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Abstract — The asymptotic safety scenario of gravity conjectures that i) the quantum field theory
of gravity exists thanks to the presence of a non-trivial ultraviolet fixed point of the renormalization
group, and that ii) the fixed point has only a finite number of relevant perturbations, i.e., a finite
number of UV-stable directions (or, in other words, a finite number of free parameters to be fixed
experimentally). Within the f(R) approximation of the functional renormalization group equation
of gravity, we show that assuming the first half of the conjecture to be true, the remaining half
follows from general arguments, that is, we show that assuming the existence of a non-trivial fixed
point, the fact that the number of relevant directions is finite is a general consequence of the

structure of the equations.

Copyright © EPLA, 2013

The main problem with the perturbative non-
renormalizability of gravity is notoriously the prolifer-
ation of couplings to be determined by experiments, a
situation that severely limits the predictive power of
perturbation theory. From a renormalization group point
of view, this is understood as the fact that Newton’s
constant is technically an irrelevant coupling (i.e., it is on
a UV-unstable trajectory) for the free (Gaussian) fixed
point of Einstein’s theory, and if we want to keep it finite
in the continuum limit, we have to deal also with the
infinitely many other irrelevant couplings. One solution
to this problem was suggested long ago by Weinberg [1,2],
who dubbed it asymptotic safety: our near-Gaussian
unstable trajectory could be the UV-stable trajectory
of a new non-Gaussian fixed point (NGFP). In order to
be effective, such scenario requires that i) there exists a
NGFP, and that ii) the number of parameters needed
to uniquely determine one such trajectory among all the
possible ones be finite. We associate such parameters
to relevant directions, i.e., to a basis of independent
trajectories spanning the UV-stable surface of the NGFP.
If the dimension of the UV-stable surface was infinite,
we would of course be confronted again with a problem
similar to the one we started from. On the other hand, if
it was finite, we would have the possibility of constructing
a non-perturbatively renormalizable quantum field theory
of gravity with full predictive power.

An important amount of evidence has been collected
in recent years in favor of the asymptotic safety scenario,
mainly by studying truncations of a functional renormal-
ization group equation (FRGE) [3-6]. The adopted strat-
egy (avoiding a perturbative expansion in the couplings)
is to truncate the infinite-dimensional theory space of all
possible effective actions to a finite-dimensional subspace,
to look for fixed points and their relevant directions,
and eventually, after subsequently increasing the trunca-
tion and repeating the procedure, to look for evidence
of convergence. Such program has been carried out to a
certain extent, in particular with truncations of the effec-
tive Lagrangian to a polynomial in the Ricci scalar R, up
to order R® [7-10], and more recently up to order R3* [11],
resulting always in a fixed point with only three relevant
directions. However, lacking a more general understanding
of such empirical observations, whether in the full theory
the number of relevant directions would remain finite, and
hence whether the predictive power of the scenario would
survive, has up to now remained an open question. It is the
purpose of this letter to address this point, and to show,
within the context of an f(R) approximation, that a proof
can be given for the finiteness of the UV-stable surface at
any given fixed point of gravity.

In order to be able to make general statements about
higher orders in a truncation to polynomials in R,
it is essential to make one step further, and study a
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truncation of the theory space to an infinite dimensional
subspace, described by a generic f(R) Lagrangian, an
approximation that was suggested in [12] as an analogue
of the local potential approximation in scalar field theory
(see [13-15]). The program of investigating the asymptotic
safety scenario in such an approximation is still at the
beginning; however, its power has already shown when
it comes to disposing of spurious fixed points and to
the understanding of the general characteristics of the
fixed-point theory [12,16,17]. Here, we will see that in
addition this allows us to answer the question about the
number of relevant directions in general terms.

The FRGE reads (here I';, is the effective action at scale
k, and t =In(k/A), with A an initial scale)

d

1 -1.d
—I'y = §ST1" [(F;f) +Rk) Rk:| .

dt dt (1)

For its derivation, meaning and usage, we refer to the
general reviews [3-6,13-15,18]. Here we emphasize only
some aspects which are important for our work. Ry is
an IR cutoff operator defining the coarse-graining scheme.
The FRGE clearly depends on the choice of such scheme;
however, a number of universal properties of the flow
should be independent of it, in particular the critical
exponents, and hence the number of relevant directions
at a fixed point. Unfortunately, approximations spoil
universality to some extent, and one has to be careful in
analyzing different schemes in order to pinpoint eventual
artifacts of particular schemes. Scheme dependence can
also be used to our advantage, optimizing the convergence
of approximations to the exact results [19]. In any case,
a good cutoff should ensure that T'?) 4 R}, be invertible.
More precisely, being the second variation of a Legendre
transform, it should be positive (remember that I';, on
its own is not a Legendre transform, thus it need not be
convex), and have a gap at finite k [19].

