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Compact objects, like neutron stars and white dwarfs, may accrete dark matter, and then be sensitive

probes of its presence. These compact stars with a dark matter component can be modeled by a perfect

fluid minimally coupled to a complex scalar field (representing a bosonic dark matter component),

resulting in objects known as fermion-boson stars. We have performed the dynamical evolution of these

stars in order to analyze their stability, and to study their spectrum of normal modes, which may reveal the

amount of dark matter in the system. Their stability analysis shows a structure similar to that of an isolated

(fermion or boson) star, with equilibrium configurations either laying on the stable or on the unstable

branch. The analysis of the spectrum of normal modes indicates the presence of new oscillation modes in

the fermionic part of the star, which result from the coupling to the bosonic component through the

gravity.

DOI: 10.1103/PhysRevD.87.084040 PACS numbers: 04.25.D�, 04.40.Dg

I. INTRODUCTION

Scalar fields are of great interest in several fields of
physics. In high energy physics they arise naturally in
several unification theories, such as scalar-tensor theories
of gravitation from string theory. In cosmology, they have
been considered to provide inflationary solutions in the
early universe and an alternative explanation for dark
energy. In addition, they have also been proposed as strong
candidates of dark matter, the matter that is responsible for
the formation and evolution of structures in the Universe.
For the latter type of models, one of the possibilities
assumes that dark matter is composed by bosonic particles
which may condensate into macroscopic self-gravitating
objects (i.e., self-gravitating Bose-Einstein condensates)
commonly known as boson stars. Since the seminal paper
in the late sixties by Ruffini and Bonazzola [1], boson stars
in general relativity have been extensively studied in many
different contexts (for a recent review see Ref. [2]).

On the other hand, the formation of either a boson or a
fermion star would be susceptible to subsequent mixture by
fermions/bosons, and this fact opens a whole new possi-
bility for the formation of objects made of both fermionic
and bosonic particles. Even if one of these objects is
formed in a medium absent of either bosonic or fermionic
particles, the latter may be accreted in later stages. In
particular, bosonic dark matter particles may accrete on
compact stars, and depending on the model considered,
their effects on the star will be different and possibly
observable.

In the context of WIMPs, if the dark matter is self-
annihilating, the released energy due to the WIMP annihi-
lation inside the neutron star can increase the temperature
and be observable in old stars [3]. If it does not self-
annihilate, the dark matter will cluster in a small region

at the center of the neutron star, increasing their compact-
ness and ultimately leading to a gravitational collapse [4].
Neutron stars may be therefore sensitive indirect probes of
the presence of dark matter, and can be used to set con-
straints both on the density and on the physical properties
of dark matter.
Recent studies investigate possible changes in the struc-

ture of the star in the presence of dark matter, by using a
two-fluid model [5]. In this paper, we perform a similar
analysis by modeling systems which contain a fermionic
compact star (we consider it to be a neutron star) and a
bosonic dark matter component represented by a boson
star. The resulting objects are known as fermion-boson
stars. These mixed stars were first introduced by
Henriques et al. [6] (and further studied in Refs. [7,8]),
where the fermionic matter was described by a perfect fluid
with the Chandrasekhar equation of state, while the bo-
sonic component is modeled by using a real quantized
scalar field as in Ref. [9]. The bosons and the fermion
particles are coupled only through gravity (notice however
that nonminimal couplings with the scalar field can arise in
other scenarios, such as in neutron stars with hidden extra
dimensions [10] or in tensor-scalar theories of gravitation
[11]). Wewill perform a dynamical analysis of these mixed
stars by using a simple polytropic equation of state, as it is
standard for cold neutron stars, and a complex scalar field
to describe the bosonic component.
The equilibrium configurations for either an isolated

boson or fermion stars are described, respectively, by the
central value of the scalar field�c, and the central value of
the fluid density �c [1,12]. These configurations are there-
fore characterized by a single parameter �c, so in this case
there are stability theorems [13,14] which indicate that the
critical mass (separating the unstable from the stable
branch) is located at the extrema @M=@�c ¼ 0. However,
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the mixed fermion-boson stars are parametrized not by
one, but by two quantities ð�c; �cÞ. This implies that the
analysis of stability is more complicated than in the iso-
lated star case, since the previous stability theorems cannot
be directly applied. One can still analyze their stability,
among other alternatives, by studying the radial perturba-
tions of these equilibrium configurations and then analyz-
ing the eigenvalues of these modes in the linearized
equations as in Refs. [15–19], or by evolving dynamically
these perturbations by solving the full nonlinear equation
of motion [20–23]. In Refs. [24,25] Henriques et al. de-
scribed a method to perform the analysis of stability of the
boson-fermion stars by using the binding energy and the
number of bosonic and fermionic particles as a function of
the two free parameters. In this paper, we propose a similar
criterion, and our results are compared with the full nu-
merical solution of the equations of motion. In addition to
the stability analysis, we follow the migration of a star
from an unstable to the stable branch, a process observed
already in isolated boson and fermion stars. Finally, we
study the dependence of the quasinormal modes of the
mixed star with respect to their fraction of bosonic matter.

