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Solutions of the Klein-Gordon equation in an infinite square-well potential with a
moving wall
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Employing a transformation to hyperbolic space, we derive in a simple way exact solutions
for the Klein-Gordon equation in an infinite square-well potential with one boundary moving at
constant velocity, for the massless as well as for the massive case.
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Introduction. – The non-relativistic system of a one-
dimensional infinite square well with a massive particle
evolving according to the Schrödinger equation is one of
the most elementary quantum mechanical systems, and it
often serves as an approximation to more complex phys-
ical systems. If, however, the potential walls are allowed
to move, as originally in the Fermi-Ulam model for the
acceleration of cosmic rays [1, 2], the situation is much
more complicated: if one does not choose to rely on an
adiabatic approximation, then the system is not sepa-
rable anymore. Results concerning exact solutions exist
only sparsely and have attracted a considerable amount
of attention. For the special case of a non-relativistic
system with a wall moving at constant velocity, such ex-
act solutions have been obtained first in [3], see [4–6] for
generalizations.

The relativistic moving-wall system on the other hand
is a much less common object of study, and there ap-
pear interesting subtleties. This article concerns the one-
dimensional Klein-Gordon (KG) particle in an infinite
square well with a boundary which is moving outward at
constant velocity ν. We find an infinite set of exact solu-
tions which do not rely on an adiabatic approximation on
top of the square-well approximation with definite posi-
tion and momentum configuration. We thereby general-
ize the solutions presented in the appendix of [7], which
are valid only for a special case and which are stated
without specifying any method on how to obtain them.
In contrast, we use a transformation to hyperbolic space
which provides in a simple and new manner a set of gen-
eral solutions for the massless as well as for the massive
case, while introducing derivatives of first order into the
transformed KG equation.

Exact solution. – This article concerns the ini-
tial/boundary value problem

∂2

∂t2
Ψ(t, x) = ∂2

∂x2 Ψ(t, x)−m2Ψ(t, x) in F
Ψ|∂F = 0 on ∂F
Ψ(t0, x) = f(x), (∂tΨ)(t0, x) = g(x).

(1)
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FIG. 1: The infinite square well with moving walls as a shaded
wedge inside the forward lightcone, intersected by a spacelike
hyperboloid of fixed ρ = ρ0.

The infinite square well is specified as the domain F =
[0, L(t)]. It is given in terms of the length function L(t) =
L0 + ν(t− t0), where ν denotes the speed of the receding
wall with 0 < ν < 1. ∂F denotes the boundary of F ,
and t, x ∈ R. We have rescaled the speed of light and
Planck’s constant to c = 1 = ~, and we will treat the
massless case m = 0 first. Since (1) is of second order in
time, the transformation

x 7→ x′ =
x

L(t)
(2)

which is usually applied in the non-relativistic scenario
(see e.g. [4, 5]) is of not much help in obtaining analytic
solutions for the relativistic one, although indeed imply-
ing motionless walls for the transformed system.

However, by slicing the forward lightcone of two-
dimensional Minkowski space in terms of hyperboloids
and transforming to hyperbolic coordinates (cf. Fig. 1),
one obtains a separable infinite square well system with
static boundaries, where the hyperbolic radial coordinate
ρ serves as the new time-like coordinate. Explicitly, the
transformation is given by

t = ργt x = ργx (3)

subject to the constraint

(γt)
2 − (γx)2 = 1 (4)
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FIG. 2: The position Λ of the boundary in hyperbolic space
depends only on the speed ν of the moving wall.
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FIG. 3: Exemplary plot of the wavefunction Ψ10( 50
49
, x) with

speed ν = 49
50

of the moving wall at time t = 50
49

.

which implies that ρ2 = t2 − x2.
The coordinates γt and γx are constrained to the one-

dimensional hyperboloid, such that one of the two coor-
dinates is redundant and we may parametrize the hyper-
boloid as the one-dimensional analogue of the hyperbolic
upper half-plane through the transformations

