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ABSTRACT 

Circadian clocks are biochemical timers regulating many physiological and molecular 

processes according to the day/night cycles. The small GTPase LIGHT INSENSITIVE 

PERIOD 1 (LIP1) is a circadian clock- associated protein that regulates light input to the 

clock. In the absence of LIP1, the effect of light on free-running period length is much 

reduced. Here we show that in addition to suppressing red and blue light-mediated 

photomorphogenesis, LIP1 is also required for light-controlled inhibition of 

endoreplication and tolerance to salt stress. We demonstrate that in the processes of 

endoreplication and photomorphogenesis LIP1 acts downstream of the red and blue light 

photoreceptors phytochrome B and cryptochromes. Manipulation of the subcellular 

distribution of LIP1 revealed that the circadian function of LIP1 requires nuclear 

localization of the protein. Our data collectively suggest that LIP1 influences several 

signaling cascades and that its role in the entrainment of the circadian clock is 

independent from the other pleiotropic effects. Since these functions of LIP1 are 

important for the early stages of development or under conditions normally experienced 

by germinating seedlings, we suggest that LIP1 is a regulator of seedling establishment.  
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INTRODUCTION 

Optimal growth and development of plants are mediated by various signaling pathways, 

which enable plants to modulate their molecular and physiological reactions in response 

to changes of the environment. Light, the sole energy source is the most important 

environmental factor for plants. To monitor changes in ambient light conditions, plants 

evolved several families of photoreceptors covering the visible and the UV-A/B region of 

the spectrum (Franklin and Quail, 2010; Chaves et al., 2011; Rizzini et al., 2011). The 

red/far-red light absorbing phytochromes (PhyA-E) and the blue light absorbing 

cryptochromes (CRY1 and 2) are considered to mediate the majority of physiological and 

developmental responses to visible light. 

 Besides regulating photomorphogenesis, these photoreceptors also play an 

essential role in entraining/synchronizing the circadian clock to the daily light/dark cycles 

(Devlin and Kay, 2000). This process is important, since the circadian clock is not a 

linear signaling system, but rather modulates and co-ordinates signaling pathways and 

physiological processes through the day/night cycles (Covington et al., 2008). 

Synchronization of the clock with the objective time enables organisms to anticipate 

predictable changes of environmental parameters or the expected onset of stresses, which 

in turn may confer selective advantages (Dodd et al., 2005; Legnaioli et al., 2009).  

The clock is a biochemical mechanism relying on the mutual feed-forward/feed-

back regulation of the so-called clock genes and proteins. The rhythm-generating module 

(also called central oscillator) of the Arabidopsis clock consists of at least three 

interconnected genetic circuits (Pruneda-Paz and Kay, 2010; Huang et al., 2012). In 

addition to the basic transcriptional regulation, post-translational modifications, regulated 

proteolysis or controlled nucleo-cytosolic transport of clock proteins also play important 

roles in the clock mechanism (Mas, 2008; Wang et al., 2010). The central clockwork 

generates the primary oscillation in the expression of clock components with a period of 

about 24 h. The oscillation is then relayed to the expression of downstream components. 

In Arabidopsis, 15-25% of the transcriptome is regulated rhythmically. Circadian 

regulation is clearly over-represented among the genes that are implicated in light, 

hormonal or stress signaling, suggesting a molecular basis for the temporal modulation of 

these pathways (Covington et al., 2008).  
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 Among these pathways, high salinity stress represents ionic (high [Na+]) and 

osmotic stress and the responses of plant cells consist of several consecutive as well as 

parallel steps (Yamaguchi-Shinozaki and Shinozaki, 2006). The early responses involve 

increase in Ca2+ flux leading to SOS protein mediated changes in ion homeostasis. Ca2+ 

flux and other secondary messengers such as phospholipids and reactive oxygen species 

(ROS) activate kinase signaling cascades triggering the transcription of rapid stress-

inducible genes. These responses can be ABA-dependent and -independent, and both of 

these are linked to the circadian clock in several ways (Sanchez et al., 2011). For 

example, ABA induces TOC1 expression at midday, which leads to circadian control of 

the ABA-related gene ABAR/GUN5 (Legnaioli et al., 2009). This feedback mechanism 

ensures the correct timing and sensitivity of ABA signalling and stomata opening. As a 

consequence, TOC1 overexpression results in reduced ABA-mediated drought tolerance 

due to impaired stomata opening. Furthermore, ABA precursors, biosynthesis genes and 

several ABA-responsive genes are diurnally expressed and show altered transcription in 

circadian clock mutants, like the prr9,7,5 triple mutant or the CCA1 over-expressor 

(Fukushima et al., 2009). As for ABA-independent stress pathways, upregulation of the 

DREB1/CBF regulon was described in the prr9,7,5 triple mutant, which displayed 

enhanced salt, drought and cold tolerance (Nakamichi et al., 2009), whereas the same 

regulon was downregulated in the lhy cca1 double mutant, which exhibited reduced cold 

and salt tolerance (Kant et al., 2008; Dong et al., 2011). Hours after the onset of stress, a 

slower adaptation process starts, leading to stomata opening and accumulation of 

osmolytes, secondary metabolites and free radical scavengers, which protect the plant 

from stress damage.   

Adaptation to the changing environment also requires plasticity of the 

developmental program both at the organism and the cellular levels. In fact, even core 

biochemical processes, such as the cell cycle, can be modulated by environmental factors. 

For example, in Arabidopsis, hypocotyl cells undergo several endocycles in the dark, but 

the last cycle is inhibited in the light (Gendreau et al., 1998). During this process, DNA 

replication is correctly initiated and terminated, but is not followed by the separation of 

the chromosomes and cytokinesis (De Veylder et al., 2011). As a result, the cellular DNA 

is exactly doubled after each endocycle. Very recently, the light-regulated transcription of 
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an atypical E2F transcription factor, DP-E2F-LIKE1 (DEL1), was proposed as the key 

mediator of light regulation of endoreplication (Berckmans et al., 2011). DEL1 

transcription is positively or negatively regulated by the typical E2Fb or E2Fc 

transcription factor, respectively (Berckmans et al., 2011). E2Fb protein degradation is 

facilitated by the E3 ubiquitin ligase COP1, resulting in low expression level of DEL1 in 

the dark. In the light, however, COP1 is inactivated by various photoreceptor-mediated 

mechanisms, thus E2Fb protein levels rise, causing an increase in DEL1 transcription. 

DEL1 directly represses the transcription of FZR1/CCS52A2, which is an activator of the 

anaphase promoting complex (APC) (Lammens et al., 2008). APC is responsible for the 

degradation of mitotic cyclins leading to the inactivation of cyclin-cyclin dependent 

kinase (CYC/CDK) complexes and the onset of endoreplication (De Veylder et al., 

2011). Since DEL1 attenuates APC function mainly in the light, endoreplication is 

inhibited under these conditions. 

