by en-
change the entanglement dynamics. For example, dependig§dy /., as shown in Figl. The cavity is considered as
on the distance, SDE and SBE can occur or not. Howevelg multi-mode cavity with frequency difference between adja
these works made use of a continuum of environmental modegent modes (free spectral range) such that multiple modes ar
by integrating over all wave vectoks This raises the ques- supported within the atomic resonance line width. The abnsi
tion about the entanglement dynamics of atoms in multi-modération of several rather than a single mode in the intevacti
cavities with a set of discrete field modes, which are known to
exhibit strong non-Markovian and retardation effects ia th
population dynamics37]. atom

In this paper we investigate the effect of retardation on the
generation and dynamics of entanglement between two two-
level atoms located inside a ring cavity. The model studied
requires that we develop a multi-mode theory of the interac-
tion of the atoms with the cavity field. The goal thenis to&ac
the time evolution of the concurrence in the case of single or
double excitations present in the system. We show that the
quantum nature of the cavity field crucially affects the gen- mirror
eration of entanglement in the system. In the course of the
calculation we observe that the retardation effects do play FIG. 1. (Color online) Schematic diagram of the system aiersid.
significant role in the creation of entanglement between th&wo identical two-level atoms are at fixed positions, distafrom
atoms. Certain transient effects such as abrupt kinks in theach other, located inside a one-dimensional ring cavitg@found
time evolution of the populations and the concurrence occufrip path L. The internal structure of each atom is shown in the right
The kinks reflect the effects of multiple photon exchange beinset. The atoms are modeled as two-level systems with ttieeeix
tween the atoms and appear at intervals corresponding to thg? @nd groundg:) states separated by the transition frequency
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of the atoms with the cavity field will be found crucial for the  After substituting Eqs.5) and @) into Eqg. @), and retain-
occurrence of retardation in the radiative coupling betwee ing only the terms which play a dominant role in the rotat-

the atoms. ing wave approximation, the interaction Hamiltonian tatkes
form
iltonian of th -
A. Hamiltonian of the system Hup = thz [Q;L(fj)ausj . HC] ’ (8)
j=1 p

The Hamiltonian of the atoms interacting with the common
electromagnetic field of the ring cavity can be writtenag[ where

= Eu (7 A\ ifn-,
H = H, + Hy + Hay, (1) gu(@)) = S (dy - ) o) ©)
where is the position-dependent Rabi frequency which determines
) the strength of the coupling of thi#gh atom with the mode
B +oam of the cavity field.
Ha = 2; hwaS5 55 (2) Our objective is to find effects of the retardation in the in-
j:

teraction of the atoms with the multi-mode cavity field on the

evolution of the system. We are in particular interestedhe t

effect of the retardation on the creation of entanglement be

Hy = thnaT a 3) tween the atoms. Two cases will be studied, with the system
nes initially (1) in a single excitation state, and (2) in a doailek-

is the free Hamiltonian of the atoms,

a citation state. Before going into detailed calculations,first
is the free Hamiltonian of the cavity field, and briefly explain how retardation effects are incorporatedun
calculations.
H,;=—D - E(Z)) — Dy - E(i) (4)

is the interaction between the atoms and the cavity field; wri B. Origin of theretardation

ten in the electric dipole approximation. ) o ) o
In the Hamiltonian {), the atoms are represented by the ~The atom-cavity system exhibits retardation effects if its

transition dipole moment operators dynamics is affected by the finite propagation time of thitlig
In our model, two effects need to be distinguish&d [ First,
D.=d.St+ds- (5) an atom embedded in a larger cavity initially evolves asee fr
’ 7T I space, but after a finite time of ordéy ¢ (and integer multi-
I Y . ples thereof) reacts to the presence of the cavity with aesudd
where S = le;){g;| and 5; = |g;)(c;| are respectively o ihe fime evolution. Speaking pictorially, this tine

the dipole raising and lowering operators of the atgnand required for a photon emitted by the atom to cycle through the

dj = (9;|Djle;) is the dipole matrix element of the atomic ¢4yity and be reabsorbed by the same atom. This gives rise
transition. i to retardation effects which occur already for a single aitom

_The cavity field is represented by the creatigpand an- e cavity. The second effect is due to the interaction of two
nihilation a,, operators in which the subscriptindicates the  atoms in the cavity. Here, the retardation occurs because of
particular set of the cavity plane-wave moges- {k,,!} of  the finite time required for a photon to travel between the two
the wave numbek,, = w,, /¢, frequencyw,, and polarization, atoms.

to which the atoms are coupled. In the following, we provide an intuitive picture how the
The cavity field at positioi can be given in the plane-wave distance information required for the two different retidn
mode expansion as effects enters our model. This discussion will be made more
precise in Sedll A, where we identify the origin of the two
E(&) = Z-Zgu (auei’gn'fél - H.c.) , (6) types of retardation in the equations of motion governirey th
" atom-cavity system.

A typical representation of the interaction of an atom with
where a cavity field is illustrated in Fig2. Evaluating the electric
field operator ) in the Heisenberg picture to include the time

| hwn, evolution, we find
= B — 7 !
g'u 260.[/7 ( )

E(Z) = iZEM (auei“’"(f’t)él - H.c.) . (10)
is the electric field amplitude of theth modew,, = 2mnc/L o
is in the frequency of the modes set by the periodic boundary
conditions of the ring cavity, ang, is the unit polarization The time and space dependence enters via the phases

vector of the mode:. on(Z,t) = Enf — wpt = wy(x/c —t) of the different modes.
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(a) other words, the modes are shifted or “retarded” with respec
2 to each other. This means that the atom at positipexpe-
riences the field emitted by atom 1 into the different cavity
X modes with different relative phases, such that the respois
atom 2 in the limit of large mode number averages out. How-
(b) ever, at specific times, all modes can evolve in phase again.
2 From the definition ofp,, (x, t), itis clear that this happens at
timesz/c, i.e., exactly the times corresponding to the flight
time of light between the two atoms. At this instance in time,
the cavity modes act in phase onto atom 2, such that a sud-
den response is observed. This is the origin for the retiamat
FIG. 2. (Color online) Atoms represented by colored blolssgdathe  effects of the second type.
cavity field.z, denotes the position of atom 1 which is placed atthe |y contrast, the retardation effects of the first type are em-
flrst.a}ntl node. (a) Single mode ofthg cavity field with thraféedent bedded in the quantization of the cavity modes frequency
positions for ato_m 2. (b) Two additional modes shown in blod a spectrum. The frequency spacings are such that the phases at
green are taken into account. . . . .
times separated by integer multiplesiofc are different by an
integer multiple o, asw,, L/c = 27n. While at most times
the different modes are out of phase because of the different
In the last step and throughogt this section, we assume a onffee evolution frequencies, at times equal to integer mieisi
dimensional problem, and thiig# = k,,« for simplicity. of L/c all modes are in phase again, and a sudden response of
Let us first discuss a simplified model, the interaction ofthe atom appears. From this interpretation, it is appateatt t
the atom with a single mode only, say the central cavity modéhis first type of retardation already occurs for a singlerato
u = 0, as shown in Fig2(a). Suppose now that atomrep- A straightforward combination of both arguments also ex-
resented by a red blob is located at positignwhereas atom  plains the retardation of the second type at tirfies- z)/c.
2, represented by a blue blob can be located at three diffefFrurthermore, in the subsequent evolution of the atoms also
ent positionsrs, zor andxo. It is easily verified that ifr is ~ combinations of the different retardation time intervadsc
displaced byz such thatk, - z = 27n, wheren is an in-  occur, as we will see in the numerical analysis.
teger, then the phase of the single mode remains unchanged,Thus, retardation effects are expected to play an important
wo(x,t) = po(x + 0z, t). This implies that the electric field role in the interaction of atoms as soon as multiple modés wit
operator has the same value at positions differing by an intedifferent wave numbers interact with the atoms. This caa als
ger multiple of the cavity wavelength. Hence, the inte@tti  be related to the Fourier relation of position and momentum
Hamiltonian H, ¢ remains the same if the distance betweenspace. The small frequency distribution of a single modesyiv
the two atoms is changed by an integer multiple of the waverise to a large distribution or uncertainty in the positidn.
length. In this sense, the system dynamics is independent abntrast, a broad frequency distribution or many modesvallo
the distance, and thus the system itself cannot exhibit&ffe to precisely determine the position.
of retardation if only a single mode is considered.
It should be noted that the interaction Hamiltonian still de

