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Abstract – Employing a transformation to hyperbolic space, we derive in a simple way exact
solutions for the Klein-Gordon equation in an infinite square-well potential with one boundary
moving at constant velocity, for the massless as well as for the massive case.
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Introduction. – The non-relativistic system of a one-
dimensional infinite square well including a massive parti-
cle evolving according to the Schrödinger equation is one of
the most elementary quantum-mechanical systems, often
serving as an approximation to more complex physical
systems. If the potential walls are however not static but
moving, as originally in the Fermi-Ulam model for the
acceleration of cosmic rays [1,2], the situation is much
more complicated: if one does not choose to rely on an
adiabatic approximation, then the system is not sepa-
rable anymore. Results concerning exact solutions exist
only sparsely and have attracted a considerable amount of
attention. For the special case of a non-relativistic system
with a wall moving at constant velocity, such exact solu-
tions have been obtained first in [3], see [4–6] for general-
izations.
The relativistic moving-wall system is however a much

less common object of study, and there appear interest-
ing subtleties. We investigate the one-dimensional Klein-
Gordon (KG) particle in an infinite square well with
one static boundary and one boundary which is moving
outward at constant velocity ν, and we find an infinite
set of exact solutions which do not rely on an adiabatic
approximation on top of the square-well approximation
with definite position and momentum configuration. We
thereby generalize the solutions presented in the appendix
of [7], which are valid only for a special case and which are
stated without specifying any method on how to obtain
them. In contrast, we use a transformation to hyperbolic
space which provides in a simple and new manner a set of
general solutions for the massless as well as for the massive
case, while introducing derivatives of first order into the
transformed KG equation.

Exact solution. – The system we investigate is
described as the initial/boundary value problem




∂2

∂t2
Ψ(t, x) =

∂2

∂x2
Ψ(t, x)−m2Ψ(t, x), in F ,

Ψ|∂F = 0, on ∂F ,

Ψ(t0, x) = f(x), (∂tΨ)(t0, x) = g(x)

(1)

with the infinite square well specified by the domain
F = [0, L(t)] in terms of the length function L(t) =L0+
ν(t− t0), where ν denotes the speed of the receding wall,
0< ν < 1, ∂F denotes the boundary of F , and t, x∈R.
We have rescaled the speed of light and Planck’s constant
to c= 1= �, and we will treat the massless case m= 0
first. Although indeed leading to motionless walls, the
transformation

x �→ x′ =
x

L(t)
(2)

which is usually applied in such a scenario (see, e.g., [4,5]
for the non-relativistic case) is of not much help in
obtaining analytic solutions for the relativistic moving-
wall system since unlike the Schrödinger equation, the KG
equation is of second order in time.
However, by slicing the forward lightcone in (1+1)-

dimensional Minkowski space in terms of hyperboloids
and transforming to hyperbolic coordinates (cf. fig. 1), we
obtain an infinite square-well system with static bound-
aries and with the hyperbolic radial coordinate ρ as the
new time-like coordinate. Explicitly, the transformation is
given by

t= ργt, x= ργx, (3)
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Fig. 1: Sketch of the infinite square well with moving walls as
a shaded wedge inside the forward lightcone. It is depicted
schematically how the wedge is intersected by a spacelike
hyperboloid of fixed ρ= ρ0.

subject to the constraint

(γt)
2− (γx)2 = 1 (4)

which implies that ρ2 = t2−x2.
Since the γ coordinates are constrained to lie on the

hyperboloid, one of the two coordinates is redundant. We
parametrize by using coordinates on the one-dimensional
analogue of the hyperbolic upper half-plane through

γt =
v2+1

2v
, γx =

v2− 1
2v

, v= γt+ γx. (5)

In the hyperbolic coordinates, we are able to find a full
set of exact solutions if we require as an intermediate
step that L0 = νt0. We may afterwards freely shift the tip
of the lightcone in order to obtain solutions for general
parameters (L0, t0). After the transformation to hyper-
bolic space, the time dependence of the right boundary
drops out and its position depends merely on the constant
velocity. Employing (5), we can determine the position of
the right boundary in hyperbolic space as (cf. fig. 2)