The paper is organized as follows. In Sec. II we introduce
the formalism used to obtain the set of evolution equations
that describes the spacetime geometry and the boson-fermion
matter contents. In Sec. III we describe how to construct the
initial data for the boson-fermion stars, and propose amethod
to find the stability of these objects. The results of the
dynamical evolution for equilibrium configurations (i.e.,
both stable and unstable) are presented in Sec. IV, together
with the spectrum of the quasinormal modes of the stable
stars. Finally, conclusions and final remarks are presented in
Sec. V. Throughout this paper we use that the indices are
a; b; . . . taken to run from 0 to 3, while indices i; j; . . . run
from 1 to 3. We also adopt the standard convention for the
summation over repeated indices.

II. FORMALISM

Fermions minimally coupled to bosons can be modeled
by considering a stress-energy tensor with contributions
from a perfect fluid and a complex scalar field, in the form

Tab ¼ TðfluidÞ
ab þ Tð�Þ

ab ; (1)

TðfluidÞ
ab ¼ ½�oð1þ �Þ þ P�uaub þ Pgab; (2)

Tð�Þ
ab ¼ 1

2
½@a��@b�þ @a�@b�

��

� 1

2
gab½@���@��þm2j�j2�: (3)

The perfect fluid is represented by the fermionic physical
(primitive) variables, namely the pressure P, rest-mass
density �o, internal energy �, and four-velocity ua,
whereas the complex scalar field � describes a Bose-
Einstein condensate of bosonic particles of mass m. The
fluid and the scalar field do not interact directly, and are
only coupled through gravity, as it is expected for WIMPs.
The equations of motion for the fluid and the scalar field
are obtained from the conservation laws of the stress-
energy tensor and the baryonic number

raT
ab
ðfluidÞ ¼ 0; rað�ou

aÞ ¼ 0; (4)

and the Klein-Gordon equation

rara� ¼ m2�; (5)

which together with the Einstein equations Gab ¼ 8�Tab

constitute the system of equations governing the dynamics.
We restrict our study to spherically symmetric stars, and

then consider the time-dependent metric,

ds2 ¼ ��2ðt; rÞdt2 þ grrðt; rÞdr2 þ r2g��ðt; rÞd�2: (6)

The evolution equations for the spacetime are obtained by
considering the Z3 formulation of the Einstein equations
[26], which introduces the following independent quanti-
ties to form a first order system of equations,

Ar ¼ @r�

�
; Drr

r ¼ grr

2
@rgrr; Dr�

� ¼ g��

2
@rg��;

Kr
r ¼ � 1

2�

@tgrr
grr

; K�
� ¼ � 1

2�

@tg��
g��

: (7)

The full system of equations for this formulation is in-
cluded in Appendix A. The remaining freedom in the
choice of coordinates of the line element (6) is related to
the prescription for the lapse function, and a common
option is the harmonic slicing condition,

@t� ¼ ��2trK; (8)

where trK ¼ Kr
r þ 2K�

�. By using the metric (6), the

equations of motion for the perfect fluid (4) and the scalar
field (5) can be written explicitly as

@tð ffiffiffiffi
�

p
DÞ ¼ �@rð ffiffiffiffi

�
p

�vrDÞ � 2

r

ffiffiffiffi
�

p
�vrD; (9a)

@tð ffiffiffiffi
�

p
UÞ ¼ �@rð ffiffiffiffi

�
p

�~SrÞ þ ffiffiffiffi
�

p
�

�
~Sr

rKr
r þ 2~S�

�K�
� � ~Sr

�
2

r
þ Ar

��
; (9b)

@tð ffiffiffiffi
�

p ~SrÞ ¼ �@rð ffiffiffiffi
�

p
�~Sr

rÞ þ ffiffiffiffi
�

p
�

�
~Sr

r

�
Drr

r � 2

r

�
þ 2~S�

�

�
1

r
þDr�

�

�
�UAr

�
; (9c)

@t�t ¼ @rð�
ffiffiffiffiffiffiffi
grr

p
�rÞ þ �

ffiffiffiffiffiffiffi
grr

p �
2

�
Dr�

� þ 1

r

�
�r þ 2

ffiffiffiffiffiffiffi
grr

p
K�

��t �m2grr�

�
; (9d)
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where
ffiffiffiffi
�

p ¼ ffiffiffiffiffiffiffi
grr

p
g�� and we have introduced the auxiliary

fields,

�r ¼ @r�; �t ¼
ffiffiffiffiffiffiffi
grr

p
�

@t�; (10)

to reduce the Klein-Gordon equation to first order in space
and time.

The evolution of the fluid is described in terms of the
conserved variables, namely the mass density D, the mo-

mentum density ~Sr, and the energy density U. They are
related to the primitive variables (i.e., the rest-mass density
�o, the pressure P, and the velocity vr) by the following
relations:

D ¼ �0W; U ¼ hW2 � P; ~Sr ¼ hW2vr; (11)

where h ¼ �0ð1þ �Þ þ P is the enthalpy and W ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� vrvr

p
the Lorentz factor. In the right-hand side

(rhs) of their evolution equations, the spatial projections
of the stress-energy tensor take the form

~S r
r ¼ hW2vrv

r þ P; ~S�
� ¼ P:

During the evolution, the relations (11) must be inverted in
order to obtain the primitive physical quantities (which are
necessary for computing the rhs) from the conserved
evolved fields. In general, this conversion cannot be per-
formed analytically, so Appendix B explains in detail our
numerical algorithm for obtaining the primitive fields.