pends on the relative distance between the atoms. For atomil. EXCITATION PROBABILITIESAND CONCURRENCE
separationgrs — x| and|xzy — 1| that are equal to multi-

ple integer of the wavelengtlyo (1) = go(22) = go(wx), We are interested in determining the effect of retardation
since at these separations the Rabi frequencies have tiee sag}, ihe time evolution of the system initially prepared insep
value. In other words, the atoms are coupled equally t0 theapie states of single and double excitations. In particula
field mode. But for separations between the atoms that dgn | giscuss the subsequent time-dependent behavioeof th
not satisfy the periodicity condition, such @s. — 21|, the  gycitation probabilities and the concurrence.

atoms experience different amplitudes and phases of tluke fiel The time evolution of the system is governed by the

As a consequence, the interactitlp, is modified due to to a Schrodinger equation, which in the interaction picture is
change of the Rabi frequency. However, this variation of thegiven by

interaction Hamiltonian with the inter atomic distance fe t
single mode field has nothing to do with retardation. Al (t))
th———+
ot

Let us now assume that apart from the central mode, there
are additional cavity modes taking part in the interactidtiw
the atoms, as illustrated in Fig(b). Suppose that at point,  We will consider two particular classes of initial conditi In
all modes have the same phass, (z1,t) = o for all n),  the first, we assume that at= 0 the system was in a single-
which we for simplicity assume to be zero. Then, the positionexcitation state. In the second class, we assume thatliitia
2 entering the field operator can be interpreted as the distandwo excitations were present in the system. In both cases,
dx = xo — x1 between the two atoms. Due to their differ- the (single or double) excitation is initially either prasén
ent wave numbers,,, at pointxs, the modes typically have the atoms or in the cavity, or in a superposition of atoms and
different phases, i.eg, (x2,t) # om(x2,t) forn # m. In cavity.

= Haslth(t)). (11)
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A. Thecaseof singleexcitation ') /c — t] for the different modes. Again, constructive inter-
ference is obtained, but in this case at a time correspording
If we take for the initial state of the system a single- the flighttimez/c between the two atoms. A similar argument

excitation state, then the time-dependent state vectavof t @IS0 explains constructive interference at tiphe— z) /c.

atoms coupled to a multi-mode field can be written as Subsequent iterations of the two types of retardation lead t
kinks in the system evolution also at times arising from com-
[U(t)) = bi(t)|erg2{0},.) + ba(t)|gre2{0},) binations of the two effects. Obviously, constructive ifee
b (t 1, 12 ence can only lead to sharp change in the system response if
+ ; p(®lg192{1}), (12) many different frequency components contribute, i.e.hé t

system couples to many cavity modes. In the extreme case
where{1}, denotes the state of the cavity modes with a singleof free spacel. — oo, and the first type of retardation can-
excitation present in the mogeand zero occupation numbers not occur at a finite time. But the retardation in the coupling
for all the remaining modes. between the two atoms is still present in the free-spacé, limi
The time evolution of the state vector is determined by theand must be considered, e.g., in calculating the dipoleteip
Schrédinger equatiori () which transforms it into three cou- coupling between atoms in free space.
pled equations of motion for the probability amplitudes

bi(t) = gubu(t), je{1,2}, (13a)
’ zﬂ: . B. Thecase of double excitation

2
bu(t) = — iDubu(t) = > gribs(t), (13b) If initially the system was in a double excitation state rthe
j=1 the state vector can be written as
whereA, = w, — w, is the detuning of the cavity mode
frequencyw,, from the atomic transition frequency, coin- [9(8)) = bia(t)|ere2{0},) + Z bar(t)lerg2{1}a)
ciding with the central cavity mode frequency, and we have *
simplified the notation,,; = g,.(). +) baa(®)lgrea{1}ta) + Y baa(t)lg192{2}a)
The formal integration of Eq13b) gives « «
_ 2 ¢ _ + Z bas(t)|g192{1}a{l}p), (16)
balt) = Bu0)e 2 =3 gy [ a0, b
=1 70
(14)  where{2}, denotes the state of the cavity modes with double
excitation of the mode: and zero occupation numbers for all
and when this relation is substituted into E§34, we find the remaining modes.
. Ny The Schradinger equation transforms the state ved®r (
b(t) = Z Iuibu(0)e™ into the following set of coupled equations of motion for the
i probability amplitudes
2 t
=3 [ gy — S as) !
i=1 u bya(t) = Z Zgajbaj/ (t),
At this point, the two types of retardation effects are fully J7=1 @

visible also from the analytical expressions. The first Wpel}aj (t) = — iAnba;(t) — g;j,bu(t) + ﬁgajbaa(t)
leading to retardation effects at times equal to integettimul :

ples of the cavity round trip timé /c can be understood in + Z gﬁjbﬁa(t)+z 9sibas(t), (G #J" € {1,2}),
terms of the detuningd,. Since the detuningd,, differ by f>a pla

integer multiples orc/ L, the phasea\ ;¢ will be multiples 2

of 21 for all modes simultaneously at timesequal to inte-  Pas(t) = = i(Aa+2s)bas(t) =Y 94,085 (t)+ 9500 (1)]

ger multiples ofL /c. Then, the system response will exhibit j=1

sharp peaks due to the constructive interference of all siode 2

Atothertimes, the different phase factors of the variousl@so  baq(t) = — 2iAsbaa(t) — V2 Z Ganibaj(t). (17)

do not add up constructively. This discrete response is-inde j=1

pendent of the coupling between the atoms, and could be ob-

served even if only a single atom is present inside the cavity The case of double excitation is described by a complicated
The second type of retardation is due to the interaction beset of equations of motion. It involves probability amptias

tween the atoms, i.e., the second part of Bdp).( The cou-  of the states with the excitation redistributed over twoityav

pling constantg,,;g;, ;, together with the detuning phase lead modesp.z(t), as well as states with the excitation occupying

to phase contributionlk, (z; — z2) — wyt] = iw,[(z; —  the same mod&,.(t).



