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Abstract

A scenario for measuring the predicted processes of vacuum elastic and inelastic photon-photon

scattering with modern lasers is investigated. Numbers of measurable scattered photons are cal-

culated for the collision of two, Gaussian-focused, pulsed lasers. We show that a single 10 PW

optical laser beam split into two counter-propagating pulses is sufficient for measuring the elastic

process. Moreover, when these pulses are sub-cycle, our results suggest the inelastic process should

be measurable too.
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I. INTRODUCTION

Quantum electrodynamics is commonly regarded to be a fantastically successful theory

whose accuracy has been tested to one part in 1012 for free electrons [1] and one part

in 109 for bound electrons [2]. However, among its several predictions that have yet to be

confirmed, is the nature of electromagnetic interaction with the quantised vacuum. Already

with the pioneering work of Sauter, Heisenberg and Euler [3, 4], it was clear that quantum

mechanics predicts how particles traversing the classically empty space of the vacuum can

interfere with ephemeral “virtual” quantum states, whose lifetimes are of durations permit-

ted by the uncertainty relation. Virtual electron-positron pairs, can in principle, be po-

larised by an external electromagnetic field, thus introducing non-linearities into Maxwell’s

equations, which break the familiar principle of superposition of electromagnetic waves in

vacuum. Photons from multiple, vacuum-polarising sources, can then become coupled on

the common point of interaction of the polarised virtual pairs. This process is predicted to

manifest itself in a variety of ways such as in a phase shift in intense laser beams crossing

one another [5], in a frequency shift of a photon propagating in an intense laser [6], in po-

larisation effects in crossing lasers such as vacuum birefringence and dichroism [7–9], where

ideas have already found an applied formulation [10], in dispersion effects such as vacuum

diffraction [11, 12] and also in vacuum high harmonic generation [13]. The typical scale for

such “refractive” vacuum polarisation effects, where no pair-creation takes place, is given

by the critical field strength required to ionise a virtual electron-positron pair, namely the

pair-creation scale of Ecr = m2c3/e~ = 1.3 × 1016 Vcm−1 or an equivalent critical intensity

of Icr = 2.3 × 1029 Wcm−2, where m and −e < 0 are the mass and charge of an electron

respectively. Although this intensity lies some seven orders of magnitude above the record

high produced by a laser [14], recent progress at facilities such as the ongoing 10 PW up-

grade to the Vulcan laser [15] as well as proposals for next generation lasers HiPER and ELI

aiming at three to four orders of magnitude less than critical, will put the experimental ver-

ification of these long-predicted non-linear vacuum polarisation effects finally within reach.

This therefore motivates more realistic quantitative predictions.

In the current paper, we focus on the phenomenon of photon-photon scattering, which

can either be elastic in the sense of a diffractive effect, or inelastic, in the sense of four-
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wave mixing, allowing the frequency of one field to be shifted up or down in multiples

of the frequency of the others. When all external fields have the same frequency, four-

wave mixing is then equivalent to lowest order vacuum high-harmonic generation. As an

elastic process, numbers of scattered photons have been calculated in the passage of one

monochromatic Gaussian laser beam through another [16], as well as in so-called single- and

“double-slit” set-ups [7, 11], where a probe Gaussian beam meets two other intense ones.

Inelastic photon-photon scattering has been investigated theoretically as a four-wave mixing

process using TE10 and TE01 modes in a superconducting cavity [17], in the collision of

three, perpendicular, plane-waves [18] and as generating odd harmonics involving a single,

spatially-focused monochromatic wave [19]. By incorporating both the pulsed and spatially-

focused nature of modern high-intensity laser beams, we perform a more accurate calculation

of the signal of the elastic scattering process. We thereby investigate the robustness of

the effect with a more detailed calculation than hitherto performed, including dependency

on beam collision angle, impact parameter (lateral beam separation), longitudinal phase

difference (through lag) and pulse duration (finite beam length). Inclusion of four-wave

mixing terms with a pulsed set-up allows us, moreover, to determine the possibility of

measuring inelastic photon-photon scattering when a single 10 PW beam is split into two

counter-propagating sub-cycle pulses. In what follows, we work in Gaussian cgs units (fine-

structure constant α = e2), with ~ = c = 4πε0 = 1, unless explicit units denote otherwise.

II. SCENARIO CONSIDERED

In order to analyse the collision of two laser pulses, several collision parameters have been

included. The envisaged scenario is shown in Fig. 1, in addition to which, lateral and

temporal centring and carrier envelope phase appear in the analytical set-up. Spatial focus-

ing and temporal pulse shape are present in taking the leading order spatial and temporal

terms of the Gaussian beam solution to Maxwell’s equations (see e.g. [20]). These approxi-

mations neglect terms of the order O(wc,0/yr,c) and O(1/ωcτc) respectively, where c ∈ {a, b}
is used throughout for beams a and b, the minimum beam waist is wc,0, Rayleigh length

yr,c = ωcw
2
c,0/2, beam frequency ωc and full-width-half-max pulse duration τFWHM related to

τ via τ
√
2 ln 2 = τFWHM. The condition ωcτc ≫ 1 limits the minimum pulse duration that

can be consistently considered in our analysis. For the electric fields of the two beams Ea,
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Eb, we then have:

Ea(x, y, z, t) = ε̂εε′a
Ea,0 e

−x′2+z′2

w2
a(y′)

√
1 + (y′/yr,a)2

sin [ψa + ωa(t−∆t+ y′)− ηa(y
′)] fa(t−∆t + y′) (1)

Eb(x, y, z, t) = ε̂εεb
Eb,0 e

−x2+z2

w2
b
(y)

√
1 + (y/yr,b)2

sin [ψb + ωb(t− y) + ηb(y)] fb(t− y) (2)