III. INITIAL DATA

Initial data for the fermion-boson stars involves the
intrinsic metric gij and extrinsic curvature Kij on a given

hypersurface, as well as the fermionic fluid configuration
in terms of its primitive variables ð�; �; viÞ and the bosonic
scalar field �. Assuming a static spherically symmetric
metric in Schwarzschild coordinates,

ds2 ¼ ��2ðrÞdt2 þ a2ðrÞdr2 þ r2d�2; (12)

a harmonic form of the scalar field [27]�ðt;rÞ¼�ðrÞe�i!t,
and a star in hydrostatic equilibrium with vr¼0, the follow-
ing system of ordinary differential equations is obtained:

da

dr
¼ a

2

�
1

r
ð1� a2Þ þ 4�Gr

��
!2

�2
þm2

�
a2�2ðrÞ þ�2ðrÞ þ 2a2�ð1þ �Þ

��
; (13a)

d�

dr
¼ �

2

�
1

r
ða2 � 1Þ þ 4�Gr

��
!2

�2
�m2

�
a2�2ðrÞ þ�2ðrÞ þ 2a2P

��
; (13b)

d�

dr
¼ �ðrÞ; (13c)

d�

dr
¼

�
m2 �!2

�2

�
a2�� ½1þ a2 � 4�Ga2r2ðm2�2 þ �ð1þ �Þ � PÞ��

r
; (13d)

dP

dr
¼ �½�ð1þ �Þ þ P��

0

�
: (13e)

The system is completed by choosing the equation of state
that relates the pressure with the other fluid quantities. As it
is standard in simple models of cold stars, we will adopt
here a polytropic equation of state P ¼ K��, with the
particular choice of � ¼ 2 and K ¼ 100, which corre-
sponds to masses and compactness in the range of neutron
stars [12].

We will use units such that c ¼ 1, and the variables
can be renormalized to absorb the factors G and m, so
that the basic scale of the stars will be given by fK;�g. The
final system is an eigenvalue problem for the frequency of
the boson star ! as a function of two parameters; the
central value of the scalar field �c and the density of the
fluid �c. This system can be solved by using the shooting
method [30].

The appropriate boundary conditions for the scalar field
and metric functions are obtained by imposing the con-
ditions of regularity at the origin and asymptotic flatness at
infinity. The condition at r ¼ 0 for the fluid pressure is
obtained from the polytropic equation of state as a function
of �c. Thus, the full boundary conditions are

að0Þ ¼ 1; �ð0Þ ¼ 1; �ð0Þ ¼ �c; (14a)

�ð0Þ ¼ 0; Pð0Þ ¼ K��
c ; (14b)

lim
r!1�ðrÞ ¼ lim

r!1
1

aðrÞ ; (14c)

lim
r!1�ðrÞ � 0; lim

r!1PðrÞ ¼ 0: (14d)

After the solution is found, a change of coordinates from
Schwarzschild to maximal isotropic ones is performed:

ds2 ¼ ��2ð~rÞd~t2 þ c 4ð~rÞðd~r2 þ ~r2d�2Þ; (15)

which are more convenient for our numerical evolution and
for future comparisons in three dimensions. All of our
simulations will be shown in these coordinates, and for
simplicity we will substitute ~r ! r hereafter.
The total gravitational mass is computed by the asymp-

totic value of the metric coefficients,

MT ¼ lim
r!1

r

2

�
1� 1

�2

�
: (16)
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The Uð1Þ symmetry in the Lagrangian of the scalar field
ensures the conservation of a Noether charge which can
be associated with the number of bosons NB [23,24].
Correspondingly, the conservation of baryonic number
allows one to define a number of fermions NF. These
quantities can be computed by integrating their densities,

@NB

@r
¼ 4�a!�2r2

�
;

@NF

@r
¼ 4�a�r2: (17)

Therefore, the radius of the fermionic/bosonic parts of the
star can be defined as the surface containing 99% of the
corresponding particles.

A. Boson and fermion stars

As a basic test of our initial data implementation we
compare our equilibrium configurations with previously
published results for isolated boson stars and fermion
stars, which are the limits of our system of equations
when �c ! 0 and �c ! 0, respectively.

Figure 1 shows the total mass MT of boson stars and
fermion stars as a function of the corresponding radius R99.
In agreement with the results of previous works, we have
found that the maximum mass Mmax (i.e., the value of the
mass that separates the stable MT <Mmax from the un-
stable MT >Mmax configurations) in the case of boson
stars is Mmax ¼ 0:633, whereas for fermionic stars is
Mmax ¼ 1:637 with � ¼ 2 and K ¼ 100.

B. Mixed boson-fermion stars

As we mentioned before, the equilibrium configurations
of mixed boson-fermion stars are more involved and de-
pend on the two parameters �c and �c. The total mass of
the stars as a function of these parameters is plotted in
Fig. 2, showing that the maximum mass is obtained for the
isolated neutron star case (i.e., when �c ¼ 0). This is a

direct consequence of our choice of the parameters
fK;�g in the equation of state, that sets the scale and the
compactness of the mixed stars. With the current choice,
the stars will be composed predominantly by fermions,
which can produce stars with much higher compactness
than boson stars.
The profiles of the different nontrivial fields for a rep-

resentative case are plotted in Fig. 3, which clearly satisfy
the regularity conditions at the origin and asymptotic flat-
ness. The presence of the fermionic fluid produces a deeper
gravitational potential than the one produced solely by
the boson star, therefore contracting the bosonic compo-
nent to a smaller radius, comparable to the one of the
fermionic matter.
For a fixed value of the total mass MT , we find that the