C. Concurrence excitation state Eq16), and find

. . . . pr = [bi2(t)[*lere2{0} ) (ere2{0} |
We are mainly interested in studying the retardation effect
on the entanglement dynamics between the two atoms thatare ~ + Z [bar () e1g2{1}a) (e192{1}a]
coupled to the multi mode vacuum field inside the cavity. The

dynamics of the atoms are determined by the reduced density + Z ba1(t)blo(t)le1g2{1}a){g1ea{l}al
matrix p that is obtained by tracing the density matrix of the
total system over the field degrees of freedom. We then exploi i Z b (¢ (®)lgrea{1}a) (e1g2{1}a]

concurrence introduced by Wootte®?], which is a widely

accepted measure of entanglement between two qubits, and is
defined by + Z baz(t)Plg1e2{1}a) (g1€2{1} 0]

szax{o,\/x—\//\_—\//\_—\/x}, (18) “"o;|baﬁ(t)|2|9192{1}a{1}5><9192{1}a{1}6|

, , _ + > baa(t)Pl9192{2}a) (9192{2}al + ND,  (22)
where)\; are the eigenvalues (in descending order) of the Her- =

mitian matrix R = pp in which g is given by ) .
whereN D stands for the sum of all off-diagonal terms in the

field modes which vanish in tracing over the cavity modes.
p=0yRoyp o, oy (19)  Then, by taking trace of the density matyix over the cavity
modes, we arrive at the following reduced density matrix of

the two atoms
ando, is a Pauli matrix. The concurrence ranges between 0

and 1. If the two atoms are maximally entangled, the cony = |b(¢)[2(1)(1] + Z b (1)) [2)(2] + Z baz(t)]? 3)(3]
currence evaluates to unity whereas, if they are completely

disentangled¢’ = 0.
gled” =0. | + 2 bt 008 2061+ 3 bualt)a 0 9)2
The usual way is to express the concurrence in the ba- &
sis of the product states of the two-atom system, jl¢.,=

ler€e2), [2) = le1g2), [3) = |g1€2), 4) = |g1g2). In this basis, be 5 @) ] 14 23
the concurrence takes the for@i] 0;' sOF Z' AN 3)

Oft) =2 0, " Itis clear that tracing out the field modes results in the dgns
(t) =2max{0, |p2s(t)| = v/ pas(t)p1a (1), matrix with p14 = 0. In this case, the concurrence denoted by

|p1a(t)] — /P2 (t)pas(t) }- (20)  C takes the form
C(t) = 2max{0, |pas(t)| — v/paa(t)p11 () }, (24)
There are two terms contributing to the concurrence, one

resulting from the presence of the one-photon coherenc&hich in terms of the probability amplitudes can be written a
|p23(t)| and the other from the two-photon coherefige(t)).

It is interesting that these two contributions complemexcte C(t) = max{0, C:(1)}, (25)
other. In the single excitation case,; = 0,p14 = 0, and where
then the expression for the concurrence (denoted in thes cas
by C) reduces to Ci(t) =2 Z 6% (£)bar (t)
C(t) = 2max{0, |p23(t)|} = 2max{0, [b](¢) b2(t)[}. (21) — b)) [ bas®) + Z ba.o(H)2. (26)
a>f

It shows that in the single excitation case it is sufficient fo
|p23(t)| to be different from zero to create entanglement be-
tween the atoms. In this sense, entanglement is equivalent
atomic coherence in this case.

Similar to the single excitation case, the concurrence ngpe
‘on the coherencps;(t). However, in the presence of two
Excitations in the system, the condition for a nonzero concu
rence of|p23(t)| # 0 is a necessary one, it is not in general
The situation is quite different when two excitations aresufficient one, since there is a subtle condition of the coher
present in the system. But surprisingly, tracing the dgnsit ence to be larger than a threshold value\@paa(t)p11(t).
matrix of the system over the field degrees of freedom reThus, the presence of the two excitations in the system-intro
sults in an expression for the concurrence that does ndti@vo duces a threshold for the coherence above which the entangle
the two-photon coherenge,(t). To see this more explicitly, ment between the atoms could occur. Needless to say, the first
we calculate the density matrpg- associated with the two- term in Eq. @6), |b%,(¢)ba1 ()], must be different from zero



and exceed the second term numerically for the concurrender an arbitrary atomic spacing and length of the cavity, but
to be positive. we limit the discussion to situations in which the central-ca
We should point out here that the involvement of only theity mode is on resonance with the transition frequency of the
one-photon coherence in the concurrence of the doublesexcitatoms, i.e.wy = w,. Also, since the coupling of the atoms to
tion case is a direct consequence of the quantum nature of thie cavity modes decreases with increasing detuning, vee tak
field. The definite total excitation number entangles the-exc into account in the numerical calculation a finite number of
tation number of the atoms uniquely to the excitation numbecavity modes distributed about, with a frequency range on
of the cavity. If the cavity is projected into particular @&  the order of several atomic line widths. The required number
tion number channels with classical probabilities notwifgy ~ of modes depends on the cavity lendthas the distance be-
for quantum superpositions in tracing over the cavity mpdestween the adjacent cavity modes decreases with increésing
due to this entanglement, also the atoms are projectediato t Thus, the number of the cavity modes to which the atoms can
corresponding excitation number subspaces. This rules olie coupled increases with an increasing
coherence or even entanglement between atomic states of dif Equations 21) and @4) for the concurrence are functions
ferent excitation number. This situation was treated bya¥on of several parameters: the atomic spacinghe detuning of
et al. [43, 44], who showed that in the case of a two mode the cavity modes from the atomic transition frequengy, the
cavity, « € {1,2}, no coherence and equivalently no entan-number of the cavity mode¥ to which the atoms are cou-
glement can be found in a system determined by the doublgled, the coupling strength of the atoms to the cavity modes
excitation stateX6). 9ui, the cavity lengthL, and the time. For fixedN andL, one
The coherence could be present if one includes an auxiliargan obtain time evolution of the concurrence by monitoring
state|g192{0}.{0}3), the ground state with no excitation, to the populations of the atomic states and coherence between
the state 16). Then, the total excitation number would not be the atoms as a function of Alternatively, one can monitor
fixed, and there would be no definite entanglement betweethe time evolution of the populations of the collective stat
the atom and cavity excitation numbers. Alternativelyhiét of the two-atom system. In the following, we give illustxegi
photon number states in EqR3) were replaced by a classi- figures of both on a short time and a long time behavior of the
cal field amplitude, for example, by a coherent state one  concurrence.
could then arrive at the concurrence involving the two-phot
coherencepy4. Thus, the condition for entanglement based
on p14 would become relevant. It is easy to see, replacingin ~ A. Effectsof retardation on the population dynamics
Eq. 22) the photon number statés: },,) by the coherent state

|}, we obtain a state vector Before discussing the effects of retardation on the tramsie
R properties of the concurrence, it is important to undeistha
(1)) = bia(t)[erea) + Y baa(t)]e1g20r) transient behavior of the populations of the single-exicita
o case. Transient excitation probabilities are first studad