γt =
v2 + 1

2v
γx =

v2 − 1

2v
v = γt + γx . (5)

One can easily find a full set of exact solutions in these
coordinates by requiring as an intermediate step that
L0 = νt0. In order to obtain solutions for general pa-
rameters (L0, t0), one may afterwards freely shift the tip
of the lightcone. The position of the right boundary does
not depend on the time-like coordinate ρ, but merely on
the constant velocity ν. Employing (5), the position of
the right boundary in hyperbolic space can be determined
as (cf. FIG. 2)

Λ(ν) =

√
1 + ν

1− ν , (6)

while the transformed massless KG equation reads

ρ∂ρ (ρ∂ρΨ(ρ, v)) = v∂v (v∂vΨ(ρ, v)) . (7)

Due to the separability of the system in hyperbolic coor-
dinates, the general solution is given by

Ψ(ρ, v) = ψ1(ρv) + ψ2(ρ/v) , (8)

where ρv = t + x and ρ/v = t − x, and we can easily
choose a solution that matches the Dirichlet boundary
conditions, e.g.

Ψn(ρ, v) =
1√
nπ

sin (kn ln(v)) exp(−ikn ln(ρ)) (9)

with

kn =
nπ

ln(Λ(ν))
. (10)

For the massive case corresponding to ∂2t Φ = ∂2xΦ−m2Φ
with m 6= 0, the above procedure implies the solutions

Φn(ρ, v) = C sin (kn ln(v)) [Jik(mρ) + Yik(mρ)] , (11)

where Jik and Yik are the Bessel functions of imaginary
order ik. Of course we could have also chosen real so-
lutions to the real KG equation. We remark that in a
general number of dimensions, having a definite direc-
tion of wavepacket propagation is related to complexity
of the wavefunction.

We have chosen the integration constants of the solu-
tions (9) such that they are normalized to 1 with respect
to the KG-like scalar product

(ψ1, ψ2) = iρ

∫
dvolψ∗1

↔
∂ρψ2 , (12)

where dvol = dv
v denotes the volume element on the one-

dimensional hyperbolic upper half-plane, and where ψ
↔
∂ρ

φ ≡ ψ∂ρφ− φ∂ρψ. The solutions (9) can be expressed in
flat coordinates as

Ψn(t, x) =
1√
nπ

sin

[
kn
2

ln
(
t′+x
t′−x

)]
×

× exp

[
−i
kn
2

ln
(
t′2 − x2

)]
(13)

with t′(t) ≡ t − t0 + L0

ν , 0 < ν < 1. FIG. 3 displays an
exemplary plot of one specific such function. We note
that the solutions (13) are normalized to 1 with respect
to the standard KG-invariant scalar product,

〈ψ1|ψ2〉 = i

∫
dxψ∗1

↔
∂tψ2 . (14)

The respective norms in hyperbolic and in flat space are
preserved, and we can directly show for (13) that

〈Ψn|Ψm〉 = δnm . (15)

Numerical investigations. – We now investigate the
properties of a relativistic quantum wavepacket evolving
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FIG. 4: Snapshots of |ψ(t, x)|2 for a one-dimensional Gaussian wavepacket evolving with respect to (1) and redshifted upon
reflection off a wall moving in flat space. The wall is moving at ν = 1

2
and is represented by the vertical bar in (a)-(c). The

scaling in (d) differs from (a)-(c).
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FIG. 5: Snapshots of the same |ψ(t, x)|2 for a one-dimensional Gaussian wavepacket, but this time with t and x expressed
through the hyperbolic coordinates ρ and v evolving with respect to (7) and reflecting off an infinite square well with right
boundary at Λ( 1

2
) =

√
3 according to (6).

according to (7), i.e. m = 0. For this purpose, we com-
pose out of positive frequencies ω = |p| a one-dimensional
Gaussian wavepacket

