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Abstract
We derive the propagators for HS master fields in the anti-de Sitter space
of arbitrary dimension. A method is developed to construct the propagators
directly without solving any differential equations. The use of the ambient
space, where AdS is represented as a hyperboloid and its conformal boundary
as a projective light cone, simplifies the approach and makes a direct contact
between boundary-to-bulk propagators and two-point functions of conserved
currents.

This article is part of a special issue of Journal of Physics A: Mathematical and
Theoretical devoted to ‘Higher spin theories and holography’.

PACS numbers: 11.25.Hf, 11.25.Tq

1. Introduction

A canonical playground for the AdS/CFT correspondence [1–3] N = 4 SYM versus
superstring theory on AdS5 ×S5 is quite complicated. One wishes to have a simpler model that
captures all essential features of the AdS/CFT paradigm. At the same time, it seems natural
and technically appealing to look for the AdS duals of the simplest CFTs, the free ones, rather
than strongly coupled. In the OPE of two free conformal fields, one finds an infinite set of
conserved currents of increasing tensor rank, suggesting the AdS dual be a theory of gauge,
and therefore massless fields of all spins. Such theories, called higher spin (HS) theories, do
exist in arbitrary dimension [4–9], see [10–12] for reviews. The conjectures that relate them
to various CFTs, which are not always free, have been proposed in [13–16], see also [17–23].

In addition to being dual to ‘almost’ free CFTs, the simplest HS theories have a
nondegenerate spectrum of states and they are believed to be dual to vector models, which do
not have long trace operators. Therefore HS theories provide a promising model for AdS/CFT,
in which one can expect to prove everything. However, it was not until the main breakthroughs
[24, 25] in AdS4/CFT3 and [26, 27] in AdS3/CFT2 that the topic attracted considerable
attention.

One of the goals of the present research is to pave the way for a search for the AdS/CFT
dual to d-dimensional bosonic HS field theory [9]. The AdS/CFT analysis in terms of the
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correlation functions requires among other things explicit form of the bulk-to-boundary
propagators. We develop a method that allows us to find boundary-to-bulk propagators for all
HS fields without solving any differential equations at all.

HS gauge theory has its dynamical content totally encoded in terms of some master fields.
These are W gauge connection 1-form and B HS curvature zero-form. Physical information
can be equivalently extracted from either of the two fields, pretty much as in the case of gravity
where the degrees of freedom reside in either the metric (gauge field) or the Riemann tensor
(curvature field). At the nonlinear level, however, the perturbative sector of HS connections
is way more involved as compared with the curvature B-sector. Practically, it makes the
HS-curvature analysis sometimes more preferable to the HS connections. Particularly, the
AdS/CFT correspondence test carried out in [24, 25] heavily rests upon the B boundary-to-
bulk propagator calculation.

The aim of this paper is to explicitly derive W - and B-propagators for all spins in arbitrary
dimension. The straightforward approach based on solving the equations of motion (e.o.m.)
encounters formidable technical problems though. It calls for some more refined methods to
push the matter through. One of the results of our paper is the method that effectively allows
us to build B-propagators by purely algebraic means. The method that we call self-similarity
virtually represents some motley combination of three ingredients. These are the ambient, the
unfolding and the star-product. In its essence, it makes it possible to construct a generating
function out of the spin-s Weyl tensor which uniquely defines the full B-propagator via a
simple integral map. We have applied this machinery to explicitly find all the boundary-to-
bulk B-propagators.

The dynamics of HS fields is described in terms of differential equations and algebraic
constraints that set the fields on-shell. The algebraic constraints are quite complicated to work
with in perturbation theory. Fortunately, in lower dimensions the most complicated part of the
algebraic constraints can be easily resolved by introducing twistor-like variables instead of
vector-like. It is because of these simplifications that the computations of three-point functions
in 4D HS theory are quite simple, [25]. Unfortunately, no analogue of this twistor resolution
is known in arbitrary dimension.

The paper is organized as follows. In section 2, we present a simple route from the free
conformal scalar on the boundary to the HS theory in the bulk, the goal being to show that
it is the HS master connection W that couples naturally to the currents built of scalar fields.
In section 3 we briefly review the ambient approach, while a more specific discussion is
presented in section 4. The linearized Vasiliev HS equations [9] are reviewed in section 5.
Boundary-to-bulk propagators for master connection and field strength are derived in sections 6
and 7, respectively, where two-point functions are also discussed. Conclusions are given in
section 8.

2. From boundary to higher spin fields in the bulk

Here, we would like to present a short path to the gauge fields introduced by Vasiliev in [28]
and then used in [9] to construct a classical theory of interacting HS fields in AdSd+1. One
starts with a u(N), so(N),...multiplet φI(x) of free scalar fields in the flat space of dimension
d. As is well known, having two φI(x) and s derivatives, one can construct a conserved
current that is a traceless tensor of any rank s = 1, 2, 3, . . .,3 the trace over the vector indices

3 This is true for u(N). In the case of so(N) there exist currents of even ranks only. Indices μ, ν, . . . run over d values.
A group of s (anti)symmetric or to be (anti)symmetrized indices μ1, . . . , μs is denoted by (μ[s]) μ(s).
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being implicit,

jμ(s) = φ(x)(
←−
∂μ − −→

∂μ )sφ(x) − traces, ∂ν jνμ(s−1) = 0. (1)

For s = 2 one recognizes the usual stress–energy tensor. The conformal dimension of a spin-s
current is 2�+ s, where � = (d − 2)/2 is the dimension of a free scalar. These currents form
a representation of the conformal algebra so(d, 2), which means that the charges are labeled
by certain modules of so(d, 2). Indeed, the conservation condition

∂μ js
μ = 0, js

μ = jμ
ν(s−1)Kν(s−1)(x), (2)

for yet unknown traceless Kν(s−1)(x) implies that

the traceless part of [∂νKν(s−1)] = 0, (3)

the latter equation being (i) conformally covariant, (ii) overdetermined, as such admitting a
finite number of solutions. Its solutions are called the conformal Killing tensors (CKTs), which
generalize conformal Killing vectors. Any given CKT allows one to define a conserved charge
in a standard way as an integral of a (d − 1)-form

Q =
∫

�s, �s = js
μεμ

σ [d−1]dxσ ∧ · · · ∧ dxσ . (4)

(i)+(ii) implies that CKTs are just so(d, 2)-tensors, although this is not easy to see, [29].
Namely, various components in the Taylor expansion of Kν(s−1)(x) can be organized into
an irreducible so(d, 2)-tensor4 KA(s−1),B(s−1) that has the symmetry of a two-row rectangular
Young diagram of length (s − 1)

s − 1
s − 1 .