Previously, we identified the small GTPase LIGHT INSENSITIVE PERIOD 1 

(LIP1) as a circadian clock-associated factor in Arabidopsis (Kevei et al., 2007). Loss of 

LIP1 function in the lip1-1 mutant severely reduced the effect of light on the shortening 

of free-running period length. Essentially, this resulted in a short period phenotype of 

CAB2:LUC expression at low fluences of red and blue light. In the present work we 

provide physiological and molecular data demonstrating that (i) LIP1 is involved in 

mediating PhyB-controlled photomorphogenesis, (ii) LIP1 is a component of the PhyB-

controlled red and CRY-controlled blue light signaling cascade inhibiting 

endoreplication, (iii) LIP1 is required for normal development of pavement cells in young 

seedlings, and (iv) LIP1 function is needed for salt tolerance. Moreover, by manipulating 

the subcellular localization of LIP1, we show that the circadian function of LIP1 can be 

separated from its other functions not only at the physiological, but also at the cellular 

level. 

 

RESULTS 

Loss of function of LIP1 protein causes altered cell shape 

Microscopic analysis of young lip1-1 and lip1-2 mutant seedlings (Kevei et al., 2007) 

revealed defects in cell development. In wild-type Arabidopsis plants pavement cells 
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have a characteristic jigsaw puzzle shape with lobes, whereas both in lip1-1 and lip1-2 

mutants the cell shape was more rounded and much less complex (Fig.1A). The shape 

factor, describing the roundness of the cells, indicated a significant difference between 

lip1 mutants and the corresponding wild types (Fig.1B).  

Additionally, we observed that lip1-2 mutants showed characteristic, upward curling 

cotyledons (Fig.1C). This morphological change is the result of the non-continuous layer 

of pavement and leaf blade cells that never occurs in wild-type plants (Fig.1C-D). This 

phenomenon is most likely caused by cell death, since the shapes of the stomata guard 

cells and pavement cells were still visible in the patches lacking epidermal cells (Fig.1D).  

In fact, the remaining pavement cells form islands on the top of mesophyll cells (Fig.S1). 

Unlike lip1-2 seedlings (Fig.1C), lip1-1 plants displayed a continuous layer of pavement 

cells in the cotyledon, indicating ecotype-specific differences, as both mutant alleles are 

loss-of-function alleles (Kevei et al., 2007). In addition, our data suggest that the cell 

shape and discontinuous pavement cell layer phenotypes are developmentally regulated, 

because pavement cells in the first true leaves of lip1-1 and lip1-2 mutants had wild-type 

morphology (Fig.1E). These observations suggest that LIP1 has a more pronounced 

function during the early developmental stages of the plant life cycle. 

 

LIP1 affects ploidy levels in seedling stage 

The alteration of cell morphology is frequently linked with changes in nuclear DNA 

content (Guimil and Dunand, 2007). Therefore, we analyzed ploidy patterns in the 

cotyledons of lip1 mutants by flow cytometry, and found that the proportion of nuclei 

having high DNA content was significantly increased in the mutants (Fig.2A-B). In 

particular, the ratio of 16C nuclei was elevated and, unlike in wild type, even 32C nuclei 

were detectable in lip1-2 cotyledons (Fig.2B). Changes in ploidy levels are often 

associated with altered cell size or cell number. These parameters were determined for 

the pavement and the palisade mesophyll cells in lip1-1 and wild type cotyledons (Table 

1). Interestingly, elevated ploidy levels in lip1-1 were accompanied by a reduction in the 

size of these cell types, but the total number of cells was not affected suggesting that 

LIP1 does not affect the mitotic cell cycle. In agreement with the reduced cell size, the 

area of lip1-1 cotyledons was significantly smaller than that of the wild type (Table 1). 
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To test if nuclear DNA content is affected by LIP1 in other parts of the seedlings, 

samples of hypocotyls or entire seedlings were used in the assay (Fig.2C-D). Ploidy 

patterns in isolated hypocotyl of lip1-2 mutant showed the same tendency as in the 

cotyledons, demonstrating that in seedling stage the effect of LIP1 on endoreplication is 

not organ-specific. In contrast, ploidy patterns in the matured first leaves of lip1-2 and 

wild-type plants were not significantly different (Fig.2E), suggesting that LIP1 

suppresses ploidy levels in a developmentally regulated manner.  

 

Light-dependent inhibition of endoreplication by LIP1 

Four cycles of endoreplication could occur in dark-grown Arabidopsis seedlings, whereas 

the fourth cycle is inhibited in light (Gendreau et al., 1998). Since LIP1 is involved in the 

light regulation of the circadian clock and photomorphogenic processes (Kevei et al., 

2007), we analyzed ploidy patterns in lip1 mutants grown under different light 

conditions. Elevated ploidy level was detected in lip1 seedlings grown under light-dark 

cycles (Fig.3 C-D), and the DNA content increased further when plants were grown in 

continuous white light (Fig.3E-F). However, ploidy levels were identical in etiolated lip1 

and wild-type seedlings (Fig.3A-B), demonstrating that LIP1 suppresses endoreplication 

in a light-dependent manner. We also characterized pavement and palisade mesophyll 

cells in the cotyledons of etiolated C24 and lip1-1 seedlings. In contrast to light-grown 

plants (Fig.1A and Table 1), the shape, number and size of these cells types were not 

significantly different in the wild-type and the mutant seedlings grown in the dark (Fig.S2 

and Table 2). These results demonstrate that the cell morphology phenotype of lip1 

mutants is light dependent.  

In red light, the light-induced inhibition of endoreplication depends on the photoreceptor 

Phytochrome B (PhyB), as dark or red-light grown phyB mutants have identical, high 

ploidy levels (Gendreau et al., 1998). To test the epistatic relation between LIP1 and 

PhyB in controlling red light-dependent endoreplication, ploidy levels of lip1-2, phyB-9 

single and lip1-2 phyB-9 double mutants were compared. In continuous red light (cR), 

both lip1-2 and phyB-9 mutants showed similarly increased ratios of 16C and 32C nuclei 

(Fig.4B). Importantly, the lip1-2 phyB-9 double mutant did not display additive 

phenotype but phenocopied the phyB-9 single mutant in cR (Fig.S3). The DNA content 
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of these mutants grown in darkness displayed patterns like wild-type seedlings, 

confirming the light-specific effect of the mutations (Fig.4A).   

Next, we examined whether LIP1 affects endoreplication in other light conditions, such 

as in continuous blue (cB) or far-red light (cFR). Ploidy levels of lip1-2 mutant showed 

significant increase in cB (Fig.4D, Fig.S4), but it was indistinguishable from the wild-

type in cFR (Fig.4E). To place LIP1 in the light signaling pathway, the mutation in LIP1 

gene was combined with the mutations in genes coding for the blue light absorbing 

CRY1 and CRY2 or far-red sensing PhyA receptors and seedlings were tested in cB or 

cFR. In cB light, the ploidy pattern of the lip1-2 cry1 cry2 triple mutant was most similar 

to that of the cry1 cry2 double mutant (Fig.4D, Fig.S4) suggesting that LIP1 is epistatic 

to the CRY photoreceptors. In cFR light, the lip1-2 phyA-211 double mutant phenocopied 

the phyA-211 single mutant (Fig.4E), further supporting the previous finding that LIP1 is 

not involved in far-red light specific control of endoreplication. In summary, these results 

indicate that LIP1 plays an important role in integrating red and blue light signals to 

inhibit endoreplication. Furthermore, LIP1 is likely to function downstream of PhyB and 

CRY photoreceptors. 