ηc(y) = tan−1
(
y

yr,c

)
− ωcy

2

x2 + z2

y2 + y2r,c
(3)

where the co-ordinates (x, y′, z′) are the same as (x, y, z) rotated anti-clockwise around the x

axis by an angle θ, with the polarisation ε̂εε′a being similarly rotated so that kc · ε̂εεc = k′c · ε̂εε′c = 0

and |ε̂εεc| = |ε̂εε′c| = 1, where kc is the beam wavevector, fc describes the pulse shape with

fc(x) = e−(x/τc)
2
being used, wc is the beam waist w2

c = w2
c,0 (1 + (y/yr,c)

2) dependent on

transverse co-ordinate, ψc is a constant phase, ∆t is the lag and Ec,0 is the field amplitude,

which satisfies
∫
dt dx dz |E(x, y = 0, z, t)|2/(4π) = E , with total beam energy E , or Ec,0 =

2
√
2Pc,0/wc,0, for peak beam power Pc,0, where we have already assumed that corrections to

transversality k∧E = B can be neglected, being as they are, of the same order as neglected

higher-order terms in the spatial Gaussian beam solution to Maxwell’s equations.

τa

τb

x
y

z

θ

ka

kb

yd

Fig. 1. The envisaged experimental set-up. τa,b refer to the pulse durations in the Gaussian beam

envelopes e−(t±y)
2/τ2a,b , the Eb beam is displaced from the y-axis by co-ordinates x0, z0, both beams

have in general a carrier-envelope phase and the Ea beam lags behind Eb by ∆t. The Eb field is

incident on the detector.

We focus on the phenomenon of diffraction and specifically the detection of photons whose

wave-vectors differ significantly, either in orientation or in magnitude from those of the
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background lasers. As such, we envisage an array of photosensitive detectors being placed

some distance away from the collision, yd, along the positive y-axis, much larger than the

interaction volume (the subscript d refers to quantities on the detector). Eb is then incident

on this detector.

III. DERIVATION OF SCATTERED FIELD

When external electromagnetic fields polarising the vacuum have equivalent photon energies

much less than the electron mass (~ω ≪ mc2), their evolution can be well-approximated

by an effective description in which the vacuum fermion dynamics has been integrated out

and only photon degrees of freedom remain. The Euler-Heisenberg Lagrangian [4] is an

effective Lagrangian which includes such fermion dynamics to one-loop order. When the

field strength is much less than critical (E ≪ Ecr), the Euler-Heisenberg Lagrangian can be

well-approximated by its weak-field expansion, which, neglecting derivative terms, is:

L =
1

8π
(E2−B2)+

1

360π2E2
cr

[
(E2−B2)2+7(E ·B)2

]
+O

( 1

E4
cr

(E2−B2)
)3

+O
( 1

E4
cr

E ·B
)3

.

(4)

The weak-field expansion Eq. (4) is depicted in Fig. 2 and can be understood as coupling

−→ = + + + . . . +

. . .
2n

Fig. 2. The Euler-Heisenberg effective Lagrangian is an integration over the high-energy (fermion)

degrees of freedom. The external field can be generated by multiple sources, indicated by photons

in the diagram being with and without crosses.

the flux of electromagnetic fields from different sources with one another. Extremising Eq.

(4) with respect to the photon gauge field returns the wave equation for E and B fields

modified by the one-loop, weak-field, vacuum current, Jvac:

∇2E− ∂2tE = 4πJvac (5)

Jvac =
[
∇ ∧ ∂tM−∇(∇ ·P) + ∂2tP

]
, (6)
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where P = ∂L
∂E

− 1
4π
E, M = ∂L

∂B
+ 1

4π
B and

P =
α2

180π2m4

[
2(E2 − B2)E+ 7(E ·B)B

]
(7)

M = − α2

180π2m4

[
2(E2 − B2)B− 7(E ·B)E

]
. (8)

Using the beam transversality, kc ∧ Ec = Bc, P and M can be written entirely in terms

of the electric or magnetic field. One can then write the vacuum polarisation as a series

Pi = χ
(1)
ij Ej + χ

(3)
ijklEjEkEl + . . . χ

(2n+1)
ij···m Ej · · ·Em + . . ., where electric susceptibilities χ only

occur at odd orders due to charge-conjugation symmetry (Furry’s theorem). Therefore,

four-, six-, eight-, etc. wave mixing can in principle occur, although each extra order will be

suppressed by a factor α(E/Ecr)
2.

An iterative approach can be used to solve Eq. (5), which, since J(0) ∝ [α(E(0)/Ecr)
2]E(0)

and α(E/Ecr)
2 ≪ 1, can be understood as perturbative:

E(n+1)(xd, td) = E(n)(xd, td) +

∫
d3x

J(n)(E(n), . . . ,E(0))|t=tret
|x− xd|

, (9)

where E(n) is the n-th order perturbative solution of Eq. (5), E(0) is the zero-field vacuum

solution, obeyed by the Gaussian beams in vacuum, approximated by Ea and Eb, J
(n) is the

n-th iteration of the current occurring on the right hand side of the wave equation, (xd, td)

are the co-ordinates in the detector plane and tret = td − |xd − x| is the retarded time. By

making the approximation that:

E
(n)
d (xd, td) =

∫
d3x

J(n)(E(n), . . . ,E(0))|t=tret
|x− xd|

≪ E(0), (10)

for all n, the resultant electric field can be well approximated by E = E(1) = E(0) + Ed,

Ed = E
(0)
d , i.e. the zero-field vacuum solution plus the lowest order “diffracted field.”