(5)

The map from the explicitly conformal KA(s−1),B(s−1) to the hidden conformal CKT Kν(s−1)(x)

reads [29]

Kν(s−1)(x) = MAB
ν ...MAB

ν KA(s−1),B(s−1), (6)

MAB
ν = XA∂νXB − XB∂νXA, XA = {1, xa,−xaxa/2}, (7)

where XA(x) is a Poincaré slice of the zero cone XAXA = 0 (see section 3 below). The
generators MAB decompose into dilatation D = M+−, translations Pa = M+a, Lorentz rotations
Lab = Mab and conformal boosts Ka = M−a. In particular, it is evident that a Killing tensor
gets decomposed into a product of Killing vectors. The Killing vectors associated with Pa, D,
Lab and Ka read

Pa
ν = δa

ν , Dν = xν, (8)

Lab
ν = δa

νxb − δb
νxa, Ka

ν = 2xνxa − δa
νxmxm. (9)

Therefore, the on-shell closed form �, defining the whole conformal multiplet of the charges
associated with jμ(s), is naturally a carrier of the label of a Killing tensor,

� = �A(s−1),B(s−1)KA(s−1),B(s−1). (10)

The last but one step is to couple currents jμ(s) to some external fields, φμ(s), the Fradkin–
Tseytlin fields [30], which are gauge fields as the currents are conserved,

�S =
∫

φμ(s) jμ(s), δφμ(s) = ∂μξμ(s−1) − traces. (11)

4 Indices A, . . . run over d + 2 values a,+, −, where a, b, . . . are fiber so(d − 1, 1) indices. so(d, 2)-irreducibility
means that (1) the tensor indices have a symmetry of some Young diagram, (2) the tensor is traceless.
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Such a coupling, however, involves only one component of the whole so(d, 2)-multiplet, the
one associated with the Pa...Pa part of the conformal Killing tensor KA(s−1),B(s−1).

It is now natural to introduce a gauge field that incorporates all the components of the
multiplet; such conformal fields were considered in [31]:

�S =
∫

�A(s−1),B(s−1) ∧ W A(s−1),B(s−1), δW A(s−1),B(s−1) = DξA(s−1),B(s−1). (12)

It has to be a 1-form since � is a (d − 1)-form and the gauge parameter ξ is a zero-form

W A(s−1),B(s−1) ≡ W A(s−1),B(s−1)
μ dxμ (13)

that take values in the same irreducible so(d, 2)-module as � does. D is a flat covariant
derivative of so(d, 2). Then, φμ(s) is associated with one particular component of W ,

φμ
a(s−1) = totally symmetric and traceless part of Wμ

a(s−1),++···+. (14)

Let us note that the current associated with Ka(s−1),++···+ plays a distinguished role, of course,
as it is the highest weight current in the multiplet and all other currents can be thought of as its
descendants. However, the importance of having some symmetry manifest rather than playing
with a small part of it should not be underestimated.

For the case s = 2, i.e. for the energy–momentum tensor jμμ, this tells us that
W = W A,B

μ dxμ is a usual Yang–Mills connection of the conformal algebra and it couples
naturally to all currents that can be built out of jμμ with Killing vectors associated with the
generators D, Pa, Lab, Ka of the conformal group.

The last step is to interpret W in the spirit of AdS/CFT correspondence as a boundary
value of a bulk field, which might be called the HS gauge connection [28]. Taking into account
that there are currents of all spins (at least of even ranks) in the theory of free scalars, the dual
theory is expected to be a gauge theory of all connections of type (13) and it does exist [9].

3. Bulk and boundary in ambient space

A relation between theories in anti-de Sitter space and their conformal partners should become
more transparent and less technically involved if both types of theories are put into the same
space where the conformal symmetries/anti-de Sitter global symmetries act geometrically. This
is the ambient space, a flat pseudo-Euclidean space R

d,2; see [32–45] for original works and
developments. Below we introduce the notations we need rather than reviewing the ambient
approach.

Bulk. The anti-de Sitter space AdSd+1 is understood by definition as the hyperboloid

XAXA ≡ X · X = −R2 (15)

and we put R = 1 for simplicity. It is obvious that any SO(d, 2) rotation �A
B preserves the

hyperboloid, so that the representation of SO(d, 2) is simply ρ(�)X = �A
BXB.

A symmetric tensor field of the Lorentz algebra so(d, 1) is defined on AdS as a tensor field
φA(s)(X ) satisfying XBφBA(s−2) = 0 with the latter condition properly reducing the number of
independent components. So the local Lorentz algebra at X is defined as the stability algebra
of X . One can assume that the fields live on X2 = −1 or extend them in the radial direction
by imposing certain conditions, e.g. homogeneity, see [45] for recent progress.

The Lorentz covariant derivative is defined as

DMφA(s) = GN
MGA

B...GA
B∂NφB(s), GAB = ηAB + XAXB, (16)

where G is a projector onto X-transverse subspace in the tangent space and it brings the indices
back to the Lorentz subspace. G also serves as the ambient realization of the Lorentz metric
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and as a vielbein. Despite the unusual from of DM , one can verify that it amounts to the usual
Lorentz covariant derivative in any local coordinates. A convenient parameterization of AdS
is given by Poincaré coordinates

XA = 1

x0
(1, xa,−xmxm/2 − (x0)2/2). (17)

Boundary. The conformal boundary of AdS is understood as a projective light cone:

ZAZA = 0, ZA ∼ λZA, λ �= 0. (18)

The fact that Z is null allows one to impose an additional factorization condition. In order to
work with the equivalence relation effectively, one may choose a gauge, which can be imposed
with the help of an auxiliary vector V . A convenient gauge V · Z = 1 with V A = δA

− leads to
the Poincaré slice of the cone

ZA = (1, za,−z2/2). (19)

Then SO(d, 2) becomes acting as ρ(�)Z = �A
BZB/(V�Z) .

A symmetric tensor field T A(s)(Z) is a conformal quasi-primary if (i) it is homogeneous of
some degree δ, T (λZ) = λ−δT (Z), which is the conformal weight, (ii) if it is irreducible, i.e.
it is traceless, (iii) if it is transverse to the cone, i.e. ZBT BA(s−1) = 0; (iv) it is defined modulo
gauge transformations δT A(s) = ZAξA(s−1). (ii)+(iii)+(iv) reduce the number of independent
components to that of an irreducible so(d − 1, 1) tensor. Again one might wish to extend
the fields off the cone by imposing further restrictions on Z-dependence. (ii)+(iii)+(iv) can be
encoded by contracting the indices with a polarization vector ηA, such that η ·η = 0, Z ·η = 0,
η ∼ η + Z. Various conformal structures, e.g. the ones appearing in the correlators, can be
effectively written in the ambient space [43].

Let us note that up to Fourier transform and the scale condition, the tensor fields on AdS
are just massive fields in R

d,2, for which AdS is a mass-shell, while fields on the boundary
are just massless fields in R

d,2, for which the cone is a mass-shell and the extra equivalence
relations are just usual gauge symmetries of massless fields.

4. Geometry of the boundary-to-bulk problem in ambient space

It is useful to list, see table 1 and figure 1 below, all the variables that are relevant for the
boundary-to-bulk problem where a source field on the boundary is a totally symmetric traceless
tensor, which as mentioned above can be encoded with the help of a null polarization vector
η, so we will consider polynomials in η instead.

