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Abstract. The lowest singlet-triplet pair of states of the two-electron two-
dimensional quantum dots and the corresponding pair of states of the two-dimensional
helium-like systems have been studied by the full configuration interaction method
focusing on the origin of the first Hund rule. The one- and two-electron components
of the singlet-triplet energy gap show distinct trends for the systems studied in the
regime of small nuclear charge Zn or of small confinement strength ω. The (0σg)(1πu)
singlet state in quantum dots is characterized by a larger electron repulsion than its
counterpart triplet state for all values of ω while this relationship gets inverted for
the corresponding (1s)(2p) singlet-triplet pair of He-like systems for small values of
Zn, such as Zn = 2 or 3. The internal part of the full configuration interaction wave
functions has been extracted and visualised in the three-dimensional internal space
(r1,r2,φ−) to rationalize the observed trends. The singlet probability density of He-
like systems located originally near the Fermi holes is shown to migrate into regions
where either r1 or r2 are large while the corresponding singlet probability of quantum
dots stays close to the Fermi holes. Their differences and their observed trends are
rationalized on the basis of the structure of the genuine and conjugate Fermi holes.
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1. Introduction

The origin of Hund’s first multiplicity rule concerning the spin multiplicity [1, 2, 3, 4, 5,

6, 7, 8] has been a source of ongoing theoretical studies since the beginning of quantum
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mechanics until today [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]

(see Ref. [27] for an excellent summary of relevant studies prior to 2010). A significant

part of earlier efforts focused on singly-excited states of helium and of helium-like

ions representing the simplest examples to which Hund’s multiplicity rule applies: A

given orbital configuration (1s)(nl) where n and l denote the principle and the angular

momentum quantum numbers, respectively, gives rise to only one singlet-triplet pair of

states and according to Hund’s rule the triplet state is always lower in energy than the

singlet state [see Ref. [28] for cases of double-excitation configurations, such as (2p)(2p),

(2p)(3d), etc., that involve more than one singlet-triplet pair].

Even for this simplest example the reasons for the triplet state to have a lower energy

than the corresponding singlet state are far from being straightforward. One of the

major puzzling features is the fact that the triplet state of the helium atom has a larger

electron repulsion energy than the corresponding singlet state [10, 11], in contrast to the

traditional interpretation based on Slater’s paper of 1929 [9]. This implies that contrary

to the traditional interpretation the reason for the triplet to have a lower energy is not

due to a smaller electron repulsion but must be ascribed to a more compact electron

density distribution in the triplet state relative to the singlet state. This then results in

a much larger energy decrease due to the nuclear attraction potential that compensates

the energy increase due to the electron repulsion [29, 18, 19, 20, 12, 14, 15, 16, 17].

This surprising observation has given rise to another interesting and more fundamental

question, namely, why the triplet state has a more compact electron density distribution

than the corresponding singlet state in the first place. To rationalize the compactness

of triplet electrons Boyd introduced the well-known reduced nuclear screening model

[24, 20] involving a significant angular interelectronic correlation. Recently, however,

this model has been challenged by Sajeev et al. [30] who showed that such an angular

correlation that would be essential for an electron in an outer orbital in the triplet

state to feel a larger effective nuclear charge and to come closer to the nucleus than

the electrons in the singlet state is insignificant. This controversial situation has been

recently unraveled by the introduction of a new concept, namely that of the so called

conjugate Fermi hole [31].

Our earlier study [32] also investigated the origin of Hund’s multiplicity rule in two-

electron artificial atoms or quantum dots. Although the confining potential in these

systems is not of Coulomb-type as in natural atoms but more like that of a harmonic

oscillator [33] their energy levels are known to obey Hund’s multiplicity rule as well

[34, 35, 30, 32]. Furthermore, due to the harmonic nature of the confining potential the

Hamiltonian of quantum dots can be separated into the center-of-mass and the internal

degrees of freedom. This, together with a (quasi) two-dimensional nature of these

systems, allows a detailed analysis of the internal wave functions that fully accounts

for the correlation between the two electrons. It has been shown [34, 31] that similarly

as in the case of the helium atom the electron density distribution in the triplet state

is indeed more compact than that in the corresponding singlet state yet, in contrast to

the helium case, the electron repulsion energy of the triplet state never exceeds that of
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the corresponding singlet state.

Motivated by these earlier studies on He-like systems and quantum dots, the present

study focuses on the origin of their differences and clarifies the mechanism why for

quantum dots the electron repulsion energy is always smaller in the triplet state than in

the corresponding singlet state while this relationship is reversed in the He-like systems

with small nuclear charge Zn. In this regard it is the concept of genuine and conjugate

Fermi holes as well as their structure in the internal space that represents the key to an

understanding of the above mentioned differences.

2. THEORETICAL MODEL AND COMPUTATIONAL METHOD

In the present study the spatial degrees of freedom of each of the two electrons in

both the helium atom and in the quantum dot are confined to a two-dimensional xy

plane. Our previous study showed that this two-dimensional helium model reproduces

all the characteristic features of the energy spectrum of the real 3D helium atom [31].

By reducing the dimensionality and thus the number of the degrees of freedom the

internal part of the wave functions can be easily visualised. This allows an unambiguous

manifestation of the origin of the Hund rule.

The electronic Hamiltonian for the two-dimensional helium-like systems and that

for the two-electron two-dimensional quantum dot have the following form, respectively,

HZ = − 1

2

2∑
i=1

∇2
i −

2∑
i=1

Zn

|~ri| +
1

|~r1 − ~r2| , (1)

Hω = − 1

2

2∑
i=1

∇2
i +

2∑
i=1

1

2
ω2 |~ri|2 +

1

|~r1 − ~r2| , (2)

where ~ri = (xi, yi) [= ri(cos φi, sin φi)] for i = 1, 2, while Zn and ω represent the nuclear

charge of the helium-like systems and the strength of confinement of the quantum dot.