+)  bas(t)|grescr) + baa(t)|grge). (27)  arbitrary initial conditions for the atomic and the colleet
Xa: za: states of the system. The effects of retardation on the popu-

. lation dynamics were studied by Goldstein and Meys3@. [
Usingy (t) from Eq. @7), one can calculate the density matrix However, these calculations were not specifically orietded

p°. Now wards studying the transient properties of the collectiates
o o of the system which, as we shall see below, are very useful for
pia =(1|p”[4) the interpretation of the entanglement dynamics of the atom
=b%, ()baa () (e1e2| (1)) (P ()] grg20) To calculate the population dynamics, we solve numeri-
. 5 5 cally the set of coupled equations for the probability ampli
=[012 (&) baa ()] (28) tudes, Eqgs.139-(13b), assuming that the atoms were pre-

It is seen that the resulting density matrix element coinigin Paréd attime = 0in a product state

contributions from the two-photon coherences no more van- _
ishes. This is consistent witFr)1 our interpretation, as a wafte [0(0)) = lex) @ lg2) @ [{0}1) = lerg240}), (29)
state has a distribution of photon numbers rather than a wellvhere|{0},,) denotes the product state vector of the cavity
defined occupation as a Fock state. modes with zero occupation numbers for all the modes
The initial condition 29) corresponds td;(0) = 1 and
b2(0) = b,(0) = 0. We then compute the time evolution of
IV. RESULTSAND DISCUSSION the excitation probabilitiefh, (t)|> and|b,(t)|? of the atoms.
Figure3 shows the time evolution db; (¢)|? and|b2(t)|?
Having discussed the general features of the concurrencér two different atomic spacings. The frame (a) illustsatee
we now turn to analyze the transient behavior of the populacase when the atoms are very close to each other, with spacing
tions and concurrence for initial conditions in whichtheras = ~ 0. We see that the initially excited atom decays almost
are prepared in separable single or double excitationsstatexponentially in time, corresponding to the free spacemegi
and for an initial condition in which the atoms are initially defined in B7]. A part of the excitation is transferred directly
in a partially or a maximally entangled state. We shall allowto the second atom. There is no delay in the excitation of the
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the atomsyx andL — z. At very early times} < L/c, the
initially excited atom1 decays with the rate equal to the free
space decay rate. The at@wemains in its ground state in-
dicating that initially the excitation is exclusively trsfierred
to the cavity, which essentially appears as open space. The
atom2 remains in its ground state until the time= x/c,
at which the population of the atothabruptly starts to build
up. This is the time required for the excitation emitted by th
atom1 to reach the atom? through the shorter pathway.
The population of the atord changes abruptly again at time
t = (L — z)/c. Note that the abrupt buildup of the excitation
of the atom2 is not accompanied by an abrupt de-excitation
of the atoml. There are no sudden changes of the population
of the atoml until the timet = L/c. This is the time the exci-
tation returns for the first time to the atamIn fact, neither of
the sudden changes of the population of one of the atoms are
accompanied by sudden changes of the other. This feature is
linked to the fact that the atoms are at different positiomd a
we have taken: < L/2.
Of particular interest is the situation when the two atoms
‘ ‘ ‘ ‘ ‘ are separated by a distance equal to half of the cavity length
0.0 0.5 1.0 15 2.0 While the sudden kinks in the time evolution of the probabil-
t (units of L/c) ity |b1(¢)|? are still observed at integer multiples of timec,
the number of kinks in evolution db,(¢)|? reduce to one half
FIG. 3. (Color online) The time variation of the probabijb, (£) 2 as the two paths available for radiation to travel_ from atom
(solid green line) andb(t)|? (dashed blue line) fol, = 3.48 x 1to at.om2 are now pf equal Iength. Therefore, in tr_\e time
10°A, N = 99.wa = 1.11 x 10*Q0, whereQy is the vacuum  Pehavior of|bx(t)[?, kinks are witnessed only at odd integer
Rabi frequency of the central resonant mode, and atomidrggmac ~ Multiples of L /(2¢). Another interesting observation is that
(@)z = 0 and (b)z = 999\,. The sudden jumps of the probabilities there are no sudden jumps of the populations at titnes/ ¢
due to retardation are marked by red circles. The first atdoca@ted  and2n(L — x)/c, wheren is an integer, indicating that the
atzi = 1).. Note thatin the case (b), the atof2’ starts to become  excitation wave packets do not appear to reverse their propa
excited after a finite time, = x/c, that is due to the retardation. gation directions during the interaction with the othemato
A physical understanding of these behaviors can be ob-
tained if we consider the atomic dynamics in terms of the col-

second atom, as the atomic spacing is negligibly small. A nolective Dicke states of the two-atom system
table feature of the temporal evolution is that at the paldic

Ioa() |, Ib2(t) |2

t (units of L/c)

loa() |, Iba(t) |2

times that correspond talL /¢, wheren is an integer, a sudden l9) =191) @ lg2).

change (jump) in the probabilities occurs. These are juest th |s) = L (ler) @ |g2) + |g1) @ |e2))

times when the radiation field emitted into the cavity modes V2

returns to the atoms. It is interesting that the returnintiara

tion does not simultaneously excite both atoms, as one could |a) = 7 (le1) @ 1g2) — [g1) @ [e2)) - (30)
expect. It rather stimulates a sudden transfer of the ptipnla . , )
from atom1 to atom2. The advantage of expressing the system in terms of the Dicke

The sudden jumps continue in time. However, the peri- state basis is that we can immediately see in which collectiv

odic maxima of the populations are reduced in magnitude asStaGifge Exgltig;)gfg(g\(l))esv\llg tfllr:dethat the excitation brob-
increases. This result is consistent with energy-time ince 9=q P

tainty arguments and is readily understood if it is recalledabllltles of the collective symmetri) and the antisymmet-
. ' ric |a) states are
that the excitation wave packet spreads during the evalutio

that the excitation becomes less localized as time proggsess 1

An alternative explanation is that there are more and more |bs(t)]* = 5 (Ib1(8)[* + [b2(£)]* + 2Re [b1 ()b5(1)]) ,
possible evolution pathways for the excitation to open up as 1

time progresses that are possibly delayed with respectto ea [b4(t)|* = = (|b1( )? + [b2(8)]? — 2Re [b1 (£)b3(¢)]) . (31)
other, e.g., due to temporary re-absorptions by the atoms,

and then interfere resulting in increased distortion®f) | Figure4 shows how the probabilitie, ()| and b, (t)|2
and|bs(t)[*. evolve in time. Att = 0, the collective statels) and|a) are