To perform computations, it is important to have explicitly all the derivatives of the
quantities given in table 1; fortunately, these are closed on themselves and are given below
(we omit the reference point superscript, e.g. just PA instead of XPA):

DA(XZ) = (XZ)PA, DAPB = GAB − PAPB, DAξB = −ξAPB,

DMGAB = 0, DMXA = 0. (20)

Simplest boundary-to-bulk propagators

To get the feeling that the ambient approach makes things simpler, let us consider (1)
propagators for scalars and (2) totally symmetric fields.

5
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AdSd+1

Cone

ξ

P

Π
X

Z
Z-class

η

Figure 1. Geometry of boundary-to-bulk problem in the ambient space.

Table 1. Relevant geometric quantities for the boundary-to-bulk problem.

Quantity Description

XA A point in the bulk, i.e. on the hyperboloid, X2 = −1.
ZA A point on the boundary, i.e. on the cone, Z2 = 0.
(XZ) The ‘geodesic distance’ between X and Z.
ηA Polarization vector on the boundary at point Z, i.e. η · η = 0, η · Z = 0,

η ∼ η + Z.
XGAA = ηAA + XAXA Induced Lorentz metric on AdS, GABXB = 0. It also plays the role of the

frame field EA
M = GA

M in the ambient space.
XPA = XA + ZA/(XZ) A vector that is tangent to the ‘geodesic’ connecting X with a boundary

point Z. It is a ‘wave-vector’ of a plane-wave toward Z. It respects the
equivalence class of Z.

�(X, Z)A
B = δA

B − ZAXB
(XZ)

A parallel transport tensor, that propagates tensor indices from the
boundary point Z to the bulk point X . It respects the equivalence classes
of Z and η.

Xξ
A = �(X, Z)A

B ηB The polarization vector η that is parallel transported to the bulk point X .
In addition to being tangent ξ · X = 0 and null ξ · ξ = 0, it is also
orthogonal to the ‘wave-vector’ P, ξ · P = 0.

1. Scalar b-to-b. From the pioneering AdS/CFT works [2, 3, 46], the boundary-to-bulk
propagator for a weight δ scalar is up to normalization simply

Kδ (X |Z) = 1

(X · Z)δ
, (D2 − δ(δ − d))Kδ (X |Z) = 0,

−1

2
(XZ)−1 = x0

(x0)2 + (x − z)2
(in Poincaré coordinates); (21)

this is so because ∂C∂CKδ ∼ Z2 = 0.
2. Spin-s b-to-b. Starting from spin-1 the boundary-to-bulk propagators become more and

more complicated in intrinsic coordinates [47–49]. A totally symmetric spin-s field, whose
boundary value is the Fradkin–Tseytlin field (11) that couples to the current jμ(s), can be

6
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described [50] by the Fronsdal field φA(s)(X ) that obeys

(D2 − m2)φA(s) − sDADMφA(s−1)M + s(s − 1)

2

(
DADA − 2GAA

)
φA(s−2)C

C = 0,

m2 = E(E − d) − s GBBGBBφA(s−4)B(4) ≡ 0,

δφA(s)(X ) = DAξA(s−1), GBBξA(s−3)BB ≡ 0, (22)

where E = 2� + s is the lowest energy of the field [37]. It coincides with the dimension
of the spin-s current jμ(s) (1). Such a gauge field with somewhat strange double-trace
constraints comes naturally as a part of the HS connection [28]. A propagator for a spin-s
field was proposed in [51]; when slightly refined, it reads

Kδ (X |Z, η)A(s) = 1

(XZ)δ
ξA(s), GBBKA(s−2)BB

δ = 0,

DMKA(s−1)M
δ = 0, (D2 − δ(δ − d) + s)KA(s)

δ = 0,

(23)

where the above conditions are satisfied for any δ, but only for δ = 2� + s Kδ does it
become a propagator for the Fronsdal field we need. Equation (23) is the lowest part of
the HS master field W that is a part of the Vasiliev formulation [9].

Boundary limit prescription

Within the context of AdS/CFT, it is important to know the limit of all geometric quantities
introduced above. There are two natural prescriptions. The first is to recover X2 factors, which
were dropped as X2 = −1, and then try to take X2 → 0. This is more complicated, however.
Second is to use the Poincaré coordinates’ experience. Naively, the fact that X grows near the
boundary as ϕ−1, where ϕ ∼ z is a defining function of the conformal boundary, suggests the
leading order

PA → XA, GAA → XAXA, �(X, Z) → �(X, Z), (24)

where �(X, Z) is formally unchanged, but X gets replaced by the Poincaré slice X , (19), of
the cone, X = lim zX .

As is well known [52], given a boundary-to-bulk propagator Kδ , which tends to
(x0)d−δδ(x − z), the coefficient of the second asymptotic (x0)δ is directly proportional to
the two-point function. From

Kδ = 1

(XZ)δ
= (x0)δ

(X · Z)δ

∑
k

�[δ + k]

�[δ]

(−)k(x0)2k

(−2X · Z)k
(25)

one observes that this is the coefficient of 1/(X · Z)δ , i.e. the two-point functions up to some
numerical, but still important factors are obtained just by changing the meaning of X to be
that of a point on the cone.

With the above prescription one sees that (21) immediately gives 〈φ(X )φ(Z)〉 = (XZ)−δ .
Introducing an auxiliary polarization ζ A at point X to contract the indices of the boundary-to-
bulk propagator (23) for the Fronsdal field, one finds

〈 js1 (X ) js2 (Z)〉 = δs1,s2

1

(XZ)2�

(
ζ A�(X, Z)A

BηB

(XZ)

)s

(26)

which is a correct expression for the two-point function of conserved currents [43].
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Twisted-adjoint action of the conformal group

Below it will be also important to have a somewhat unusual action of so(d, 2) on ξA and PA.
For reasons that become clear in section 7, we call this the twisted-adjoint action. Let the
polarization Vξ and ‘wave-vector’ VP be given at some bulk point V A. Then an AdS rotation
�A

B is performed that takes V to X . The boundary point Z is kept fixed by hand, i.e. we would
like to have a transformation that takes VP(V, Z) to XP(X, Z) (idem. for ξ ) without acting
on Z, which means that the hyperboloid is rotated while the cone is not. The corresponding
transformations read

XA = �A
BV B,

XPA = 1

σ
(VPA − VA) + XA, σ = (VP − V ) · X,

XξA = VξA − 1

σ
(VPA − VA)(Vξ · X ). (27)

5. Higher spin fields

In this section, we present the equations that describe free HS fields in anti-de Sitter space of
any dimension d + 1 in terms of certain master fields. The basic material is of course well
known, e.g. see [9, 12, 28, 29, 53], but the exposition is somewhat new. Firstly, the master
fields that take values in the HS algebra are introduced. Secondly, the background geometry,
i.e. the anti-de Sitter space, is given in a form analogous to higher spins themselves. Thirdly,
the equations are presented and few properties thereof are discussed. At the end an effective
oscillator realization is reviewed.

