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The scaling of the number of Rydberg excitations in a laser-driven cloud of atoms with the
interaction strength is found to be affected by the finite size of the system. The scaling predicted by
a theoretical model is compared with results extracted from a numerical many-body simulation. We
find that the numerically obtained scaling exponent in general does not agree with the analytical
prediction. By individually testing the assumptions leading to the theoretical prediction using the
results from the numerical analysis, we identify the origin of the deviations, and explain it as arising
from the finite size of the system. Furthermore, finite-size effects in the pair correlation function
¢ are predicted. Finally, in larger ensembles, we find that the theoretical predictions and the
numerical results agree, provided that the system is sufficiently homogeneous.
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I. INTRODUCTION

During the past few years, a growing amount of re-
search, both in experiment and theory, has been aim-
ing at a detailed understanding of ultracold gases of
atoms excited to states of high principal quantum num-
ber. Such Rydberg atoms have extreme properties, of
which most important are their long-range dipolar inter-
actions. These imply the so-called dipole-blockade pre-
dicted in ﬂ, E], a suppression of further Rydberg exci-
tation in the vicinity of one such excited atom, which
is caused by an interaction-induced level shift. First ex-
perimental detection of the dipole blockade was reported
in Refs. [3] and [4]. Subsequently, further effects such
as collective oscillations and superradiance, to name a
few, were found ﬂﬂ] At sufficiently low temperatures,
the atomic motion and collisions can be neglected on
the timescale of the electronic dynamics, allowing for the
‘frozen-gas’ approximation. These properties, combined
with high control over the atomic positions provided by
optical trapping techniques, make up an ideal model sys-
tem for strongly correlated ensembles of atoms. Various
applications in quantum information processing ﬂa] and
quantum simulation ﬂ] are being pursued. With recent
progress, also spatially resolved measurements are com-
ing within reach

As a particular consequence of the many-body correla-
tions, the ground state of a strongly interacting and laser-
driven Rydberg ensemble can undergo a second-order
quantum phase transition ﬂﬂ] At the critical point, de-
termined by resonant laser driving, the system can be
characterized by a single parameter o which depends on
the laser Rabi frequency €2, the ensemble density and
the interaction strength. The number of excited Ryd-
berg atoms Nryq was predicted to scale as Nryq ~ o,
with an exponent v in the critical region a@ < 1. This re-
sult was found to agree well with numerical results from
mean-field calculations and many-body simulations ﬂﬂ]

In this paper, we revisit this scaling of the amount

of Rydberg excitation with the interaction strength and
show that it can be modified by finite-size effects in
smaller ensembles of Rydberg atoms. For this, we com-
pare the scaling prediction obtained from a theoretical
model with results extracted from a numerical many-
body simulation. We find algebraic scaling in both the
model and the simulation. But the numerically obtained
scaling exponent v in general does not agree with the an-
alytical prediction. By testing the assumptions entering
the argument leading to the prediction we identify the
deviations to arise from the finite size of the system. To
be precise, the estimation of the blockade radius based
on the comparison of the two energy scales present in the
system turns out not to be biased by the finite size of the
system. On the other hand, relating the size of the block-
ade spheres to the steady-state excited fraction is found
to be non-trivial in finite-size systems. In this context we
discuss the validity of the so called 'super-atom’ picture
in finite systems. We also find finite-size effects in the
pair correlation function ¢(®). We finally analyze larger
ensembles, imposing periodic boundary conditions. We
find that, provided that the ensemble is sufficiently homo-
geneous, finite-size effects disappear and the numerically
obtained scaling exponent agrees well with the predicted
one. We point out that, while finite-size effects appear
in the scaling exponent of the bulk number of Rydberg
atoms, their interpretation crucially relies on a spatially
resolved analysis of the excitation dynamics.