The light-regulated transcription of the atypical E2F transcription factor DEL1 was 

suggested to play a key role in the light regulation of endoreplication (Berckmans et al., 

2011). To test the involvement of LIP1 and PhyB in light-regulated transcription of 

DEL1, we determined levels of DEL1 mRNA in the wild type and in lip1-2, phyB-9 and 

lip1-2 phyB-9 mutants grown in darkness or cR. In wild-type plants DEL1 mRNA levels 

were higher in the light than in darkness (Fig.4F), in agreement with previous results 

(Berckmans et al., 2011). Interestingly, the red light-induced upregulation of DEL1 

expression was clearly detectable in all genotypes, including phyB-9 single mutant. 

Furthermore DEL1 mRNA levels in any of the tested mutants showed no significant 

differences compared to the wild type (Fig.4F). These data suggest that in red light, LIP1 

and PhyB do not inhibit endoreplication through the transcriptional control of DEL1.  

 

Function of LIP1 in controlling photomorphogenesis depends on PhyB and CRY1 

and 2, but is independent of PhyA 
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It had been demonstrated that lip1-1 mutants show elevated photomorphogenic responses 

(short hypocotyls) to red and blue, but not to far-red light (Kevei et al., 2007). In order to 

place the action of LIP1 in light signaling pathways mediated by phytochrome and 

cryptochrome photoreceptors, we characterized the responsiveness of lip1-2 phyB-9, lip1-

2 phyA-211 and lip1-2 cry1 cry2 multiple mutants to R, FR and B light, respectively. In 

cR the lip1-2 mutant showed significantly shorter hypocotyls than the wild type; 

however, the lip1-2 phyB-9 double mutant produced hypocotyls much longer than the 

wild type, and was very similar to that of the phyB-9 single mutant (Fig.5A, Fig.S5A). In 

cB the lip1-2 mutant displayed less pronounced, but significant hypersensitivity 

compared to the wild-type, but lip1-2 cry1 cry2 produced long hypocotyls similarly to the 

cry1 cry2 double (Fig.5B, Fig.S5B). In continuous FR lip1-2 phenocopied wild-type 

plants, and lip1-2 phyA-211 double mutant showed hypocotyl lengths identical to that of 

the phyA-211 mutant (Fig.5C, Fig.S5C). These data verify that LIP1 does not affect 

PhyA-dependent far-red light signaling. The photomorphogenic phenotype of lip1 

mutants in red light is mainly due to the perturbation of PhyB-mediated signaling, 

whereas the lip1 phenotype in blue light depends on the CRY photoreceptors. Absolute 

hypocotyl length data are provided in Figure S6. 

 

 lip1 mutants are hypersensitive to salt stress 

In order to obtain additional information on the function of LIP1 we determined the 

responsiveness of lip1 mutants to different abiotic stress conditions. We found that lip1 

mutants grown under 12:12 LD cycles displayed an increased sensitivity to salt (NaCl) 

stress (Fig.S7 and Fig.5D-E). Wild-type plants could tolerate 100 mM NaCl, but the 

growth and development of mutant lip1 seedlings were greatly impaired under these 

conditions (Fig.S7). lip1-1 mutants were slightly less sensitive to NaCl than lip1-2 

mutants, which is probably due to ecotype-specific differences, as wild-type C24 

seedlings appeared to be more tolerant than Columbia-0 (Fig.S7). In addition to poor 

growth and development, the germination rate of lip1-2 seedlings was also significantly 

reduced under salt stress conditions as compared to the wild type (Fig.5E). To test if light 

conditions modulate this stress response, germination rate was also analyzed in dark-

grown plants. Under these conditions lip1-2 mutants were again more sensitive than wild-
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type plants (Fig.5E), indicating that the salt stress phenotype is not caused by other light-

dependent defects of lip1 mutants (e.g. ploidy levels). Besides inhibiting germination, 

high NaCl concentration also attenuates root growth; therefore we determined this 

response of lip1 mutants grown on different concentrations of NaCl. Figure 5F illustrates 

that the relative inhibition of root growth is significantly stronger in the lip1 mutants than 

in the wild type. These data demonstrate that LIP1 is required for maximum tolerance to 

salt stress. 

High salinity represents osmotic and ionic stress for plants. Osmotic stress leads to the 

induction of osmoprotectant genes like RD29A, RD29B or RAB18, whereas ionic stress 

(increase in the cellular [Na+]) induces the transcription of SOS2, an activator of the 

Na+/H+ transporter SOS1. To test if LIP1 participates in any of these processes, one-

week-old wild-type and lip1-2 plants were transferred to media containing 200 mM 

NaCl. Salt-induced expression of RD29A, RD29B, RAB18 and SOS2 genes was 

monitored by qRT-PCR. Figure S8 demonstrates that there were no significant 

differences in the kinetics or the level of induction of these genes. These results indicate 

that LIP1 plays a minor role, if any, in sensing salt stress signals and the transcriptional 

activation of the salt stress related genes tested. However, an effect of LIP1 on the post-

translational modification, turnover or subcellular localization of these components 

cannot be excluded.  

 

Subcellular localization of LIP1 

We showed previously that the YFP-LIP1 fusion protein is detectable both in the cytosol 

and in the nucleus, and that this distribution pattern is not significantly affected by light 

conditions or the circadian clock (Kevei et al., 2007). In order to test if any of the 

pleiotropic functions of LIP1 described above requires specific subcellular localization, 

we generated transgenic lip1 plants expressing the LIP1-YFP fusion protein with or 

without a nuclear localization signal (NLS) or a nuclear export signal (NES) (Fig.S9A) 

Transgenic lines with comparable expression levels were selected (Fig.S9B) and 

localization of the different LIP1 fusion proteins was analyzed by fluorescent 

microscopy. As expected, YFP-LIP1 was detectable both in the cytoplasm and in the 
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nuclei, whereas YFP-LIP1-NLS and YFP-LIP1-NES were clearly restricted to the 

nucleus and the cytoplasm, respectively (Fig.S9C). 

 

Nuclear localization of LIP1 is essential for the circadian function of the protein 

Complementation of the ploidy, salt stress, photomorphogenic and circadian phenotypes 

of the lip1 mutants was tested in the selected transgenic lines. Figure 6A demonstrates 

that the expression of YFP-LIP1, YFP-LIP1-NLS or YFP-LIP1-NES in the lip1 mutant 

background restored ploidy levels to wild-type level, best illustrated by the ratio of nuclei 

having 16C or 32C DNA content. In addition to ploidy levels, the characteristic jigsaw 

shape of cotyledon pavement cells was also restored in all complemented lines (Fig.S10). 