Algebra

We start with the generators TAB of the anti-de Sitter or conformal algebra h = so(d, 2) :

[TAB, TCD]� = TADηBC − TBDηAC − TACηBD + TBCηAD , (28)

where � is the product in the universal enveloping algebra U (h) of h = so(d, 2). What we
would like to review is that there exists an algebra g, called HS algebra, whose connection
W (T |X ) gets decomposed under h in terms of connections (13) whose boundary values couple
to all currents build of free scalar fields, i.e.

W (T |X ) =
∑

s

W A(s−1),B(s−1)TAB � · · · � TAB ≡
∑

s

W A(s−1),B(s−1)TAB(s−1). (29)

U (h) is a good starting point as it is a quite large extension of h, which should have enough
room. U (h) is an h module itself, whose decomposition in terms of irreducible h-modules can
be worked out using the Poincaré–Birkhoff–Witt theorem, the first levels being given by

U
0

1
2

3

(30)

8
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where the first singlet • is just the unit of U (h) and represents T AB. At level 2, the singlet
is the quadratic Casimir operator C2 = − 1

2 TAB � T AB and two more elements

= T[AB � TCD], = T C
A � TAC − 2

(d + 1)
ηAAC2

(31)

are the first ones that do not fit into the pattern of (13), (29) as they do not have the symmetry
of a rectangular two-row Young diagram (5). It is necessary to quotient them , defining a
two-sided ideal I :

I ∼= U � U

. (32)

Despite not being immediately obvious, the procedure is consistent and there is nothing else
to care about (see [29, 9, 12, 53, 54] for an extended elaboration); the HS algebra defined by
g = U (h)/I has the desired decomposition in terms of h-modules:5

(33)

In addition to the master 1-form connection W (T |X ), one should introduce the field strengths
that are packed into the master zero-form field B(T |X ).

From the Fronsdal φA(s) field (22) vantage point, the W (T |X ) field will encode non-gauge
invariant derivatives of φA(s), while B(T |X ) will encode gauge-invariant ones. Introduction of
auxiliary fields to encode the derivatives of the φA(s) field is a matter of convenience as the HS
interactions contain higher order derivatives. One then may split a problem of interactions into
(i) writing constraints that encode all derivatives of φA(s) in terms of master fields, (ii) looking
for purely algebraic couplings of master fields that preserve the constraints [9].

Geometry

The anti-de Sitter space can be defined via a flat connection � = 1
2�A,B TAB, �A,B ≡ �A,B

μ dxμ,
which is the vacuum value of W (T |X ),

d� + � � � = 0 . (34)

In order to define the notion of a Lorentz tensor at any point of the anti-de Sitter space, one
should introduce [56, 28] an external field V A(X ), V · V = −1, called compensator, that
defines the splitting of the local so(d, 2) into the Lorentz subalgebra so(d, 1), which is a
stability subalgebra of V , and translations, cf section 3. Roughly speaking, this amounts to
splitting �A,B into vielbein ha

μ and spin-connection � a,b
μ , which as a consequence of (34) will

satisfy6

d� a,b + � a,
c ∧ � c,b = −�ha ∧ hb , dha + � a,

c ∧ hc = 0 . (35)

This can be done in a fully so(d, 2)-covariant way as in [28, 56], and the expressions for the
vielbein EA and Lorentz-covariant derivative D read

EA = dV A + �A
BV B, EAVA = 0, (36)

5 All the other unwanted diagrams in the spectrum turn out to be removed by I. Actually, I is the annulator of a free
conformal scalar [29, 53, 55].
6 Indices a, b, . . . are fiber indices of the AdS Lorentz algebra so(d, 1). � is the cosmological constant.
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D = d + 1
2 TAB(�A,B + �A,B), �A,B = EAV B − EBV A. (37)

The Lorentz-covariant derivative D is determined by DV A = 0, DEA = 0. It is worth
mentioning that EA

M dXM must have the maximal rank, i.e. (d + 1), which is a standard
requirement for the vielbein; otherwise, one cannot interpret the theory given below in terms
of Lorentz tensors.

A standard choice for the compensator is V A = const = δA
d+1. Let us note that within the

ambient approach, it is natural to choose V to be just an ambient coordinate X ; then the vielbein
is EA

M dXM = GA
M dXM = ∂MXA dXM . The local Lorentz generators are the V -orthogonal

components of T AB. The translation generators are simply PA = T ABVB.

Equations

The equations that describe free HS fields read

DW − 1

2
�A,B[T AB,W ]� = EA ∧ EB ∂

∂T AB
B

∣∣∣∣
PA=0

, (38a)

DB − 1

2
�A,B{T AB, B}� = 0 . (38b)

Let us mention briefly several important properties of these equations.

(a) The equations are consistent and complete (integrable) in a sense that applying d and using
the equations again gives zero and does not produce any new constraints on the fields.
Equations have the unfolded form [57, 58], i.e. are of first order, written by making use of
the exterior products of differential forms and de Rham differential d, which now is hidden
inside the Lorentz covariant derivative D. The unfolded equations enjoy a number of nice
properties [11, 59, 60]. In particular, all 1-forms, i.e. W in our case, take values in some
Lie algebra, which follows from the integrability requirement. Then, all the structures
appearing in the unfolded equations have an interpretation in terms of this Lie algebra.

(b) The full nonlinear equations for HS fields [9] are given in the unfolded form and are
certain nonlinear deformations of (38a) and (38b).

(c) If it were not for the rhs (38a) would be a covariant constancy condition in the adjoint
representation of the HS algebra. Its lhs is simply

D�W = dW + [�,W ]� = · · · (39)

which from the point of view of nonlinear theory is to be understood as a linearization
of dW + W � W over the � background. At the linearized level, the HS algebra is just a
highly reducible so(d, 2)-module, see (33), as � does not have any components beyond
so(d, 2).

(d) Equations (38a) and (38b) decompose under so(d, 2) into independent sets of equations:
one set for each spin s = 0, 1, 2, . . .. A scalar field has all its derivatives in the B field,
while any 0 < s-field has its derivatives split between W and B.

(e) Importantly, the consistency of the equations is not spoiled by the rhs of (38a), which has
an interpretation as a Chevalley–Eilenberg cocycle of so(d, 2).

(f) If it were not for the rhs of (38a), then the equation dW + W � W = 0 would have pure
gauge solutions only, g−1 � dg, describing no propagating degrees of freedom in the bulk.
It is the gluing term that makes W propagating and it is the difficulty of finding a nonlinear
completion of the gluing term that makes the HS problem so complicated. The fact that
PA = 0 on the rhs of (38a) tells us that not all components of W are sourced by B, but only

10
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those that are transverse to the compensator; these are called Weyl tensors. Schematically,
(38a) reads

dW A(s−1),B(s−1) + · · · = EM ∧ ENCA(s−1)M,B(s−1)N, VMCA(s−1)M,B(s) ≡ 0. (40)

(g) Equation (38b) is a covariant constancy equation, but given with respect to the twisted-
adjoint action of so(d, 2). Given any automorphism π , one can define a twisted-adjoint
action T (B) = T � B − B � π(T ), which is still a representation of the algebra. In the
HS case, π reflects the local translation generators PA = T ACVC while not affecting the
Lorentz ones, explicitly,

π(T AB) = T AB + 2PAV B − 2PBV A, π2 = id, π(PA) = −PA. (41)

One may rewrite (38b) in a more �-covariant form, emphasizing its representation theory
origin as

dB + � � B − B � π(�) − B � T ABdVAVB = 0. (42)

The last term accounts properly for the x-dependence of V A as the frame field EA is
(d + �)V and π knows nothing about dV . It also restores the integrability since (42) is
consistent up to dπ , which is compensated by the last term.