Our study is not least motivated by the fact that a
number of recent experiments approach length scales for
which finite size effects are expected to become rele-
vant m—lﬁ] In particular, the system sizes considered
in the following are well within reach of experimental re-
alizations of quasi 1D Rydberg ensembles ﬂﬁ]

After introducing the model and numerical methods in
Sect. [l we analyze, in Sect. [T the dynamical evolution
of the ensemble under the influence of the laser radia-
tion. In Sect. [VAl we study bulk properties of the en-
semble and show that the numerical simulations predict
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scaling parameters different from the analytical model.
To identify the origin of this deviation, we compute spa-
tially resolved observables in Sect. [V Bl In Sect. [V .Clwe
compare to systems with periodic boundary conditions.
Section [V Dl deals with finite-size effects in the pair cor-
relation function. We summarize our results in Sect. [Vl

II. MODEL AND METHODS

A. Hamiltonian

Our model system is a cloud of two-level atoms con-
sisting of a ground state |g) and a Rydberg state |r). The
atoms reside at fixed positions throughout the simulation
time. In most experiments, the atoms are excited from
lg) to |r) via a two-photon transition coupling to an in-
termediate level |m). However, if the intermediate level
is far detuned it can be adiabatically eliminated ﬂﬂ In
the present work we assume that the intensity and wave-
length of the laser is temporally and spatially constant.

The Hamiltonian describing such a cloud of N in-
teractin%laser-driven two-level atoms can be written

0, 1]

as 3,16,
H = Hip + Hiy. (1)

Here, H;p is the one-body Hamiltonian of N non-
interacting atoms, written in rotating wave approxima-
tion and in units where h =1 as
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where we used the notation s(l) = |a), (O] for the internal
projector of the ith atom. H A depends on the detuning
A=A+ Ay = w1 +wi2 — Wgm — Wy between the laser
frequencies wy; and the energy differences wopg = Eg — E,
between the ground and intermediate, and the interme-
diate and Rydberg states. Hq contains the two-photon
Rabi-frequency €2 that depends on the laser intensities
and the dipole matrix elements of the transitions. We
have assumed (2 to be real.

The long-range interactions between two Rydberg
atoms are accounted for by the van der Waals term
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In our simulations, we set 2 = 1, i.e., we measure
energy in units of A2 and time in units of 1/Q. We keep,
however, Cg as a dimensionful parameter and give lengths
in micrometers, keeping in mind that increasing Cp is
equivalent to decreasing the volume at a fixed particle
number, i.e., increasing the density.

B. Time evolution

We numerically solve the Schrodinger equation
i2 \wy = ) 0
ot

for a set of N two-level atoms at positions r; and given
parameters Cg and A, starting from an initial config-
uration where all atoms are in the ground state. A
variety of approaches has been suggested to deal with
the large dimension of Hilbert space of the above sys-
tem which scales exponentially as d ~ 2V. These in-
clude techniques relying on an expansion in the order
of correlations B ‘ E |, rate-equation methods

|, and many-body 51mu1ations on truncated state
spaces ﬂl_lL 18, M] In the following analysis, we trun-
cate the Hilbert space, making use of the fact that states
|®) with high diagonal elements (®| Hi,, + Ha |®) are
less likely to become populated. We note that for infi-
nite interaction strength, starting from the ground state
|0) = |gg...g), only singly excited states are accessible.
Higher excited states can be discarded because they have
infinite interaction energy. The resulting dynamics is a
Rabi oscillation between the ground state |0) and the
symmetrized singly excited state |s) = N—1/2 Zi\il |1;4)
[1], with collective Rabi frequency Q. = v/ NQ [26]. Col-
lective Rabi oscillations of two atoms could already be
observed in experiment [36].

Taking into account the dipole-dipole interactions
which inhomogeneously shift the transition frequency,
two atoms cannot be excited simultaneously within the
blockade volume V. All atoms in this volume share
one excitation and their dynamics is governed by the
collective Rabi-frequency +/NyQ. The blockade volume
is found by comparing the relevant energies CsRR, 6 ~
VN, where the blockade radius R; is the minimal dis-
tance that two simultaneously excited atoms can have. In
a d-dimensional gas of density p (atoms per unit length
to the power d) we have N, = pV}, de These consid-
erations lead to ﬂa ld, |ﬂ

Cs
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Note that in deriving R, we neglected the contribution
of Ha to the diagonal element. The above estimate is
therefore only valid near resonance, i.e., for A < €.

