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A sharp lower bound on the mean curvature integral with critical
power for integral varifolds

Ulrich Menne

This is an announcement of the principal results of [12] using the notation of
[11, §1, §2] which is based on Federer [5] and Allard [1]. To describe the results,
some additional terminology from [12, 5.1, 5.4, 5.6] is needed.

The space of nonempty closed subsets of a metric space X is topologised by
its injection into RX associating to each set its distance function, cp. [5, 2.10.21].
Convergence in this topology is termed locally in Hausdorff distance.

If a ∈ S ⊂ Rn and S is closed, then S is called differentiable at a if and only if
Tan(S, a) is a linear subspace of Rn and

µ1/r ◦ τ−a[S] → Tan(S, a) locally in Hausdorff distance as r → 0+.

If a ∈ S ⊂ Rn and S is closed, then S is called twice differentiable at a if and
only if S is differentiable at a and, in case 0 < m = dimTan(S, a) < n, there exists
a homogeneous polynomial function Q : Tan(S, a) → Nor(S, a) of degree 2 such
that with τ : Tan(S, a)×Nor(S, a) → Rn,

τ(v, w) = v + w for v ∈ Tan(S, a), w ∈ Nor(S, a),

φr = r−1 Tan(S, a)♮ + r−2 Nor(S, a)♮ for 0 < r <∞
there holds

φr ◦ τ−a[S] → τ [Q] locally in Hausdorff distance as r → 0+.

Note Q is uniquely determined by S and a, hence the second fundamental form
b(S; a) and the mean curvature vector h(S; a) of S at a may be defined by
b(S; a) = D2Q(0) and h(S; a) = traceb(S; a) respectively; here the notion of
trace of [5, 1.7.10] is extended in the obvious way.

Suppose m and n are positive integers, m < n, 1 ≤ p ≤ ∞, V is an m dimen-
sional integral varifold in Rn, ‖δV ‖ is a Radon measure, and, if p > 1,

δV (g) = −
∫

g(z) • h(V ; z) d‖V ‖z for g ∈ D(Rn,Rn),

h(V ; ·) ∈ Lp(‖V ‖ xK,Rn) whenever K is a compact subset of Rn.
(Hp)

Instructive examples are constructed in Allard [1, 8.1 (2)], Brakke [3, 6.1], and
[9, 1.2]. If p = m, then H m

x spt ‖V ‖ ≤ ‖V ‖ by Allard [1, 8.3]. If p > m and
p ≥ 2, then there exists a relatively open and dense subset G of spt ‖V ‖ such that
G is an m dimensional submanifold of class 1 of Rn by Allard [1, 8.1 (1)].
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The condition (H1) is sufficient to establish second order differentiability prop-
erties in an approximate sense:

Theorem 1 (cf. [10, 4.8]). If V satisfies (H1), then there exists a countable col-
lection C of m dimensional submanifolds of class 2 of Rn with

‖V ‖(Rn ∼⋃

C) = 0.

Moreover, for every member of M of C there holds

h(M ; z) = h(V ; z) for ‖V ‖ almost all z ∈M.

Using different methods, this theorem extends previous results of Schätzle in
[13, Theorem 6.1] for the case n = m+ 1, p > m, p ≥ 2.

If p = m, the differentiability properties may be sharpened as follows.

Corollary 2 (cf. [12, 5.11], [10, 4.8]). If V satisfies (Hm) and S = spt ‖V ‖, then:
(1) For H m almost all a ∈ S the closed set S is twice differentiable at a with

dimTan(S, a) = m and h(S; a) = h(V ; a).
(2) For ‖V ‖ almost all a there holds

r−m
∫

B(a,r)(|R(z)−R(a)− (‖V ‖,m) apDR(a)(z − a)|/|z − a|)2 d‖V ‖z → 0

as r → 0+, where R maps w ∈ S such that S is differentiable at w onto
Tan(S,w)♮ ∈ Hom(Rn,Rn).

To prove the corollary, first, the necessary flatness properties are deduced from
the preceding theorem by means of subsolution properties of the distance function
associated to a plane. This step utilises ideas from Ecker [4, 1.6, 1.7], Allard [1,
7.5 (6)], and [10, 5.2 (2)]. Second, the differentiability properties are deduced using
techniques from [9, §3]. Finally, the relation of h(S; ·) and h(V ; ·) is established
similarly as in Schätzle [14, Theorem 4.1].

The next theorem for m = n − 1 generalises the area formula for the Gauss
map from oriented m dimensional submanifolds of class 2 of Rn to supports of m
dimensional integral varifolds satisfying (Hm) with m ≥ 2.