(h) A standard example to demystify (38a)–(38b) is provided by the spin-2, where W A,B

component of W (T ) can be decomposed into the vielbein W a and spin-connection W a,b,
and then (38a) amounts to the linearized zero-torsion constraint and the condition that the
only nonzero components of the linearized over AdS Riemann 2-form are given by the
Weyl tensor Cab,cd , cf (35):

DW a = 0, DW a,b + �ha ∧ W b − �hb ∧ W a = hc ∧ hdCac,bd . (43)

Equation (38b) just encodes all derivatives of the Weyl tensor that are compatible with
differential Bianchi identities.

(i) Equation (38a) contains Fronsdal equation (22), which by virtue of (38a) is imposed on
the maximally V -parallel component of the spin-s part of the W (T |X ) field,

φA(s) = EAM eM
A(s−1) , eA(s−1) = W A(s−1),B(s−1)VB(s−1) , (44)

where EA
M is the ambient vielbein and eM

A(s−1) is a HS vielbein or the frame field.

Oscillator realization

One can develop a quite effective technique for dealing with (38a)–(38b) directly [53].
Unfortunately, it is not known how to extend this technique beyond the linearized level.
Fortunately, everything can be given by means of oscillator realization, which does extend
to the interaction level [9]. One introduces an sp(2) pair Y A

α , α = 1, 2, of oscillators,
satisfying [9] [

Y A
α ,Y B

β

]
�
= 2iηABεαβ, εαβ = −εβα, ε12 = 1, (45)

where � is the Moyal–Weyl �-product

f (Y ) � g(Y ) = 1

(2π)2(d+2)

∫
dUdV f (Y + U )g(Y + V ) exp

(
iUA

α V B
β εαβηAB

)
. (46)

It is easy to see that

T AB = i

4

{
Y A

α ,Y B
β

}
�
εαβ (47)

11
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satisfy the so(d, 2) commutation relations (28). The �-product realization makes computations
easier than those with the universal enveloping algebra. The fact that there are only two species
Y A

1,2 of oscillators quotients automatically out the first generator of (31). The absence of the
second one, which corresponds to various traces, is not granted for free and it must be factorized
by hand via imposing conditions of type

ηAB ∂2

∂Y A
α ∂Y B

β

. . . = 0 (48)

that removes proliferation due to traces. Equation (38b) can be left unchanged, as it does not
depend on the details of realization, while (38a) now reads

dW + [�,W ]� = −iEA ∧ EB εαβ

∂2

∂Y A
α ∂Y B

β

B(Y )

∣∣∣∣∣
Y A

α VA=0

. (49)

6. W-propagator, two-point functions

Once the boundary-to-bulk propagator for the Fronsdal field is given (23), it is straightforward
to determine what the frame field part (44) of W (T |X ) is

eA(s−1) = 1

(XZ)α
ξA(s−1)ξN dXN, (50)

where we keep for the moment the weight α free. One has to take the derivatives of (23) up
to order s − 1 and to take the traces into account appropriately. The most general ansatz reads
(the ambient X now serves also as the compensator)

W s = 1

(XZ)α

∑
0�k+2i�s−1

As
k,i

[
ξ s−1

Xs−1−k−2iPkGi

]
ξN dXN, (51)

[
ξ s−1

Xs−1−k−2iPkGi

]
≡ TAB(s−1)ξ

A(s−1)XB(s−1−k−2i)PB(k)GBB(i). (52)

Equation (49) implies that D�W equals zero almost everywhere in the parameter space, which
with the help of (20) gives

As
k,i = As (−1)i�[α + k − 1]�

[
1
2 (s + α)

]
i!k!�[α − 1]�

[
1
2 (s + α) − i)

] , (53)

where As reflects the freedom in normalizing any W s separately. If one now checks whether
the trace constraint (48) is satisfied, then he/she finds up to some nonvanishing function

∂C
μ∂CνW ∼ (2� + s − α), s > 2, (54)

which implies that the trace constraint (48) singles out the weight of a massless spin-s field;
a similar phenomenon was observed in [45]. One may expect that the connection W with
relaxed trace constraints is still a good starting point for the description of massive fields too,
as D�W ≈ 0 for any weight α. For α = 2� + s one finds

As
k,i = As (−1)i�[s + �]�[k + s + 2� − 1]

i!k!�[s + � − i]�[s + 2� − 1]
. (55)

Weyl tensor. The terms that do not cancel inside D�W with (55) are given by the Weyl tensor
part CA(s),B(s) of B(T |X ). Actually, the form of the Weyl tensor,

Cs = 1

(XZ)2�+s

i=[ s
2 ]∑

i=0

Hs
i

[
ξ s

Ps−2iGi

]
, (56)
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ξ s

Ps−2iGi

]
≡ TAB(s)ξ

A(s)PB(s−2i)GBB(i), (57)

Hs
i = HsHs

i , Hs
i = (−)is!�

[
s + � − 1

2 − i
]

4ii!(s − 2i)!�
[
s + � − 1

2

] , (58)

is completely fixed up to the overall factor Hs by the requirement for it to be traceless. It
is constructed in terms of variables that are all tangent to the AdS-hyperboloid. Therefore,
so(d, 2)-tracelessness implies so(d, 1)-tracelessness, as it should. The only thing to do is to
determine the relative normalization of Hs that does cancel D�W , which gives

Hs = As �[2s + 2� − 1]

(s + 1)!�[s + 2� − 1]
. (59)

Let us note that for (49) to hold for the traceless Weyl tensor, the massless fall-off (2� + s) is
now mandatory.

Two-point functions. Using the prescriptions given in section 4, it is easy to see that on
approaching the boundary, all terms in W s tend to

1

(XZ)2�+s
TAB(s−1)ξ

A(s−1)XB(s−1)ξN dXN; (60)

the latter expression suggests that the role of a polarization vector in the HS theory is played
by ζ A = T ABXB, which is by definition orthogonal to the would-be soon boundary point XA.
Unfortunately, it is not null, which manifests the fact that the HS theory is formulated in an
extended space of variables, where the conditions like tracelessness do not hold automatically
and require a separate and rather cumbersome treatment [9, 12]. On the boundary (60) reduces
to (26), which is a desired correlation function of two spin-s conserved currents.

More easily the two-point functions can be extracted out of the Weyl tensor, which directly
tends to

1

(XZ)2�+s
TAB(s)ξ

A(s)XB(s) = 1

(XZ)2�

(
ζA�(X, Z)A

BηB

(XZ)

)s

(61)

which is (26) again. The phenomenon that the Weyl tensor is relevant for extracting correlation
functions of currents was observed in [24, 25].