number of bosons NB increases for �c � 0, reaches a
maximum, and then decreases. Notice that since the total
mass is kept fixed, the central density �c must change as
we vary �c. The number of fermions NF has consequently
the complementary behavior to that of NB: it decreases
until reaching a minimum and then increases. The same
profiles are observed in these quantities when they are
represented as a function of �c instead of�c. This behavior
is illustrated in Fig. 4, where the number of particles is
plotted as a function of �c and �c for the configurations
with mass MT ¼ 1:4.
Following usual nomenclature, we call ‘‘critical point’’

an equilibrium fermion-boson solution—described by
fM;NF;NBg—which separates the stable from the unstable
configurations. This transition is signaled by the passing
through zero of the lowest eigenvalue in the (radial) per-
turbations of the fermion-boson star.
The stability analysis for the boson-fermion stars, which

can be performed for instance by solving the perturbed
equations of motion, is much more complicated than
for isolated boson or fermion stars (see for instance
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FIG. 1 (color online). Initial data of isolated stars.—The total
masses of the boson MB and fermion MF stars, as functions of
their corresponding radius R99. The maximum mass agrees
in each case with previous results found in the literature,
namely Mmax ¼ 0:633 for boson stars, and Mmax ¼ 1:637 for
fermion stars.
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FIG. 2 (color online). Initial data of mixed fermion-boson
stars.—The total mass of the equilibrium configurations of the
mixed stars, MT , as a function of �c and �c. The maximum
mass, for a given value of �c, is always found when �c ¼ 0,
implying thatMmax ¼ 1:637 is the maximum mass value for any
boson-fermion star in this study. The (green) solid line that
intersects the axes is the stability boundary discussed in the
text, see also Fig. 5.
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Refs. [7,8,24,25]). The main reason, as it was mentioned
before, is that these mixed configurations have two free
parameters (i.e., the central values of the scalar field �c

and the density of the perfect fluid �c) instead of just one,
so that the stability theorems for single parameter solutions
cannot be directly applied.

Instead of performing again this stability analysis, we
propose a different way to find critical configurations. Our
criterion is based on the studies made in Ref. [24], in which
the authors realized that in a critical point (i.e., where the
eigenvalue of the perturbation vanishes) there must be
a direction n such that the directional derivatives of
fM;NF;NBg vanish:

dM

dn

��������b
¼ dNB

dn

��������b
¼ dNF

dn

��������b
¼ 0; (18)

where the subscript b means the value of the quantities at
the critical point. The direction n at the stability boundary
is tangential to the level curves of constantM, NB, and NF;
formally speaking, the direction n is orthogonal to the
gradient of the functions at the boundary, n ?
rðMT;NB; NFÞjb. Therefore, the stability boundary can
be found by drawing contours onto the plane ð�c; �cÞ for
fixed values of the particle numbers, and looking for the

points where these curves meet and are tangential one to
each other; this was method used in Ref. [24].
In addition, we have noticed—as also did the authors in

Ref. [24]—that the curves of constant mass MT osculates
the curves of constant particle numbers, so that the stability
boundary can be found by surveying the behavior of
NB and NF while keeping fixed the value of MT .
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FIG. 4 (color online). Initial data of mixed fermion-boson
stars.—The number of fermions NF and bosons NB for the
equilibrium configurations as a function of �c (top panel) and
�c (middle panel) corresponding to the fixed total mass MT ¼
1:4. The position of the maximum/minimum corresponds to the
critical point which separates the stable and the unstable solu-
tions. The two configurations considered in the next section are
marked, one on each side of the maximum/minimum, corre-
sponding to NB ¼ 10%NF(z) and NB ¼ 10:7%NF ({). (Bottom
panel) The boson-to-fermion ratio, NB=NF for MT ¼ 1:4; the
critical configuration corresponds to the maximum value
NB=NF ¼ 12%.
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FIG. 3 (color online). Initial data of mixed fermion-boson
stars.—The profiles of the scalar field �ðrÞ, the fermionic
density �ðrÞ, and the conformal factor c ðrÞ for one typical
configuration corresponding to NB=NF ¼ 0:1 and MT ¼ 1:4.

DYNAMICAL EVOLUTION OF FERMION-BOSON STARS PHYSICAL REVIEW D 87, 084040 (2013)

084040-5



More precisely, a level curve of constant total mass,
MTð�c;�cÞ ¼ M0, implicitly defines the trajectory �c ¼
�cð�c;M0Þ, and then the derivatives of the particle num-
bers along this given trajectory are

dNB

d�c

¼ ½rNB � s�ð�cÞ; dNF

d�c

¼ ½rNF � s�ð�cÞ;

where sð�cÞ ¼ ð1; d�c=d�cÞ is the velocity vector of the
level curve �c ¼ �cð�c;M0Þ at any given point. As we
approach the boundary line s ! n, the derivatives in
Eq. (19) must vanish at the critical point as stated by
Eq. (18). Consequently, the equilibrium critical configura-
tions manifest themselves at the extreme values of the
number of particles when surveyed along a level curve of
constant total mass.