The one-electron part of both Hamiltonians has an analytical solution which yields the

following eigenenergies

E0
Z =

2∑
i=1

−Z2
n

2(ni + 1
2
)2

, (3)

E0
ω =

2∑
i=1

ω(vi +
1

2
), (4)

with ni and vi (i = 1, 2) denoting the principal and the harmonic-oscillator quatum

numbers. Therefore, the energies of the Hamiltonians (1) and (2) are scaled by Z2
n and

ω. By introducing the Zn- and ω-scaled coordinates ~si ≡ Zn~ri and ~ti ≡
√

ω~ri (i = 1,2)

for the He-like and the quantum dot systems the Hamiltonians (1) and (2) take the form

HZ/Z2
n = − 1

2

2∑
i=1

∇2
s,i −

2∑
i=1

1

|~si| +
1

Zn |~s1 − ~s2| , (5)
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Table 1. Parameters for the atomic basis set of two-dimensional helium-like systems
in Zn-scaled coordinates.

l ml ζmax,l ζmin,l

0 20 800.0 0.001

1 10 3.0 0.001

2 7 1.0 0.003

Hω/ω = − 1

2

2∑
i=1

∇2
t,i +

2∑
i=1

1

2

∣∣~ti
∣∣2 +

1√
ω

∣∣~t1 − ~t2
∣∣ . (6)

These equations show that in contrast to the two-electron potential, the one-electron

part of the scaled Hamiltonians (5) and (6) does not depend on Zn and ω, implying that

the effect of the electron-electron interaction on the eigenenergies and wave functions

for different Zn and ω can be clearly seen using these scaled coordinates.

Two-dimensional Cartesian Gaussian-type functions of the form

χ~a,ζ(~r) = xaxyay exp[−ζ(x2 + y2)] (7)

have been used to expand the one-electron orbitals for the scaled Hamiltonians (5) and

(6). Following the quantum chemical convention these functions are classified as s-, p-,

d-type, etc. for l = ax + ay = 0, 1, 2, etc., respectively. A [20s10p7d] basis set has

been used for He-like systems while a [1s1p1d1f1g1h1i] basis set with large angular

momentum functions has been used for quantum dots [36, 37, 38, 39, 40].

The exponents of the Gaussian functions for the He-like systems have been

generated by relying on the geometrical formula [41, 42] (see also Ref. [43] for further

information)

ζj,l = αlβ
j−1
l , j = 1, 2, · · · , ml. (8)

The minimum and maximum exponents, ζmin,l and ζmax,l, and the number of components

ml for each l-shell are listed in Table 1. In the case of quantum dots all exponents have

been chosen as one half of the strength of confinement [36, 37, 38], i.e., ζ = 0.5 in the

present case, since the strength of confinement for a harmonic oscillator in the ω-scaled

Hamiltonian (6) is unity.

The eigenfunctions and the corresponding energies for the relevant states have been

obtained by diagonalising the full configuration interaction (FCI) Hamiltonian matrix.

The eigenenergies of the unscaled original Hamiltonians of Eqs. (1) and (2) can then be

obtained by multiplying the calculated ernergies by Z2
n and ω, respectively. It should be

noted that the singlet-triplet energy gap for the singly-excited states of He-like systems

can be produced already at the Hartree-Fock level [10, 11] suggesting that the electron

correlation is not essential for engendering Hund’s rule for these systems. However, we

have chosen FCI here since, apart from its higher reliability relative to the Hartree-Fock
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method, the electron correlation is much more important in the case of quantum dots

as well as, generally, for two-dimensional systems relative to thee-dimensional systems.

The internal space for the two-dimensional two-electron systems with circular

symmetry can be described by two radial coordinates and an interelectron angle, i.e. si

≡ |~si| (i = 1,2) and φ− ≡ (φ1− φ2)/2 for He-like systems and ti ≡ |~ti| (i = 1,2) and φ−
for quantum dots. The domains for these coordinates are 0 ≤ si, ti < ∞ (i = 1,2) and

−π ≤ φ− ≤ π. The probability densities in each of these internal spaces are obtained

from the FCI wave functions by integrating out the coordinate of the complementary

angle φ+ ≡ (φ1 + φ2)/2 that is associated with the total orbital angular momentum L.

This two-body correlation function in the internal space is called hereafter the internal

wave functions for simplicity. The details of this procedure may be found in a previous

paper [31].

3. Results and discussion

3.1. Singlet-triplet energy differences

The lowest singlet-triplet pair of states of the two-dimensional two-electron quantum

dot to which Hund’s multiplicity rule applies is the 1Πu-
3Πu pair of states [32]. This

Hund’s pair has the primary configuration (0σg)(1πu) where the number in front of the

orbital symmetry label represents the number of nodes of the orbital. For example, the

0σg orbital has no node while the 1πu orbital has one angular node corresponding to its

angular momentum l = 1. Thus this pair of states of the quantum dot corresponds to

the (1s)(2p) singlet-triplet pair of the He-like systems (we note that in a rigorous sense

the orbitals of two-dimensional He-like systems should be labeled by the D∞,h point

group. However, for the sake of convenience we employ the conventional labeling for the

He-like systems in order to relate the present results to the corresponding 3D systems).

It may also be interesting to study the lowest Σ singlet-triplet pair of states of quantum

dots that corresponds to the (1s)(2s) pair of the He-like systems. However, the lowest

singlet Σ state has a mixed character involving a singly-excited configuration (0σg)(2σg)

and a doubly-excited configuration (1πu)(1πu). This happens in quantum dots since the

zero-order energies for these two configurations exactly coincide with each other due to

the harmonic nature of the confining potential. Therefore, it is difficult to make a clear

comparison for this state between He-like systems and quantum dots where the singly-

excited states of the He-like systems are dominated purely by a single configuration of

(1s)(nl). Therefore, the following analysis focuses mainly on the 1Πu-
3Πu and 1P -3P

pairs of states.

In our previous work [32, 31] the singlet-triplet energy gap for these Hund pairs

as well as its partitioning into the one-electron and two-electron components have been

examined for different Zn and ω values, respectively. The results that are extended by

the present calculations to larger Zn and smaller ω values are summarised in Fig. 1

where the difference in the total, one-electron and two-electron energies between the
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Figure 1. (Colour online) Energy differences (in hartree) between the lowest P singlet-
triplet pair of states of He-like systems (upper figure) and of quantum dots (lower
figure) for different nuclear charges Zn and different strengths of confinement ω. The
difference in the total, one-electron and two-electron energies is denoted by ∆Etot,
∆Eone and ∆Etwo, respectively.

singlet and triplet states, i.e., ∆Etot ≡ 1Etot− 3Etot, ∆Eone ≡ 1Eone− 3Eone, and ∆Etwo

≡ 1Etwo − 3Etwo, respectively, are plotted as a function of Zn and ω. Clearly, ∆Etot

= ∆Eone + ∆Etwo. In all cases the energies of the scaled Hamiltonians, HZ/Z2
n and

Hω/ω, are plotted so that the results for different values of Zn and ω, respectively, can

be compared on the same energy scale [see Eqs. (5) and (6)].