7. B-propagator

The most complicated part is to construct the boundary-to-bulk propagator for the B field as it
contains arbitrarily high derivatives of the fields. A straightforward approach based on solving
(38b) seems to be too tedious for spins greater than zero, calling for more refined methods.
Nevertheless, it is first useful to work up the scalar case directly.

7.1. s=0

The case of the scalar field with dimension 2� = d − 2, which is the lowest component of the
bulk HS multiplet, can be approached rather directly, the most general ansatz being

B0 = 1

(XZ)α
F(ν, u), ν =

[
P

X

]
≡ T ABPAXB, u =

[
G

XX

]
≡ T AB(2)GAAXB(2), (62)

where again we keep the fall-off α free. The equations of motion (38b) lead to(
−α − Nν + 1

2
(Nν + 2Nu + 2)∂ν

)
F(ν, u) = 0,

(−2 + ∂ν + (Nν + 2Nu + 3)∂u)F(ν, u) = 0, (63)

13
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where Nν = ν∂ν and Nu = u∂u are the Euler operators. There are two solutions to these
equations: the first one, which is simple and corresponds to the shadow partner of a dimension
2� scalar, which has dimension 2 = d − 2�, reads

B0 = 1

(XZ)2
exp 2ν. (64)

The second solution is the one we need. Let us mention that the shadow solution is simple as
it does not depend on variable u, which is of the fourth order in Y A

α . The latter property is due
to its dimension, which does not involve d, so there is no need of u.

To find the second solution, it is easier to convert equations (63) into recurrent relations
and solve for Fk,m:

F(ν, u) =
∑
k,m

Fk,mνkum, (65)

the solution being

F(ν, u) =
∑
k,m

2k+2m(−)m�[�]�[k + 2�]

k!m!(1 + k + 2m)!�[� − m]�[2�]
νkum. (66)

Let us make several comments on the solutions obtained.

(i) If one discards (1 + k + 2m)! factor in Fk,m, (66), which, as will become evident soon,
appears naturally from the �-product integration, then the solution has a very simple
generating function

F̃(ν, u) = (1 − 2ν)−2�(1 + 4u)−1+�. (67)

The additional interfering factorial can be treated with the help of the Hankel
representation for the �-function, which in our case of integer argument reduces to

1

�(n)
= 1

2π i

∮
C

z−nez dz, (68)

with the closed contour around the origin. The solution is the transform

F(ν, u) = 1

2π i

∮
C

dzF̃(ν/z, u/z2)z−2 ez. (69)

(ii) The form of the solution (66) depends on the spacetime dimension modulo 2, which is a
general phenomenon. Indeed, for d even, i.e. � integer, the Taylor expansion in u stops
at u�−1 as is seen from (67), while for d odd, i.e. � half-integer, the solution contains all
powers of u.

(iii) Using a prescription of section 4 for extracting two-point functions, one observes that
both ν and u tend to zero on approaching the boundary; therefore

B0

∣∣∣∣
boundary

= 1

(XZ)2�
(70)

as was expected for 〈 j0(X ) j0(Z)〉, where j0 =: φ(X )φ(X ).
(iv) As one can readily check, both solutions satisfy a twisted analogue of the trace constraint

(48), which has the form(
GAB ∂2

∂Y A
α ∂Y B

β

+ Y α
A V AY β

B V B

)
B0(Y ) = 0. (71)

It is what should have been expected once the scalar is associated with B(Y = 0). Let us
note that there is no freedom in choosing trace factorization condition once the equations
of motion are satisfied, and it is stated which component of B is a scalar field (we have
assumed a canonical choice B(Y = 0) is a scalar field).
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(v) The exponent exp 2ν that appears in the shadow solution is a distinguished one as it
is a �-algebra projector analogous to the one used in [61], exp 2ν � exp 2ν = exp 2ν,
which is important for going beyond the linearized approximation. Among other things,
it guarantees that the potentially divergent self-interaction terms for HS fields cancel. One
might think of extracting exp 2ν out of the second solution, the result being

B0 = exp 2ν

(XZ)2�

∑
k,m

(−1)m2k�
[
� − m − 1

2

]
�[2� − 1]

k!m!(1 + k + 2m)!�
[
� − 1

2

]
�[2� − k − 2m − 1]

νkum. (72)

There exists a simpler route to (69) to appreciate which we need to go into the details of
explicit solutions to (38b).

7.2. Twisted-adjoint transformation and the self-similarity method

Solving the e.o.m. to derive B-propagator for a spin greater than zero turns out to be a highly
nontrivial problem. To avoid this problem, we propose another approach which is based on
the following propositions.

(i) The lowest component of the unfolded B-propagator which is the Weyl tensor is known
and given by (56).

(ii) Vectors ξA and PA the propagator depends upon are related at different points of AdS
space according to (27).

(iii) The solution to the twisted-adjoint equation (38b) is pure gauge

B = g−1 � B0 � π(g). (73)

The idea is as follows. Suppose we know the solution at some point XA
0 = V A:

B = B(Y A
α | Vξ, VP, (V Z)); then at an arbitrary point X , it amounts to B(Y

A
α| Xξ, XP, (XZ)),

where Y
A
α = Y

A
α(X ) receive X-dependence. Both solutions are related by twisted-similarity

transformation (73):

g−1 � B
(
Y A

α | Vξ, VP, (V Z)
)
� π(g) = B

(
Y

A
α| Xξ, XP, (XZ)

)
. (74)

Note that the same function B enters both sides of (74). Here we assume that g−1 � dg has all
its components in the so(d, 2) subalgebra of the HS algebra, i.e. g = g(T |X ) defines some
global rotation of AdS, which takes compensator V A to XA, XA = �A

BV B; the simplest such
g(T |x) reads

g(T |X ) = exp[−2T ABXAVB(1 − X · V )−1]. (75)

Y
A
α-oscillators should preserve their commutation relations and, therefore, transform in the

adjoint of so(d, 2),

Y
A
α = g−1 � Y A

α � g = �A
BY B

α . (76)

We are going to refer to equation (74) as the self-similarity condition. Restricting (74) to the
Lorentz sector, i.e. setting V AYAα ≡ XAY Aα = 0, one arrives at some integral equation with
the only Weyl tensor of (56) remaining on the rhs. This will eventually allow us to determine
the B-function completely. Before going into the details, let us consider now lhs of (74). For
an arbitrary function F(Y ),

F̂(Y ) = g−1(Y ) � F(Y ) � π(g(Y )), (77)

simple Gaussian integration in terms of Y
A
α and τ = (XV ) yields

F̂(Y
A
α ) =

∫
ds dt exp i

(
Y

A
α(sαVA + tαXA) + τ sαtα

)
F

(
Y

A
α + V Asα + XAtα

)
, (78)
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where it is implied that the ‘initial data’ F(Y ) are given at the point V , at which the ambient
coordinate V A coincides with the compensator field V A. Setting further XAY Aα = 0, as we are
interested to end up with the Weyl tensor on the rhs of (74), one obtains

F̂
∣∣
XAY Aα=0 = 1

τ 2

∫
ds dtF

(
Ŷ A

α + V Asα + 1

τ
XAtα

)
eitαsα

, (79)