Frame (b) of Fig.3 illustrates the time evolution of the populated with the same probabilities, (¢)|* = [b,(t)|? =
probabilities for a large atomic spacing= 999\,. Thereare 1/2. The population of the symmetric state decays exponen-
now two pathways for the excitation to be transferred betweetially in time whereas the population of the antisymmetric



state remains constant in time. In this figure, the two atoms

couple to the cavity modes symmetricallyas= 0. There- 0.5
fore, the anti-symmetric excitation state effectively dggles = =

from the cavity, reminiscent of electromagnetically inddc = 0.4
transparency or decoherence free sub-spaces. A simiéat eff _g“’ 0.3
can be achieved if the two atoms couple anti-symmetrically o~ 0.2/
to the cavity, in which case the symmetric excitation state r o

mains constant in time. In contrast, the symmetric state in E) 0.1
Fig. 4 becomes re-excited periodically at the time instants — 0.0¢

given bynL/c, wheren is an integer. At these times, the 0‘_0 0‘_5 1‘_0 1‘_5 2‘_0

emitted radiation field returns to the atoms chronologycall .
t (units of L/c)

FIG. 5. (Color online) Variation of the probabilitigs, ()| (solid
green line) andb, ()|* (dashed blue line) with time for the same
situation as in Fig3(b).

B. Effectsof retardation on entanglement - single excitation
case

lbs(t) |2, Iba(t)?

We now turn to the discussion of the effects of retardation
0 1 2 3 4 on the entanglement between the atoms. We first focus on
t (units of L/c) short time behavior of the concurrence with two sets of ini-
tial conditions in which atoms are prepared in the separable
FIG. 4. (Color online) Variation of the excitation probabids  State 29) and the maximally entangled state
|bs()]? (solid green line) andb, ()| (dashed blue line) with time
for the same parameters as in F3(R). [(0)) = L
V2

We see that the simuitaneous sudden changes of both prOb'The concurrence in the single excitation case can be deter-

ab|I|t|e_st ‘? thefr;ﬁrtlculllar f_hscr?te times tcan fbe e?hplamgd mined from Eq. 21) in which the probability amplitudes are
an exciiation ot the collective atomic system from e goun ¢, solving the set of two coupled equatiohs)(

state to the symmetric state. In otheryvords, the jumps fepre We graph the effect of the retardation on the transient
sent a collective excitation of the atomic system by therretu build f | b h f he initial
ing radiation field. uildup of entanglement between the atoms from the initia

separable state29) for atomic spacingsx = 0 andx =
999)\,, respectively, in Figsé(a) and6(b). We can see how
the entanglement between the atoms is affected by the retar-

(ler) ® lg2) +191) @ [e2)) @ [{0},).  (33)

It is interesting to note that shortly before the sudden re
excitation times, the state of the atomic system is

1 dation and how it could be related to the population of the
[Y(t =nL/c)) =——= (lg) + |a)), collective states. A comparison of Fig(a) with Fig.4 shows
V2 that forxz = 0 the manner in which the concurrence evolves

1 1 in time resembles the evolution of the population of the sym-
= + =(leg) — |ge)), 32 intm 7 X pop . y
\/ilgg> 2 (leg) = lge)) (32) metric state. This is readily understood if one writes the-co

currence 21) in the basis of the collective Dicke states to find
which shows that the system is in an equal superposition of

the ground|g) and the antisymmetri:) states of the two- B 2 2

atom system and explains why in Fig@) |bi(nL/c)|? = C(t) = max 0, \/[pss(t) = Paa(®)]” + (2Im [pas ()])" -

[ba(nL/e)? = 1/4. (34)
Figure5 shows the time evolution of the populations of the Since p,,(0) = pu(0) = 1/2, and at short times

symmetric and antisymmetric states for the same situason dm[p,s(t)] =~ 0, the time evolution of the concurrence de-
in Fig. 3(b). The initial populations decay exponentially with pends essentially on the evolution of the populagort). It

the same rates until= z/c¢, at which the sudden jump of the is seen thaC(t) > 0 for all times except = 0. Itis only
populations occurs. A notable difference between the timat¢ = 0 that the atoms are unentangled. The most positive
evolution of |b,(#)|? and|b,()|?, and that of the individual value of C(¢) is achieved whems(t) = 0, in which case
atoms|b; (t)|? and|b2(#)|?, shown in Fig.3(b), is the occur- C(t) = 1/2, so that we may speak 66% entanglement. The
rence of the sudden jumps at the same discrete times. Noti@fect of retardation shows up clearly as the sharp decafase
that the most dramatic change in the populations occur®at tithe concurrence from its maximal valueloR2. This is due to
timet = L/c, i.e. when the excitation returns to the initially the transfer of the population from the ground stateto the
excited atom. symmetric statés).
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FIG. 7. Concurrence as a function of time for the same pamimet
as in Fig.3 except that the atoms were initially prepared in the maxi-
mally entangled statg). The atomic spacing is in (&) = 0, and in

(b) z = 999,.

Figure6(b) shows the time evolution of the concurrence for
a large atomic spacing; = 999)\,. The effect of going to a
nonzero atomic spacing is clearly to decrease the amount of , i
entanglement and to restrict the time during which it occursmodes. As soon as the emitted light returns to the atoms, that

We see that the initially unentangled atoms remain separab[@PPens periodically at the times equalib/c, wheren is
until the timet = z/c. The physical reason for the delay in 2" integer, the atoms thereafter become entangled bedause t
the creation of entanglement is in the retardation effeca. N SYStem returns to the symmetric state. In the time L/c,
entanglement is created between the atoms until the photdfi€ concurrence approaches zero. This effect, howevetis n
emitted by atomi reaches ator@i. The atoms remain entan- Sudden death of entanglement becaDgg does not become
gled until the timet = L/c at which the excitation returns exactly zero. We already found previously that the concur-

to atom1. At this time the concurrence suddenly drops to"€NCe for the case of having only one quantum of energy in
zero. The behavior of the concurrence is entirely consisterf € System cannot suffer the phenomenon of sudden death be-

with the behavior of the populations of the symmetric and thef@USe in accordance with EQ1, C(¢) can either be zero or
antisymmetric states, shown in Fi. positive and hence it cannot disappear. In order to havessudd

Equation 84) predicts that for maximal entanglement be- death of entanglement, the second part indttag function of

tween the atoms we would need to put all of the population ifFd- ¢1) would have to be negative.

one of the collective states, eithef or |a). Following this ob-

servation, we plot in FigZ(a) the time evolution of the concur- ~ The revival of concurrence at later times can significantly
rence for the same parameters as in B{g), but with the new be enhanced by adjusting the atomic spacing. An example is
initial condition p,5(0) = 1, i.e., the atoms are initially pre- shown in Fig.7(b), which is for the same parameters as in
pared in the maximally entangled stat¢. Sincep,,(t) =0  frame (a) except for the distance between the atoms. It can be
for ¢ > 0, the dynamics of the system reduces to that betweereen that at later times, the time evolution of the conceeen
two states only, the symmetii€) and the groundyy) states. In  does not split up into multiple peaks as in frame (a). Instead
this case the concurrence is simply equal to the populafion csingle peaks with higher amplitudes are obtained. In frame
the symmetric stateC(¢t) = pss(t). Fort = 0 the atoms are (b), the atomic spacing is chosen such that some retardation
maximally entangled due to our choice of the initial state ofrevivals coincide with the main concurrence revivals foumd

the system. Immediately afterwards, the concurrence begirframe (a). In particular, the spacings adjusted such that the

to decrease because of the spontaneous emission to the cavitst revival occurs approximately at= (L + z)/c.
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1. Long-time dynamics for the same parameters as in frame (a). The coherence is ini-
tially zero but beyond ~ 10L/c starts to build rapidly with