For the particular caseMT ¼ 1:4 displayed in Fig. 4, the
critical configuration is obtained when NB ¼ 0:163 and
NF ¼ 1:37. We can see that the critical point also corre-
sponds to a maximum of the boson-fermion ratio NB=NF,
whose critical value for MT ¼ 1:4 is NB=NF ¼ 12%. We
applied this recipe for values in the range 0:633 � MT �
1:637, where the limiting values are established by the
critical boson and fermion cases, respectively, and the
solution space of stable/unstable configurations using
this criterion is shown in Fig. 5. As noted before in
Ref. [24], stable configurations lie inside this boundary
line, where the known stable cases of boson and fermion
stars are found.

Notice that the procedure described above is quite gen-
eral, and we could have used the level curves of any of the

functions involved. For instance, if we would have taken
the level curve for NBð�c;�cÞ ¼ N0, we could have sur-
veyed MT , NF and found that the critical configuration
corresponds to their extreme values. Moreover, either �c or
�c could have been used as the independent variable, as it
is shown in Fig. 4.
Summarizing, our criterion is based on the analytical

work in Ref. [24], but takes advantage of the fact that
critical configurations appear as critical points of the par-
ticle numbers when the total mass is held fixed. The
configurations with the number of bosons (fermions) on
the left of the maximum (minimum) are stable configura-
tions, while configurations that are on the right of the
maximum (minimum) are unstable. These results are vali-
dated through numerical simulations presented in the next
section, where we describe the evolution of the two equi-
librium configurations marked with symbols in Fig. 4, one
withNB ¼ 10%NF, which is on the left of the critical ratio,
and another with NB ¼ 10:7%NF, which is on the right of
the critical ratio. Our simulations show that the first con-
figuration is stable (i.e., small perturbations are bounded,
and the system remains in the same state throughout the
entire evolution), whereas the second one is unstable and
the system changes to a different configuration.
This behavior is also shown in Fig. 5 where we can see

that the stable configuration stays in the stable region,
while the unstable configuration leaves the unstable region
and migrates towards the stable one. This suggests that the
maximum/minimum values of the aforementioned curves
may mark the existence of a critical configuration for a
given fixed mass.

IV. NUMERICAL SIMULATIONS

In this section we analyze the dynamics of mixed stars,
and address different issues like the stability of these
systems or their spectrum of normal modes. In order to
determine the properties of the mixed star equilibrium
configurations described in the previous section, we per-
formed long-term numerical evolutions of the discretized
Einstein-Klein-Gordon-Hydrodynamic system (9).
We write the system in flux conservative form

@tUþ @kF
kðUÞ ¼ SðUÞ; (19)

so that we can apply numerical algorithms based on finite
volume methods. The spatial discretization of the geome-
try and the boson fields is performed using a third order
accurate finite volume method [26], which can be viewed
as a fourth order finite difference scheme plus third order
adaptive dissipation. The dissipation coefficient is given by
the maximum propagation speed in each grid point. For the
fluid matter fields, we use a high resolution shock capturing
method with monotonic-centered limiter. The time evolu-
tion is performed through the method of lines using a
third order accurate strong stability preserving Runge-
Kutta integration scheme [31], with a Courant factor of
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FIG. 5 (color online). Initial data of mixed fermion-boson
stars.—Regions of stability/instability for the equilibrium con-
figurations of the mixed boson-fermion stars, according to the
criterion of maximum/minimum of the number of bosons/fermi-
ons for a fixed MT , see also Fig. 4 and the text for more details.
Notice that the values at the axes coincide with the fermion and
boson expected critical values, which are �c ¼ 3:2� 10�3, and
�c ¼ 7:65� 10�2, respectively. We mark the two configura-
tions corresponding to NB ¼ 10%NF(z) and NB ¼ 10:7%NF

({), whose stability is studied numerically in Figs. 6 and 8,
respectively. The first one is stable and remains in the same
state (point), whereas the second is unstable and migrates
towards the stable region.
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�t=�r ¼ 0:25 so that the Courant-Friedrichs-Levy condi-
tion dictated by the principal part of the equations is
satisfied. Most of the simulations presented in this work
have been done with a spatial resolution of �r ¼ 0:01, in a
domain with outer boundary situated at r ¼ 600. We use
maximally dissipative boundary conditions for the space-
time variables and the boson fields, and outflow boundaries
for the fluid matter fields.

A. Stable boson-fermion stars

The dynamical evolution of the mixed equilibrium so-
lution corresponding to NB ¼ 10%NF and total mass
MT ¼ 1:4, is shown in Fig. 4. Since it is located on the
left of the critical values, we expect this configuration to
be stable.

The evolution displays a combination of the behaviors
that are typical for isolated boson and fermion stars. The
scalar field oscillates with its characteristic eigenfre-
quency, while the fluid density oscillates slightly around
its initial state due to the perturbation introduced by the
numerical truncation errors. The values of the peaks of
the oscillatory scalar field �max

0 and the fluid density �0 at

the center of the star are plotted as a function of time in
the top panel of Fig. 6, while the total mass MT and the
number of particles NB, NF are displayed in the bottom
panel.
These quantities remain very close to their initial value

for many dynamical times (except for a tiny drift due to
numerical dissipation), indicating that the configuration
is indeed stable. In order to assess the robustness and
accuracy of our numerical implementation, we have
evolved this configuration with three different spatial res-
olutions �r ¼ ð0:02; 0:01; 0:005Þ, in a domain of r ¼ 600,
for t � 2000, finding that the numerical solution converges
at second order. The energy constraint (A1) is small
during the evolution and converges to zero, as it is shown
in Fig. 7.