Ŷ A
α = �(V, X )A

BY
B
α, �A

C�CB = �AB, (80)

where �(V, X )A
B (see table 1) now comes as the projector to Lorentz directions. This means,

in particular, that Ŷ A
α VA = 0. Another useful in what follows observation is

XξA�(V, X )A
B = XξB, XPA�(V, X )A

B = XPB. (81)

Having a simple propagator for the shadow scalar field (64) at hand, let us illustrate how the
self-similarity equation (74) indeed performs the desired transformation:

Y → Y V → X VP → XP Vξ → Xξ, (82)

where X,VP and X,Vξ are the ‘wave-vector’ and polarization at points X and V, while the
boundary point Z and polarization vector η are kept fixed; these were defined in (27). To do
so we take the propagator for the shadow field (64), replace X by V and apply (78); one then
finds

g−1 � B0(Y |VP, (V Z)) � π(g) = B0
(
Y |XP, (XZ)

)
, (83)

g−1 �
1

(V Z)2
exp 2[VPAT ABVB] � π(g) = 1

(XZ)2
exp 2[XPAT

AB
XB]. (84)

The latter means that the twisted-adjoint rotation transforms the boundary-to-bulk propagator
from Z to V to the one from Z to X . In particular, the integration produces a prefactor that
changes (V Z)−2 to (XZ)−2.

For s > 0 analysis, we need to elaborate (79) a bit further. Since all of the functions
depend only on T AB, it is useful to look at what these transform into. Let us expand F(Y ) in
terms of T AB,

F(Y ) = F(T ) =
∑

N

T AB(N)CA(N)|B(N), (85)

where CA(N)|B(N) are symmetric in each group of indices. Using (78) and the orthogonality
condition∫

ds dt(sαtα )m(sαξα )k(tβηβ )l exp i (sαtα ) = δk,l
ik+m(k + m + 1)!

k + 1
(ξαηα)k, (86)

where ξ and η are auxiliary spinors, the term-wise result is

F̂|XAY Aα=0 = 1

τ 2

∞∑
N=0

N∑
s=0

Ds
NCs

NT̂ AB(s)�AB(N−s)CA(N)|B(N),

Ds
N = (−)N+s(N + 1)!

2N−s(s + 1)!
, Cs

N = N!

(N − s)!s!
(87)

where we introduced the notation

�A,B = 1

τ
(XAV B − XBV A). (88)

The idea of obtaining the spin-s propagator is to reconstruct the unknown function B from
the Weyl tensor (56) using the self-similarity equation (74) at V AYAα ≡ XAY Aα = 0. It is
instructive to first consider the spin-zero case separately before we proceed with an arbitrary
spin propagator.
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7.3. Self-similarity for spin zero

Let us apply the elaborated method to the simplest case of spin zero. Following the logic of
the previous section, suppose that we already know the boundary-to-bulk propagator at a point
V , where by a coincidence the ambient coordinate V A equals the compensator field V A. It is
given by an expression similar to (62):

VB = 1

(V Z)2�
F(ν, u), ν = VPAT ABVB, u = VGACT ABTCDVBVD. (89)

When rotated by g(Y ) that takes V to X , the propagator must coincide with (62). In particular,
XB at Y

A
α = 0 must be7 the ‘two-point function’ (XZ)−2�. With (79), one finds, τ = (XV ),

XB|Y=0 = 1

τ 2

∫
ds dt exp i (sαtα ) VB

(
T ABsαtα

) ∣∣∣
T AB=�AB

(90)

which leads us to a transform∫
ds dt exp i (sαtα ) f (sαtαx) =

∑
k

fkxk ik(k + 1)! f (x) =
∑

k

fkxk (91)

that brings an additional factorial due to
∫

ds dt (sαtα )k exp i (sαtα ) = ik(k + 1)!. The factorial
just counts the number of T AB. Let us note that the transformation (91) is to some extent
reminiscent to the one used in [7] in a different context. For a function of two variables (89),
the transformation reads

XB0|Y=0 = 1

τ 2

1

(V Z)2�
F̃(ν, u)

∣∣
T AB=�AB , (92)

F̃(x, y) =
∑
k,m

Fk,mxkym (k + 2m + 1)!(−)k

2k+2m
, (93)

with the inverse map given by

F(x, y) = 1

2π i

∮
dz

ez

z2
F̃

(
−2x

z
,

4y

z2

)
. (94)

Using convenient variables σ = (XZ)/(V Z) and τ = (XV ), we have

ν

∣∣∣
T AB=�AB

= −1 − (XZ)

(V Z)(XV )
= −1 − στ−1 u

∣∣∣
T AB=�AB

= 1 − τ−2. (95)

Amazingly, the condition for XB0(Y = 0) to have the correct behavior is sufficient to fix the
function of two variables, thus determining the propagator completely without solving any
differential equations at all! Indeed,

1

(XZ)2�
= XB0(Y = 0) = g−1 � VB0(Y ) � π(g)|Y=0 = F̃(−1 − στ−1, 1 − τ−2)

τ 2(V Z)2�
(96)

which immediately gives F̃(−1 − στ−1, 1 − τ−2) = τ 2σ−2�. The straightforward inverse
transform F̃(ν, u) → F(ν, u) gives (66), which has been obtained by directly solving the field
equations. The simple form of the generating function (67) comes now without surprise as
well as the dependence of the solution on d mod 2.

A form of the scalar propagator which explicitly contains the star-product projector might
be of use for application. To obtain it one should take

VB = 1

(V Z)2�
e2νF(ν, ω), ω = u − ν2. (97)

7 For s = 0 setting XAY Aα = 0 is equivalent to Y Aα = 0.
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Repeating the above procedure, one arrives at

B = exp 2ν

(XZ)2�

1

2π i

∮
dz

ez

z2

(
1 + 4ν

z
− 4ω

z2

)�−1

. (98)

The residue in (98) is some polynomial of degree �− 1 for integer � and infinite series for �

half-integer. Particularly, the residue equals just 1 for � = 1. As we see, this method is simple
yet effective and will be applied to a general case of spin-s field below.

7.4. Any s

Again, instead of solving (49) directly we will use the self-similarity of the propagator (74),
where g rotates V to X . This means that within the ambient approach the propagator looks the
same at any point. Bearing in mind the spin-zero case, we may have a look only at the Weyl
tensor at point X as viewed from point V via (74), i.e. try to solve for

(56) = B(XP, Xξ, XG, (XZ))
∣∣
Y

A
αXA=0

= g−1 � B(VP, Vξ, VG, (V Z)) � π(g)
∣∣
Y

A
αXA=0

(99)

with the hope that it again determines the dependence on all variables, and it does.
First of all, one faces the problem of parameterizing various structures that can appear

in the B-field. If factorized, it amounts to ten variables, some of them satisfying quadratic
relations, which makes a direct solving somewhat complicated. All the descendants of order
N − s of the spin-s Weyl tensor can be parameterized as[

ξ sPk+qGm−q

Ps−2n−qGnV k+2m
Gq

]
≡ T AB(N)ξA(s)PA(k+q)GAA(m−q)GAB(q)PB(s−2n−q)GBB(n)VB(N−s)

0 � 2n + q � s, k + 2m = N − s, q � m,

which gives for the B-field in the spin-s sector, Bs,

Bs =
∑

N

∑
k+2m=N

∑
0�2n+q�s

Fk,m
n,q

[
ξ sPk+qGm−q

Ps−2n−qGnV k+2m
Gq

]
. (100)

The fact that it is a complete basis can be seen either by evaluating the tensor product
ξ s ⊗ V N ⊗ Gm+n ⊗ Ps+k−2n or by noting that given any arrangement of ξ, P, G,V s inside
a tensor having the symmetry properties of a rectangular two-row Young diagram, one can
always push all ξs to the first group of symmetrized indices and all V s to the second. After
that there is no freedom left in rearranging the indices while preserving ξs and V s, so the rest
of the Ps and Gs can appear in any combination, as they do above.