We use Eq. (@) to truncate the Hilbert space by ne-
glecting all states in which two excited atoms have a dis-
tance smaller than the cutoff distance r, < Rp. This
is achieved by choosing the proportionality constant in
Eq. (@) appropriately. Other ways to reduce the number
of basis states are to put an upper bound muy.x on the
number of excitations or to exclude states with an in-
teraction energy higher than some threshold E52*. We
have checked that our numerical results are converged
with respect to all truncation criteria, i.e., to the chosen
values of the cutoff parameters.

2/(d+12)
) (5)



To implement the truncation we construct, from the
canonical set of product states |ajag...an) = |a1) ®
lag) @ ... |an) with a; € {g,r}, basis states of the form
|m;it,ia. .. im), i.e., states with m atoms iy, ia...4,, in
the Rydberg state and all other atoms in the ground
state. The detuning and interaction parts of the Hamil-
tonian are diagonal in this basis, while the Rabi terms
connect states that differ in the internal level of one atom
only. Therefore the Hamiltonian matrix can be divided
into sub blocks consisting of states containing the same
number m of excited atoms. The Hamiltonian has a tridi-
agonal structure in these blocks since only states with m
differing by one are connected by the laser Hamiltonian.
The blocks on the diagonal are diagonal in the above
basis. This structure allows for a convenient truncation
and construction of the resulting evolution matrices. Af-
ter the truncation, we denote the n remaining basis states
of form |m;iy,ia...0y) as | @) with k € {1,...,n}.

While the performance of our code depends on the
number of atoms it is crucially affected by the number
of excitations that fit into the trap volume. The major
numerical limitation is computation time. If we want to
limit the time needed for the propagation of a single re-
alization into the steady state to less than one hour on
a state-of-the-art desktop processor (2.33 GHz), we are
limited to state spaces of about four million states. Given
this constraint, if we consider an atom number of about
100, the trap size needs to be limited such that it can
contain at most six-fold excitations. For 60 atoms we are
limited to about nine excitations. For such system sizes
the coherent time evolution of the system does not fully
converge to a steady state, with small oscillations persist-
ing in the long-time limit. Moreover, for the calculation
of spatially dependent observables such as the distribu-
tion of the Rydberg excitations, a single run with about
100 atoms does not provide sufficient statistics. These
problems can be overcome by artificially increasing the
particle number by Monte Carlo sampling. This simply
means that we calculate the time evolution of the sys-
tem for several realizations (typically 1000 to 5000) with
randomly chosen atom positions and average over the
resulting observables. This method was used before in
Refs. , @, @] and can be justified for Bose-Einstein
condensates as well as for thermal clouds as explained in

Ref. [39].

Our model exclusively contains the unitary time evo-
lution, i.e., spontaneous emission, dephasing or laser
linewidths are not explicitly accounted for. A proper
treatment of such incoherent processes would require
methods such as a master equation or a quantum
Monte Carlo simulation of the incoherent jumps, which
would considerably increase the computational complex-
ity. From a physical point of view, this approxima-
tion can be justified if the experimental time scales are
short compared to the life time of highly excited Rydberg
states, and if stabilized laser systems with low linewidth
are used.

C. Observables

For a single realization of our system, all information
is contained in the coefficient vector ¢ with elements ¢y,

n
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with basis states |®j) as defined in Sec. For each
realization the observables are calculated from the state
vector at a given time of interest and then averaged by
Monte Carlo sampling. The mean number of Rydberg
atoms is

Z AR (7)

N, ryd = ryd

where m(F) is the number of excited atoms in state |®y,).
The excitation probability of the ith atom is given by

n
(NG =D lewl?8,00,. (8)
k=1
where agk) is the internal state of atom ¢ in state |®y),
and the Kronecker delta selects the coefficients of the
states in which the ith atom is excited.