B. Unstable boson-fermion stars

The numerical evolution of the equilibrium configura-
tion with NB ¼ 10:7%NF and MT ¼ 1:4 presents a more
dynamical behavior. This configuration lies on the right of
the critical values of the number of particles NF and NB in
Fig. 4, indicating that it is unstable under perturbations.
The initial stage of the evolution is similar to the pre-

vious case of a stable star, with the scalar field oscillating
mainly with its eigenfrequency, and the neutron star oscil-
lating due to the perturbation introduced by the inherent
numerical truncation errors. However, these oscillations
grow rapidly in amplitude, driving the dynamics to a non-
linear regime; the star is eventually migrating from the
unstable to the stable branch. The central values �0 and the
maximum �max

0 , the total mass MT , and the number of

particles NB and NF, are plotted in Fig. 8. The central
values show large variations which are damped slowly,
and finally will settle down onto a new stable configuration
with practically the same number of bosonic and fermionic
particles.
Notice however that the large oscillations in the

central density induce significant variations with the
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FIG. 6 (color online). Evolution of stable fermion-boson
stars.—The central values of the density and the (peaks of the
oscillatory) scalar field (top), and the mass and the number of
bosonic and fermionic particle (bottom). All the quantities
remain very close to their initial values, suggesting that the
star is stable against perturbations.
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same frequency in the radius of the star. The interaction of
the expanding and contracting star’s surface with the at-
mosphere (i.e., the low density fluid populating the star’s
exterior) produces an artificial small loss of the baryonic
mass during the migration that can be observed in Fig. 8.

C. Quasinormal modes of the stable stars

As it has already been mentioned, the fermion-boson
star will oscillate around its stable configuration due to the
perturbations introduced by the numerical truncation er-
rors, in a similar way as an isolated fermion or boson star.
These perturbations will excite the characteristic modes of
the mixed star, so that the oscillations will be a superposi-
tion of normal modes, each one with a characteristic
frequency.
By analyzing the central oscillations of the different

fields, and in particular, of the central density of the star,
we can study the structure of the normal modes of the
fermion-boson stars. The frequencies of the normal modes
are well known for both isolated neutron and boson stars,
but they have not been yet studied for mixed stars. The
pulsations of compact objects are of great importance for
relativistic astrophysics, because they offer the possibility
of extracting information about the star (for instance the
radius, mass, and equation of state) from the detection of
the associated gravitational waves (see Ref. [32] for a
review). Although our spherical symmetry assumption
only allows us to study radial modes (i.e., the fundamental
mode and its overtones), it is still representative to show
how these modes may change in a neutron star in the
presence of a bosonic dark matter component that couples
to fermions only through gravity.
We will restrict our analysis to a fermion-boson star

with total mass MT ¼ 1:4, and parametrize different
mixed stars by increasing the amount of bosons relative
to fermions, corresponding to the fractions NB=NF ¼
f0; 2:5; 5; 7:5; 10g%. The details of the parameters of the
stars are summarized in Table I. We have evolved for long
times t � 6000 in order to get at least 50 oscillations of the
central density, which will produce a clear spectrum with
sharp peaks in the frequency domain. The Fourier trans-
form of this quantity is shown in the top panel of Fig. 9. As
an additional check of our code, we can compare the
known frequencies of the fundamental mode and its over-
tones for a (fermion-only) neutron star (as computed either
by using perturbation theory or numerical evolutions, see

TABLE I. Properties of the fermion-boson star models used in the simulations. All the stars have a total mass MT ¼ 1:4. The
columns report: the fraction of boson particles, the central value of the scalar field �c, the central density �c, the internal frequency of
the scalar field !B, the total radius of the star RT , the number of bosonic particles NB, and the radius of the bosonic and the fermionic
components, RB and RF, respectively. Notice that the largest fraction of NB=NF for a stable configuration is reached for the maximum
value of NB and the minimum value of NF, but the precise value of the fraction depends on the value of the total mass (in the present
case we get NB=NF � 12%); larger ratios NB=NF can be obtained for smaller values of MT .

Branch NB=NFð%Þ �c �c !B RT NB RB RF

Stable 0.0 0.0 1:27� 10�3 0.0 9.10 0.0 0.0 8.55

Stable 2.5 1:33� 10�2 1:45� 10�3 0.736 8.76 0.037 6.36 8.23

Stable 5.0 2:06� 10�2 1:67� 10�3 0.718 8.39 0.073 5.96 7.88

Stable 7.5 2:80� 10�2 1:97� 10�3 0.694 7.99 0.107 5.52 7.50

Stable 10.0 3:63� 10�2 2:42� 10�3 0.661 7.49 0.141 5.02 7.08

Unstable 10.7 5:90� 10�2 5:05� 10�3 0.533 6.22 0.147 3.60 5.82
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FIG. 8 (color online). Evolution of unstable fermion-boson
stars.—Same as Fig. 6 for a star on the right of the critical
curve. The central values of the density and (the peaks of) the
scalar field depart quickly from their initial values, indicating
that the star is unstable. The evolution becomes nonlinear
and describes the migration of the star from the unstable to the
stable branch.
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for instance Ref. [33]) with the ones obtained from our
simulation for the purely fermionic case (corresponding to
the circles on the left in the bottom panel of Fig. 9). The
difference is always smaller than 1%, confirming the ac-
curacy and correctness of our results.