Furthermore, lip1-2 plants expressing either of the LIP1 fusion proteins were able to 

tolerate 100 mM NaCl and develop similarly to wild-type plants (Fig.6B). Hypocotyl 

lengths of either of the complemented lines grown in red, blue or far-red light were also 

indistinguishable from that of the wild type (Fig.7A-C). These data suggest that 

compartmentalization of LIP1 is not sufficient to abrogate LIP1 function for mediating 

these responses. However, the compartmentalization of LIP1 distinguishes its function 

concerning circadian rhythmicity (Figure 7D-F and Table 3). Expression of YFP-LIP1 or 

YFP-LIP1-NLS restored wild-type circadian rhythms, whereas YFP-LIP1-NES 

expressing transgenic lip1-2 seedlings displayed rhythms very similar to that of lip1-2. 

Period estimates quantitatively demonstrated full complementation or the complete lack 

of complementation as indicated (Table 3). We conclude that for the regulation of the 

circadian clock a significant portion of LIP1 needs to be present in the nucleus. These 

observations suggest that the function of LIP1 in the circadian clock can be separated 

from its role in the control of cell development, endoreplication, stress tolerance and 

photomorphogenesis. 

 

DISCUSSION 

The lip1-1 mutant was identified in a genetic screen designed to isolate novel circadian 

clock mutants in Arabidopsis (Kevei et al., 2006; Kevei et al., 2007). The lip1-1 mutation 

shortened the free-running period of CAB2:LUC in low intensity red light and the mutant 

showed hypersensitive photomorphogenic responses in red and blue light. In this paper 
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we demonstrate that the lip1-1 and lip1-2 mutants display additional pleiotropic 

phenotypes and that LIP1 also plays important roles in the light-controlled inhibition of 

endoreplication and providing tolerance to salt stress.  

 

It has been shown that far-red and red light perceived by the PhyA and PhyB 

photoreceptors inhibits the last round of endocycles in hypocotyl cells in Arabidopsis, 

whereas the receptor mediating the effect of blue light was not identified unequivocally 

(Gendreau et al., 1998). lip1 mutants showed higher ploidy levels in white, red and blue 

light, but not in darkness or in far-red light (Fig.3 and 4). This indicates that the ploidy 

phenotype of lip1 mutants arose from the impaired red and blue light control of 

endoreplication. In fact, genetic analysis of red and blue light controlled ploidy patterns 

demonstrated that PHYB and CRY1 and 2 are epistatic to LIP1 (Fig4.). This suggests that 

LIP1 functions as a component of the PhyB- and CRY1 and 2-mediated light signaling 

pathways leading to the inhibition of endoreplication. Apart from the receptors, the 

atypical E2F transcription factor DEL1 was recently shown to mediate light-dependent 

endoreplication (Berckmans et al., 2011). In particular, transcription of DEL1 is light-

induced and negatively correlated with ploidy levels, and ectopically expressed DEL1 

uncouples the regulation of endoreplication from light signals (Berckmans et al., 2011). 

Here we show that the level of DEL1 mRNA in phyB-9, lip1-2 and lip1-2 phyB-9 plants 

was not significantly different from that in wild-type plants (Fig.3). These data 

demonstrate that red light-induced inhibition of endoreplication by PhyB and LIP1 define 

a pathway independent of the transcriptional regulation of DEL1.  

Changes in ploidy levels are often accompanied by altered shape or size of the cells. In 

fact, we showed that pavement cells in the cotyledons of lip1 mutants are significantly 

smaller and more rounded (or less lobed) compared to those in wild-type plants.  The cell 

morphology phenotype of lip1 mutants appears to closely correlate with ploidy changes 

since both phenotypes are developmentally regulated and light dependent in the same 

manner. In wild-type plants, cells with higher ploidy levels are usually larger, but there 

are several examples from mutants where increased ploidy levels are not accompanied by 

growth promotion, or the size of particular cells is enlarged without significant increase 

of DNA content (De Veylder et al., 2011). Moreover, strong over-expression of Kip-
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related protein 2 (KRP2), an inhibitor of CDKA;1, resulted in lower ploidy levels, but yet 

larger pavement cells (Verkest et al., 2005). lip1 mutants represent a novel class of 

exceptions, where cells with higher ploidy levels are apparently smaller in size. These 

observations collectively suggest that cellular DNA content does not control cell 

expansion directly, but probably sets the range or capacity of future cell growth, which is 

influenced by the co-action of several additional factors. 

In order to shed light on the molecular background of salt sensitivity of lip1 mutants, the 

function of the canonical osmotic and ionic stress signaling pathway was probed. As in 

the lip1 mutants salt stress induced the transcription of both ABA-dependent and 

independent stress related genes normally (Fig.S8), we suggest that stress perception, 

signaling cascade and transcriptional activation of the multiple pathways were not 

impaired by the lack of LIP1 function. Rather, LIP1 could affect one of the late stress-

induced processes at the cellular level. A likely target of LIP1 action could be the 

regulation of ROS production, as small GTPases are involved in this process in animals, 

yeast and plants as well (Finkel, 2006). A ROP-type small GTPase OsRAC1 in rice was 

shown to directly interact with NADPH oxidase and hence modulate ROS production 

(Wong et al., 2007). OsRAC1 and its Arabidopsis homolog ROP2 exhibit altered 

responses to biotic and abiotic stresses accompanied with apoptosis-like cell death (Ono 

et al., 2001; Park et al., 2004). In addition to stress sensitivity, lip1-2 mutant also shows 

cell death symptoms, however this is restricted to the cotyledon epidermis cells (Fig. 1 

and S1), unlike the necrotic lesions on leaves observed in dominant negative RAC1. 

Furthermore, the ROS-linked small GTPases are localized mostly in the plasma 

membrane, which is in contrast with the nucleo-cytoplasmic localization of LIP1 (Fig.S9) 

and the complementation of stress hypersensitivity by the nuclear targeted LIP1 protein 

(Fig.5). Despite these differences it is tempting to speculate that alterations in cell 

morphology and cell death in the epidermis could affect the “barrier” function of this cell 

layer in the lip1 mutants, so that the excess of salt taken up cannot be compensated by the 

otherwise intact salt signaling and response system. However, dark-grown lip1 mutants 

without apparent cell morphology phenotypes were also hypersensitive to salt stress, 

therefore we conclude that salt sensitivity of lip1 mutants is not caused by abnormally 

shaped (or missing) pavement cells. 
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The shortening of circadian period by lip1 mutantion is clearly detectable in etiolated 

plants (Kevei et al., 2007), where ploidy levels of lip1 mutants do not differ from that of 

the wild type. On the other hand, the salt sensitivity, photomorphogenic and ploidy 

phenotypes of lip1 mutants could be detected under conditions, where the mutants did not 

show circadian defects (i.e. high fluence rate of red or white light) (Kevei et al., 2007). 