Figure 1 shows that for large Zn and ω values, such as for example Zn = 20

and ω = 10, respectively, the singlet-triplet energy gap ∆Etot is dominated by the

two-electron contribution ∆Etwo, which is apparently in accord with the traditional

interpretation based on Slater’s paper [9]. However, with decreasing Zn and ω the two-

electron contribution becomes eventually smaller than the one-electron contribution

which steadily increases. This is due to the so-called orbital relaxation [10, 11, 32]: As

implied by Eqs. (5) and (6) the electron-electron interaction becomes stronger relative

to the one-electron component as Zn and ω decrease, respectively. Therefore, when the
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Figure 2. (Colour online) Kinetic energy and one-electron potential energy
contributions to the singlet-triplet energy gap for the lowest P singlet-triplet pair
of states of He-like systems (upper figure) and of quantum dots (lower figure) for
different nuclear charges Zn and strengths of confinement ω. The difference in the
kinetic and one-electron potential energies is labeled by ∆ET and ∆EV, respectively,
while the symbols ∆Eone and ∆Etwo refer, respectively, to the difference in the one-
and two-electron energies taken from Fig. 1.

Hartree-Fock orbitals are independently optimized for the singlet and triplet states the

resultant orbitals for different spin states become more and more distinct for smaller Zn

and ω resulting in a larger difference of the one-electron energy as is evidenced by the

increase of ∆Eone in Fig. 1.

For later discussion it is useful to define regimes of Zn and ω where the traditional

interpretation is valid and where it breaks down. As already observed in Fig. 1 the

traditional interpretation seems to be working in the regime of large Zn and ω where

the difference in the electron repulsion energy ∆Etwo dominates the singlet-triplet energy

gap. As suggested by Katriel [44], it is instructive to separate the one-electron energy

component ∆Eone into its kinetic and one-electron potential components. The result

is displayed in Fig. 2 where the symbols ∆ET and ∆EV represent the difference in the

kinetic and one-electron potential energies, respectively, between the singlet and triplet
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Figure 3. (Colour online) Radial electron density distributions of the lowest P

singlet-triplet pair of states of He-like systems (upper figure) and of quantum dots
(lower figure) for Zn = 2, 5 and 20 and ω = 0.1, 1.0 and 10. The singlet and
triplet densities are colored green and red (light-grey and dark-grey in black-and-white
version), respectively. The Zn-scaled s coordinate is used for He-like systems while the
ω-scaled t coordinate is used for quantum dots (see the text for details).

states. In the same figure the one- and two-electron energy components ∆Eone and

∆Etwo are plotted for comparison. The results for He-like systems shows that the nuclear

attraction energy component, ∆EV, is larger than the difference in the electron repulsion

energy ∆Etwo even at large Zn values such as Zn = 20. Yet, this positive contribution

is almost canceled by the negative contribution of the kinetic energy component ∆ET

and results in a very small one-electron contribution at large Zn. Therefore, it can be

concluded that the traditional interpretation that ascribes the singlet-triplet energy gap

solely to the two-electron contribution fails even in the large Zn regime. On the other

hand, the result for quantum dots in the large ω regime shows a one-electron potential

contribution ∆EV to be much smaller than the two-electron energy component ∆Etwo,

in contrast to the He-like systems. Therefore, in case of the quantum dots the traditional

interpretation ’works’ in the large ω regime.
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An examination of the one-electron density distribution of the relevant states helps

to simplify the argument: In Figs. 3(a) and (b) the radial electron density distribution

of the (1s)(2p) and (0σg)(1πu) singlet-triplet pairs of states obtained from the FCI wave

functions is plotted, respectively, for Zn = 2, 5 and 20 and ω = 0.1, 1.0 and 10. In these

figures the Zn- and ω-scaled radial coordinates s and t are used, respectively, and the

electron densities are plotted in a logarithmic scale so that small differences between

the states are clearly visible. For small and medium values of Zn and ω, i.e., Zn =

2 and 5, and ω = 0.1 and 1.0, the singlet and triplet densities colored green and red

(light-grey and dark-grey in black-and-white version), respectively, are distinct. This is

consistent with a significant contribution of the one-electron energy component ∆Eone

in the regime of small and medium Zn and ω as displayed in Fig. 1. For the regime

of large Zn and ω (Zn = 20 and ω = 10), however, the electron density distribution of

the singlet and triplet states almost coincide with each other. This is also consistent

with the very small one-electron contribution ∆Eone and the dominating two-electron

contribution ∆Etwo. Therefore, in He-like systems as well as in quantum dots the

difference in the electron density distribution between the singlet and triplet pair of

states agrees with the difference in the one-electron energy and thus the two-electron

energy: In the regime of large Zn and ω the small difference in the electron density

distribution gives a small difference in the one-electron energy (the two-electron energy

dominates the singlet-triplet energy gap) while for the medium and small regimes a

large difference in the electron density distributions gives rise to a large difference in

the one-electron energy (a breakdown of the traditional interpretation). On the other

hand, when the one-electron contribution ∆Eone is partitioned into its kinetic energy

and one-electron potential energy components ∆ET and ∆EV as displayed in Fig. 2,

it splits into a positive ∆EV and a negative ∆ET even in the regime of large Zn and

ω regime that result in a very small one-electron contribution. Further, in this large

Zn and ω regime the one-electron potential contribution ∆EV is larger than the two-

electron contribution ∆Etwo for He-like systems but is much smaller for quantum dots

as has been shown in Fig. 2. Therefore, based on an analysis of the energy components

it is difficult to decide whether the traditional interpretation is valid or not in the regime

of large Zn and ω. In the following discussion we adopt the convention introduced in

our previous studies [32, 31] to refer to the validity of the traditional interpretation: For

the regime of large Zn and ω regime the traditional interpretation works while it breaks

down in the regime of medium and small Zn and ω. In Sec. 3.3 the difference in the

magnitude of the one-electron potential contribution ∆EV relative to the two-electron

contribution ∆Etwo between He-like systems and quantum dots is rationalized.

