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On compact surfaces with or without boundary, Osgood, Phillips and Sarnak proved
that the maximum of the determinant of the Laplacian within a conformal class of
metrics with fixed area occurs at a metric of constant curvature and, for negative
Euler characteristic, exhibited a flow from a given metric to a constant curvature
metric along which the determinant increases. The aim of this paper is to perform
a similar analysis for the determinant of the Laplacian on a non-compact surface
whose ends are asymptotic to hyperbolic funnels or cusps. In that context, we
show that the Ricci flow converges to a metric of constant curvature and that
the determinant increases along this flow.
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Introduction

A non-compact surface of finite topology M has a natural compactification �M to a
surface with boundary obtained by attaching a circle “at infinity” to each end. To
discuss asymptotic expansions of functions or sections of a vector bundle on M , it is
very convenient to pass to the compactification and make use of a boundary defining
function or bdf. A boundary defining function for Y , a component of the boundary
of M� is a smooth non-negative function on �M that is equal to zero precisely on Y ,
and has non-vanishing differential on Y . A bdf for �M is known as a total boundary
defining function.
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712 Albin et al.

Definition 1. Let �M be a compact surface with boundary. Assume that the
connected components of the boundary of M have been partitioned into ‘funnel
ends’ and ‘cusp ends’

�F�M = �Y1� � � � � YnF�� �hc�M = �YnF+1� � � � � YnF+nhc
��

A metric g on the interior of M is a funnel-cusp metric or F-hc metric if, for each
Yi ∈ �FM there is a bdf xi and a collar neighborhood �0� ��xi × �1 of Y in M on
which the pull-back of g is equal to

e	
(
dx2i + d
2i

x2i

)
� (1)

and similarly for each Yi ∈ �hcM there is a bdf xi and a collar neighborhood
�0� ��xi × �1 of Y in M on which the pull-back of g is equal to

e	
(
dx2i
x2i

+ x2i d

2
i

)
� (2)

In both cases, d
2i is the round metric on the circle of length one, and 	 is required
to be a smooth function on �M equal to a constant at xi = 0.

A simple example of F-hc metric is the horn,

� = �1 × �0���s� with the metric g� = ds2 + d
2

s2
� (3)

It has a funnel end for �s < 1� and a cusp end for �s > 1�. In fact, the hyperbolic
metric on the quotient of �2 by a geometrically finite discrete group of hyperbolic
isometries is a F-hc metric [31, Example 2.1].

The interior of any manifold with boundary can be endowed with a F-hc metric.
A result of Mazzeo and Taylor [23, Section 2], and also a consequence of the
present manuscript, is that any such metric can be conformally transformed to a
hyperbolic metric. Note that funnel ends are also referred to as conformally compact
or asymptotically hyperbolic [22].

For each i ,we will assume that xi is equal to 1 outside a collar neighborhood
of Yi. As a global boundary defining function, we can therefore consider

x =
nhc+nF∏
i=1

xi� (4)

We can also take

xF =
nF∏
i=1

xi and xhc =
nF+nhc∏
i=nF+1

xi (5)

as boundary defining functions for �F�M and �hc�M respectively. Any non-compact
hyperbolic metric is an example of a F-hc-metric, as is any compact perturbation of
a hyperbolic metric.
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Ricci Flow and the Determinant 713

In analogy with the case of a manifold with boundary, we say that the funnel
ends of a F-hc metric �M� g� are totally geodesic if, in the description (1), we have

	− 	�xi=0 = o�xi� (6)

and, if this condition holds at the cusp ends, we say that they are totally geodesic.
Unless otherwise stated, we will usually assume that the metrics considered are
totally geodesic.

In this paper, we propose to define and study the determinant of the (positive
definite) Laplacian on such surfaces. On compact manifolds, the determinant of
the Laplacian is a global spectral invariant originally defined by Ray and Singer
[32] using the zeta function of the Laplacian to regularize the product of its non-
zero eigenvalues. For a non-compact manifold, the Laplacian typically has both
point spectrum and continuous spectrum, which means further regularizations are
necessary to define its determinant. One approach, due to Müller [27] and extended
to our situation by the second author [6] and by Borthwick et al. [8], is to define
a relative determinant by comparing the Laplacian to a model operator along the
ends of the manifold. For non-compact surfaces with constant curvature, other
approaches involve techniques from hyperbolic geometry, e.g., [9, 13, 14, 36]. We
follow a method originally due to Melrose [24] that allows us to use refined
information about the Schwartz kernel of the heat operator (from [1] and [38])
to define its renormalized trace and extend the definition of the zeta function and
determinant. This method has the advantage of being very flexible and systematic.
It has been used by Hassell in his proof of the Cheeger-Müller theorem [18], and in
recent work of two of the authors [3–5].

As in the compact case, our determinant admits a Polyakov formula describing
the variation of the determinant under conformal deformations of the metric. If all
of the ends of �M� g� are asymptotically cusps, then the area of M is finite and the
formula is very similar to the one for the compact case. This was done in terms of
relative determinants by the second author in [6] and by Borthwick et al. [8] (using
the Mazzeo-Taylor uniformization [23] as a starting point). In general, if there are
any funnel ends, then the area of M is infinite and the behavior of the determinant
of the Laplacian is more complicated. The same renormalization process used to
extend the determinant of the Laplacian can be used to define renormalized integrals
and, in particular, a “renormalized area”, RArea. Complications arise because this
renormalized integral is not a positive functional. Indeed, we show below that
compactly supported conformal changes can be used to make the renormalized area
equal to any given real number, positive or negative!