By substituting E(0) = Ea + Eb in Eq. (6) and Eq. (9), and by enforcing the assumption

that the dimensions of the interaction volume are much smaller than the typical detector

co-ordinates, following similar steps to [7, 8, 11], one arrives at:

Ed(xd, td) = − α2

45π2m4rd

1

8i

12∑

j=1

(
4 + ω2

j τ
2
j

)Aj
τ 2j
E
Bj

a,0E
Γj

b,0vl(j)e
iψjIt,j , (11)

Ẽd(xd, ω) = − α2ω2

45π3/2m4rd

1

8i

12∑

j=1

AjτjE
Bj

a,0E
Γj

b,0vl(j)e
iψjIω,j, (12)
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where It,j and Iω,j are integrals over the interaction volume, given in Eqs. (A.3) and (A.4),

rd = |xd| is the detector distance, with Aj ∈ {−2,−1, 1, 2}, Bj,Γj ∈ {1, 2} coefficients given

in the appendix in Tab. I, τj = [Bj/τ
2
a + Γj/τ

2
b ]
−1/2, ωj = βjωa + γjωb, ψj = βjψa + γjψb,

βj , γj ∈ {−2,−1, 0, 1, 2} also given in Tab. I and l(j) = 1 for j <= 6, otherwise l(j) = 2 and

v1,2 are the diffracted field polarisation vectors given in Eqs. (A.1) and (A.2).

Splitting the plane-wave part of the input fields Ea, Eb into positive and negative frequen-

cies, the twelve terms in Eqs. (11) and (12) are produced, corresponding to the six possible

orientations of the currents connected by the effective vertex in Fig. 2. As the interaction

contains terms of the order O[(Ea + Eb)
3], and as the purely cubic terms E3

a,b necessar-

ily disappear (both electromagnetic invariants are zero for the individual Gaussian beams,

transverse in this approximation), for an incident current of frequency ωb, the resultant sig-

nal can have a frequency ωa, ωb, ωb ± 2ωa, 2ωb ± ωa, corresponding to the two beams’ elastic

and inelastic components respectively. The diffracted field polarisation vectors v1,2 appear

as geometrical factors and from their definition in Eqs. (A.1) and (A.2), one can see that

on the detector (yd > 0), the ωa and ωa ± 2ωb signal from pulse a are strongly suppressed,

as would be expected as the Ea pulse travels from the interaction region away from the de-

tector. After a further analytical integration in x, the remaining two-dimensional integrals

from Eqs. (A.3) and (A.4) were then evaluated numerically in C++, partly using the GSL

library [21].

One can interpret the classical field incident on the detector as being composed of a to-

tal number of photons Nt by dividing its total energy by the photon energy so that Nt =
∫∞
−∞

dωdxddzd Ĩt(ω, rd)/|ω|, where the total spectral density Ĩt(ω, rd) = |Ẽt(ω, rd)|2/8π2 =

|Ẽb(ω, rd) + Ẽd(ω, rd)|2/8π2 (Ẽa(ω, rd) is taken to be zero in the current beam set-up) and

where yd is taken large enough that the surface perpendicular to the Poynting vector can be

well approximated as being flat. Although the spectral density extends to negative frequen-

cies, it is consistent to interpret the differential number of photons as this divided by the

absolute frequency because the total energy is the integration over all frequencies and all

energy is carried by positive-frequency photons (see also [22] on this point). We then calcu-

late the number of “accessible” photons that fall on the detector plane, by integrating over

the annulus that satisfies dNt(xd, zd) − 100 dNb(xd, zd) > 0 for dNi =
∫∞
−∞

dω Ĩi(ω, rd)/|ω|,
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i ∈ {a, b, d, t}.

IV. ELASTIC PHOTON-PHOTON SCATTERING

Current and next generation high intensity lasers will typically produce pulses with many

optical cycles and so unless some resonance condition is fulfilled, one would expect the elastic

cross-section, where incident and outgoing spectra have the same form, to be the largest.

By “elastic,” we are therefore referring to terms in Ed with equal incoming and outgoing fre-

quencies. As an analytical test of our expressions, we can reproduce the electric field derived

for the three-beam, double-slit cases given in [7, 11] when the separation of the slits is sent

to zero - the two-beam limit (this limit was calculated for [11] in [23]), which we label Eh
d , E

p
d

referring to head-on and perpendicular collisions respectively. By taking x0 = z0 = ∆t = 0

and the limit τa,b → ∞ in Eq. (11), with θ = 0, we recover Eh
d as given in [23], and with

θ = π/2, we recover Ep
d as given in [7]. As a numerical test of our expressions, we can com-

pare Id(t, rd) = |Ed(t, rd) ·Ed(t, rd)|2/4π in the case Id(0, rd) with results using the single-slit

version of Eh
d . The equivalent parameters are λa = 0.8 µm, λb = 0.527 µm, wa,0 = 0.8 µm,

wb,0 = 290 µm, Pa = 50 PW, Pb = 20 TW, as the field strengths in [7, 23] were calculated

using a conservative form of the beam intensity with power per unit area for an area πw2
c,0,

rather than the πw2
c,0/2 which is manifest from an integration of the intensity of a Gaussian

beam over the transverse plane. In order to obtain the agreement between Ed and Eh
d shown

in Fig. 3, τa,b had to be set to around 104 fs, which is unexpectedly large compared to the

pulse durations considered in those references (τa = 30 fs, τb = 100 fs). We will elaborate the

non-trivial dependency of Id on pulse duration, which explains why most of the difference

between Id and I
h
d disappears already at τ = 103 fs. When the number of accessible photons

was calculated for the pulsed system with θ = 0.1 and the same durations as suggested in

[23], the number of photons Nd also fell from the estimated value of around 36 to around 0.4.

To illuminate the two orders of magnitude difference in Nd for these parameters, the inte-

grand for Ed was reduced to the most significant terms for a head-on, elastic collision and
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Fig. 3. Numerical comparison of Id with results in [23] (denoted Idsd ). Plotted is log10 of the

absolute relative difference in Id, for, from top to bottom, τa = τb = 100 fs, 1000 fs and 20000 fs.