Returning to the observations made in Fig. 1, a fundamental difference between He-

like systems and quantum dots is most apparent from the behavior in the regime of small

Zn and ω: In the small ω regime of quantum dots the two-electron contribution ∆Etwo

monotonically decreases with decreasing ω and approaches zero in the limit ω → 0.

In the case of He-like systems the two-electron contribution does indeed vanish around

Zn = 4 and becomes significantly negative at Zn = 2. Consequently, the two-electron
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(a) (b) (c)

Zn = 20 Zn = 5 Zn = 2

X
Y

Z

Figure 4. (Colour online) Isosurfaces of the probability density for the internal wave
functions for the (1s)(2p) singlet-triplet pair of the helium atom and helium-like ions.
Figures (a), (b) and (c) represent the singlet wave functions with Zn = 20, 5 and 2,
respectively, while figures (a’), (b’) and (c’) represent the corresponding triplet wave
functions. The square-norm of the displayed surface is 0.002. In all six figures the
right-handed Cartesian coordinates X, Y and Z, indicated in figure (a) correspond,
respectively, to Zn-adjusted internal coordinates s1, s2 and φ−. The origin of the
coordinate system is (X, Y, Z) = (0,0,0).

energy of the triplet state exceeds that of the corresponding singlet, as first reported by

Davidson [10, 11].

3.2. Internal wave functions

In order to understand the fundamental difference between He-like systems and quantum

dots observed in the previous section, namely the fact that for the latter systems the

electron repulsion energy of the triplet state stays smaller than that of the corresponding

singlet state, yet can be larger in the He-like systems for small values of Zn, we explored

the internal wave functions of both systems. The results are displayed in Figs. 4 and 5

where the internal wave functions of the (1s)(2p) singlet-triplet pair of states for He-

like systems and those of the (0σg)(1πu) pair of states for quantum dots are plotted,



Comparison of He-like atoms and quantum dots 11

(c)(b)(a)

X
Y

Z

Figure 5. (Colour online) Isosurfaces of the probability density for the internal wave
functions for the (0σg)(1πu) singlet-triplet pair of a quantum dot. Figures (a), (b)
and (c) represent the singlet wave functions with ω = 10, 1 and 0.1, respectively,
while figures (a’), (b’) and (c’) represent the corresponding triplet wave functions.
The square-norm of the displayed surface is 0.01. In all six figures the right-handed
Cartesian coordinates X, Y and Z, indicated in figure (a) correspond, respectively, to
the ω-adjusted internal coordinates t1, t2 and φ−. The origin of the coordinate system
is (X, Y, Z) = (0,0,0).

respectively, for Zn = 20, 5, and 2 and ω = 10, 1, and 0.1. The standard right-handed X,

Y , and Z coordinates that are used in these plots correspond to the Zn- and ω-adjusted

internal coordinates t1, t2 and φ− for He-like systems and s1, s2 and φ− for quantum

dots, respectively. It is remarkable that when neglecting electron-electron interaction

the internal wave functions in these scaled coordinate systems for different Zn and ω

appear to be identical with one another. Thus, it is important to examine the differences

in the probability density distributions among internal wave functions with different Zn

and ω which reveal the role of the electron repulsion potential in the nodal structure of

the internal wave functions. The domains for these internal coordinates in these figures

are 0 ≤ si ≤ 8 (i = 1, 2) and −π ≤ φ− ≤ π for Fig. 4 and 0 ≤ ti ≤ 3 (i = 1, 2) and

−π ≤ φ− ≤ π for Fig. 5 (we note that in these and the following figures the scale of the
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φ−-axis is labeled numerically in radians rather than fractions of π, e.g., π/2, etc.). The

density of the displayed surfaces has been chosen as 0.002 and 0.01 for Figs. 4 and 5,

respectively.

As shown in Fig. 1 the effect of the electron-electron interaction is very small for

large values of Zn and ω such as Zn = 20 and ω = 10, respectively, since the difference

in the one-electron energy ∆Eone between the singlet-triplet pair of states is very small,

indicating that the electron repulsion is not strong enough to induce a meaningful orbital

relaxation. Therefore, the internal wave functions (a) and (a’) in Fig. 4 for Zn = 20

and those in Fig. 5 for ω = 10 are very much alike the zeroth order internal wave

functions constructed from unoptimized (1s) and (2p) atomic orbitals without taking

electron repulsion into account. The small density areas observed as vacancies on the

surfaces at around Z = 0 for the triplet and around Z = ±π/2 for the singlet state

both for the He-like systems and quantum dots are thus inherent to the (1s)(2p) and

(0σg)(1πu) configurations. These small density areas represent the so-called Fermi holes

and conjugate Fermi holes , and are discussed in detail in the next section.

The following observations that can be made on the basis of the internal wave

functions displayed in Figs. 4 and 5 are pointed out: First, the internal wave functions

of the He-like systems have a ’wing’ like shape that extents along the X and Y axes,

while those of quantum dots have a round shape with a large probability density in the

direction of simultaneously increasing X and Y axes, i.e. in the direction parallel to the

plane defined by X = Y . This difference in the shape of the internal wave functions of

these two systems can be understood by considering the spatial extent of the relevant

one-electron orbitals: In the case of the He-like atomic systems there is a large difference

in the size of the (1s) and (2p) orbitals, since they belong to different principal shells

of n = 1 and n = 2. On the other hand, in the case of quantum dots, the (0σg) and

(1πu) orbitals also reside in different shells of vp = 0 and 1 where the polyad quantum

number vp accounts for the shell structure of the two-dimensional harmonic oscillator

[40, 45, 32, 46], yet their spatial extent is of the same order of magnitude since the

classical turning points of the harmonic oscillator along the x axis, for example, are |xc|
= 1 and

√
3 for v = 0 and 1, respectively.