In Figs.6 and7 the concurrence is plotted for short times the fast oscillations accompanied by a slow modulation.
of the evolution, up to only = 5L /c. The results showed that
entanglement occurs or is reduced in a periodic fashioa, lik
the pulse periodic excitation, with the magnitude of thesgub

guent oscillations damped due to the spread of the exaitatio 6
wave packet. One could expect that the oscillations should 5
collapse after a sufficiently long time and never revive. As w ot
shall see below, this is not the case. Continuing the calcula = 4
tion to much longer times we find that there is an interesting E‘ 3
recurrence of the oscillations. = 92
0.8 o 1
a 0
0.7 0 2 4 6 8 10 12 14
~ 8? frequency (units of (1)
o 0.4 FIG. 9. The Fourier transform @ (¢) shown in Fig.8(a).
0.3
0.2
0 500 1000 1500 The origin of the modulation is in the discrete set of Rabi
t (units of L/¢c) frequenciesy,; coupling the atoms to the different modes.
. 04 The Rabi oscillations are not perfectly periodic due to wadq
= 03 (b) couplings of the atoms to the discrete modes that causes the
~ 0'2 imperfection of the modulation. The modulated oscillasion
= : bear an interesting relation to the Jaynes-Cummings model
N 0.1 with a coherent initial statedp]. The graininess of the elec-
0.0 tromagnetic field results in a discrete set of the Rabi fragque
=, —-0.1: cies of the coupled atom-field system that are not perfectly
E 02" periodic but collapse and revive.
[ N
-0.3" ' To further analyze the origin of this oscillation, we have
0 500 1000 1500 y 9 oscifation, we have
calculated the power spectrum of the time signal, which is
t (units of L/c) shown in Fig.9. It can be seen that in particular for lower

frequencies, the power spectrum decomposes in a set of near-
FIG. 8. The long-time behavior of the concurrence for theesain  discrete modes. At larger frequencies, the discrete moeles d
uation as in Fig6(a). Frame (a) shows the concurrer@@g), while  compose into bands of multiple modes, but the discrete spac-
frame (b) shows the contribution &fn[p.s(t)] to the concurrence, ing is still visible. This suggest an interpretation of thews
as predicted by Eq36). beat-like structure of the long-time dynamics in terms df co
lapses and revivals, as it is known from the Jaynes-Cummings

model.
Figure8(a) shows the evolution of the concurrence for the

same situation as in Fig(a), but extended to much longer  The frequencies appearing in the power spectrum can be
times. It can be seen that the damping of concurrence oliraced back to the effective Rabi frequencies occurringpén t
served in the initial time evolution does not continue. Rath system of two atoms coupled to many cavity modes. To ver-
on a longer time scale, nearly periodic collapse and revivalify this interpretation, we calculated the time evolutidritee
of the concurrence is observed. Throughout the revivats, thatoms analytically in certain limiting cases. The simpksst
concurrence becomes as largecds) = 0.8. ample is the Jaynes-Cummings mod&d][ in which a single

The presence of the pronounced long time oscillations istom interacts with a single mode field. Then, the popula-
linked not only to the difference between the populations intion oscillates at the Rabi frequenfy of the resonant mode
the symmetric and anti-symmetric atomic states. Rather, ivhich results in a single peak at this frequency in the power
is also due to an additional contribution to the concurrencepectrum. Similarly, we analyzed the case of two atoms cou-
which comes fronim[p,s(t)], see Eq.&4). In other words, pling to a single mode, and to two modes. However, in the
the coupling of the atoms to the multi mode cavity field general case of two atoms coupling to many modes, the ana-
leads to a nonzero long-time coherence between the ceolecti lytical calculations become cumbersome and the identificat
states. This is shown in Fi@(b), where we plolm[ps(t)] of all the peaks is a complicated task.
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2. Time-averaged concurrence currence has a simple explanation. For the separations cor-
responding to the maxima of the concurrence, the different
We have seen that the retardation effects show up clearly £&Vity modes couple to the atoms with the same phases re-
the sharp kinks in the concurrence. As seen in B(g), re- suItmg in the same vaIues_for the concurrence. For other sep
vivals of concurrence appear periodically at long timeghwi arations, the atoms experience different phases of theycavi
large maximum values of concurrence. But because of thahodes relative to the resonantmode,suchtha_tthe conoarren
presence of fast oscillations, it is not clear whether the enOn average decreases. For the case shown in frame (a), near
hancement of the entanglement could be observed in practic@ne-third of the cavity length, the phase difference amadfig d
Detectors typically respond over a finite time that could beferent modes starts decreasing. As a consequence, the curve
longer than the oscillation periods of the concurrencerdhe 90es up till the half of the length of the cavity is reached rehe
fore, we consider the mean concurreGét)) averaged over @ Symmetry point exists in the sense that the phases of all the
a detection time. As we shall see, the mean concurrence Rven modes match and so do the phases of the odd modes but
instructive because it shows how the detected entangleme@te completely out of phase from each other.
could be sensitive to the separation between the atoms. We We may conclude, that the retardation effects make the con-

consider both long-range and sub-wavelength separations. currence sensitive to the atomic spacing not only at large bu
also at sub-wavelength spacings.

0.5’ (a)
C. Effectsof retardation on entanglement - double excitation
A 0.4 case
=
(\-3 0.3 We now turn to the discussion of the effects of retarda-
tion on the entanglement dynamics when two excitations are
present in the system. We show how the well known phe-
0.2; ‘ ‘ ‘ nomena resulting from the threshold effects in the concur-
100C 200C 300cC rence @5), such as sudden death, sudden birth and revival of
_ entanglement, can be related to retardation. We will demon-
X=X1—X2 strate that retardation can induce, suppress, or strongt{* m
0.5 (b) ify these sudden phenomena. To clearly establish the effect
of retardation on the sudden phenomena, we concentrate on
A 0.4 properties of the quantit¢; (¢), defined in Eq. 26), rather
= than onC(t). Simply speaking, the quantit (¢) can be pos-
O 0.3 itive as well as negative which will allow us to distinguisé-b
v 02 tween the sudden phenomena and sudden changes in the evo-
: lution due to the retardation that could occur in time pesiod
‘ ‘ ‘ ‘ ‘ ‘ where the atoms are separable. The concurréfige= C; ()
[ for C1(¢t) > 0.
00 01 02 03 04 0f We illustrate the role of retardation by examining the time
X=X1—X2 evolution of the system for two sets of initial states for efhi

the sudden phenomena are known to not occur in the absence
FIG. 10. The concurrence averaged over time with respedtdo t of retardation. Later, we consider an initial state wherenev

inter atomic separation is shown for the same parametersfag.B3.  in the absence of retardation, sudden phenomena are present
In frame (a)x varies in large steps, while in frame (byaries within Consider first an initial state

a half of the wavelength. .
[9(0)) = ler) @ lea) @ [{0}n) = [ere2{0},),  (35)