The spatial distribution of the Rydberg excitations
Nyya(r) is obtained by dividing the trap volume into
small cells and summing up the excitation probabilities of
all atoms that lie in such a cell, normalized by their num-
ber. Most important in this work are spatial correlations
quantified by the pair correlation function ¢ (r,r’) [40).
This function is a measure for the conditioned probabil-
ity of having an excitation at r if there is already one
at r’. Since the interaction potential in our model only
depends on the mutual distance of two atoms, it is valid
to assume that also ¢ only depends on r = |r — r/|.
This has been verified numerically. The pair correlation
of two particles is defined as [40]
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Discretizing space, we define
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where Z(T A7) denotes the sum over all pairs with mutual
distance |rZ r;| lying within the interval [r, 7+ Ar]. This
means that we sum up the correlations of all these pairs
divided by their number. Note that some authors use
the alternative definition §® = ¢ —1 [d]. According
to our definition ¢(®)(r) = 1 corresponds to uncorrelated
atoms.
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FIG. 1. Time evolution of the number of Rydberg excitations
in an ensemble of N = 50 atoms enclosed in a cylindrical trap
with radius 7 = 1 pm and length L = 10 pm. Further param-
eters are: A = 0, Cs = 900 Q um®. (a) Single realization. The
remaining oscillations at long times reflect the fluctuations of
the positions of the Rydberg atoms. (b) Average over 1000
Monte Carlo samples.

III. DYNAMICAL PROPERTIES

A single atom or a gas of non-interacting atoms under-
goes simple Rabi oscillations on a time scale short com-
pared to the dephasing time. If the laser is detuned, only
a part of the population oscillates between the ground
and excited states, while the rest of the population re-
mains in the ground state. The oscillation frequency is
modified to vVAZ + Q2. In the case of infinitely strong
interactions the system reduces to a two-level system
showing collective Rabi oscillations between the ground
state and the collective singly excited state as discussed

in Sec. [l

In the intermediate case, in which several atoms can
be excited simultaneously, but interactions are non-zero,
the dynamics is more complicated. In the example shown
in Fig. [[l we use a cylindrical trap of length 10 um and
diameter 2 um. We observe that the Rydberg population
of the cloud, initially being in the ground state, shows a
saturation behavior. However, even for long times some
oscillations remain, cf. Fig. [[(a). The strength of these
oscillations depends on the number of excitations and on
the number of atoms in the trap. This saturation can be
interpreted in two ways: On the one hand, the mean-field
picture predicts that, due to the disorder induced by the
randomness of the atom positions, interaction shifts § dif-
fer from atom to atom, leading to different Rabi frequen-
cies v62 + Q2 for the individual atoms. Consequently,
the oscillations dephase over time and lead to a satura-
tion of the overall excitation. Alternatively, one uses the
so-called “super-atom” picture: Any excited atom in the
ensemble blocks the excitation of the surrounding atoms
which leads to collective excitation of the atoms within
this blockade sphere. Again due to the random positions
of the atoms, the number of atoms per blockade sphere
and thus the collective Rabi frequency varies across the
ensemble. The occurrence of different collective Rabi fre-
quencies leads to a dephasing and thus to saturation.
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FIG. 2. (Color online) Number Ngryq of Rydberg excita-

tions in a one dimensional gas. (a) Nrya as a function of
the line density. Parameters: L = 10um, Cs = 900 um°,
A = 0. (b) Number of excitations as a function of the
van der Waals interaction constant, on a double logarithmic
scale. Crosses: numerical simulation. Solid line: power-law
fit Nrya ~ Cg(ylzs_ Parameters: L = 15um, N =45 A =0
of N = 45 atoms.

Averaging over many realizations shows that the mean
number of Rydberg excitations saturates fully after some
time, cf. Fig. [{b). The timescale of this saturation de-
pends on how many Rydberg excitations are present in
the gas, on the system size and also the detuning. Note
that for very small traps that confine the gas to near
one blockade volume, ongoing strong oscillations are ob-
served even after Monte Carlo averaging. The reason is
that in this case, only one or a few different collective
Rabi frequencies are possible, depending on the number
of atoms in the blockade spheres. In the example shown
in Fig.[[I(b) we find that the excitation number converges
to about Nyyq = 2.5 Rydberg excitations. This means
that N, = N/N,yq = 20 atoms share one excitation
and we expect to observe a collective Rabi-frequency of
Qc/Q = /N, = 4.47. Measuring the period of the initial
oscillations in Fig. [[(b) we obtain Q¢ = 27/T = 4.49Q,
consistent with the super-atom picture.