Theorem 3 (cf. [12, 7.34]). If V satisfies (Hm), 2 ≤ m = n− 1, S = spt ‖V ‖,
C = (S × Sm) ∩ {(a, u) :U(a− su, s) ∩ S = ∅ for some 0 < s <∞},

and B is an H m measurable subset of C, then
∫

SmH
0{a :(a, u) ∈ B} dH

mu

=
∫

S

∫

Sm∩{u : (a,u)∈B}| discr(b(S; a) • u)| dH
0u dH

ma,

where b(S; a) • u : Tan(S, a) × Tan(S, a) → R denotes the symmetric bilinear
function mapping (v, w) ∈ Tan(S, a)× Tan(S, a) onto b(S; a)(v, w) • u ∈ R.

Note H m(S∼ dmnC) = 0 by part (1) of Corollary 2.
In view of Theorem 1, the proof of Theorem 3 readily reduces to establishing

the following Lusin property:

H
m(C[E]) = 0 whenever E ⊂ dmnC and H

m(E) = 0.
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If E ⊂ {z :Θm
∗ (‖V ‖, z) < ∞}, then the key is to establish a suitable version of a

weak Harnack estimate for Lipschitzian real valued functions on S. In this respect
inspiration is taken from Bombieri and Giusti [2], Hutchinson [7], and Stampacchia
[16, §4, §5]. To treat the case E ⊂ {z :Θm(‖V ‖, z) = ∞}, consider z ∈ Rn

with Θm(‖V ‖, z) = ∞. Then the modified monotonicity identity of Kuwert and
Schätzle [8, Appendix] (which employs Brakke [3, 5.8]) may be used to estimate
barycentres of ‖V ‖ on balls centred at z with suitable radii. In both cases the
deduction of the Lusin property from the estimates is carried out analogously to
the use of the Rado-Reichelderfer condition of Hencl in [6, Theorems 5.1 and 3.5].

Corollary 4 (cf. [12, 7.35]). If V satisfies (Hm), 2 ≤ m = n−1, and S = spt ‖V ‖
is nonempty and compact, then

∫

Sm |h(Sm; z)|m dH
mz ≤

∫

S |h(S; z)|m dH
mz

The weaker estimate resulting from replacing H m by ‖V ‖ in the last integral
was previously obtained by Kuwert and Schätzle in [8, Appendix] for the case
m = 2 and certain particular varifolds satisfying (Hp) with p > m by Schulze in
[15, Proposition 6.6].

Taking B = (S × Sm) ∩ {(a, u) : (z − a) • u ≤ 0 for z ∈ S}, Corollary 4 may be
deduced from Theorem 3 similarly to Schulze [15, §2].
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Existence of immersed spheres minimizing curvature functionals

Ernst Kuwert

(joint work with Andrea Mondino and Johannes Schygulla)

We consider variational problems for minimizers of Willmore functionals having
the topological type of the 2-sphere. Let [S2,R3] be the space of immersed 2-
spheres in R3. The Willmore functional is given by

W(f) =
1

4

∫

S2

| ~H|2 dµ,

where ~H is the mean curvature vector and dµ is the area element. Willmore (1965)
proved that W(f) ≥ 4π for any closed surface, with equality only for the round
spheres. In the talk, we discussed an existence and regularity theorem proved by J.
Schygulla in his Ph.D. thesis, see [Schy11]. For embedded surfaces f , one defines
the isoperimetric ratio by

I(f) =
√
36π

V (f)

A(f)3/2
∈ (0, 1],

where A(f) is the area and V (f) is the volume enclosed by f .

Theorem 1 (Schygulla [Schy11]). For any σ ∈ (0, 1], there exists a minimizer
of the Willmore functional in the class of smooth embeddings f : S2 → R3 with
prescribed isoperimetric ratio I(f) = σ. As a function of σ, the corresponding
minimum β(σ) is strictly decreasing with

β(1) = 4π and lim
σց0

β(σ) = 8π.

Moreover, the minimizers converge as σ ց 0 to a round sphere of multiplicity two
in the sense of varifolds.

The theorem is partially motivated by a model for cell membranes due to Hel-
frich (1973). In that model, the energy contains an extra parameter called the
spontaneous curvature, and both the area and the enclosed volume are prescribed.
The theorem corresponds to the special case of spontaneous curvature zero, where
the two conditions reduce to the isoperimetric ratio as single constraint by the
scale invariance of the Willmore functional. We refer to [SeBeLip91] for numerical
experiments. Under the assumption of axial symmetry, existence of minimizers for
any spontaneous curvature have been constructed recently in [ChoVe12].


