Faster text search with hybrid indexing

Trova and CQL Search, powered
by PostgreSQL and Lucene

The Trova and CQL Search services at The Language Archive ﬂ Member ofgroup 7

allow fast searching for exact (sub-)strings and (at lower speed)
even regular expressions. Queries have to return full result lists
and statistics on demand, while still showing the first page of
results quickly. An elaborate combination of indexes is used to
achieve sufficient search performance even for large corpora.

Our current search engine uses a PostgreSQL database and
Lucene index in parallel: The database contains all annotation
text and file and tier metadata. Tier metadata includes hashed
fingerprints of the text content and information about access
rights and the DAG tree-like structure in which annotation files
are arranged to corpora.

The Lucene index contains all possible substrings of text of each
tier up to a given length (e.g. 5-grams) and some tier metadata.
There is no position information: Tiers containing “eleph” “lepha”
“‘ephan” and “phant® may or may not contain “elephant®. This
index helps to quickly find a set with ALL tiers where elephants
can be found, including some (but not many) which do not
actually contain that search term.

Together, both index providers allow to narrow down the set of
candidate tiers for a given query a lot. Only those are then
scanned in full text, with support for complex queries, regular
expressions etc. The search result is not biased by indexing
normalizations, index-unfriendly queries are only slower.

Benchmark example: One small
server and 110,000,000 strings

The search engine was tested on an older quad core (2 *
Opteron 275 at 2.2 GHz) server with 12 GB of RAM (6 * 2 GB
PC2700 ECC) and a small SCSI RAID10 (4 harddisks 10,000
rpm). Size of the test corpus was 100k files with 110M
annotations in 700k tiers, a total of 1.8G chars.

At the start of the search session, it takes less than 10 seconds
to gather all file metadata from a PostgreSQL DB and Lucene
index. Creating those by parsing all annotation files and reading
metadata from another database takes less than 3 hours on the
same machine. Most frequently used file formats are ELAN EAF,
CHILDES CHAT and flat text. The engine also supports Shoe- or
Toolbox, HTML, XML, CSV, SubRip SRT, Praat TextGrid, PDF.

Overview of query processing

User Eleonora
Member of group 5

Root node

Corpus selected Sign Languages

as search domain
Data from Africa

Group 23

ly leaf
only leaf Unrestricted
access leaf

Group 5
only leaf

Raw tier collection, created once when user logs in / picks corpus
201 401:... Leaf and tier information shown to the user:
202:.. 402:.. How many files in which format? How many

Lucene: Tier name, type, node ID, tier ID,1-grams,
2-grams, 3-grams, 4-grams... (max N configurable,
e.g. 5 - we call the biggest N-gram size 'content’)

PostgreSQL: Tier name, type, node ID, tier ID, parent
(optional), format, size, time alignment flag (all, no or
some annotations), annotator, participant, language bits,
length bits, unigram bits, bigram bits, trigram bits, fourgram
bits (fixed, bit allocation only configurable at compile time)

Leaf properties: Access rights (free, one specific group),
graph path, node ID, file or web location, name...

Receive query

301 403: ... tiers of which type? How many

SQL

~

@ngth: 8 characters, substring, tier length 8..infinite
(a bit field for each tier tells whether it contains any
annotations of exact length 0, 1, 2, ..., 31 and any
annotations in 32 length ranges in log-style bins, e.g.
one for 48 to 51 chars or one for 112 to 127 chars)

language: tier must contain at least some ASCII text
(when a query contains accents, Cyrillic, Japanese...
then ASClI-only tiers can be skipped as not applicable.
Classification uses a fixed list of Unicode regions)

unigrams: tier must contain atleast AEH LN P and T
(hashing to 32 fingerprint ignores case for A-Z, other
chars e.g. correspond to bit codepoint modulo 32)

bigrams: tier must contain at least h2(EL) h2(LE) h2(EP)
h2(PH) h2(HA) h2(AN) and h2(NT) where h2() is a hash
function spreading all possible bigrams over a fixed set
of 729 bits, after converting input text to lower case.

trigrams: tier must contain at least h3(ELE) h3(LEP)
h3(EPH) h3(PHA) h3(HAN) and h3(ANT)... (1728 bits)

fourgrams: tier must contain at least h4(ELEP) h4(LEPH)

Q‘(EPHA) h4(PHAN) and h4(HANT)... (1979 bits)

Candidate tiers: 201, 202, 401, 403
(leaf 3 and thus tier 301 not in ELAN format;
more false positives compared to Lucene)

~.v

"Find substring Elephant in
ELAN files in this corpus!"