These facts strongly suggest that (i) the circadian function of LIP1 is independent from its 

other functions, and (ii) the altered function of the clock in the lip1 mutants is not the 

cause of the stress, ploidy or hypocotyl phenotypes. This conclusion is further 

corroborated by the results of the complementation experiments. The circadian phenotype 

was complemented by YFP-LIP1 and YFP-LIP1-NLS, but not by YFP-LIP1-NES, 

indicating that LIP1 must accumulate to a critical level in the nucleus in order to regulate 

the clock. The full complementation of the circadian phenotype also suggests that LIP1 

does not affect clock-related cytosolic processes, although its role in mediating nucleo-

cytoplasmic partitioning of clock components cannot be excluded. Interestingly, all the 

other phenotypes were equally complemented by YFP-LIP1, YFP-LIP1-NLS or YFP-

LIP1-NES. It must be noted, however, that although addition of NLS or NES motifs 

dramatically alters the subcellular localization of LIP1, by no means does it completely 

restrict the protein to the nucleus or the cytoplasm. Particularly, the NES motif does not 

prevent nuclear import, but facilitates nuclear export, thereby reducing the average time 

spent by the tagged LIP1 protein in the nucleus. It follows that the very small amount of 

YFP-LIP1-NES present in the nucleus could be sufficient to mediate certain functions 

(e.g. controlling endoreplication). This amount is clearly insufficient for restoring 

circadian functions, demonstrating the great demand of the clock for nuclear LIP1. 

However, it would be premature to designate certain cellular compartments as locations 

of LIP1 protein fractions affecting salt stress, photomorphogenesis or endoreplication.  

 

In plants LIP1 is the founder of a novel and therefore not well-characterized subclass of 

small GTPases, and it is the only small GTPase which has been functionally linked to the 

regulation of the circadian clock (Kevei et al., 2007). Interestingly, some members of the 

ROP, RAB subfamilies were shown to modulate responses similar to LIP1. For example, 
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ROP GTPases (ROP2, 4 and 6) were reported to control the shape of pavement cells via 

the assembly and organization of cortical microfilament and microtubule networks (Fu et 

al., 2005; Fu et al., 2009). ARA6 is a RAB-type GTPase implicated in vesicular 

trafficking between endosomes and the plasma membrane and, similarly to LIP1, it is 

required for tolerance to high salinity (Ebine et al., 2011). More recently, it has been 

suggested that the activity of the ROP8 GTPase is regulated by phytochromes, which 

probably accounts for light-dependent control of root elongation by ROP8 (Shin et al., 

2010). However, further studies are required to elucidate the molecular mechanisms by 

which functions of these small GTPases are integrated at the cellular level.   

 

Our results indicate that LIP1 facilitates germination under suboptimal conditions, 

entrains the circadian clock in plants germinating/elongating in the soil at limited light 

intensities and controls normal morphology of the emerged young seedlings; therefore, 

we suggest that LIP1 is an important modulator of seedling establishment. However, it is 

unlikely that all functions of LIP1 are limited to the seedling stage, since LIP1 is clearly 

expressed in most tissues of adult plants. The lack of cell shape and ploidy phenotypes in 

adult lip1 mutant plants can be explained by the presence of developmentally regulated 

proteins functionally redundant to LIP1 or by the availability of different interacting 

partners at different developmental stages. Identification of conformation-specific 

interacting proteins, which regulate the activity of LIP1 or act as effectors downstream to 

LIP1, will be essential for delineating the molecular function of this small GTPase in 

diverse signaling cascades.  

 

MATERIALS AND METHODS 

Plant materials and growth conditions 

Arabidopsis thaliana ecotypes of C24 and Columbia-0 (Col-0) were used as wild-type 

plants. lip1-1 and lip1-2 alleles are in the C24 and Col-0 backgrounds, respectively 

(Kevei et al., 2007). The phyA-211, phyB-9, and the cry1-304 cry2-1 mutants (all in the 

Col ecotype) have been described (Reed et al., 1993; Reed and Chory, 1994; Mockler et 

al., 1999). The cry1-304 cry2-1 double mutant is referred to as cry1 cry2 in the text. 

Surface-sterilized seeds were stratified at 4oC for 3 days and grown in 12 h white light / 
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12 h dark (12:12 LD) photocycles at 22oC for 7 days, unless indicated otherwise. 

Seedlings for ploidy level measurements, cell morphology determinations and DEL1 

qRT-PCR assays were grown on half-strength Murashige and Skoog (MS) media 

supplemented with 1% (w/v) sucrose. Plants for luminescence detection, salt tolerance 

tests and the investigation of salt-induced gene expression were grown on MS media 

supplemented with 3% (w/v) sucrose. For hypocotyl elongation tests, seedlings were 

sown on wet filter paper. Special growth conditions are described below or in the 

corresponding figure legends. 

 

Gene constructs and transgenic plants 

Transgenic lip1-1 plants expressing the YFP-LIP1 fusion protein under the control of the 

CaMV 35S promoter, and the modified pPCV812 binary vectors containing the 35S 

promoter and DNA fragments coding for YFP and NLS or NES motifs have been 

described (Kevei et al., 2007; Palagyi et al., 2010). To create 35S:YFP-LIP1-NLS/NES 

constructs, the LIP1 cDNA fragment was inserted in the modified pPCV812 vectors, 

between the YFP and NLS/NES fragments. The constructs were transformed in lip1-1 

and lip1-2 mutant plants expressing the CAB2:LUC marker (Clough and Bent, 1998). 

Transformants were selected on Murashige and Skoog medium supplemented with 15 µg 

mL-1 of hygromycin. 10 to 15 independent transformants for each construct were self-

fertilised, and individuals of the homozygous T3 progenies were used for experiments. 

 

Scanning electron microscopy  

Scanning electron microscopy was carried out using a Zeiss Supra 40VP (Carl Zeiss 

SMT AG) equipped with a field emission gun (FEG) as electron source, secondary 

electron detector for imaging and combined with Emitech K1250X (Quorum Emitech) 

transfer system. The biological samples were prepared with cryogenic preparation 

method. Fresh tissue parts were mounted onto the probe holder using Tissue-Tec (O.C.T. 

Compound) as glue, and gold/palladium was used for sputter coating.  

 

Differential interference microscopy (DIC) and calculation of shape factor  
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7 day old seedlings were cleared overnight in a solution composed of 160 g of chloral 

hydrate (Sigma-Aldrich), 100 mL of water, and 50 mL of glycerol. After clearing, 

cotyledons were mounted with a cover slip and pavement cells visualized with a Leica 

DMRB microscope equipped with DIC optics (Leica). Images were captured on a Leica 

DFC 490 camera using the Leica Application Suite 2.5.0 software. Cell area and 

perimeter of matured pavement cells were measured with ImageJ software and shape 

factor calculated as 4π area/perimeter2. Statistical significance was assessed with t-test 

calculated with SigmaStat 3.5 software.  