In the zeroth-order approximation the orbital part of the two-electron wave

functions can be expressed as a single determinant

Ψ± =
1√
2
[ψa(~r1)ψb(~r2)± ψb(~r1)ψa(~r2)], (9)

where Ψ+ and Ψ− correspond to, respectively, the singlet and triplet state (strictly

speaking, the orbitals ψa and ψb are distinct for the singlet and triplet states when

independently optimized [10, 11], but the argument here is not affected by this

difference). As implied by Eq. (9) there are two terms contributing to the probability

density distribution, namely, ψa(~r1)ψb(~r2) and ψb(~r1)ψa(~r2). The orbital subscripts a

and b correspond to 1s and 2p for He-like systems and to 0σg and 1πu for quantum

dots. Then, the probability densities |ψ1s(~r1)ψ2p(~r2)|2 and |ψ2p(~r1)ψ1s(~r2)|2 for He-like

systems represent, respectively, the right and left ’wings’ of the internal wave functions
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as displayed in Fig. 4. The right wing has a broad distribution along the Y axis, i.e., the

radial coordinate of electron 2, but it has a narrow distribution along the X axis, i.e.,

the radial coordinate of electron 1. The shape of this right wing thus reflects the fact

that electrons 1 and 2 occupy, respectively, narrow (1s) and broad (2p) orbitals. The

same argument can be applied to the relationship between |ψ2p(~r1)ψ1s(~r2)|2 and the left

wing.

In the case of quantum dots both probability densities |ψ0σg(~r1)ψ1πu(~r2)|2 and

|ψ1πu(~r1)ψ0σg(~r2)|2 distribute along the X and Y axes to a similar extent, since the

spatial distribution of the two orbitals, ψ0σg and ψ1πu , is of the same order, in contrast

to the (1s) and (2p) orbitals of Coulomb systems. Consequently, the internal wave

functions of quantum dots have a cylindrical shape as seen in Fig. 5. These differences

in the spatial distribution of the internal wave functions for He-like systems and quantum

dots explain the above noted difference of the two-electron contribution ∆Etwo as will

be pointed out in greater detail in the next section.

Second, the internal wave functions of both singlet and triplet states for He-like

systems become broader as the nuclear charge Zn decreases. As seen in Figs. 4(b)

and 4(b’) the edge of the internal wave functions for Zn = 5 slightly touches the chosen

domain for the X and Y axes, i.e., the planes defined by X = 8 and Y = 8, respectively,

revealing an edge of a thin layer plot representing the resulting cross sections (note that

the interior of the displayed surfaces of the internal wave functions is not vacant as the

plots (b) and (b’), as well as (c) and (c’), of Fig. 4 would seem to suggest but involves a

non-zero probability density that is larger than that for the displayed surfaces. Since the

internal wave functions are represented by an isosurface of a selected value of probability

density, the graphical software does not plot points whose density is different from the

selected value). On the other hand, such cutoffs are not seen for the corresponding wave

functions (a) and (a’) for Zn = 20, while they are enhanced for the wave function (c)

for Zn = 2 relative to Zn = 5, indicating that the size of the internal wave functions

increases with decreasing value of Zn. Thus, as Zn decreases the probability density

migrates from the region where both s1 and s2 are small towards the region where

independently s1 or s2 are large. It is also noted that the singlet wave function has a

larger cross section than does the corresponding triplet one as may be seen most clearly

from Figs. 4(b) and 4(b’). This indicates that the internal wave function of the triplet

state is more compact than that of the singlet, confirming the results of earlier studies

[32, 31]. In case of quantum dots the size of the internal wave functions becomes larger

as ω decreases similarly as for He-like systems, but the difference for different ω values

is not as large as in the He-like case for different Zn.

Third, for both He-like systems and quantum dots in the regime of large Zn

and ω, respectively, the singlet and the corresponding triplet wave functions reveal

distinct nodal structures. For example, as seen in Figs. 4(a) and 4(a’) as well as in

Figs. 5(a) and 5(a’) the singlet wave functions have nodes at around Z = ±π/2 while

the corresponding triplet wave functions have a node at around Z = 0. Since the effect

of the electron repulsion potential on the internal wave functions should be very small
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in the regime of large Zn and ω, the difference in the nodal patterns between the singlet

and triplet internal wave functions must be ascribed solely to the antisymmetrization of

the wave functions as implied by Eq. (9). Further, the singlet wave function of He-like

system with Zn = 20 and that of quantum dots with ω = 10 has a large probability

density at around Z = 0 where the corresponding triplet wave function has a node. As

Zn and ω decrease, however, the singlet probability density in this region decreases as

well, leading to a clearly visible node for smaller Zn and ω [Fig. 4(c) and Fig. 5(c)]. This

is the crucial effect due to the electron repulsion potential as examined in detail in the

next section in terms of the genuine and conjugate Fermi hole concept.

3.3. Structure of the genuine and conjugate Fermi holes

In order to rationalize the observations made in the previous section, the difference

between the probability densities of the singlet and triplet internal wave functions has

been calculated and displayed in Figs. 6 and 7 for He-like systems and quantum dots,

respectively. In these figures the scaled electron-electron interaction potentials, 1
Zn|~s1−~s2|

and 1√
ω|~t1−~t2| , have been also displayed as an isosurface with the energy value chosen

as 0.5 and 3.0 a.u. for Figs. 6 and 7, respectively. It is seen that the electron-electron

interaction potential manifests itself as three striking poles peaked at Z = 0, ±π, i.e., φ−
= 0, ±π [31]. All these three internal angles correspond to the same spatial configuration

in which the two electrons are aligned on the same side of the nucleus. Therefore, when

their radial distance from the nucleus is the same, i.e., when X = Y , their electron

repulsion potential diverges, resulting in a very large energy in the vicinity of these three

poles. Since the electron repulsion potential in the scaled internal spaces is inversely

proportional to Zn and
√

ω, it becomes larger as Zn or ω decreases as seen in Figs. 6

and 7, respectively.

The plots (a) - (c) in Figs. 6 and 7 representing the difference between the

probability densities of the singlet and triplet internal wave functions are colored in blue

and red (light-grey and dark-grey in black and white version). These colors correspond,

respectively, to the regions in which the singlet state has a larger probability density

than the corresponding triplet, and vice versa. For the regime of large Zn and ω [e.g.,

case (a) in Figs. 6 and 7] the blue regions are located around the regions in which the

electron repulsion potential diverges, i.e., in regions defined by the equations X = Y

and Z = 0,±π. Therefore, these blue regions represent the so-called Fermi holes. Since

the triplet electrons are keeping away from the Fermi holes while the singlet electrons

are not, the singlet probability density in the vicinity of Fermi holes should be larger

than the triplet one resulting in the observed blue regions. On the other hand, the

red regions represent the so-called conjugate Fermi holes [31] from which the singlet

electrons are repelled while the triplet electrons are not.