Between the dotted lines, the background dominates (Ib ≫ Id).

evaluated independently in Mathematica. The simplified expression N̂d(τ) was then

N̂d(τ) =

∫ ρmax
d

ρmin
d

dρdρd

∫ ∞

−∞

dω

2π

∣∣∣
∫ ∞

−∞

dy

√
πτ√
3
V(y, ω, ωb, τ, ρd/rd)

∣∣∣
2

(13)

N̂h
d (τ) = 2

∫ ρmax
d

ρ min
d

dρdρd
τ

4

∣∣∣
∫ ∞

−∞

dy lim
τ→∞

lim
ωb→ω

V(y, ω, ωb, τ, ρd/rd)
∣∣∣
2

(14)

V(y, ω, ωb, τ, ρd/rd) =
αIa,0Eb,0w

2
a,0ω

3/2

360πydIcri

[
1 +

1

2

w2
a,0

w2
b,0

1 + (y/yr,a)
2

1 + (y/yr,b)2

]−1

exp
[ −ω2ρ2d(1 + (y/yr,a)

2)

4r2d
[
2 +

w2
a,0

w2
b,0

1+(y/yr,a)2

1+(y/yr,b)2

] +
4i(ω − ωb)y

3
− 8y2

3τ 2
− (ω − ωb)

2τ 2

12

]
,(15)

where s2 = (2/w2
a,0 + 1/w2

b,0)
−1, ρ2d = (x2d + z2d)/r

2
d and N̂h

d is equivalent to the expression

leading from Eh
d. The dependence on ρd/rd of these two expressions is shown in Fig. 4(a),

where it can be seen that the monochromatic N̂h
d is much larger and more sharply peaked

in the centre of the detector. After integrating between the relevant annulus of ρ
(min)
d /rd =

0.0032 and ρ
(max)
d /rd = 0.03, this independent test then gives N̂d(τ) = 0.33 and N̂h

d = 37.0.

The corresponding values for a circular detector of radius 15 cm from the full expression

are N̂d(τ) = 0.33 and N̂h
d = 38.0, supporting the two-orders of magnitude difference and

the claim that Eqs. (13-15) incorporate the main physics. By plotting the exponential

dependency on ρd/rd, which is integrated over to acquire the expected number of photons
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lo
g 1

0
N̂
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0
N̂
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lo
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0
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e[
l(
y
)]
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-3
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0

Fig. 4. Left-hand plot (a): log10 N̂
h
d (upper curve) and log10 N̂d (lower curve) plotted against ρd.

Right-hand plot (b): a log-log-plot of Re [l(y)] (solid line) with the first, second and third dashed

lines corresponding to limwb,0→∞ l(y), |l(y)| and limyr,b→∞ l(y).

in the monochromatic case, N̂h
d :

l(y) = exp
[
− ω2ρ2d(1 + (y/yr,a)

2)

4
[
2 +

(wa,0

wb,0

)2 1+(y/yr,a)2

1+(y/yr,b)2

]
]
, (16)

we observe the interesting behaviour shown in Fig. 4(b). We first note that the decay is

not purely exponential, but has two important length scales: wb,0 and yr,b, which, in the

limit of being infinitely large, correspond to the first and third dashed curves in Fig. 4(b).

The inclusion of these extra longitudinal length scales in [23], which cannot contribute to

photon scattering when the finite pulse length is taken into consideration, then explains the

discrepancy in the values of N̂d(τ) and N̂
h
d . Only the region of the pulses within a distance τ

around their maxima in the longitudinal direction can efficiently contribute to the scattering

process, with the rest of the pulse being damped by its Gaussian shape. The finite length

of laser pulses probing vacuum photon-photon scattering can then only be neglected, when

the duration τ is the largest longitudinal length scale. In the limit τ ≫ yr,b in the full ex-

pression for Ed in Eqs. (11) and (12), the scaling Nd(τ) ∝ τ of [23] is recovered, supporting

this statement (this will also be apparent from Fig. 5). Furthermore, the results of [23]

are expected to remain valid in the case πw2
b,0/λbτa,b < 1, so for more focused and longer

wavelength probe beams as well as for longer pulses. Indeed for the parameters quoted, that

the effect would be two orders of magnitude weaker is in no way prohibitive to conducting
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such experiments. For example in [11, 23], the intensity of the probe beam was taken to be

only around Ip ≈ 1016 Wcm−2, but as Nd ∝ Ip, the shortfall could be made up by focusing

the probe beam more (if wb,0 is set to 60 µm, Nd increases approximately by a factor 7 in

the single-slit and 4.5 in the double-slit case) or increasing the power of the probe (from

10 TW), to which Nd is proportional.

The current treatment also allows for the two lasers to be equally strong and we consider

the more experimentally-accessible situation of having a single laser, split into two colliding

pulses, both focused to ultra-high intensities. Since Nd scales with E
2Bj

a,0 E
2Γj

b,0 if we keep the

power of the laser constant (Ec,0 = 2
√

2Pc,0/wc,0), for each term, the optimal division of the

total power between the beams is:

Pa,0
Pb,0

=
Bj

Γj
; Pa,0 =

Bj

Bj + Γj
Pt,0. (17)

For base parameters similar to that of the Vulcan laser [15] λa = λb = 0.91 µm, τa = τb =

30 fs, Pa = 5 PW, Pb = 5 PW, with wa,0 = 0.91 µm, wb,0 = 100 µm, ε̂εεa = ε̂εεb = x̂ a summary

of the dependency of Nd on several variables is given in Fig. 5. We will comment on the plots

sequentially, in which solid lines represent what one could intuitively expect, as explained in

the following. Starting from the right-hand side of the first plot and moving in the direction

of falling wb,0, we see Nd(wb,0) increases approximately as ∝ w−2b,0 , indicated by the solid

line. Since Nd for such a set-up is proportional to E2
b,0, and since this is inversely propor-

tional to the area of focusing, the dependency on ∝ w−2b,0 is as expected. Deviation occurs

when a maximum is reached (see e.g. [7] for details), beyond which Nd(wb,0) falls rapidly

as the background from Eb gradually covers the entire detector, leaving no signal. The de-

pendency on beam-separation Nd(x0) is also intuitive and seen to have excellent agreement

with a Gaussian, normalised in height, with a width of wb,0/2 (exp(−2x20/w
2
b,0)). Simply

by integrating the transverse Gaussian distributions of the two beams, and then squaring