Ψ(t, x) = A

∫ ∞
−∞

dpe−
c2(p−p0)2

2 +i(px−ωt) (16)

which is normalized to 1 with respect to (14) if

A =
c√
π

(
e−c

2p20 +
√
πp0c erf(p0c)

)− 1
2

, (17)

where erf denotes the error function. The norm of the
wavepacket (16) with respect to (14) (approximately 1
if c is chosen small enough) is preserved during its evo-
lution in the moving-wall system. However, its absolute
width with respect to the x-coordinate grows with each
reflection off the moving wall due to successive redshifts.
The redshift upon reflection of a one-dimensional wave
off a wall which is moving away at a constant speed is
given by

1 + z =
fref
finc

= γ2(1 + ν)2 =
1 + ν

1− ν ≡ Λ(ν)2 , (18)

with γ = (1 − ν2)−
1
2 , e.g. 1 + z = 3 for ν = 1

2 . The
corresponding reflection of a classical massless particle
in one dimension off a moving wall in terms of the rel-
ativistic Hamiltonian H =

√
πx2, where πx denotes the

momentum variable conjugate to x, implies the relation

1 + z =
Href

Hinc
(19)

of the energy Hinc of a photon before a bounce from a
moving mirror to its energy Href afterwards. The ex-
pectation value 〈Ĥ〉, which we call the energy expecta-
tion value in the following, may serve as a measure for
the redshift. The square root in the Hamiltonian can be
avoided adopting the two-component notation [8] for (1)
(especially helpful in higher-dimensional cases),

ψ = φ+ χ i∂tψ = φ− χ , (20)

which we adapt to the massless case to obtain

Ĥ = −σ3 + iσ2
2

∆ +
σ3 − iσ2

2
, (21)

where σi denote the Pauli matrices and ∆ = ∂2

∂x2 . With
the two-component vector

Ψ =
(
φ
χ

)
, (22)

the inner product (14) is expressible as

〈Ψ1|Ψ2〉 = 2

∫
dxΨ†1σ3Ψ2 (23)

and the energy expectation value as

〈Ĥ〉 = 2

∫
dxΨ†σ3ĤΨ . (24)

Furthermore, (21) implies the expected expression

〈Ĥ2〉 = 2

∫
dxΨ†σ3Ĥ

2Ψ = −i

∫
dxψ∗

↔
∂t(∆ψ) . (25)
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FIG. 4 and FIG. 5 illustrate the reflection of the
wavepacket off the wall, obtained as the numerical so-
lution of the massless KG equation, on the one hand in
flat space with moving boundary conditions acording to
(1), and on the other hand the corresponding evolution
in hyperbolic space with static boundary conditions ac-
cording to (7). In flat space, the wavepacket gets red-
shifted and loses energy upon reflection off the moving
wall, while its KG norm (14) is preserved. We remark
that unlike the Hamiltonian and momentum operators,
the position operator generally mixes positive and nega-
tive frequency components of the wavepacket in relativis-
tic quantum mechanics [8], and we refer the reader to the
investigations in [9, 10] for details on the localization of
relativistic particles.

Summary and conclusions. – Exact solutions of the
Schrödinger and Klein-Gordon equations in a domain
with time-dependent boundaries are difficult to obtain
[3–5, 7, 11]. With this letter, we contribute an infinite
set of orthogonal exact solutions to the one-dimensional

Klein-Gordon equation in an infinite square-well with one
wall moving at a constant velocity. These solutions are
obtained employing a simple transformation to hyper-
bolic space. We furthermore investigated numerically the
properties of a massless relativistic wavepacket bouncing
off the moving walls in flat and off the static walls in
hyperbolic space, and in the former case observed the
expected redshift. Although the scope of this article was
intended to be limited to a domain with one wall moving
at constant speed, it would nevertheless be of interest to
generalize these results to domains with more arbitrarily
moving walls.
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