IV. FINITE-SIZE EFFECTS
A. Signatures in bulk properties

In this section we study the properties of the system
after is has saturated to its steady state. For sufficiently
high atomic density the number of Rydberg excitations
does not scale linearly with the number of atoms, as it
would be expected for a dilute non-interacting gas. In-
stead, a reduced Rydberg population is observed as is
shown in Fig. Pfa). This is caused by the well-known
dipole blockadelzﬂé] inhibiting the simultaneous excitation
of two nearby atoms by means of a large interaction shift.
This effect is the more pronounced the stronger the in-
teractions are. Thus N,yq decreases as a function of the
interaction parameter Cg, as is illustrated in Fig. 2(b).
Assuming that the blockade radius is given by Eq. (&),
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FIG. 3. (Color online) Pair correlation function defined in
Eq. (I0) for three different interaction strengths Cg after t =
200 €2 evolution time. One-dimensional trap of length L =
15 pm holding N = 45 atoms exposed to a resonant laser.

one finds that [11]
N -
Niya ~ 5 ~ Ry * ~ Cg 2d/(d+12), (11)
b

From this, for a one-dimensional gas (d = 1), one ob-
tains an algebraic scaling of N,yq with Cg, with exponent
v = —2/13 = —0.1538. Fig. &(b) confirms that the ex-
cited fraction scales as a negative power of Cfg, however,
with a fitted exponent vgy = —0.1283 4 0.0006 (errors we
give on fitted values just refer to the confidence interval
of the fit). This is obtained for a one-dimensional trap of
length 15 ym containing 45 atoms. At first sight this re-
sult appears to be in contrast to the calculations reported
in ] where good agreement of numerical simulations
with the analytically predicted value was reported. We
will analyze this discrepancy in more detail in the fol-
lowing section and show that the deviation from the the-
oretical prediction is due to finite-size effects arising in
our relatively small trap volume. For now we summarize
that the excited fraction follows an algebraic scaling over
a wide range of interaction strengths also in finite sys-
tems, while the scaling exponent deviates from the one
predicted for an unbounded homogeneous gas.

B. Origin of the finite-size effects

In the previous subsection we reported the numerically
obtained power-law scaling of the number of Rydberg
excitations Nyyq ~ C§. The value for v did not agree,
however, with the value predicted and confirmed previ-
ously for a homogeneous gas. In the following, we trace
back the origin of this discrepancy to finite-size effects.
For this, we individually examine the two assumptions
which lead to the prediction of the scaling parameter
in Eq. (). The first one is the estimate of the block-
ade radius, Eq. (B). The second one is the assumptions
that the number of Rydberg excited atoms can be ob-
tained from an estimate based on the super-atom picture,
Niya X Mmax = N/Ny = L/Rp. Note that the effects
studied here are physical finite-size effects in the sense
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FIG. 4. (Color online) Pair correlation function () as a
function of (a) the atom line density, with Cs = 900 Q yum®,
L = 10 pum; (b) the interaction constant Cg, with line density
p=3/um (L = 15 pum, N = 45). Dashed lines indicate the
estimates for Ry as in Eq. (I2)).

that they originate from the finite trap volume rather
than from computational limitations. Therefore, they
could possibly be observed in experiments.

1. Estimate for the blockade radius

In order to analyze the estimate for the blockade
radius given in Eq. (B we consider pair correlations.
Fig. Bl shows the pair correlation function () of a one-
dimensional gas in its thermalized state. Pairs with small
mutual distance are never excited simultaneously, hence
the ¢(®-function is zero for small . Note that the numer-
ical blockade radius 7, was chosen well below the onset
of non-zero correlations to ensure that the state space
truncation does not affect the outcome of the simula-
tions. The sharp peak which emerges just outside the
blockaded region is located precisely at

o 2/13
o 6
By = <Q«/N/L> ’ (12)