(Nd ∝ |Ed|2), one arrives at this dependency. The third plot of Nd(λ) (λ = λa = λb) is

a log-log plot where the dependency begins for small λ as Nd ≈ λ−3 but then for larger

values tends to Nd ≈ λ−3.5. This is shown by all the points lying between these two solid

lines. Since the power of each beam is inversely proportional to wavelength, and since the

Nd ∝ P 2
a,0Pb,0, one would expect at least a dependency of Nd(λ) ∼ λ−3. In contrast, the

dependency of Nd(τ) can be straightforwardly derived. For τa = τb = τ , one notes that
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when τ ≪ wb,0, yr,b, the interaction volume in beam propagation direction is governed by

the Gaussian pulse shape. Further noting that Nd essentially involves a double integration

on longitudinal beam co-ordinate (through taking the mod-squared), as well as an integral

over t, the dependency Nd(τ) ∝ τ 3 appears, which shows excellent agreement for small τ

with the full numerical integration, displayed by the on the log-log plot of Nd(τ) in the

fourth figure. The larger τ is for τ > wb,0, the more the decay along the beam propagation

axis is described by focusing rather than pulse terms. For large enough τ , Id depends only

on focusing terms and since the yield Nd is acquired from an integration over time, we have

Nd(τ) ∝ τ and this transition can be seen by the second, linear, fit line for large τ in the

figure. An estimation of the dependency of Nd(θ) ∝ (1 + cos θ)2 on beam intersection angle

comes from the geometrical factor in v1 ∝ (1 + cos θ), which must be squared and gives the

approximate agreement shown in the fifth plot. For small angles Nd(θ) ∝ 1− θ2/2, making

the dependency relatively weak for near head-on collisions (Nd remains at 90% of its value

up to θ ≈ π/7). The final plot of Nd(∆t) closely resembles a Gaussian with width 9τ and

so for this set-up, Nd is relatively insensitive to lag.

One strategy to increase the number of diffracted photons would be to use higher-harmonics

of the probe laser. If the same parameters as in Fig. 2 are used, for a collision angle of

θ = 0.1, assuming a 40% reduction in energy due to generating the second harmonic, Nd ≈ 4.

If this process could be repeated to generate the fourth-harmonic, with a 16% reduction,

Nd ≈ 13. As previously argued in [11], such numbers of scattered photons should allow

detection in experiment. A discussion of sources of background noise and why they can be

effectively neglected is given in [11, 23].
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Fig. 5. Dependency of the number of measurable elastically diffracted photons Nd on various

parameters, where parameters held constant take the values λa = λb = 0.91 µm, wa,0 = 0.91 µm,

wb,0 = 100 µm, τa = τb = 30 fs, Pa = 5 PW, Pb = 5 PW, ε̂εεa = ε̂εεb = x̂.
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V. INELASTIC PHOTON-PHOTON SCATTERING (FOUR-WAVE MIXING)

When considering the possible frequencies of the resultant current, conservation of energy

and linear momentum leads one to the equations:

ω = sgn(βj)[ωa,1 + δ|βj |2ωa,2] + sgn(γj)[ωb,1 + δ|γj |2ωb,2] (18)

ω
yd
rd

= sgn(βj)[ωa,1 cos θa,1 + δ|βj |2ωa,2 cos θa,2]

+ sgn(γj)[ωb,1 cos θb,1 + δ|γj |2ωb,2 cos θb,2] (19)

ω
ρd
rd

= sgn(βj)[ωa,1 sin θa,1 + δ|βj |2ωa,2 sin θa,2]

+ sgn(γj)[ωb,1 sin θb,1 + δ|γj |2ωb,2 sin θb,2], (20)

where ω is the frequency of the resultant current, sgn(x) returns the sign of x with sgn(0) = 0,

and θ{a,b},{1,2} are the angles the currents make with ŷ. Therefore, detection co-ordinate,

focusing and harmonic order are already linked at this stage. It turns out to be difficult to

satisfy these conditions simultaneously with just two laser beams and a fixed observation

angle. For example, if we take βj = 2, γj = 1, with ωa,1 = ωa,2 = ωa, ωb,1 = ωb,2 = ωb

for simplicity and a more-or-less head-on collision of the lasers, so θa,{1,2} is approximately

equal to π− θb,{1,2} and θb,{1,2} is small, then, to first order, from Eqs. (18) and (19) we have

ω = 2ωa + ωb and ω yd/rd ≈ −2ωa + ωb. Since yd/rd ≈ 1 on the detector, the contribution

from this term can therefore only be satisfied by a small range of frequencies around ωa = 0,

which are not typically populated in the spectrum of Ea. The energy-momentum conditions

Eqs. (18-20) can be most easily seen occurring in the exponent of the integral Iω Eq. (A.4),

where they appear as frequencies of plane waves to be integrated over in y, z, becoming

Gaussian-like after integration. The larger the deviation from these conditions, the higher

the frequency of oscillation to be integrated over, the more exponentially small the resulting

amplitude, typical for evanescent waves.