Λ(ν) =

√
1+ ν

1− ν , (6)

while the transformed massless KG equation reads

ρ∂ρ (ρ∂ρΨ(ρ, v)) = v∂v (v∂vΨ(ρ, v)) . (7)

Due to the separability of the system in hyperbolic
coordinates, the general solution is given by

Ψ(ρ, v) =ψ1(ρv)+ψ2(ρ/v), (8)

where ρv= t+x and ρ/v= t−x, and we can easily choose
a solution that matches the Dirichlet boundary conditions,
e.g.,

Ψn(ρ, v) =
1√
nπ
sin (kn ln(v)) exp(−ikn ln(ρ)) (9)

with
kn =

nπ

ln(Λ(ν))
. (10)
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Fig. 2: Plot of the function Λ depending on the speed ν of the
moving wall

x

Ψ10( 50
49 , x)

0 1
2

1

1
4

Fig. 3: Plot of the function Ψ10(
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, x) with the speed ν = 49
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the moving wall.

The massive case corresponding to ∂2tΦ= ∂
2
xΦ−m2Φ can

be treated similarly, leading to the solutions

Φn(ρ, v) =C sin (kn ln(v)) [Jik(mρ)+Yik(mρ)] , (11)

where Jik and Yik are Bessel functions of imaginary order
ik. Of course we could have also chosen real solutions to
the real KG equation. We remark that in a general number
of dimensions, having a definite direction of wave packet
propagation is related to complexity of the wave function.
The solutions (9) are normalized to 1 with respect to

the KG-like scalar product

(ψ1, ψ2) = iρ

∫
dvolψ∗1

↔
∂ρψ2, (12)

where ψ
↔
∂ρφ≡ψ∂ρφ−φ∂ρψ and where dvol = dvv denotes

the volume element on the one-dimensional hyperbolic
upper half-plane. We can express the solutions (9) in flat
coordinates as

Ψn(t, x) =
1√
nπ
sin

[
kn

2
ln
(
t′+x
t′−x
)]

× exp
[
−ikn
2
ln
(
t′2−x2)

]
(13)

with t′(t)≡ t− t0+ L0ν , 0< ν < 1. Figure 3 displays
an exemplary plot of one specific such function. The
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Fig. 4: Plots of |ψ(x)|2 of a one-dimensional Gaussian wave packet redshifted upon reflection off a moving wall in flat space.
The vertical bar in (a)–(c) represents the moving wall. The horizontal scaling in (d) differs from (a)–(c).

 0

 0.03

 0.06

 0  0.4  0.8  1.2  1.6
 0

 0.09

 0.18

 0  0.4  0.8  1.2  1.6
 0

 0.03

 0.06

 0  0.4  0.8  1.2  1.6
 0

 0.03

 0.06

 0  0.4  0.8  1.2  1.6

(d) Late-time behavior(a) Before reflection (b) During reflection (c) Reflected wave packet

Fig. 5: Plots of |ψ(v)|2 of a one-dimensional Gaussian wave packet in an infinite square well in hyperbolic space.

solutions (13) are normalized to 1 with respect to the
standard form of the KG-invariant scalar product,

〈ψ1|ψ2〉= i
∫
dxψ∗1

↔
∂tψ2. (14)

Furthermore, the respective norms are preserved in hyper-
bolic as well as in flat space, and we can directly show
for (13) that

〈Ψn|Ψm〉= δnm. (15)

Numerical investigations. – We now investigate the
properties of a relativistic quantum wave packet evolving
according to (7), i.e.,m= 0. A one-dimensional relativistic
Gaussian wave packet

Ψ(t, x) =A

∫ ∞
−∞
dpe−

c2(p−p0)2
2 +i(px−ωt) (16)

composed out of positive frequencies ω= |p| will have a
norm of one with respect to (14) if

A=
c√
π

(
e−c

2p20 +
√
πp0c erf(p0c)