The origin of the appearance of genuine and conjugate Fermi holes can thus be

briefly described as follows: For the (1s)(2p) singlet-triplet pair we can write the zero-
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(a) (b) (c)

Zn = 20 Zn = 5 Zn = 2

X
Y

Z

Figure 6. (Colour online) Difference between the probability density distributions of
the (1s)(2p) singlet state 1P and triplet state 3P of He-like systems in the internal
space: Figures (a), (b) and (c) correspond to Zn = 20, 5 and 2, respectively. The
square norm of the displayed surface is 0.001. The blue (light grey) and red (dark
grey) surfaces correspond, respectively, to regions in which the probability density of
the singlet wave function is larger than that of the triplet one and vice versa. Figures
(a’), (b’) and (c’) indicate the electron repulsion potential for the corresponding cases
whose displayed surfaces represent the area where the electron repulsion potential
energy becomes larger than 0.5 a.u.. See the caption to Fig. 4 for further details.

order wave function of Eq. (9) in the following more explicit form

Ψ± =
1√
4π

exp(iφ+) [ψ1s(r1)ψ2p(r2) exp(−iφ−)

±ψ2p(r1)ψ1s(r2) exp(iφ−)] , (10)

where only one component of the doubly-degenerate (1s)(2p) states with the orbital

angular momentum L = 1 is accounted for. Since the other component with L = −1

yields the same internal wave function, the following discussion focuses only on the

singlet-triplet pair of states with positive L. For the spatial configuration defined by

r1 = r2 and φ− = 0, ±π, that correspond to ~r1 = ~r2, and thus to the case when the

electron repulsion potential diverges, the triplet wave function Ψ− vanishes, since the

first and the second terms in the bracket of Eq. (10) cancel one another. In contrast,
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(c)(b)(a)

Figure 7. (Colour online) Difference between the probability density distributions
of the (0σg)(1πu) singlet 1P and triplet 3P states of quantum dots in the internal
space: Figures (a), (b) and (c) correspond to ω = 10, 1 and 0.1, respectively. The
square norm of the displayed surface is 0.01. The blue (light grey) and red (dark grey)
surfaces correspond, respectively, to regions in which the probability density of the
singlet wave function is larger than that of the triplet one and vice versa. Figures
(a’), (b’) and (c’) represent the electron repulsion potential for the corresponding cases
whose displayed surfaces indicate the area where the electron repulsion energy becomes
larger than 0.3 a.u.. See the caption to Fig. 5 for further details.

the singlet wave function Ψ+ has a non-zero probability density in this case. Therefore,

the singlet wave function always has larger probability densities than the corresponding

triplet one near these spatial configurations. This is the origin of the appearance of the

well-known Fermi holes as represented by the blue regions in Fig. 6(a).

Now, in turn, for the spatial configuration defined by r1 = r2 and φ− = ±π/2, the

singlet wave function Ψ− vanishes since the phase factors that are associated with the

first and the second terms in the bracket of Eq. (10) have different signs leading to a

cancellation of these terms. In the case of the triplet wave function, however, this phase

difference is compensated by the original minus sign in the bracket so that the first and

the second terms are added together resulting in a nonzero probability density. This is
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the origin of the appearance of the conjugate Fermi hole represented by red regions in

Fig. 6(a).

It must be emphasized that the appearance of the conjugate Fermi hole is not

limited to the (1s)(2p) configuration considered here but represents a general feature in

the sense that genuine and conjugate Fermi holes always appear as a pair. In short, for

the genuine and conjugate Fermi holes to appear there must exist, first of all, spatial

regions in which the distinct one-electron orbitals appearing in Eq. (9) mutually overlap.

Otherwise, there would be no energy difference between the singlet and triplet states.

Then, the genuine hole will appear inside the overlapping region where ~r1 and ~r2 coincide,

while the conjugate Fermi hole will appear inside this overlapping region where both

of ~r1 and ~r2 are close to one of the node points ~r0 of one of the orbitals, i.e., a point

satisfying ψa(~r0) = 0 or ψb(~r0) = 0, and where ~r1 and ~r2 do not coincide. Therefore,

the nodal structure of the orbitals is essential for conjugate Fermi holes. Yet, since the

orbitals ψa and ψb in Eq. (9) are distinct and orthonormal the number of nodes in these

orbitals is different which guarantees the existence of at least one node in one of these

orbitals.

We wish to emphasize that the distinction between the genuine and the conjugate

Fermi holes is essential in the limit of large nuclear charge Zn (or large ω for quantum

dots) where the singlet and triplet wave functions can be represented in terms of the

same set of one-electron orbitals (i.e., no orbital relaxation). Then, although these

singlet and triplet wave functions yield the same one-electron density distributions, the

triplet wave function has a ”hole” in the region where the electron coordinates ~r1 and

~r2 coincide (genuine Fermi hole) while the singlet wave function is also characterized by

a hole but in a different region determined by the nodal structure of the one-electron

orbitals. We refer to the latter hole in the singlet wave function as the ”conjugate Fermi

hole” since its existence is closely related to the antisymmetrization of the electronic

wave functions as for the genuine Fermi hole. A more detailed explanation of the origin

of the appearance of conjugate Fermi holes with examples other than those involving

(1s)(2p) states was given in Ref. [31].