 

Confocal laser scanning microscopy  

Cotyledons of 7-day-old seedlings were mounted on glass slides and fluorescence was 

detected with confocal laser-scanning microscopy Leica TCS SP2 AOBS CLSM system 

equipped with 40× and 63× lenses, an argon-krypton laser and a 405 nm diode laser 

(Leica).  

 

Ploidy measurement with flow cytometry 

Plant material was cut with razor blade, stained with CyStain UV precise P DNA staining 

kit (Partec) then filtered though 50 µm mesh. Ploidy level of samples was measured with 

Ploidy Analyser PA-1 (Partec) and analyzed with FloMax 2.52 software (Partec). 

Statistical significance was calculated with SigmaStat 3.5 software.  

 

Physiological assays 

For luminescence detection, seedlings were grown in 12:12 LD cycles for 7 days and 

transferred to continuous red light (SnapLite, Quantum Devices) at 5 μmol m-2 s-1 fluence 

rate. Luminescence was monitored for 4 days using the TopCount NXT luminometer 

(Perkin Elmer) as described (Kevei et al., 2007). Counts were normalized to the average 

of counts collected during the entire measurement and were plotted as normalized 

luminescence. 

For salt tolerance assays, seedlings were germinated in 12:12 LD cycles for 14 days on 

media containing NaCl at different concentrations. To test the effect of high salinity on 

germination rate, seeds were sown on media with or without 200 mM NaCl. The plates 
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were transferred to 12:12 LD or to constant darkness. Germinated seeds with clearly 

visible radicles were counted daily for 5 days. To assess germination on subsequent days 

in darkness, separate plates were moved to light on each day and germinating seedlings 

were counted. For root length measurements, seedlings were grown in 12:12 LD cycles 

for 7 days on salt-free media and transferred to media supplemented with different 

concentration of NaCl. The plates were set to vertical position and length of roots was 

measured 7 days after the transfer. Values were normalized to the length of roots of non-

treated plants. 

Hypocotyl lengths were measured essentially as described (Palagyi et al., 2010). 

 

Analysis of gene expression   

To determine DEL1 mRNA levels, plants were grown in continuous red light (40 μmol 

m-2 s-1) or in darkness for 7 days before samples were harvested. To measure RD29A, 

RD29B, RAB18 and SOS2 mRNA levels, plants were grown in 12:12 LD cycles for 7 

days and transferred to media with or without 200 mM NaCl and samples were harvested 

1, 3, 6, 9 and 12h after the transfer. Isolation of total RNA, cDNA synthesis and qRT-

PCR were carried out as described (Palagyi et al., 2010). Specific mRNA levels were 

normalized to TUBULIN2/3 mRNA levels in each sample. Sequences of primers used for 

qRT-PCR assays are shown in Table S1. Averages of results from three independent 

experiments are shown; error bars represent standard error values.  
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FIGURE LEGENDS 

Figure 1. LIP1 regulates cell morphology in a developmental stage-specific manner. 

A, Pavement cell morphology in cotyledons of Col-0, lip1-2, C24 and lip1-1 plants 

grown in 12 h white light / 12 h dark (12:12 LD) cycles for 7 days.  Scale bars: 50 µm. 

B, Cell Shape Factor values calculated from the area and the perimeter of cotyledon 

pavement cells.  n = 43-54, t-test: P < 0.001 for both samples. Error bars represent SE. 

C, Scanning electron microscope (SEM) images of cotyledons of Col-0, lip1-2, C24 and 

lip1-1 plants grown in 12:12 LD cycles for 7 days. Scale bars: 200 μm. 

D, Close-up of collapsed epidermal cell layer in the cotyledon of lip1-2 seedlings grown 

in 12:12 LD cycles for 7 days. Arrows point at collapsed stomata guard cells. SEM 

image, scale bar: 20µm.  

E, SEM images of the first leaves of Col-0 and lip1-2 plants grown in 12:12 LD cycles 

for 21 days. Scale bars: 50 µm. 

 

Figure 2. Increased ploidy levels in lip1 mutants. 

Ploidy levels were determined in different parts of 7-day-old wild-type and lip1 mutant 

seedlings: cotyledons (A-B), hypocotyls (C) or whole seedlings (D) were used. 

Alternatively, ploidy levels were determined in the first leaves of 21-day-old Col-0 and 

lip1-2 plants (E). Plants were grown in 12:12 LD cycles. Relative ratios of nuclei with the 

indicated DNA content are plotted. n = 4, one sample contained 10 cotyledons (A-B), 10 

hypocotyls (C) , 5 seedlings (D)  or 4 leaves (E). Asterisks indicate significant difference 

from the wild type, as determined by Student's t-test: * P < 0.05, ** P < 0.01, *** P < 

0.001. Error bars represent SD. 

 

Figure 3. The effect of LIP1 on ploidy levels is light-dependent. 

C24 and lip1-1 (A, C, E) or Col-0 and lip1-2 (B, D, F) plants were grown in darkness (A, 

B), in 12:12 LD cycles (C, D) or in continuous white light (E, F) for 6 days. Whole 

seedlings were used for ploidy level determinations. Data were obtained and analyzed as 

for Fig. 2. n = 4, asterisks indicate significant difference from the wild type, as 

determined by Student's t-test: * P < 0.05, ** P < 0.01, *** P < 0.001. Error bars 

represent SD.   
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Figure 4. LIP1 attenuates endoreplication in red and blue, but not in far-red light. 

A-E, Plants of the indicated genotypes were grown in darkness (A, C), in continuous red 

light (40 µmol m-2 s-1) (B), blue light (40 µmol m-2 s-1) (D), or far-red light (5 µmol m-

2 s-1) (E) for 7 days. Whole seedlings were subjected to ploidy level determinations. 

Data were obtained and analyzed as for Fig. 2. n = 3-5, results of statistical analysis (one 

way ANOVA, Tukey test) are shown in Figures S3 and S4. Error bars represent SD. 

Ploidy levels in dark-grown phyA-211 or lip1-2 phyA-211 plants were not different from 

those in Col-0 or lip1-2 plants (data not shown). 

F, Plants were grown in conditions identical to those of for panels A and B. Expression 

levels of DEL1 were determined by qRT-PCR assays. Values were normalized to TUB2/3 

mRNA levels. Averages of three independent experiments are shown. Error bars 

represent SE. Results of t-tests indicated that differences between the wild type and any 

mutant combinations under a given light condition (dark or red light) are not significant 

(P > 0.1 for any combinations). 

 

Figure 5. Physiological responses to light and salt stress are altered in lip1 mutants.  

A-C, Plants were grown in continuous red (A), blue (B), or far-red (C) light at the 

indicated fluence rates for 4 days, then hypocotyl length of the seedlings was measured. 