Our approximation consists in projecting the FRGE
for gravity on a maximally symmetric background, in
particular on a four-dimensional sphere'. As a result,
any action terms depending on the Weyl tensor, on the
traceless Ricci tensor, or on derivatives of the Ricci scalar,
vanish identically, and we will only be able to study the
running of an f(R) theory, which hence we take as our
ansatz for the effective action: T'y, = [ d*z\/gfx(R) (plus
gauge-fixing and ghosts [12]). We will not make any further
approximation, and we will not truncate the Lagrangian
to a polynomial in R.

For technical convenience, in gravity the common
scheme is to adapt the cutoff to the truncation by taking
Ri(A) =T (P,) —T?)(A), where P, =A +k%2r(A/k?),
A is a Laplace-type operator appearing in the second
variation of the action (at least when gauge-fixing,
field decompositions and background choice allow us to

1Everything goes through identically on the hyperboloid, apart
from the absence of zero modes and the explicit appearance of
volume factors, which anyway cancel out once the traces are
evaluated.

reduce all the differential operators to Laplace type),
and 7(z) is a cutoff profile function. Such adaptive
cutoff brings many advantages in the evaluation of the
functional traces, however it also leads to a number of
complications from the point of view of the resulting
differential equation for f(R). In order to avoid such
complications, we will differ here from previous works on
the f(R) approximation in the choice of cutoff scheme,
by taking an f(R)-independent cutoff. Our choice has a
crucial consequence: the resulting fixed-point differential
equation will be of second order (as explained in [12],
the equations derived so far were of third order precisely
because of cutoff choices with an f(R)-dependence).

We adopt the same notation and construction as
in [12], where the reader can find all the details omitted
here (field components, functional variations, gauge-fixing,
etc.), only differing for the choice of absorbing Newton’s
constant inside f(R), and for the cutoff scheme. Defin-
ing the operators Ag=-V2—-R/3, A =-V?-R/4,
and Ay =-V?2+ R/6, for the scalar, vector and tensor
modes, respectively, the fixed-point FRGE in the f(R)
approximation reads (as usual f/ =df/dR, etc.)

V(4fe(R) —2Rfi(R) = o+ Tg' + T+ 75, (2)
where tildes stand for dimensionless quantities, in partic-
ular fi,(R) =k~ *f,(k*R) and V =k* [d'z,/g (on the
sphere V =3847%/R?), and we have subdivided the rhs
into the contributions of the transverse-traceless tensor
modes (we define E(R)=2f(R) — Rf'(R), which is zero
on shell)

%Rg(A2 + OéQR)
—f'(R) Ay — E(R)/2+2RT(Ay + azR)

Ty =Tr , (3)

the gauge-invariant trace mode h
T =
S%RZ(AO + CY()R)

T _
"0/ (R) A2 3 (R) Ao+ E(R)+ 16RE (Ao + a0 R)

)

(4)

the transverse vector modes

%R/Z(Al +a1R)
Al +R¥(A1 +OZ1R)

1

Jac
=T
Th 5 It

: ()

and the remaining scalar modes

TJaC _ 1 %Ril (Ao-ﬁ-OéoR)
’ 27 | Ao+ E+Ry (Ao +aR)
24 RS2 (A R
. iy (B0t 0oF) G

(3A0 + R) Ao + 4R;§2 (Ao + Oé()R)

the last two contributions both arising from the Jacobians
of the field decompositions (longitudinal and ghosts contri-
butions cancel out [12]). Note that the traces are dimen-
sionless despite being written in terms of dimensionful
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variables. A crucial observation is that in order to properly
implement the cutoff on all the modes, we should choose
the «, parameters such that Ag+asR>0 for all the
modes, s =0,1,2 (we remind that on the sphere A; x R).
In [12] we had chosen as = 0 in order to avoid certain poles
that appeared in previous equations. However, the appear-
ance of such poles is associated to the adaptive cutoff
scheme. We noticed in [12] that, within such scheme, in
order to avoid poles in the rhs of (1), modes of rank s
had to be cut off with respect to the eigenvalues of Ag. In
the present work we employ a different scheme, and there
will be no concern about such singularities. For tensor
and vector modes it is safe to take as =0 and a7 =0,
as the spectra of Ay and A; are strictly positive, while
we have to be more careful with the scalar modes: on the
sphere, the trace in the h sector includes a constant mode
R for which Agh(®) = 7%}‘1(0)’ hence we need to take
ap >1/3 (see footnote 2). As already mentioned, univer-
sal properties of the RG flow should not depend on the
cutoff scheme, however a poor choice of cutoff can lead
to poor results. As observed in [12], in the adaptive cutoff
scheme, a fixed singularity at R = 0 renders the third-order
equation effectively second order, thus pointing in favor
of scheme independence, while fixed singularities at other
locations are due to not properly imposing the cutoff on
the lowest scalar modes.