At the new point X , the role of the compensator field is played by X itself. Thus, one sets
Y

A
αXA = 0 and notes that T̂ AB becomes orthogonal to the old compensator V , T̂ ABVB = 0, while

�A,B has no components in the Lorentz subspace, i.e. contraction of �A,B with any Lorentz
tensor vanishes identically. Therefore (100) can be contracted with T̂ AB(s)�AB(N−s) only and
(87) simplifies to

F̂(T̂ AB) = 1

τ 2

∞∑
N=0

Ds
NCs

NT̂ AB(s)�AB(N−s)CA(N)|B(N). (101)

Now one just needs (1) to express the new Weyl tensor at point X , (56), in terms of the
old variables VP, Vξ , VG, the relevant transformations having been already given in (27); (2)
substitute (100) into (101) and expand. Matching various structures on both sides of (99), one
finds all the Fk,m

n,q .
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(1) There are two structures that contribute to the Weyl tensor (56); with the help of (27) and
(81), one derives

Cs = 1

(XZ)2�+s

∑
i

Bs
i

[ Xξ

XP

]s−2i [XξXξ

XG

]i

(102)

[ Xξ

XP

]
= 1

σ

[
ξ

P

]
− ϒ ϒ = τ

[
ξ

V
G

]
+ τ 2

σ

[
P

V
G

] [
ξ

V

]
(103)

[XξXξ

XG

]
=

[
ξξ

G

]
+ 2τ

σ

[
ξP

G

] [
ξ

V

]
+ τ 2

σ 2

[
PP

G

] [
ξ

V

]2

+ ϒ2, (104)

where all variables on the rhs refer to the point V , so the superscript V is dropped. In order
to determine all the Fk,m

n,q , one does not need to expand the Weyl tensor in full, matching
some signature terms is sufficient. We would like to look at

Sn,q =
[
ξξ

G

]n [
ξ

P

]s−2n−q [
ξ

V
G

]q

, (105)

for which one finds

Cs = 1

(XZ)2�+s

∑
0�2n+q�s

HsLs
n,qSn,q Ls

n,q =
i=n+[ q

2 ]∑
i=n

Hs
i C2n+q−2i

s−2i Cn
i (106)

Ls
n,q = s!(−)n�

[
� + s − n − [ q

2

] − 1
2

]
�

[
� + s − n − [ q+1

2

]]
4n(s − 2n − q)!n!q!�

[
� + s − 1

2

]
�[� + s − n − q]

. (107)

(2) Simple combinatorics with (100) results in[
ξ sPk+qGm−q

Ps−2n−qGnV k+2m
Gq

]
= Sn,q(C

s
N )−1

[
P

V

]k+q [
G

VV

]m−q

+ · · · ,
where · · · denotes the terms with other rearrangements of ξ . It is useful do define F̃n,q as

F̃n,q(x, y) =
∑

N

∑
k+2m=N

Ds
NFk,mxk+qym−q, (108)

where x and y are the same as for the spin-zero case, (95), given by

x =
[

P

V

]∣∣∣∣
T=�

= −1 − στ−1, y =
[

G

VV

]∣∣∣∣
T=�

= 1 − τ−2 (109)

and introduce F̂n,q(τ, σ ) = F̃n,q(−1−στ−1, 1− τ−2). Matching Sn,q terms on both sides,
one directly finds, ϑ = � + s − n,

F̂n,q = HsLs
n,q(−)qτ q+2σ−2ϑ+q (110)

and performing an inverse transform results in

Fk,m
n,q = HsLs

n,q

(−)m2k+2m(s + 1)!

(s + k + 2m + 1)!(m − q)!(k + q)!

�[ϑ − m]�[2ϑ + k]

�[ϑ − q]�[2ϑ − q]
. (111)

One might worry about the subleading terms that appear on both sides, these should
match automatically, with the explicit computations being more involved though. To
have additional control over the computations, we have explicitly checked that the first
subleading terms in which one of the ξs is rearranged in a different way do match. This
check is equivalent to certain nontrivial differential equations that involve functions Fn,q

(a derivative of Fn,q brings a factor that is related to the conformal weight 2� + s) as
well as the coefficients Bs

i that were determined independently from the trace conditions
on the Weyl tensor. Of course, for s = 0, for which also n = q = 0, one finds complete
agreement with the earlier computations.
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8. Conclusions

The boundary-to-bulk propagators for HS master 1-form W (51), (55) and zero-form B (100),
(111) have been constructed in arbitrary dimension for arbitrary integer spin. The pursuit has
forced us to elaborate an appropriate formalism to tackle this problem as the direct approach
based on solving the e.o.m. appeared to be too involved. The developed self-similarity method
is essentially based on the mixture of the ambient and the unfolded machineries along with
the star-product integration. In fact, the unfolding approach reduces the problem to purely
algebraic. Having the spin-s Weyl tensor propagator, one defines the generating function that
reproduces its all on-shell derivatives through a simple integral transformation. The very
existence of such an approach was possible for a number of reasons. First, within the ambient
formalism, the propagator is fixed once it is known at a single point. Second, its pure gauge
form within the unfolded formalism allows one to relate the solution at different points using
similarity transformation, realized as large twisted-adjoint rotations via the �-product. Finally,
the latter being presented in terms of the star-product transformation can be explicitly evaluated
resulting in the above-mentioned generating function.

The results obtained in the paper may have at least two applications. First, one may
compute three-point functions in d-dimensional HS theory [9], demonstrating how three-
point functions of currents built of a free scalar emerge if the arguments of [22] can be
extended to higher dimensions. As an alternative approach, one may think of putting the HS
theory to the boundary directly using [61] or developing the AdS/CFT technique with the
recently proposed action principle [62]. Second, according to the general recipe of AdS/CFT
three-point functions of conserved currents, 〈 js1 js2 js3〉 are in one-to-one correspondence with
various cubic vertices one can construct for massless fields with spins s1, s2, s3, [43]. There
are a number of such vertices, [63, 64], which result in a number of independent structures
that can contribute to 〈 js1 js2 js3〉, found recently in [65]. One may plug the propagators into
the cubic vertices, considered in [66], to obtain the AdS part of the cubic vertices/three-point
functions dictionary.
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