which was our estimate of the blockade radius (Eq. (&)
leading to Eq. (I0). In order to probe this conjecture
more thoroughly we analyze ¢(2) for varying line density
and interaction strength. Results are shown in Fig. [
The predicted blockade radius perfectly matches the first
maximum of ¢(® in the whole parameter region. This in-
dicates that the estimate for R} in Eq. (Bl are reasonable
even in finite geometries. We remark that in these figures
one can also observe that correlations become stronger
as the density or the interaction strength increases. We
could also quantitatively verify Eq. (I2)). For this, we ex-
tracted the blockade radius from the simulation results
shown in Fig. Ml by defining it as the pair distance at which
the ¢@-function first exceeds one. This observable shows
a power law dependence over the whole range of param-
eters and fitting the exponent yields perfect agreement

with Eq. ([I2)).
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FIG. 5. (Color online) Same setup as in Fig. (a) Niya
as a function of L/Ry, = L(Cs/Q/p)”**>. Red line: Nu-
merical data, obtained by varying Cs. Dotted black line:
0.5 L/Ry. Dashed black line: 0.5(L/R, + 1). Solid black line:
0.5(Lest/ Ry 4+ 1). None of these estimates fits the numerically
obtained dependence. (b) Spatial distribution of the Rydberg
excitations on the string in excitations per um, divided by the
total number of excitations.

2. Estimate for the number of Rydberg excited atoms

Next, we consider the assumption that Nyyq ~ mmax =
N/N, = L/Rp. In Fig. Bla), results are shown for the
numerically obtained N,yq as a function of Cg, expressed
in units of L/R, via Eq. [@). The dotted line shows
~v*L/Ryp, where v* is the average fraction to which the
super-atoms are excited and was assumed to be 0.5. It
can be seen that this estimate does not coincide with the
numerically found Nyyq.

This failure in finite systems is due to two reasons.
First, from Fig. Blb) it can be seen that the distribu-
tion of excitations on the string shows strong maxima at
both ends. These can be understood in the mean-field
picture. The interaction shift of atoms close to the bor-
der is smaller than that of atoms in the center since they
only have potentially excited neighbors to one side. Con-
sistent with the structure of the pair correlation function,
the side maxima have to be followed by minima due to
the blockade effect and, towards the center of the string,
by further maxima corresponding to the first maximum
of ¢®®. The maxima at the edges of the string lead to
a higher excited fraction compared with the case of an
infinite string. This effect becomes more dominant as Cg
increases since the number of excitations on the string
decreases leading to an effectively smaller system.

Secondly, in a system of length L, the assumption
of densely packed excitations at distances R; from each
other does not necessarily lead to Nyya = v*L/Ry. The
number of super-atoms fitting on such a string is rather
L/Ry + 1 due to the excitations sitting at both ends of
the string. This would result in Nyyq = v*(L/Rp + 1)
which fits the numerical data much better but overesti-
mates it a bit (dashed black line in Fig.[Ba)). A further
obvious effect is connected to the finite density of the
gas. The finite atomic line density of p = 3um~! im-
plies that it is very unlikely that two atoms are sitting
exactly at the trap ends, so the outermost super-atoms

are shifted towards the trap center on average by 0.5 p~"

leading to an efficient trap length of Leg = L — p~t. We
therefore show Nyyq = v*(Lest/Rp + 1) (solid black line
in Fig. Bl(a)) where again v* = 0.5 was assumed. This
line now reproduces the slope of the numerical data well
but still overestimates it. In order to understand this,
we should bear in mind that the notion of super-atoms
sitting at the edges of the trap is not consistent with the
ansatz we used to estimate the blockade radius. Rp is
estimated by equating the collective Rabi frequency of
Ny, atoms to the interaction strength at a distance Ry,
i. e., VN,Q = Cs/Ryp. A super-atom sitting at the edge
of the trap would now contain less atoms, leading to a
larger blockade radius. We conclude that the super-atom
picture is not adequate to explain the effects of the trap
boundaries.