We now choose the simple cutoff form ’RZ(AS) =
k™ecgr(Ag + asR), where ¢ labels a rank-s field to which
the cutoff is associated, r(z) is a dimensionless profile
function, identical for all the fields, ¢, is a (positive)
free parameter, and the power mg is to be chosen so
that the cutoff has the same dimension as the Hessian to
which it is associated. The profile function should satisfy
some basic requirements that make it a good IR cutoff,
in particular it should be non-negative, monotonically
decreasing and it should satisfy lim, ,o7(z)>0 and
lim, ,o7(z) =0. Common choices of profile functions
are 7(z) =z (exp(az®) — 1)~ (with a >0, b>1) [20], or
r(z)=(1—2)0(1 —z) [19], but many more are of course
possible. We will exclude power-law profile functions [21],
and we will assume that the approach to zero for z — oo is
faster than any power (power-law profile functions could
however be used taking care of choosing a sufficiently high
power). Special care should also be taken for non-analytic
cutoffs (e.g., with step functions), and for simplicity we
will assume strictly positive analytic profile functions.

For our purpose, it will be sufficient to study here
only the large-R properties of the FRGE, for which we
will not need to actually choose a specific cutoff profile
and to perform the traces. In this respect, one should
notice that unlike in other applications of the FRGE, in
the case of gravity there is a field dependence also in
the operator with respect to which modes are being cut
off (this aspect has been highlighted in a simple setting

20n the hyperboloid we get the additional constraint cg < 25/48.

in [22]), in particular Ag o< R on the sphere, hence the
large-field limit is peculiarly intertwined to the large mode
suppression.

In analyzing the asymptotic behavior of the NGFP
solution, we will assume that this is a power law. A
justification comes both from experience and from physical
considerations, as only to such behavior we can associate
a familiar interpretation in terms of couplings [13,23].

Given such assumption on the asymptotics of the
solution, we can study the dominant balancing of terms
in the FRGE in the asymptotic regime. We find that
the lhs of (2), as well as the cutoff-independent parts
of the denominators on its rhs, contribute in the large-
R limit with a power-law behavior. On the other hand,
the presence of the cutoff implies a faster fall-off of the
rhs at large R. As a consequence, the leading asymptotic
behavior of the solution is dictated only by the lhs, and at
leading order the large—]% equation reduces to

4fr(R) —2Rf(R) =0, (7)
corresponding to the classical scale invariance of the
action. Its solution is f*(R)~ R?, and we recover the
leading order of the asymptotic expansion found in [12,17].
We would need to study the full equation, not just
its asymptotics, in order to determine whether a global
solution with such asymptotic behavior exists. We leave
this problem to future work (for preliminary studies in
alternative schemes see [12,17]), and take the existence of
such a global solution as our main assumption here.

Next, we use the asymptotic behavior of the FP solution
in order to study the equation for the linear perturbations
in the large-R limit. Linearization in the neighborhood of
the fixed point is performed by writing

Fo(B) ~ f*(R) + cv(R)e™™, (8)
and expanding the FRGE to linear order in €. The zeroth
order is identically zero by construction, while the first
order provides the equation for the perturbations, which
takes the form of an eigenvalue equation (A=4—0):

—as(R)V"(R) + a1 (R)V' (R) + ag(R)v(R) = Av(R). (9)

In the large—];'f limit, ag and ay go to zero faster than
any power law, while aq ~2R, and as a consequence at
leading order v(R) ~ R2~%/2 for perturbations with power-
law asymptotics.

Perturbations with Re(f) >0 correspond to relevant
directions, hence we want to prove that there is a finite
number of eigenfunctions with A <4. We will actually
show that the eigenvalues A form a real and discrete
spectrum, bounded from below, and with a finite number
of eigenfunctions with positive 6. In order to accomplish
that, we need only few more general properties of the
coefficients ag, a; and as.