We investigated the ansatz that for short enough pulses, the bandwidth of the two lasers

becomes wide enough that Eqs. (18-20) can be fulfilled simultaneously for a measurable

amount of photons. Essentially, for this four-wave interaction, three different photon energies

can be supplied by two lasers. To make this statement explicit, instead of using a temporal

envelope, we can consider building the pulses in the frequency domain:

E′c(x, t) =

∫ ∞

−∞

dωcE
mono
c (x, t, ωc)g(ωc, ωc,0), (21)
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where Emono
c (x, t, ωc) is the electric field of a monochromatic Gaussian beam, frequency ωc

and g(ωc, ωc,0) is the spectral density of the pulse E′c(x, t), with peak frequency ωc,0. Then

due to our interaction being cubic in the fields (E
Bj
a , E

Γj

b ), the integration over this current

in the frequency domain, Eq. (A.4), would include three extra integrations over frequency
∫
dωadωbdωc g(ωa, ωa,0) g(ωb, ωb,0) g(ωc, δBj2ωa,0 + δΓj2ωb,0) δ(ω − ωj), where the final delta

function appears explicitly from an integration over t. Here it is apparent that due to the

finite bandwidth, in general, three different energies enter the effective vertex in Fig. 2

from the two lasers. If the spectrum is taken to be Gaussian g(ωc, ωc,0) = exp[−(ωc −
ωc,0)

2τ 2c /4]τc/2
√
π we have, setting θ = 0 without loss of generality:

E′c(x, t) = ε̂εεc

∫ ∞

−∞

dωc
1

2i

Ec,0 e
−x2+z2

w2
c (y)
−(ωc−ωc,0)2

τ2c
4

√
1 + (y/yr,c)2

e
i(ωc(y−t)+tan−1 2y

ωcw
2
c,0
−

2ωcy(x
2+z2)

4y2+ω2
cw

4
c,0

y2
)
+ c. c..

=
Ec,0 e

−x2+z2

w2
c (y)
−( y−t

τc
)2

√
1 + (y/yr,c)2

sin
[
ωc,0(y − t) + tan−1

y

yr
− ωc,0y

2

x2 + z2

y2 + y2r

]
+ h. o. t.,

where the remaining terms are of the same order as those neglected in the Gaussian beam

solution. Therefore the use of a Gaussian temporal envelope in Ea and Eb (Eqs. (1) and

(2)), is equivalent to integrating over three different photon frequencies from the external

fields in the interaction.

When x0 = z0 = ∆t = θ = 0, yr = yr,a = yr,b and ρ
2
d/r

2
d = (x2d + z2d)/r

2
d is small, dNd(xd, zd)

can be approximated analytically. We can write dNd(xd, zd) =
∑12

p,q=1 dN
pq
d (xd, zd) and

demonstrate this analysis by concentrating on a single term N qq
d for convenience (the full

expression is given in Eq. (A.9)). One can show:

dN qq
d (xd, zd) ≈

2

π2

[
αAq
90

E
Bq

a,0E
Γq

b,0

E2
cr

|vl(q)|
16

w2
a,0

srd

τ 2q√
1− τ 4qq

]2

e
−

ω2
qτ

2

2
[1+

(ω̃qq−τ2qq)
2

1−τ4qq
]

∫ ∞

−∞

dω|ω|3e
−[

ρ2dw
2
a,0

2sr2
d

+
τ2q
2
+

τ2q (τ2qq+yd/rd)
2

2(1−τ4qq)
]ω2+τ2q ωq[1−

(yd/rd+τ2qq)(ω̃qq−τ2qq)

1−τ4qq
]ω
, (22)

where s = 1/(Bj + Γj(wa,0/wb,0)
2), τqq = τq/τ̃q, τ̃

2
q = (Bq/τ

2
a − Γq/τ

2
b )
−1 and ω̃qq = ω̃q/ωq,

ω̃q = βqωa − γqωb, under the condition T 2/y2r ≪ 1, for T 2 = τ 2q [1 − τ s4qq ]
−1 and where a

condition on ω: |[ω(τqq − yd/rd) + ω̃q − ωqτ
2
qq]T

2/yr| ≪ 1 has been approximated by taking

the upper limit of the integration as ∞. To simplify the discussion, let τa = τb = τ . Then

we can see from Eq. (22) that the spectral density for inelastically scattered photons has

a different shape to the background, namely with a minimum at ω = 0 and two maxima,
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whose positions for the case xd = zd = 0 are ω± = (γqωb/2)(1 ± [1 + 12/(γqωbτ)
2]1/2).

Using a spectral filter, and short enough pulses, this could in principle be used to separate

the different inelastic scattering signals from each other and the elastically scattered and

background photons on the detector. Setting ρd = 0 for brevity, the final integral can be

approximated by:

dN qq
d (xd, zd) =

√
2

π3

[
αAq
180

E
Bq

a,0E
Γq

b,0

E2
cr

|vl(q)|
16

w2
a,0

srd

]2(
γqωbτ

)
[3 + (γqωbτ)

2]

Erf

[
γqωbτ√

2

]
e−

1
4
(βqωaτ)2−

1
18

(γqωbτ)
2

(23)

It should be noted that vl(j) is identically zero for j > 6 at rd = yd, and so the frequen-

cies ωa, 2ωb ± ωa are suppressed, as already argued. The numerical integration of the full

highly-oscillating integrands was performed using the Filon method, which is an approxima-

tion to the integral
∫
dtf(t) cos(ωt) for asymptotically-large ω (see e.g. [24]), used with the

GNU arbitrary-precision C++ library [25]. Agreement between numerics and analytics for

wa,0 = wb,0 = 10 µm, yd = 1 m, βq = 2, γq = 1 is then shown in Fig. 6, in part corroborating

our numerical approach.
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Fig. 6. Agreement of the analytical approximation Eq. (23) with the corresponding numerical

solution.