)− 12
, (17)

where erf denotes the error function. The wave packet (16)
has constant norm (of approximately 1 if c is chosen
small enough) with respect to (14) during its evolution in
the moving-wall system, however its absolute width with
respect to the x-coordinate will grow with each reflection
off the moving wall, as the wave packet will go through
successive redshifts. If a one-dimensional wave reflects off
a wall which is moving away at a constant speed, it
experiences a redshift given by

1+ z =
fref

finc
= γ2(1+ ν)2 =

1+ ν

1− ν ≡Λ(ν)
2, (18)

with γ = (1− ν2)− 12 , e.g., for ν = 12 , the redshift is
1+ z = 3. In terms of the relativistic Hamiltonian

H =
√
πx2, where πx denotes the momentum variable

conjugate to x, the corresponding reflection of a classical
massless particle in one dimension off a moving wall
implies the relation

1+ z =
Href

Hinc
, (19)

which analogously simply states the relation of the energy
Hinc of a photon before a bounce from a moving mirror to
its energy Href afterwards. As a measure for the redshift,
we employ the expectation value 〈Ĥ〉, which we call the
energy expectation value in the following. In order to avoid
the square root in the reduced Hamiltonian (especially
helpful in higher-dimensional cases), we adopt the two-
component notation [8] for (1) by defining

ψ= φ+χ, i∂tψ= φ−χ (20)

and adapt it to the massless case to obtain

Ĥ =−σ3+ iσ2
2

∆+
σ3− iσ2
2

, (21)

where σi are the Pauli matrices and where ∆ is the Laplace

operator in flat space, i.e., ∆= ∂2

∂x2
. Upon defining a two-

component vector from the complex functions φ and χ
according to

Ψ=

(
φ

χ

)
, (22)

eq. (14) is expressed through

〈Ψ1|Ψ2〉= 2
∫
dxΨ†1σ3Ψ2 (23)

and the energy expectation value through

〈Ĥ〉= 2
∫
dxΨ†σ3ĤΨ. (24)
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The two-component form (21) implies the expected
expression

〈Ĥ2〉= 2
∫
dxΨ†σ3Ĥ2Ψ=−i

∫
dxψ∗

↔
∂t(∆ψ) (25)

for the expectation value of the squared Hamiltonian.
Upon reflection off a moving wall in flat space, the wave
packet loses energy into the wall, while its KG norm
is preserved. See fig. 4 for an illustration of such a
bounce, calculated by numerically solving the massless
KG equation on the one hand in flat space with moving
boundary conditions, and on the other hand an illustration
of the corresponding evolution in hyperbolic space with
static boundary conditions in fig. 5. Using (23), we can
compute position expectation values according to

〈x̂〉= 2
∫
dxΨ†σ3xΨ= i

∫
dxxψ∗

↔
∂tψ (26)

and analogously in hyperbolic space using (12). We
remark however that, unlike the Hamiltonian and the
momentum operator, the position operator in relativis-
tic quantum mechanics generally mixes positive- and
negative-frequency components of the wave packet [8].
The prescription (26) therefore has to be used with
caution, but may serve as the intuitive measure for the
“center of mass” of the wave packet. For details on
localization of relativistic particles, we refer the reader to
the investigations in [9,10].

Summary and conclusions. – Exact solutions of the
Schrödinger and Klein-Gordon equations in a domain with
time-dependent boundaries are difficult to obtain [3–5,7].
With this letter, we contribute an infinite set of orthogo-
nal exact solutions to the one-dimensional Klein-Gordon
equation in an infinite square well with one wall moving
at a constant velocity, a side result of previous investiga-
tions concerning quantum billiards [11,12]. These solutions

are obtained employing a simple transformation to hyper-
bolic space. We furthermore investigated numerically the
properties of a massless relativistic wave packet bouncing
off the moving walls in flat and in hyperbolic space, and
observed the expected redshift. Although the scope of this
article was intended to be limited to a domain with one
wall moving at constant speed, it would nevertheless be of
interest to generalize these results to domains with more
arbitrarily moving walls.
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