We now turn our attention to the boson-fermion case.
The fundamental mode, which is usually a function of the
mean density of the star, remains roughly constant except
for the largest boson fraction, for which it shifts towards
smaller frequencies. The overtones, at higher frequencies,
display more interesting features with the presence of new
quasinormal modes. The original neutron star overtones,
displayed with circles in Fig. 9, are the dominant ones for
small number of bosons. The power of these new oscilla-
tion modes increases with the boson fraction, suggesting
that their origin is the gravitational coupling with the scalar
field. The frequency of the overtones has a significant drift
towards higher values as the fraction of bosons increases.

The main features of this spectrum can be qualitatively
explained in a very simple way. The new quasinormal
modes, which were not present for isolated fermionic stars,
corresponds to the quasinormal modes of the boson star.
The oscillations in the bosonic part propagate to the fer-
mions through gravity. As the fraction of bosons increases,
so does the relative importance of the scalar field with
respect to the fluid density, producing the observed growth
in the amplitude of these modes. Consequently, the spec-
trum can be mainly understood as a superposition of
the quasinormal modes of the boson and the neutron star.
The drift in the frequencies is an effect of the change
in radius and mean density of the star as the fraction of
boson changes.

V. CONCLUDING REMARKS

We have studied in some detail the numerical evolution
of equilibrium configurations of mixed boson-fermion
stars. Our results confirm the existence of stable and un-
stable branches of equilibrium configurations. We also
defined a stability criterion based on the variation of the
number of bosonic and fermionic particles, for a given
fixed value of the total mass, as a function of the central
values of the scalar field amplitude and the fluid density.
This criterion states that the equilibrium configurations
located on the left of the maximum (minimum) number
of bosons (fermions) are stable, whereas the configurations
located on the right are unstable. We were able to deter-
mine the curve that separates the stable branch from the
unstable one, in the plane formed by the central values of
the scalar field �c and fluid density �c. We also verified
that the correct solutions are obtained in the limiting cases
of an isolated boson or fermionic star, by comparing with
the results of previous studies.
In order to assess the stability criterion, we performed

the numerical evolution of the fully nonlinear equations of
motion for two types of solutions. For the stable configu-
ration, the central values of the scalar field and the fermi-
onic density remain constant in time during the numerical
evolution, while the unstable star migrates to a stable
configuration by ejecting out some of the initial mass.
We also studied the structure of the normal modes and

overtones of these mixed stars by performing long term
numerical evolutions for configurations with a fixed total
mass but with different boson to fermion ratios. As ex-
pected, new oscillation modes appear in the frequency
spectrum of the stars, when compared to the fermion-
only case; the appearance of the new overtones is justified
because of the gravitational coupling of the fermionic
perfect fluid with the scalar field, which has its own oscil-
lation modes.
As we mentioned before, an accurate classification of

the properties of boson-fermion stars is necessary in order
to investigate the possible existence of bosons trapped
inside, for instance, in neutron stars. One possible
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FIG. 9 (color online). Normal modes of the fermion-boson
stars.—(Top) Fourier spectrum of the central value of the fluid
density �0 for several stable configuration with NB=NF ¼
f0; 2:5; 5; 7:5; 10g% and MT ¼ 1:4. (Bottom) Frequencies corre-
sponding to the first, second, and third modes of the isolated
neutron star, as a function of the boson fraction. Notice the
appearance of new oscillation modes, not present for an isolated
neutron star. See the text for more details.
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indication of such a phenomenon would be the shift in
frequency and the presence of new modes in the vibration
spectrum of the stars.

Another case of astrophysical interest is the possible
existence of bosonic dark matter in galactic halos, an idea
that has drawn some attention in the specialized literature
in recent years [23,34–44]. This type of models refers to
the other extreme case, in which the star is dominated by
the bosonic component. In the context of galaxies, these
mixed fermion-boson stars could model the galaxy halo
with a boson star, and the gas with a fermionic compo-
nent. Our present results indicate that a boson-dominated
galaxy halo must keep its stability features after the
inclusion of fermions; however, more work is needed
to determine the properties of the equilibrium configura-
tion that may be detected through astrophysical observa-
tions. This is work in progress that we expect to report
elsewhere.
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APPENDIX A: THE EVOLUTION SYSTEM
OF EQUATIONS

We consider the Z3 formulation of the Einstein equa-
tions in spherical symmetry [23] as the evolution system
for the spacetime geometry. The system is regularized at
the origin using the following transformation of the mo-
mentum constraint:

~Zr ¼ Zr þ 1

4r

�
1� grr

g��

�
;

which ensures the cross cancellation of the factors 1=r
in the fluxes, and 1=r2 in the sources. The sources still
have terms like 1=r times other variables that contain
radial derivatives of the metric coefficients. However,
these terms do not create problems at r ! 0, as the
radial derivatives of any differentiable function
must vanish at the origin. Thus, the equations of
motion read

@tAr ¼ �@r½�trK�; (A1a)

@tDrr
r ¼ �@r½�Kr

r�; (A1b)

@tDr�
� ¼ �@r½�K�

��; (A1c)

@tZr ¼ �@r½2�K�
�� þ 2�

�
ðKr

r � K�
�Þ
�
Dr�

� þ 1

r

�
� Kr

r

�
Zr þ 1

4r

�
1� grr

g��

��

þ ArK�
� þ 1

4r

grr
g��

ðK�
� � Kr

rÞ � 4�Sr

�
; (A1d)