The plots in Fig. 6 that reveal the presence of the genuine and conjugate Fermi holes

rationalize the origin of the first Hund rule in He-like systems as follows: In the plot

(a) for Zn = 20, representing the regime of large Zn values, a large singlet probability

density is found in the vicinity of regions characterized by Fermi holes where X = Y

and Z = 0 while the triplet density is rather insignificant in these regions. Since the

electron repulsion potential penetrates precisely into the Fermi holes as displayed in

Fig. 6(a’), the singlet state should involve a larger electron repulsion than the triplet

in accordance with the traditional interpretation based on the Slater’s paper [9]. As

Zn decreases to Zn = 5, however, the electron repulsion potential becomes stronger

as displayed in Fig. 6(b’). Following this increase in the electron repulsion, a sizable

portion of the singlet probability density starts to migrate out of the vicinity of the

Fermi holes as displayed in Fig. 6(b) since the singlet probability density in these

regions greatly increases the energy due to a strong electron repulsion. The fate of
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the migrated singlet probability density is then the key to the understanding of the

origin of Hund’s multiplicity rule. As displayed in Fig. 4 the internal wave functions of

He-like systems extend along the X and Y axes due to the combination of the narrow 1s

and broad 2p orbitals. Therefore, the singlet probability density that migrates out of the

original regions is forced to move in the X and Y directions. On the other hand, since

the conjugate Fermi holes surround the genuine Fermi holes as displayed in Figs. 6(a)

and 6(b) which repel the singlet electrons, the singlet probability density has to migrate

further away into the regions of either large X or large Y .

As Zn further decreases to Zn = 2, the poles of the electron repulsion potential

become so strong that most of the singlet probability density in the vicinity of the Fermi

holes has to migrate into regions where the X and Y coordinates are independently

large as seen in Fig. 6(c). Since these regions of large X or large Y are far away

from the poles of the interelectronic repulsion potential as displayed in Fig. 6(c’) the

electron repulsion energy in the singlet state decreases to the extent that it becomes

smaller than that of the corresponding triplet state. This leads to a negative value

of the two-electron contribution to the singlet-triplet energy gap ∆Etwo as observed

in Fig. 1(a). Furthermore, the migrated singlet probability density is also sufficiently

removed from the origin where the nucleus resides and the energy lowering due to the

nuclear attraction potential becomes smaller and smaller for the singlet state relative

to the corresponding triplet state as Zn decreases. This again explains the fact why the

one-electron contribution ∆Eone increases with decreasing Zn.

Historically, it has been often argued that the outer electron of the triplet state

shrinks toward the nucleus yielding a more compact electron density distribution in the

triplet state relative to the corresponding singlet state. The reason why the triplet state

was deemed to be primarily responsible here may be associated with the fact that it

has a different spin than the ground state. Since the ground state of He-like systems

is singlet, it was considered to be well behaved while the triplet states were regarded

as exceptional. However, it is actually the singlet state rather than the triplet one

that is responsible for the complexity that is associated with a proper understanding

of the origin of Hund’s multiplicity rule: For small nuclear charges Zn the electron

density distribution in the singlet state extends over a much broader region than does

the corresponding triplet distribution due to the existence of conjugate Fermi holes.

A similar argument can now be applied to the genuine and conjugate Fermi holes of

quantum dots (cf. Fig. 7). The topological structure of these holes in the large ω regime

of ω = 10 [Fig. 7(a)] is similar to that of He-like systems in the large Zn regime of Zn =

20 [Fig. 6(a)]. However, their dissimilarity becomes apparent as Zn and ω decrease: In

the case of He-like systems the singlet probability density located in the regions defined

by Fermi holes migrates towards the regions with large X or Y and appears as the left

and right ’wing’ of the probability density [Figs. 6(b) and (c)]. In the case of quantum

dots, on the other hand, the singlet probability that is located in the vicinity of the

Fermi holes does indeed migrate out of these regions as evidenced by an enlarged nodal

region at Z = 0 [Figs. 7(b) and (c)], but there appear no ’wings’ for large X and Y that
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Figure 8. (Colour online) Projection of the internal wave functions onto the XY

plane for the (1s)(2p) singlet state of He-like systems and for the (σg)(πu) singlet state
of quantum dots: Figures (a) and (a’) represent the results for He-like systems with Zn

= 20 and 2, respectively, while figures (b) and (b’) represent those for quantum dots
with ω = 10 and 0.1, respectively. The dotted diagonal line in each plot represents
the line along which the electron repulsion potential diverges. See captions to Figs. 4
and 5 for the definitions of the coordinates (s1, s2) and (t1, t2), respectively.

characterize He-like atomic systems.

To identify the location of the singlet probability density that migrated out of the

regions defined by Fermi holes in the case of quantum dots the internal wave functions

of the singlet state displayed in Fig. 5 are integrated along the angle Z coordinate and

projected onto the XY plane. The results for ω = 10 and 0.1 are plotted in Fig 8. In

the same figure the projection of the corresponding internal wave functions for He-like

systems with Zn = 20 and 2 are also shown for the sake of a comparison. The orange

dotted diagonal line (light grey in black and white version) represents the line along

which the electron repulsion potential diverges. For Zn = 20 and ω = 10 the electron

repulsion potential only slightly affects the probability density distributions since the

electron repulsion potential in these cases is very small as seen in Figs. 6(a’) and 7(a’).

As Zn and ω decrease the electron repulsion potential becomes stronger and forces the

singlet probability density in the vicinity of the Fermi holes to migrate out of these

regions. In the case of He-like systems this singlet probability density migrates along

the s1 and s2 axes [Fig. 8(a’)] as explained earlier. On the other hand, in the case of

quantum dots the singlet probability density located originally along the line t1 = t2
migrates out of this region towards both sides of this line, as evidenced by the splitting of
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the highest density area along this diagonal line [Fig. 8(b’)]. Unlike in He-like systems

the migrated singlet probability density in quantum dots is not limited to regions of

either large t1 or t2 but is spread out in a wide area where both t1 and t2 are large due

to the similarity of the spatial extent of the 0σg and 1πu orbitals. Therefore, in the case

of quantum dots the singlet probability density that is located in the vicinity of Fermi

holes does indeed avoid the line t1 = t2 where the electron repulsion potential diverges

yet still remains located in the surrounding region and thus yields a larger expectation

value of the electron repulsion potential than the corresponding triplet state.