The pulse duration of each laser plays an important role in four-wave mixing. By choosing a

temporal profile for the beam that is Gaussian, we already have implicitly the lower bound

τ ≫ 1/ω. As pulse duration and longitudinal co-ordinate are linked, a natural upper bound
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is also formed for our calculation in the assumption that the diffracted field is smaller than

the vacuum-polarising fields Eq. (10). Assuming scattered photons arriving at a point on

the detector are generated in the centre of the beams’ intersection, the integration is ex-

clusively over regions in which the polarising beams are more intense than the diffracted

field when τ ≪ 2wb,0yd/ρd, giving 1/ω ≪ τ ≪ 2wb,0yd/ρd. The lower bound limits our abil-

ity to assess the importance of the inelastic process. We require a large bandwidth ∆ω/ω

for the inelastically-generated photons to be on-shell, but from the bandwidth theorem,

∆ω/ω ∼ 1/ωτ ≪ 1 by our limitation on τ . As a consequence, with a two-beam set-up, spec-

trally separating off the inelastic signal would be experimentally challenging, as this signal is

generated when the bandwidth of the elastic background overlaps these “inelastic” frequen-

cies. More promising seems to be to observe the change in Nd due to inelastic scattering

becoming significant as τ is reduced. In Fig. 7, we plot this ratio (Nt −Ne)/Ne against τa,

where Ne is the number of photons scattered due to when only the elastic terms are included

in Eq. (12). The results suggest that for short enough pulse durations, the inelastic process

can influence the total number of measured photons substantially. In Fig. 7 the proportion

reaches over 20%, for a minimum pulse duration of τ = 1 fs, equivalent to ωaτa ≈ 2. This

could already have been anticipated from Ed(xd, td) in Eq. (11), including, as it does, a

pre-factor 4 + (ωjτj)
2. In addition, although the pulse durations are short, assuming again

40% attenuation each time a second-harmonic is generated from the probe, the total number

of diffracted photons ranges from 1 to 4 (at τa = 1, 2 respectively). Although the analysis is

limited by how small τa can be consistently made, these results lend support to the ansatz

that two laser beams with a large bandwith, especially in the laser being probed, can be

used to measure the effect of the inelastic process.

In order to further support this ansatz and without being limited by a minimum value of

the pulse duration, we can consider the simplified case of the collision of two plane waves

modulated by a sech envelope.

Ea(y + t) = ε̂εεaEa,0 cos(ωa(y + t)) sech
[y + t

τa

]
(24)

Eb(y − t) = ε̂εεbEb,0 cos(ωb(y − t)) sech
[y − t

τb

]
. (25)

These fields satisfy Maxwell’s vacuum equations exactly, therefore removing the limitations

on conceivable pulse lengths brought about by using a perturbative solution. The analysis
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Fig. 7. The increasing importance of the inelastic process with increasing bandwidth. Plotted is

the proportion of the total number of diffracted photons that are due to inelastic scattering, against

τa, for Pb = 10/3 PW, Pa+Pb = 10 PW, λa = 0.91 µm, λb = 0.2275 µm, τb = 2 fs, wa,0 = 0.91 µm,

wb,0 = 50 µm, εεεa = (1, 0, 0), εεεb = (0, 0, 1), ψa = ψb = 0.

proceeds just as for the Gaussian case but with the difference that now the fields are not

bound in the transverse plane. Therefore, in order to avoid a divergence, we only consider

the resulting P and M to be non-zero up to a finite transverse radius ρ0. It can be shown

that this curtailing of the interaction region then allows us to integrate over the current Eq.

(9) as usual. The diffracted field Ẽsech
d (xd, ω) then becomes:

Ẽsech
d (xd, ω) = − ω2α2

45π2m4rd

1

8i

2∑

j=1

E3−j
a,0 E

j
b,0vjI

sech
ω,j , (26)

where vj are geometrical factors as in the Gaussian case Eqs. (A.1) and (A.2), Isechω,j are

integrals given in Eq. (A.10), the sum over j corresponds to the two terms E2
a,0Eb,0 and

Ea,0E
2
b,0 respectively and zd = 0 has been set for simplicity. Unlike for Gaussian beams,

the elastic scattering terms cannot be isolated so easily. In order to exemplify the effect of

the inelastic process however, one can observe how the behaviour of N
(sech)
d changes as ωaτa

is reduced to below unity. Deviation from “elastic” behaviour, indicates the importance of

inelastic scattering.

The first plot in Fig. 8 depicts the dependence ofN
(sech)
d on τa and we notice that for ωaτa . 2

(τa . 0.8 fs), there is indeed a deviation in the behaviour of N
(sech)
d . We can take data from
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a more uniform region τa > 1 fs and acquire a best-fit polynomial with the boundary

condition N
(sech)
d (τa = 0) = 0. It turns out that a cubic polynomial fits the calculated

points well (similar to the Gaussian beam case where Nd(τ) ∝ τ 3). When the fit parameters

were calculated for 1 fs < τa < 2 fs, the goodness-of-fit was tested with a Pearson’s chi-

squared test over 1 fs < τa < 3 fs and found to support the hypothesis of agreement with a

probability of over 0.995. When the relative difference of this “elastic” curve from the total

was calculated, the second plot in Fig. 8 was generated. This clearly demonstrates the new

behaviour occurring for short pulse durations or equivalently large bandwidths and so further

supports our initial ansatz that just one beam split into two counter-propagating sub-cycle

pulses is sufficient for accessing the process of vacuum inelastic photon-photon scattering.

A suggestion for further work would be to investigate the role of the carrier-envelope phase

as well as a chirped frequency.
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Fig. 8. On the left, for N sech
d (τa), with τb = 1.4 fs, at xd = 0.1 rd, zd = 0, yd = 1 m and

λa = λb = 0.8 µm, the dominant term E2
aEb has been plotted and the coefficient of the integral

ignored. On the right is plotted the relative difference between the “elastic” and full behaviour of

N sech
d (τa).