In general, the validity of universal scaling laws de-
pends on how well length scales are separated from each
other. The blockade radius should be much smaller than
the trap size but much larger than the intermediate par-
ticle distance [11]. As the simulation in Fig. [l was done
at constant atom density and trap size, increasing L/ Ry
means that the number of atoms per blockade sphere de-
creases. Thus by increasing L/R;, we effectively move
towards the regime of low density, where the interatomic
distance is of similar size as the blockade radius. In this
regime the predicted scaling laws are not expected to
hold.

Fig. Bl(a) shows yet another interesting property of
small clouds. If L/Ry is smaller than one, the cloud is
perfectly blocked and Rabi oscillates between the ground
state and the fully symmetric singly excited state as men-
tioned in Sect. [Tl Thus the time average of Nyyq is 0.5
as confirmed by the simulation data. As L/Ry, increases,
according to the super-atom picture, the number of ex-
citations should immediately jump to N,yq = 1 as soon
as two super-atoms fit into the trap. However, Nyyq in-
creases smoothly, indicating that super-atoms cannot be
viewed as hard spheres but are rather soft objects. It
should also be mentioned that, as the trap size is in-
creased holding density and all other parameters con-
stant, for L/ Ry, 2 5.5, Nyya increases linearly with a slope
of 0.5/ Ry, confirming the picture of soft super-atoms.

Our above findings explain why the exponent v is un-
derestimated if finite-size effects are neglected, and why
it is quite difficult in finite systems to find an analyt-
ical relation between N,.,q and mmax based on simple
assumptions. For larger systems, these finite-size effects
become negligible relative to the bulk properties of the
large ensemble. We thus conclude that the assumptions
Niyd ~ Mmax = N/Ny = L/ Ry, fails for small ensembles,
leading to the discrepancy between the numerically ob-
tained scaling parameter v and the theoretical prediction

in Eq. ().
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FIG. 6. (Color online) Same setup as in Fig. Bl but with

periodic boundary conditions. (a) Pair correlation function as
a function of Cg. Effects of artificial self coupling due to finite
system size are visible particularly at high Cs. (b) Crosses:
Simulated number of Rydberg excitations. Solid line: Fit of
algebraic decay. Only the first nine points are used for the fit.

C. Large ensembles via periodic boundary
conditions

If periodic boundary conditions are used, the excita-
tion density is perfectly flat. However, if strong correla-
tions are present, large system sizes are required in or-
der to eliminate artificial self-coupling effects. The lat-
ter are also known as aliasing effects that are caused by
atoms correlated with a neighboring atom twice, inside
the string and across the string boundary. Therefore the
string length has to be at least twice as large as the range
of the correlations. This is illustrated in Fig. Bla). At
large values of the interaction strength, for which the
blockade radius is large and correlations are long range,
the ¢(®-function deviates strongly from the case with-
out periodic boundaries. Only at small values of Cg the
system seems to become free of artificial self-coupling ef-
fects. Note that in contrast to the finite-size effects with-
out periodic boundary conditions discussed above, these
self-couplings cannot be observed in a linear 1D ensem-
ble. They could, however, be observed if instead the gas
was arranged in a suitable 1D ring trap. To avoid the
self-coupling effects, we fitted the algebraic scaling law
to the nine points with lowest Cs shown in Fig. Bi(b)
and obtained v ~ —0.146 + 0.003. The line density is
p = 3um~! as in the fixed-boundary case. For larger
densities, i.e., larger N, the scaling exponent obtained
from our numerical simulations approaches the predicted
value of v = —2/13. This can be understood since at
high densities, the nearest-neighbor distances between
ground-state atoms is much smaller than R; while the
trap length is much larger than R;,. In this case, the sys-
tem appears homogeneous, as neither the finite trap size
nor the coarseness of the atom distribution are relevant.
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FIG. 7. (Color online) Finite-size effects in the g(®-function.
If the correlation length is on the order of the trap size, cor-

relations are enhanced by the finite-size effects. Parameters
are Cs = 900 MHz ym® and p = 3.33 um~*.