Values were normalized to the hypocotyl length of the corresponding dark-grown 

seedlings. X axes are logarithmic scale. Error bars represent SE, n = 28-32. Results of 

statistical tests (one way ANOVA, Tukey test) for panels A-C are shown in Figure S5.   

D-E, Col-0 and lip1-2 mutant seeds were grown in 12:12 LD cycles  or continuous 

darkness (dark) on media with or without 200 mM NaCl. The number of seedlings with 

emerged radicles were counted daily and expressed as the percentage of the total number 

of seeds. Error bars represent SE, n = 105-125. 

F, Col-0, lip1-2, C24 and lip1-1 seedlings were grown in 12:12 LD cycles for 7 days and 

transferred to vertical plates with media supplemented with different concentrations of 

NaCl, as indicated. Root lengths were measured 7 days after the transfer. Values 

normalized to the root length of plants grown on salt-free media are shown. Error bars 

represent SE, n = 17-20. 
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For panels D-F, asterisks indicate significant difference from the wild type, as determined 

by Student's t-test: * P < 0.05, ** P < 0.01, *** P < 0.001.  

 

Figure 6. Complementation of ploidy and salt stress phenotypes of lip1-2 by LIP1 

fusion proteins. 

A, Ploidy levels in Col-0, lip1-2 mutant and lip1-2 mutants expressing YFP-LIP1, YFP-

LIP1-NLS or YFP-LIP1-NES fusion proteins. Plants were grown in continuous white 

light (80 µmol m-2 s-1) for 7 days. n = 4, asterisks indicate significant difference from the 

wild type, as determined by Student's t-test: * P < 0.05, ** P < 0.01, *** P < 0.001. Error 

bars represent SD. 

B, Seedlings expressing YFP-LIP1, YFP-LIP1-NLS or YFP-LIP1-NES fusion proteins in 

the lip1-2 mutant background along with Col-0 and lip1-2 controls were grown in 12:12 

LD cycles for 14 days on media with or without 100mM NaCl. 

 

Figure 7. Complementation of photomorphogenic and circadian phenotypes of lip1-

2 by LIP1 fusion proteins. 

A-C, Fluence rate curves of hypocotyl elongation in continuous red (A), blue (B) or far-

red (C) light. Col-0 (filled squares), lip1-2 (filled triangles) and seedlings expressing 

YFP-LIP1 (open circles), YFP-LIP1-NLS (open diamonds) or YFP-LIP1-NES (open 

triangles) fusion proteins in the lip1-2 background were grown in constant 

monochromatic light at the indicated fluence rates for 4 days, then hypocotyl length of 

the seedlings was measured. Values were normalized to the hypocotyl length of the 

corresponding dark-grown seedlings. X axes are logarithmic scale. n = 28-32, error bars 

represent SE. Irrespective of the light conditions, no significant differences were detected 

between the wild type and either of the transgenic lines (one way ANOVA, Tukey test). 

Hence, asterisks indicate significant differences between lip1-2 and the wild type, as 

determined by Student's t-test: * P < 0.05, ** P < 0.01, *** P < 0.001.   

D-F, Col-0 (filled squares), lip1-2  mutants (filled triangles) and lip1-2 mutants 

expressing YFP-LIP1 (open circles) (D), YFP-LIP1-NLS (open diamonds) (E) or YFP-

LIP1-NES (open triangles) (F) fusion proteins were grown in 12:12 LD cycles for 7 days 

and transferred to continuous red light at 3 µmol m-2 s-1 fluence rate. Rhythmic 
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luminescence of the CAB2:LUC  marker was measured and values normalized to the 

mean were plotted. Three independent transgenic lines were measured for each construct 

with similar results. Representative graphs are shown. 

 

Figure S1. Non-continuous cell layer in the epidermis of cotyledons in lip1-2 

mutants. 

A, Bright field and chlorophyll auto-fluorescence images of cotyledon of 7-day old Col-0 

and lip1-2 seedlings grown in 12:12 LD cycles for 7 days. Scale bar:  50 µm. 

In the cotyledons, chlorophyll fluorescence is produced by mesophyll and guard cells 

only, since pavement cells do not contain chloroplasts. In the wild-type sample, 

fluorescent spots mark chloroplasts in guard cells, whereas in the lip1-2 mutant the dark 

patches on the fluorescent background correspond to islands of pavement cells.   

B, 30 min FM4-64 membrane dye staining and chlorophyll auto-fluorescence imaged 

together in the cotyledon of 7-day-old lip1-2 seedlings grown in 12:12 LD cycles. Z-stack 

of 12 µm depth (interval: 0.74 µm).  Scale bar: 50 µm. Patches of pavement cells with 

clear red outline (FM4-64 labeled membrane) and without chloroplasts are visible among 

the chloroplast containing palisade mesophyll cells. 

 

Figure S2. Pavement cell morphology in etiolated plants. 

Differential interference images showing pavement cells from the adaxial surface of 

cotyledons of C24 wild-type and lip1-1 mutant plants grown in darkness for 7 days. Scale 

bars: 25 µm. 

 

Figure S3. Statistical analysis of ploidy measurements in darkness and continuous 

red light. 

Data presented in Figure 4A-B were analyzed by one-way ANOVA in conjunction with 

an all pairwise multiple comparison procedures (Tukey’s honest significance test) to 

compare the ratio of nuclei with different DNA content in the indicated genotypes in all 

possible combinations. Color codes indicate the direction and significance level of 

changes in the ratio of nuclei with specified DNA content. White color indicates no 

significant difference between the two compared values ( p>0.05). 
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A, Heatmap of statistic data from plants grown in darkness for 7 days.  

B, Heatmap of statistic data from plants grown in continuous red light (40 μmol m-2 s-1) 

for 7 days. The lip1-2 phyB-9 double mutant is most similar to the phyB-9 single mutant, 

since there is the least significant difference between these two genotypes. 

 

Figure S4. Statistical analysis of ploidy measurements in darkness and continuous 

blue light. 

Data presented in Figure 4C-D were analyzed by one-way ANOVA in conjunction with 

an all pairwise multiple comparison procedures (Tukey's honest significance test) to 

compare the ratio of nuclei with different DNA content in the indicated genotypes in all 

possible combinations. Color codes indicate the direction and significance level of 

changes in the ratio of nuclei with specified DNA content. White color indicates no 

significant difference between the two compared values ( p>0.05). 

A, Heatmap of statistic data from plants grown in darkness for 7 days.  

B, Heatmap of statistic data from plants grown in continuous blue light (40 μmol m-2 s-

1) for 7 days. 

 

Figure S5. Statistical analysis of hypocotyl measurements in continuous red, blue 

and far-red light. 

Data presented in Figure 5A-C were analyzed by one-way ANOVA in conjunction with 

an all pair wise multiple comparison procedure (Tukey's honest significance test) to 

compare the hypocotyl length of the genotypes in all possible combinations. Color codes 

indicate the direction and significance level of changes in hypocotyl length. White color 

indicates no significant difference between the two compared values (P>0.05). Fluence 

rate of the particular monochromatic light is indicated on the left side of the panels. 