@tKr
r ¼ �@r

�
�grr

�
Ar þ 2

3
Dr�

� � 4

3
Zr

��
þ �

�
ðKr

rÞ2 þ 2

3
K�

�ðKr
r � K�

�Þ � grrDrr
rAr

þ 1

3r
½grrðDrr

r � Ar � 4ZrÞ þ g��ðDr�
� � ArÞ� þ 2
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grr
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1� grr

g��

��
ð2Drr
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3
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�
Dr�
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��
; (A1e)

@tK�
� ¼ �@r

�
�grr
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� 1
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þ �

�
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6
� Sr
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2
þ S�

�

��
; (A1f)

where Zr is the vector associated with the Z3 formulation, and trK ¼ Kr
r þ 2K�

� is the trace of the extrinsic curvature. In
Sec. II we defined the matter terms of the fermionic fluid fD;U; ~Sr; ~Sr

r; ~S�
�g, and the auxiliary variables fAr;Drr

r; Dr�
�g

which we introduced in order to reduce the full system in Eqs. (9), (8), and (A1), to first order in space and time.
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The total matter terms are given by

	 ¼ 1

2
ðgrr��

t �t þ grr��
r�r þ Vð�ÞÞ þU; (A2a)

Sr ¼ � 1

2
½ ffiffiffiffiffiffiffi
grr

p
��

t �r þ
ffiffiffiffiffiffiffi
grr

p
�t�

�
r� þ ~Sr; (A2b)

Sr
r ¼ 1

2
½grr��

t �t þ grr��
r�r � Vð�Þ� þ ~Sr

r; (A2c)

S�
� ¼ 1

2
½grr��

t �t � grr��
r�r � Vð�Þ� þ ~S�

�: (A2d)

The total mass of the mixed stars is calculated from the
Arnowitt-Deser-Misner (ADM) mass defined as

MADM ¼ 1

16�
lim
r!1

Z
gpq½@qgpk � @kgpq�NkdS;

where Nr ¼ ffiffiffiffiffiffiffi
grr

p

r

r is the unit outward normal to the
sphere. In our coordinates, it can be translated into

MADM ¼ �r2
ffiffiffiffiffiffiffi
grr

p
Dgr�

�: (A3)

For stable stars, we also use the Tolman mass defined as

MT ¼
Z
ðT0

0 � Ti
iÞ ffiffiffiffiffiffiffi�g
p

dx3

¼ 4�
Z

r2�
ffiffiffiffiffiffiffi
grr

p
g��ð	þ Sr

r þ 2S�
�Þdr: (A4)

On the other hand, the number of fermionic particles
associated to the mass of the fermionic fluid is given by

NF ¼ 4�
Z

r2
ffiffiffiffiffiffiffi
grr

p
g��ð�WÞdr: (A5)

The number of bosonic particles can be associated to the
Noether charge [1] of the scalar field, which can be com-
puted as

NB ¼ 4�
Z r2

2i�

ffiffiffiffiffiffiffi
grr

p
g��ð��@t���@t�

�Þdr: (A6)

The Hamiltonian constraint takes the form

H ¼ 2

grr

�
�2@iDr�

� � 3Dr�
�

�
Dr�

� þ 2

r

�

þ grrK�
�ðK�

� þ 2Kr
rÞ � ð1� grrg

��Þ
r2

þ 2Drr
r

�
1

r
þDr�

�

�
� 8�grr	

�
: (A7)

APPENDIX B: THE TRANSFORMATION FROM
CONSERVED TO PRIMITIVE QUANTITIES

From the definition of the conserved quantities

D ¼ �0W; U ¼ hW2 � P; ~Sr ¼ hW2vr; (B1)

one obtains the primitives f�; P; vr; �g after each time
integration of the equations of motion. This is not trivial,
mainly because the enthalpy h ¼ �ð1þ �Þ þ P, and the
Lorentz factorW ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� vrvr

p
, are defined as functions

of the primitives.
We are adopting a recovery procedure which consists in

the following steps:
(1) From the first thermodynamics law for adiabatic

processes, it follows that

P ¼ ð�� 1Þ��: (B2)

Substituting the definition of the enthalpy in the
equation of state above, we write the pressure as a
function of the conserved quantities and the un-
known variable x ¼ hW2.

(2) Using the previous step, the definition of U
becomes

U ¼ hW2 � P ¼ hW2 � ð�� 1Þ
�

ðh� �Þ

¼ hW2

�
1� �� 1

�

�
þ �� 1

�
�; (B3)

where � is the adiabatic index corresponding to an
ideal gas.

(3) Then, the function

fðxÞ ¼
�
1� �� 1

W2�

�
xþDð�� 1Þ

W�
�U (B4)

must vanish for the physical solutions. The roots of
the function fðxÞ ¼ 0 can be found numerically by
means of an iterative Newton-Raphson solver, so
that the solution at the nþ 1 iteration can be com-
puted as

xnþ1 ¼ xn � fðxnÞ
f0ðxnÞ ; (B5)

where f0ðxnÞ is the derivative of the function fðxnÞ.
The initial guess for the unknown x is given in the
previous time step.

(4) After each step of the Newton-Raphson solver, we
update the values of the fluid primitives as

� ¼ D=W; P ¼ x�U; vr ¼ ~Sr=x; (B6)

where W2 ¼ x2=ðx2 � ~Sr ~SrÞ.
(5) Iterate steps 3 and 4 until the difference between two

successive values of x falls below a given threshold
value of the order of 10�10.
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