D. Finite-size effects in the correlation function ¢(®

We finally analyze finite-size effects in the pair corre-
lation function. Fig. [(a) shows g (r) for three differ-
ent trap lengths and a density of p = 3.33 um~'. We
notice that the deviation from ¢(®(r) = 1, indicating
spatial correlations, decrease slightly with increasing L.
We now focus on the first maximum of the correlation
function, c. f. Fig. [[(a). This maximum is the feature
that depends on the trap size most strongly. Looking
at this peak more closely, we find a double-peak struc-
ture which vanishes in the limit of large very trap size.
Splitting up the ¢ -function into contributions from the
different subspaces with definite excitation number m we
find a very pronounced peak in the contribution of the
two-fold excited states, which is located at the position of
the left peak sub-peak of the first maximum in Fig. [7(a).
This structure is present for any trap length, but as the
relative population of states with a very low number of
excitations decreases with increasing trap size, the ef-
fect on the structure of the total ¢ becomes weaker
for large traps. This explains why the height of the left
sub-peak decreases with increasing trap size, whereas the
right sub-peak remains constant in size. The structures
seen on the m = 2 subspace can partly be interpreted in
the two-atom picture as arising from different excitation
channels, as done in Ref. [34] for the case of A > Q.
However, for the 2 = 0 case one expects collective effects
to be dominant, and thus it is clear that the structure
cannot be fully understood from the perspective of the
two-atom problem. As expected, correlation peaks are
generally enhanced if the system size is smaller than the
range of the correlations. Fig. [[(b) confirms that ¢ (r)
converges to a smooth function in the limit of large L. In
the simulations with largest system sizes in Fig.[[(b), the
g@-function saturates to 1 over a distance smaller than
the trap length. Nevertheless, some features of the cor-
relation function (visible in Fig. [[(a) as discussed above)
still depend on the trap length.



V. CONCLUSIONS

In summary, we have studied the time evolution and
the steady-state statistics of the number N,yq of Rydberg
excited atoms in cylindrical and one-dimensional trap
geometries, with and without periodic boundary condi-
tions. We predict finite-size effects in the scaling of Nyyq
with the van der Waals coefficient Cg which quantifies
the dipole-dipole interaction strength between the ex-
cited Rydberg atoms. Our numerical analysis shows that
Nyyq and Cg are still connected by an algebraic scaling,
but with a scaling exponent v different from the analyt-
ically predicted value well-known in the literature. The
analytical prediction relies on two assumptions, an esti-
mate of the blockade radius, and an estimate of the num-
ber of excited Rydberg atoms based on the super-atom
model. We could show that the estimate of the block-
ade radius provides a reliable prediction of the position
of the first maximum of the pair correlation function ob-
tained from the numerical simulations over a wide range
of atom densities as well as interaction strengths. In con-
trast, the analytical estimate of the number of excited
Rydberg atoms did not agree with our numerical results.
This was found to be due to the fact that atoms at the
ensemble borders can only interact with other atoms to
one side, leading to an overall enhanced Rydberg exci-
tation. Additionally, for a continuously varying ensem-
ble size, the number of hard-sphere super-atoms fitting

into the volume is not definite, but rather lies between
L/Ry and L/Ry + 1. We also predicted finite-size effects
in the pair correlation function ¢(®, for which we have
shown that some of its features depend on the ensem-
ble size even for lengths L exceeding the distance range
over which ¢(®)(r) is different from one. In larger ensem-
bles, which we have simulated using periodic boundary
conditions, we found that the scaling exponent v agrees
with the analytical prediction, provided that the density
is sufficiently high. Only then, the atomic distribution
is sufficiently homogeneous. We conclude that two con-
ditions are required to eliminate finite-size effects: First,
the condition Rj, > p~! needs to be fulfilled, such that
the microscopic structure of the atom distribution be-
comes irrelevant. Second, L > Ry is needed in order
to eliminate the effects of the trap boundaries. We have
shown that for trap sizes of L/R, < 6 finite size effects
significantly modify the dependence of the number of Ry-
dberg excitations on the interaction strength. For typi-
cal experimental parameters (R, = 5 pm to 10 um) this
corresponds to L = 30 pym to 60 pm which is an experi-
mentally relevant length scale [12-[16].
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