A, Heatmap of statistic data from plants grown in continuous red light.  

B, Heatmap of statistic data from plants grown in continuous blue light.  

C, Heatmap of statistic data from plants grown in continuous far-red light. 
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Figure S6. Absolute hypocotyl length data for Figure 5A-C. 

A-C, Plants were grown in continuous red (A), blue (B), or far-red (C) light at the 

indicated fluence rates for 4 days, then hypocotyl length of the seedlings was measured. 

Dark values (dark) show hypocotyl length of etiolated plants. X axes are logarithmic 

scale. Error bars represent SE, n = 28-32. 

 

Figure S7. lip1 mutant plants are hypersensitive to salt. 

Seedlings were grown in 12:12 LD cycles for 14 days on media containing different 

concentrations of salt, as indicated. 

 

Figure S8. The effect of LIP1 on salt stress-induced gene expression. 

7-days-old wild-type and lip1-2 mutant plants grown in 12:12 LD cycles were transferred 

to media supplemented with 200 mM NaCl at Time =0. Samples were harvested at the 

times indicated. Expression of RD29A (A), RD29B (B), RAB18 (C) and SOS2 (D) was 

determined by qRT-PCR assays. Values normalized to TUB2/3 levels are shown. 

Averages of two independent measurements are shown. Error bars represent SE. 

 

Figure S9. Manipulation of subcellular localization of YFP-LIP1 fusion proteins. 

A, Schematic illustration of the LIP1 fusion constructs. YFP: yellow fluorescent protein; 

NLS: SV-40 nuclear localization signal; NES: nuclear export signal. Expression of all 

constructs was driven by the 35S promoter from CaMV. 

B, Western-blot analysis of LIP1 protein levels.  Non-transformed Col-0 seedlings (1), 

Col-0 plants expressing YFP from the 35S promoter (2) or lip1-2 seedlings expressing 

YFP-LIP1 (3), YFP-LIP1-NLS (4), or YFP-LIP1-NES (5) fusion proteins were grown in 

continuous white light for 4 days before collecting samples for protein extraction. Two 

identical gels were blotted and probed separately with antibodies specific to GFP (αGFP) 

or actin (αACT) in order to detect YFP tags or the constitutively expressed actin proteins, 

respectively. Protein size markers correspond to the blot showing YFP and YFP fusion 

proteins. 

C, Subcellular localisation of YFP-LIP1 fusion proteins. Epifluorescence images of 

epidermal hypocotyl cells of transgenic lip1-2 seedlings expressing YFP-LIP1, YFP-
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LIP1-NLS or YFP-LIP1-NES fusion proteins are shown on the left, whereas the 

corresponding reference images are presented on the right. Seedlings were grown in 

12:12 LD cycles for 10 days prior to microscopy. Scale bars represent 10 μm; nu: 

nucleus. 

 

Figure S10. Complementation of the cell-shape phenotype of lip1-1 mutants. 

lip1-1 plants expressing the indicated LIP1 fusion proteins were grown in continuous 

white light for 7 days. Fluorescent images are shown, except for YFP-LIP1-NLS in the 

bottom row. In case of YFP-LIP1-NLS, fluorescent signals were restricted to the nuclei 

(overlay of bright field and fluorescent image in the inlet) and did not mark the contour of 

the cells; therefore bright field image shows the cell shape. Scale bars: 13 µm or 50 µm 

for images in top or in the bottom row, respectively. 

 
TABLES 

 

Table 1. Quantitative characterization of pavement and palisade mesophyll cells on 

the adaxial surface of cotyledons of light-grown seedlings. 

Wild-type and lip1-1 seedlings were grown in 12:12 LD cycles for 7 days. Digital images 

were taken of the whole cotyledon or different areas and focal planes of the adaxial 

surface. The size of cotyledons (n=12-15) and cells at similar position in the cotyledon 

(n=16-22 per cotyledon) were measured. The number of pavement and palisade cells was 

calculated by dividing the total cotyledon area by the average area of the particular cell 

type. Mean values ± SD are shown. The significance of the difference from the wild type 

was analyzed by Student’s t-test, corresponding P values are shown. 

  Pavement cells Palisade cells 

Genotype 
Cotyledon size 
(mm2) Number Size (µm2) Number Size (µm2) 

C24 (WT) 2.082 ± 0.176 561 ± 61 3697 ± 202 1797 ± 253 1165 ± 156 

lip1-1 1.568 ± 0.194 528 ± 77 2874 ± 175 1894 ± 310 821 ± 129 

P < 0.001 0.53 < 0.001 0.29 0.0041 
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Table 2. Quantitative characterization of pavement and palisade mesophyll cells on 

the adaxial surface of cotyledons of etiolated seedlings 

Wild-type and lip1-1 seedlings were grown in darkness for 7 days. Digital images were 

taken of the whole cotyledon or different areas and focal planes of the adaxial surface. 

The size of cotyledons (n=9-11) and cells (n=35-60 per cotyledon) was measured. The 

number of pavement and palisade cells was calculated by dividing the total cotyledon 

area by the average area of the particular cell type. Mean values ± SD are shown. The 

significance of the difference from the wild type was analyzed by Student’s t-test, 

corresponding P values are shown. 

 

 

 

 

 

Table 3. Period estimates for CAB2:LUC reporters in wild-type, lip1-2 and different 

YFP-LIP1 fusion protein expressing  plants. 

Seedlings were grown under 12:12 LD cycles for 7 days and moved to constant to red 

light (3 μmol m-2 s-1). Rhythm analysis was performed with BRASS. Three independent 

transgenic lines were analyzed for each complementing construct. 32 individual seedlings 

were measured for each line. Variance-weighted mean periods and SE are shown. The 

significance of the difference from the wild type (P [Col-0]) or the lip1-2 mutant (P [lip1-2]) 

was analyzed by Student’s t-test. 

  Pavement cells Palisade cells 

Genotype 
Cotyledon size 
(mm2) Number Size (µm2) Number Size (µm2) 

C24 (WT) 0.229 ± 0.039 581 ± 75 394 ± 61 1423 ± 281 161 ± 31 

lip1-1 0.207 ± 0.031 549 ± 83 368 ± 69 1321 ± 235 136 ± 27 

P 0.09 0.47 0.39 0.18 0.12 

Genotype Period (h)  ± SE P [Col-0] P [lip1-2] 
Col-0 (WT) 29.95 0.28 - < 0.001 
lip1-2 27.37 0.77 < 0.001 - 
YFP-LIP1 [lip1-2] 29.74 0.36 0.76 0.0023 
YFP-LIP1-NLS [lip1-2] 29.33 0.70 0.22 0.0061 
YFP-LIP1-NES [lip1-2]   27.42 0.31 < 0.001 0.71 
