First we note that the coefficients have no singularities,
a direct consequence of the assumption that a global
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solution f*(R) exists, and of the presence of the IR
cutoff in the FRGE. Second, we observe that, due to the
positivity (r(z) > 0) and monotonicity ('(z) = dr(z)/dz <
0) of the cutoff,

e
1%

| B0 Bt Gotant St ont)
(97" (R)A2+37 (R) Aot B(R)+16¢r(Ao+ao )’

> 0. (10)

Hence (9) is a Sturm-Liouville problem, written with
the usual sign convention, and with no singularities. The
boundary conditions are provided by the requirement that
the asymptotic behavior be a power law at R ~ +00. These
boundary conditions are equivalent to requiring square
integrable solutions of (9) with respect to the weight

a1

function w(R) = a5 ' exp(— fR at), and they ensure that
the Sturm-Liouville operator is self-adjoint, and hence
that its spectrum is real.

In order to prove the existence of a discrete spectrum
we can transform (9) to a standard Schrédinger eigenvalue
equation —d?y(z)/dz? + U(x)y(z) = Ay(x), by means of a
Liouville transformation, and then apply standard theo-
rems (e.g., [24]). Defining the new variable x = fR 1/\/az
(with fioo 1/y/az = £00), and substituting y = a;/4w1/2v,
we find the potential

2 /
a a a
1 1 / 1
_7+a2 —
2(12

3al, ay
+ T 6a2> 1 (11)
The potential has no singularities at finite z, as a conse-
quence of (10) and of the absence of singularities in the
original equation. Finally, the asymptotic behavior of ag,
a1 and as is such that for x — +oo the second term domi-
nates, and U(z) — +o0. These simple observations imply
that the spectrum is discrete, bounded from below, and
the only accumulation point is at infinity [24]. As a conse-
quence, there is a finite number of eigen-perturbations
with 6 > 0.

We have reached our goal of showing that, assuming
the existence of a fixed-point solution f*(R), the number
of relevant directions is finite, thus lending theoretical
understanding to the empirical observation that the their
number does not seem to grow with the order of the
truncation in the polynomial case [8-11]. Importantly, we
found here that the exponents 8 are all real, contrary to
what observed in polynomial truncations, but compatibly
with what observed in [16,17] and in [25,26], and we
conclude that complex exponents are probably an artifact
of the truncations.

We close with some general remarks. Studying the limit
R — 00 of the fixed-point solution, as explained in [12],
means studying the limit £ — 0 at fixed R (see also [15]
for a clear explanation of this aspect in the scalar case). As
argued in [12], the asymptotic behavior f*(R) ~ R? of the

fixed-point solution implies that the full effective action
(obtained for k— 0, i.e., with all the modes integrated
out) at the fixed point is the scale-invariant theory defined
by I'*=T}_,=A* [d*z,/g R?, with the constant A* to
be determined by the requirement that I';, be non-singular
at all R (or at all k). Note that this expression is valid
only on a maximally symmetric space, hence it should
be interpreted with care: if we expect the fixed point to
have conformal (or Weyl) invariance, then the only local
Lagrangian satisfying such criterion, and reducing to R? in
case of maximal symmetry, is given by the Gauss-Bonnet
term, corresponding to a purely topological theory®. While
this might stimulate some speculations on the possibility
of a topological fixed point, one should remember that in
the f(R) approximation we cannot see, of course, other
conformally invariant terms like the Weyl-squared one,
ClvpsCHP?, whose effects have up to now only been
studied in finite truncations [25,26].

Going back to (8), an infinitesimal e ensures that at
t=0, i.e., at the initial scale k= A, fk(f%) is very close
to the fixed-point solution. Integrating towards k& =0, and
discarding deviations from the linearized flow, we obtain
the effective action

Fk—>/d4x\/§{AR2+ZeiA9iR291‘/2} . (12

In order to take A — oo while keeping the action finite,
in the case of positive 6, we need to take e~ (mg/A)?,
for some finite-mass parameter mgy. For negative 6, the
perturbations are automatically small in the large-A limit,
without any fine tuning, i.e., they are irrelevant. Finally,
for marginal perturbations with € =0 one needs to go
beyond the linear expansion. We thus recover a very
similar picture to the standard perturbative framework,
but with a finite number of free couplings parametrizing
the deviation from a NGFP.
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