Optional: Return only hits in tiers of some type,
in annotations of min/max duration X/Y, hits in
specific position relative to hits for other terms...
(using tier metadata and/or recursive search)

Lucene

/~ 2

Search term is longer than max available N of
N-gram indexes, so we use overlapping parts:

Tier must contain at least the exact (but case
insensitive) N-grams ELEPH LEPHA EPHAN
and PHANT, else it cannot contain Elephant.

Still, false positives are a possibility, e.g. The
elephague saw ephangel follow phantomas.

For max N of 4, 5, 6, false positives are rare:
Checking actual overlap position would take

more time than searching in a few extra tiers.

Candidate tiers: 202, 401, 402, 502, ...
(filtering mainly by search term, fewer and
different false positives compared to SQL)

Combine

Combine candidate lists: Tier ID are
shared between indexes, node ID can
be computed from tier ID - fast merge

Candidate tiers: 202, 401 . X
SQL Present hits in context

Find substring Elephant in all annotations of tiers
202 and 401 (full text search, not restricted by any
normalization steps, chunking... - no full text index,
but N threads share the work of scanning few tiers)

Four hits: annotations 3623, 6467 6467 and 6495

3623 They have nice tea at cafe the Elephant

(node 2, tier name Edgar, tier 202, ...)

6467 Elephant Joe shouted: Elephants are not pink!
(node 4, tier name Julius_gloss, tier 401, ...)

6467 Elephant Joe shouted: Elephants are not pink!
(node 4, tier name Julius_gloss, tier 401, ...)

6495 Elephant Jane was glad that the pink elephants
had invited her to submit a chapter for their biology book.
(node 4, tier name Julius_gloss, tier 401, ...)

References

Made with Inkscape - Cliparts: Open Clipart Library

Stehouwer, H., & Auer, E. (2011). Unlocking language archives using search. In
C. Vertan, M. Slavcheva, P. Osenova, & S. Piperidis (Eds.), Proceedings of the
Workshop on Language Technologies for Digital Humanities and Cultural Heritage,
Hissar, Bulgaria, 16 September 2011 (pp. 19-26). Shoumen, Bulgaria: Incoma Ltd.
http://pubman.mpdl.mpg.de/pubman/item/escidoc:1217575:7

Compared to older engine versions, session setup is a few
seconds faster now. Search can be focused on (one or more,
also checking access rights) smaller subcorpora, which is of
course a lot faster for both setup and search. The test corpus is

comparable to several bigger real corpora or one “small” archive. Stehouwer, H., Durco, M., Auer, E., & Broeder, D. (2012). Federated search:

Towards a common search infrastructure. In N. Calzolari (Ed.), Proceedings of
the Eighth International Conference on Language Resources and Evaluation (LREC
2012), Istanbul, May 23rd-25th, 2012 (pp. 3255-3259). European Language
Resources Association (ELRA).
http://pubman.mpdl.mpg.de/pubman/item/escidoc:1478387:2

We ran queries for 10 medium frequency (991 - 1000" most
frequent) words of 7 languages (D, EN, NL, FR, RU, ES, TR) as
well as 20 common Japanese words and 10 manually chosen
keywords, e.g. elephants in different languages. The average
time to return ALL hits was less than 10 seconds (with 2 or 3
threads, 12 seconds single-threaded) compared to circa 28
seconds without Lucene support. A first page of results was even
available after on average only 1.4 seconds, already providing on
average 90+ hits. Without Lucene, this task took circa 5 seconds.

Contact: eric.auer@mpi.nl