Finally, it is worthwhile to comment on the origin of the difference between He-like

systems and quantum dots in the regime of large Zn and ω values from the viewpoint

of the magnitude of the one-electron potential energy contribution ∆EV relative to the

two-electron contribution ∆Etwo as represented in Fig. 2. As shown in Sec. 3.1, ∆EV

is larger than ∆Etwo for He-like systems but is much smaller for quantum dots. This

observation can also be rationalized on the basis of the discussion made so far in this

section: In the large Zn and ω regime the electron repulsion potential at its poles is

very small [cf. Figs. 6(a’) and 7(a’)], yet it can push a small portion of the singlet

probability density out of the Fermi holes. In the case of He-like systems the singlet

probability that migrated out of the Fermi holes is far away both from the poles of the

electron repulsion potential and nucleus, yielding a smaller electron repulsion energy

and a smaller absolute value of the nuclear attraction energy than is the case when the

singlet probability density remains unchanged. However, since the absolute magnitude

of the nuclear attraction potential is much larger than that of the electron repulsion

potential thanks to the large Zn factor, the difference in the nuclear attraction energy

is larger than the electron repulsion energy, giving a larger ∆EV than ∆Etwo. On the

other hand, in the case of quantum dots the singlet probability density that migrated

out of the Fermi holes is still in the neighborhood of the original region so that the

difference in the one-electron potential energy ∆EV cannot be large enough as to be

compared with the two-electron energy difference ∆Etwo.

4. Summary

The focus of the present study is the origin of Hund’s multiplicity rule in singly-excited

states of 2D He-like systems and 2D quantum dots. The full configuration interaction

(FCI) method has been employed to generate the energy spectrum and to partition

the total energy into its one- and two-electron components. The internal part of the

corresponding wave functions was generated from these FCI wave functions for the

(1s)(2p) and (0σg)(1πu) singlet-triplet pair for states of He-like systems and quantum

dots, respectively, and has been visualised in the internal space (r1, r2, φ−).

For the regime of large confinement, i.e., for large values of either the nuclear charge

Zn in He-like systems or of the harmonic frequency ω in quantum dots the partitioning

of the singlet-triplet energy difference ∆Etot into the one- and two-electron components,

∆Eone and ∆Etwo, shows a similar trend for both the He-like systems and the quantum
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dots. However, for the regime of small Zn and ω their behavior is sufficiently distinct:

the sign of ∆Etwo stays positive for all ω values in quantum dots while it changes from

positive to negative values for small Zn in He-like systems indicating that the electron

repulsion becomes smaller in the singlet state than in its triplet state.

In order to rationalize these distinct trends of ∆Etwo for small Zn and ω we rely on

the structure of the conjugate Fermi holes as well as of the genuine Fermi holes in the

internal space. Their structure is made apparent by considering the difference between

the probability densities of the singlet and triplet internal wave functions. The genuine

Fermi holes appear in regions defined by r1 = r2 and φ− = 0, ±π where the electron

repulsion potential diverges. In the immediate vicinity of these genuine Fermi holes

there always appear conjugate Fermi holes, but unlike in the former ones their spatial

distribution strongly depends on the corresponding orbital configuration. In the cases

of (1s)(2p) and (0σg)(1πu) configurations the conjugate Fermi holes appear in regions

defined by r1 = r2 and φ− = ±π/2. The electron repulsion potential has also been

visualised in the internal space which manifests itself as three striking poles peaked at

φ− = 0, ±π.

The structure of genuine and conjugate Fermi holes and of the poles of the electron

repulsion potential in the internal space explain the difference between the He-like

and quantum dot systems: For the regime of large Zn and ω the electron repulsion

is sufficiently weak so that the internal wave functions of both the singlet and triplet

states are close to their zeroth-order form that results when the electron repulsion is

ignored. In this regime the singlet wave function has a large probability density in

regions defined by the Fermi holes while the corresponding triplet wave function does

not. Since the poles of the electron repulsion potential penetrate into the Fermi holes,

the singlet state is characterized by a larger electron repulsion than the triplet thus

supporting the traditional interpretation of Hund’s multiplicity rule in the regime of

large confinement.

However, as Zn and ω decrease the electron repulsion potential becomes stronger

at its poles and pushes the singlet probability density out of the Fermi holes. Since

the electron repulsion potential affects the singlet internal wave function more strongly

than the corresponding triplet wave function the one-body electron density distribution

in the singlet and triplet states which are identical in the limit of large confinement

become increasingly distinct. This explains the reason why for decreasing Zn and ω

the one-electron contribution to the singlet-triplet energy gap ∆Eone becomes rather

large relative to the two-electron contribution ∆Etwo. The fate of the singlet probability

density that migrated out of the vicinity of the Fermi holes then determines the distinct

behavior in He-like and quantum dot systems in the regime of small Zn and ω. In the

case of He-like systems the singlet probability density migrates towards the regions of

either large r1 or large r2 while in the case of quantum dots it stays around the poles

of the electron repulsion potential. This difference in the spatial distribution of the

migrated singlet probability density in these systems thus originates from the difference

in the shell structure of the Coulomb-type and harmonic-oscillator-type orbitals: The
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exponents of the one-electron orbitals in different principal shells n of He-like systems

significantly differ due to the cusp at the origin and the long tail of the Coulomb

potential. On the other hand, the orbital exponents for quantum dots are identical

for any polyad quantum number vp that specifies the shell structure of the harmonic-

oscillator potentials. Thus, in the case of He-like systems the products of these one-

electron orbitals, ψ1s(~r1)ψ2p(~r2) and ψ2p(~r1)ψ1s(~r2), which constitute the orbital part of

a single-determinant wave function, are predominantly located along the r1 and r2 axes,

respectively, due to the combination of a narrow 1s and a broad 2p orbital. Consequently,

the singlet probability density that migrated out of the original region in the vicinity

of strong potential poles had to move along the r1 or the r2 axes. Further, due to

the presence of conjugate Fermi holes in regions around the Fermi holes, the singlet

probability density has to migrate further away from the origin towards regions with

large r1 or large r2. This results in a smaller electron repulsion and a smaller decrease

of the nuclear attraction energy for the singlet state relative to the triplet state.

Finally, in the case of quantum dots the products of the one-electron orbitals

ψ0σg(~r1)ψ1πu(~r2) and ψ1πu(~r1)ψ0σg(~r2) have a cylindrical distribution due to sharing the

same orbital exponent. Therefore, plenty of space is available for the singlet probability

density located originally in the area of the Fermi holes in order to avoid the poles of

the electron repulsion potential. Unlike as in the He-like systems, the singlet probability

that migrates out of the Fermi holes remains close to them simply avoiding the diverging

points of the electron repulsion potential. This results in a larger electron repulsion of

the singlet state relative to the triplet state even in the regime of small ω.
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