The mean concurreng€(t)), averaged over a time inter- in which both atoms are excited and the cavity is empty. Fig-
val0 < ¢ < 800L/c, is shown in Fig10. Frame (a) illustrates ure 11(a) shows the time evolution @, (¢) when the atoms
(C(t)) at large atomic spacings,> A, with z chosen asin- are coupled to only a single mod#& = 1) of the cavity field.
teger multiples of\,. Complementarily, frame (b) shows the In this case no retardation is present. We see that indepen-
variation of(C(¢)) at sub-wavelength spacings wittvarying  dent of the distance between the atots¢) oscillates sinu-
within a half of the wavelengthy < A,/2. We observe in  soidally in time and is always negative. This indicates tiat
both cases that the magnitude(&(¢)) is smaller thanl/2  entanglementis present at any time.
with the maximum(C(¢)) = 1/2 for z at (0, L) for large sep- Figure11(b) shows the corresponding behavioCgft) for
arations, and at0, \,/2) for the sub-wavelength separations. a large number of the cavity modéd” = 45) to which the
Note that the mean concurrence is symmetric with respect tatoms are coupled. In this case the retardation effectsroccu
the mid point between the maxima. For the case shown iftis apparent that the evolution 6f(¢) is profoundly affected
frame (a) it corresponds to= L /2, whereas for the case (b) by the presence of retardation. The most interesting agpect
it corresponds ta: = A\, /4. The behavior of the mean con- the retardation is the occurrence of the sudden phenomanath
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counter-propagating modes. It is seen {idt) oscillates si-

0.0r ] nusoidally in time and is non-negative at all times. Oncdraga
-0.1\@ E we notice that no sudden phenomena occur when the atoms
. -0.2 are coupled to the central counter-propagating modes. How-
t"_,| -0.3 ever, contrary to the initial stat@%9), the atoms are entangled
O -04 even when they were initially in a separable state. A naive
_0'57 interpretation for the occurrence of entanglement is that t
atoms periodically exchange the excitation throug gyav
0.6 t dicall h th tation th h thét
YL : : : : modes.
0 1 2 3 4
t (units of L/c)
)
0.00C : : : : : :
0.0 0.2 04 0.6 0.8 1.0 1.2
t (units of L/c)
0 1 2 3 4 0.6r g
t (units of L/c) 0.4(b){"_"} ..... o ,’;:r\ N |
I A WA A
FIG. 11. (Color online) Time evolution af; (t) for the initial state = 0.2 AN \ .ﬂ{.": [EON
[(0))1 = [ere2{0} ), L = 3.48 x 10° X, andw, = 1.11 x 10" Q. Z/j' 0 0' AT AW ﬂ\ Mf\\.”k\
In frame ()N = 1 and in (b)N = 45. The dotted red, solid green . { ,‘\‘ R HATAR YL
and dashed blue curves are atomic separatioas0, = = L/4 and _n ot YRV AL AR VR WY
. 0.2 v Yy 1y iy
x = L/2, respectively. Vo oy
-0.4 ‘ —
0 1 2 3 4
lead to an entanglement at some discrete periods of time. The t (units of L/c)
degree of the created entanglement depends on the distance
between the atoms. o . FIG. 12. (Color online) Time evolution @ (¢) for initial condition
We have ol_as.e.rved similar behavior also for a NUM-Eq_(36) and the same parameters as in Aig. In frame ()N = 1
ber of other initial states. Examples aie(0)) =  andin (b)N = 45. The dotted red, solid green and dashed blue

H{1}or{1}a1) ® |g1g2), that is, none of the atoms is in curves correspond to = 0, z = L/4 andx = L/2, respectively.
the excited state and the two photons are in the same
(resonant) mode but propagate in opposite directions, or _ .
1D(0)) = (1/v2) (1{0}or{2}01) + [{2}or{0}0r)) © |g192), The situation becomes different when the atoms couple

i.e., the atoms are in the ground state, and two photons pro;S— g_ Ia;gzebnur;ber ofdca_vlty rfr;odes. In th'z cr?set; f}hO.W”
agate in the same direction either to the left or to the righti " "'9- (b), the retardation effects occur and the behavior

the central cavity mode with equal probability. Again, ther of C1(t) is seen to be qualitatively different from the previous

is no entanglement if the atoms couple to a single resonallf‘t"jls_e'd-_rhese curVﬁs ﬁznon-smuzmdal, change_sharplylm no
mode of the cavity electromagnetic field. But entanglement i PE"iodic way such thafy(t) can become negative at some

suddenly born, it suddenly dies and revives in the presehce (giiscrete periods of time. Thus, (¢) clgarly exhibi_ts the ph_e—
retardation. nomena of sudden death, sudden birth and revival. Again, the

Consider now an initial state degree of concurrence as well as the quali'gative dynamics is
affected strongly by the inter atomic separation. For eXamp
1 depending on the distance, atomic entanglement immeyiatel
G ({0}or {1}or) + {1}or{0}or)) ®lerg2), (36)  pyjiigs up @C;(0)/dt > 0), or only at a later time via SBE
(dC1(0)/dt < 0). Interestingly, we find in Figl2(b) that

in which atoml is in excited state, atoris in ground state  for negligible separation between the atoms, the concoeren
and the cavity central counter-propagating madgswg; are  exhibits no death in the presence of retardation, and even pe
excited into a coherent superposition of the single-quantu sists without intermediate points of zero entanglemenoim-c
states. trast to the non-retarded case. Furthermore, at the separat

In Fig. 12(a) we show the time evolution @f, (¢) for the = = L/2, the degree of entanglement is more than one order
initial state 86) when the atoms are coupled to the centralof magnitude larger than that found in the non-retarded.case

[4(0))
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It is interesting to note that the degree of entanglement

increases with an increasing separation between the atoms. 0 47‘ ‘ ‘ ‘ ]
Again, qualitatively similar behavior is also found for eth @)

initial states, such agleig2{1}o) + |grea{1}o,))/V2, in 0'2’/\ ]
which both the atom and the cavity are entangled. g 0.0 \/

Lastly, we analyze initial states which lead to periodic o' -0.2} \
death and revival of entanglement even without retardation -0.4; ]
For this, we consider the separable initial state -0.6! ]

-0.8L ‘ ‘ ‘ J
1(0)) = |g1) @ |g2) ® [{2}or) = [9192{2}0r),  (37) 0 1 2 3 4

in which both atoms are in the ground state, and two photons t (units of L/c)

propagate in the same direction in the central cavity mode.
The entanglement dynamics without retardation is shown in
Fig. 13(a). It can be seen that starting from zero concurrence,
entanglement builds up, but then vanishes again. Thisthebir
and death then repeats periodically.