VI. SUMMARY

In calculating numbers of photons scattered in the collision of two laser beams, we had three

aims: i) to consider a more realistic set-up of the colliding beams (including a temporal
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pulse shape, collision angle, lag and lateral separation), which would produce more accurate

qualitative and quantitative predictions for experiment, ii) to investigate the possibility of

using a single laser, split into two beams to measure elastic photon-photon scattering and

iii) to evaluate the ansatz that just two lasers, with sufficiently short pulse durations, can be

used to measure the process of inelastic photon-photon scattering. The first of these aims has

been met in Fig. 5 where the dependency on various collision parameters was calculated and

found consistent with physical reasoning. This led to the second aim, where the inclusion

of a pulse form and collision angle led to two orders of magnitude difference over previous

elastic photon scattering estimates [23] (the single-slit limit of [11]). In this more complete

description, it was shown that when a 10 PW, λ = 0.91 nm beam is separated into two

30 fs Gaussian pulses, incident at an angle 0.1, one could expect approximately 0.7, 4 or

13 photons, corresponding to the fundamental, second and fourth harmonic of the probe

respectively (with an assumed loss of 40% per frequency doubling), to be diffracted into

detectable regions. As argued in [11], this could be sufficient for measuring elastic photon-

photon scattering, here shown using a single 10 PW source. The final aim was partially

met, first by considering Gaussian pulses, where it was shown that for ωτa . 4 for the more

intense beam a, the inelastic scattering process increased and became as large as around 20%

that of the elastic count for ωτa ≈ 2. However, for these results to be consistent, ωτa ≫ 1, so

the head-on collision of two sech pulses was analysed, for which no such bound applies, where

it was shown that again, in this different field background, for ωτa ≈ 2, inelastic scattering

became important – as large as around 50% that of the elastic one, lending supporting to

our original ansatz.
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Appendix A: Integration formulae

1. Gaussian diffracted field formulae

Sum coefficients:

20



j 1 2 3 4 5 6 7 8 9 10 11 12

Aj 1 1 −2 −1 −1 2 1 1 −2 −1 −1 2

βj 2 −2 0 2 −2 0 1 1 1 −1 −1 −1

γj 1 1 1 −1 −1 −1 2 −2 0 2 −2 0

TABLE I. Sum coefficients that occur in the expressions for Ed and Ẽd, Eqs. (11) and (12)

Diffracted field polarisation vectors:

v1 = 4
(
ε̂εε′a · ε̂εεb(1 + cos θ)− ŷ′ · ε̂εεb ŷ · ε̂εε′a

)[
ε̂εε′a

(
1− (

←· r̂ r̂)
)
+ (ŷ′ ∧ ε̂εε′a) ∧ r̂

]

+7
(
εεε′a · ŷ ∧ ε̂εεb − εεεb · ŷ′ ∧ ε̂εε′a

)[
− (ŷ′ ∧ ε̂εε′a)

(
1− (

←· r̂ r̂)
)
+ ε̂εε′a ∧ r̂

]
(A.1)

v2 = 4
(
ε̂εε′a · ε̂εεb(1 + cos θ)− ŷ′ · ε̂εεb ŷ · ε̂εε′a

)[
ε̂εεb

(
1− (

←· r̂ r̂)
)
− (ŷ′ ∧ ε̂εεb) ∧ r̂

]

+7
(
εεε′a · ŷ ∧ ε̂εεb − εεεb · ŷ′ ∧ ε̂εε′a

)[
(ŷ ∧ ε̂εεb)

(
1− (

←· r̂ r̂)
)
+ ε̂εεb ∧ r̂

]
. (A.2)

Integration terms:

It,j =

∫
d3x

1

[1 + (y′/yr,a)2]Bj/2

1

[1 + (y/yr,b)2]Γj/2

e
−x2

[
Bj

w2
a(y′)

+
Γj

w2
p(y)

+ 1

τ2
j

+i(
ωj
2rd

(1−
x2d
r2
d

)−
βjωay′

2(y′2+y2r,a)
+

γjωby

2(y2+y2
r,b

)
)
]

e
x
[

2xd
τ2
j

+2
x0Γj

w2
b

−2
xd
rd

( t

τ2
j

+
Bj (y

′
−∆t)

τ2a
−

Γjy

τ2
b

)+i(ωj(
xd
rd

+
xd(yyd+zzd)

r3
d

)+i
γjωbx0y

y2+y2
r,b

)
]

e
i

γjωbx
2
0y

2(y2+y2
r,b

)
+i

βjωay′z′2

2(y′2+y2r,a)
+i
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r,b
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+i(ωaβjy

′−γjωby−βj tan
−1(y/yr,a)+γj tan

−1(y/yr,b))

e
−(
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τ2a
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Γjy
2

τ2
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)− 1

τ2
j
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2rd
−

(yyd+zzd)
2

2r3
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)+iωjt
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Bj (y
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τ2a
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Γjy
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yyd+zzd
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Iω,j =

∫
d3x

1

[1 + (y′/yr,a)2]Bj/2

1

[1 + (y/yr,b)2]Γj/2

e
−
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(x2+z′2)−
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w2
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−
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2
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−
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2. Analytical approximation to dNd

dNd =

12∑

p,q=1

dNpq
d (A.5)

dNpq
d =
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a7/2
Erf

( b

2
√
a

)
e

b2

4a
+c

a =
ρ2dw

2
a,0

2sr2d
+
τ 2p
4

[
1 +

(yd/rd + τ 2qq)
2

(1− τ 4pp)

]
+ (p↔ q) (A.7)

b =
τ 2p
2

[
ωp −

(ω̃p − ωpτ
2
qq)(yd/rd + τ 2qq)

1− τ 4pp

]
+ (p↔ q) (A.8)

c = −
τ 2p
4

[
ω2
p +

(ω̃p − ωpτ
2
qq)

2

1− τ 4pp

]
+ (p↔ q) (A.9)

3. Sech diffracted field formulae

Integration terms:

Isechω,j =

∫ ρ0

0

dρ ρ

∫ 2π

0

dϕ

∫ ∞

−∞

dφ−

∫ ∞

−∞

dφ+ sech3−j(φ−/τa)sech
j(φ+/τb)

cos3−j(φ−/τa) cos
j(φ+/τb)e

iω
2rd

ρ2(−1+
x2d
r2
d

cos2ϕ)+iωρ
xdyd
2r3

d

(φ+−φ−) cosϕ

e
iωρ

xd
rd

cosϕ+ iω
2
(φ−(1−

yd
rd

)+φ+(1+
yd
rd

))− iω
8rd

(φ−−φ+)2(1−
y2d
r2
d

)
(A.10)
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