The corresponding results with retardation are shown in
Fig. 13(b). In this case, while the exact temporal dynamics
and the magnitude of concurrence is again affected by the
inter-particle separation, the qualitative dynamics rfeting
itself in the periodic death and birth of entanglement isind

Cu(t)
|
COO000000
ochwihkokiw

pendent of the retardation effects. t (units of L/c)
Qualitatively ~ similar results again are also ob-
served for other initial states, such ag(0)) =  FIG.13. (Color online) Time evolution d (¢) for the initial state

VPleie2{0},) + /1 —pleig2{1}o), which we ana- Eq.(37)and the same parameters as in Hig. In frame ()N = 1
lyzed forp € {1/10,2/10,3/10,4/10}. Also the initial and in (b)N = 45. The dotted red, solid green and dashed blue
state|z@(0)) = (le1g2) + |gre2))|{1}0r)/+/2 with maximum  curves correspond t8 = 0, z = L/4 andz = L/2, respectively.
entanglement between the atoms behaves qualitatively

similar.

We can gain a qualitative understanding of the behav
ior of C1(¢) in the presence of retardation by making use
of Eq. 30 for the collective states of the system and ex-
pressingC; (¢) in terms of the probability amplitudds, ;s (¢)
andb,,(t) as

excitation case. Entanglement between the ataing,) >

0, can be traced back to the single-excitation sub-space, and
in particular imbalances between the symmetric and the anti
symmetric singly-excited atom states. However, in cohtras
to the single excitation case, this asymmetry must excezd th
threshold set by the contribution from the systems with both

Gi(t) = Z “bas(t)|2 — |baa(t)|* — 2Im [b;s(t)b(w(t)]\ excitations either in the atoms or in the cavity.
* The entanglement seen in Figd(b), 12(b) and 13(b) in-
_ 2 2 dicates that the retardation effects lead to a non-zero{opu
b(D) ;} Pas@F +3_lhaa®F, (38 L erence between the symmetric and antisymmetric
states that at some periods of time overcomes the threshold
where factor in the expression faf (¢). What this means is that the
time evolution of the atoms is not linked to the total cavity
bes(t) = i[b L(E) + bas ()] population. I_n particular_, if one excitation is in the qayhhe
o V2 ¢ ’ other excitation can be in different atomic states with iragy
1 population imbalance between symmetric and anti-symmetri
baa(t) = ﬁ[bal(t) = baz(t)], (39)  states.
are the probability amplitudes of the states® |{1},) and
la) @ [{1}4), respectively. 1. Long-time and time-averaged dynamics

The first line of the right-hand-side of ER8) is associated

with the one-photon coherence determined by both, unequal The above investigations have shown that the presence of
populations of the collective states and the coherencedsgtw the retardation effects leads to a non-sinusoidal evaiuio
them, whereas the second line is attributable to the twdgpho the concurrence which results in the phenomena of sudden
populations of either the atomic system, determined by, death and sudden birth of entanglement. One can notice from
or the cavity modes, determined by 5(¢) andb,, (). Thus,  Figs.11(b), 12(b) andl3(b) that there are finite periods of time
the mechanism for entanglement with two excitations itjtia  at whichC; (¢) is negative. These are dead zones of entangle-
present in the atomic system is similar to that of the singlement or equivalently at that times the atoms are separahke. T
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following question then arises: In which states, entangled wavelength at such large distances plays a vital role intthe e

separable, do the atoms spend most of the time? To answtanglement between the atoms. The effect of going away from

this question, we first extend the calculation€oft) to long  thex = L/2 position is clearly to decrease the amount of en-

times and then averagk (¢) over a long evolution time. We tanglement. But as expected, the concurrence is positive fo

concentrate nn the case illustrated in Fig‘h) all distances even in an average sense, due to the nonareegati
nature ofC(t).

06

04 V. SUMMARY

> 0.2}

3 00 We have studied the effects of retardation on the entangle-
—02 ment properties of two atoms located inside a multi-modg rin
0.4 cavity. Retardation effects become pronounced if the mode
—0'6 ‘ spacing of the cavity is small enough such that the atoms can

0 500 1000 1500 2000 simultaneously couple to many modes of the cavity field. The
t (units of L/¢) Schroddinger equation for the wave function of the systers wa
solved for different atomic separations and initial coioais
with single and double excitations present in the system. It

0_077( b) was shown that the retardation effects are manifest not only
in the dynamics of the atomic population but also in the dy-
A 0.05 namics of entanglement between the atoms. Characterizing
= entanglement between the atoms by the concurrence, we have
O found that the retardation leads to abrupt kinks in the concu
v 0.03 rence at intervals corresponding to the flight time of a photo
between the atoms or to the time corresponding to a round trip
0.01- ‘ ‘ in the cavity.
1740 1740.2¢ 1740.¢ Furthermore, we demonstrated that the retardation effects
X (units of A,) crucially depend on the atom separation both, on the multi-

and sub-wavelength distance scale. We have also distin-
FIG. 14.  (a) The long time behavior af,(t) is shown for ~ guished significantly different short-time and long-tine¢ar-
L =348 x 10°As,wa = 1.11 x 10"Q0, N = 45,z = L/2and  dation effects in the evolution of the concurrence. In parti
the initial statelss (0)) = (|e1g2{1}or) + |erg2{1}0r))/v/2. (b) The  ular, at short times the concurrence exhibits periodic endd
concurrence averaged over a long evolution time is showrfiasca ~ changes from separable to highly entangled states. At long
tion of the atomic spacing. The distance: varies around half of the ~ times, the retardation gives rise to periodic beats in tineco
cavity length, over an interval of one half of the cavity wiavegth. rence that resemble the phenomenon of collapses and i=vival
in the Jaynes-Cummings model. We finally identified param-
The corresponding long-time dynamics@®f(t) is shown  eter values and initial conditions at which retardationligaa
in Fig. 14(a). It is seen that the time evolution 6f(¢) is  tively changes the entanglement dynamics. In particuter, t
very spiking with the amplitude of the fast oscillationswglp ~ atoms can remain either separable or entangled throughout
modulated in time. It can also be noticed that the amplituddéhe whole time evolution without retardation, whereas they
of C, (t) oscillates around; (t) = 0 which suggests that over exhibit the phenomena of sudden birth and sudden death of
a long period; (t) might average to zero or negative values.entanglement when the retardation is included.
Therefore, we calculate the mean valu€oft) by averaging
over the evolution tim@® < ¢ < 2000L/c for different inter
atomic distances around a distance of half the cavity length ACKNOWLEDGMENTS
in an interval of half a wavelength,. As expected, we find
that depending on the inter-atomic separation the mearvalu QG gratefully acknowledges support by the Higher Ed-
of C1(t) can be positive or negative. Next, we average theucation Commission (HEC) of Pakistan administered by
more important concurreneKt) itself in the same way. The Deutscher Akademischer Austauschdienst (DAAD), the inter
result is shown in Figl4(b). The first atom is located at national Max Planck Research School (IMPRS) for Quantum
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