Explicitly, our Polyakov formula (Theorem 2.9 below) stipulates that if g� =
e����g0 is a family of F-hc metrics on a non-compact surface M with totally geodesic
ends, then the determinant of the Laplacian satisfies

�� log det� = − 1
24�

∫
M
�′���R�dA� + �� logArea��M� (7)

in the finite area case and

�� log det� = − 1
24�

R∫
M
�′���R�dA� (8)

in the infinite area case, where R� is the scalar curvature of g�.
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714 Albin et al.

By analogy with the compact case and the result of [29], one would expect that
among all metrics in a given conformal class and with fixed (renormalized) area, the
determinant should be maximal on the one with constant scalar curvature. For the
relative determinant on Riemann surfaces with cusps ends, such a result was recently
obtained by the second author [6]. For F-hc metrics with only funnel ends and of
constant curvature outside a compact set, the corresponding result was obtained by
Borthwick et al. [8], again for the relative determinant.

For the determinant considered here, our strategy to establish the analog of the
result of [29] is to use the Ricci flow. The relevance of Ricci flow for the determinant
of the Laplacian on closed surfaces was pointed out already in [29] by Osgood,
Phillips, and Sarnak. Later Müller and Wendland [28] (see also the work of Kokotov
and Korotkin [21]) verified that the determinant on closed surfaces increases along
this flow.

On compact Riemann surfaces, Ricci flow was considered by Hamilton (see also
the work of Cao [10] for the Kähler-Ricci flow) who showed in [17] that on
surfaces of negative Euler characteristic, the normalized Ricci flow exists for all
time and converges to a metric of constant curvature. The proof of this result
elegantly follows from the study of the evolution equation of an accessory potential
function. Following the same strategy, this result was recently generalized by Ji
et al. [20] to non-compact surfaces with asymptotically cusp ends, the key new
difficulty in this case being the construction of the potential function, which turns
out to be much more delicate due to the presence of cusps. See also the work of
Chau [11] for the generalization of the result of Cao [10] to non-compact Kähler
manifolds.

In Section 3, we generalize further the result of [20] to include also funnels
(see Theorem 3.11). Along the way, we also carefully study how the asymptotic
behavior of the metric evolves along the flow, an important point for the study of
the determinant. A new feature in our case is that, as long as there is at least one end
asymptotic to a funnel, the Euler characteristic need not be negative, but can also
equal 0 or 1. This is consistent with the fact that there exists a metric with negative
constant scalar curvature in these cases, e.g. the horn and the hyperbolic plane �2.
Again, the key step is the construction of the potential function. Essentially by a
doubling construction along the funnels, we can reduce to a situation where there
are only cusps and obtain our potential function from the one of [20]. Since the area
is infinite in this setting, we have to proceed differently to define a normalized Ricci
flow. Instead of using the average scalar curvature, we can use any fixed constant �
and consider the normalized Ricci flow

�g

�t
�t� = �� − Rg�t��g�t�� (9)

The constant � has to be negative to insure the flow is aiming towards a metric of
constant negative scalar curvature. A particularly interesting choice is to take this
number to be the renormalized average curvature, in which case the renormalized
area is preserved along the flow.

Finally, in the last section, we combine our Polyakov formula with the
convergence result for the Ricci flow to get our main result, which says
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Ricci Flow and the Determinant 715

(see Theorem 4.1 for the precise statement) that among all F-hc metrics g in a given
conformal class with totally geodesics ends satisfying

RArea�g� = −2���M�

with scalar curvature asymptotically equal to −2 in each funnel end, the determinant
of the Laplacian is greatest at the hyperbolic metric in this conformal class.

Indeed, if g0 is such a metric and g�t� = e��t�g0 is the solution to the normalized
Ricci flow with � given by the (renormalized) average curvature, then the variation
of the determinant along the flow is nonnegative and given by

�t log det�g�t�� = − 1
24�

R∫
�′�t�RtdAt

= 1
24�

R∫
�Rt −��2dAt +

�
12�

R∫
�Rt −��dAt

= 1
24�

R∫
�Rt −��2dAt ≥ 0� (10)

the last integral being nonnegative since it does not need to be renormalized because
Rt −� = ��xF� along the flow (See Section 4 for all the details).

Remark. Related results have been obtained since the first appearance of this
paper. We mention in particular the works of Gregor and Topping [15], of Bahuaud
[7] and of the third author and Zhang [33].

1. Renormalization on Non-Compact Riemann Surfaces

Our approach to extend the definition of the determinant of the Laplacian to non-
compact surfaces is through renormalized integrals. In this section we briefly review
how to renormalize the integral of a density on a manifold with boundary provided
it has asymptotic expansions at each boundary face. We refer the reader to [24] for
more details, where renormalized integrals are called ‘b-integrals’, as well as [2, 5, 19,
Appendix].

1.1. The Choice of the Boundary Defining Function

The choice of coordinates �xi� 
i� in (1) or (2) and in particular the choice of
boundary defining function (4) is not fixed by the conformal structure of the metric.
A local conformal change of coordinates in (1) or (2) would induce a different
boundary defining function. However, the boundary compactification �M , which can
be seen as being obtained from �M� g� via our choice of boundary defining function
(4), does only depend on the conformal class of g.

Proposition 1.1. The boundary compactification �M does not depend on the choice of
conformal coordinates in (1) and (2). If �x̂i� 
̂i� corresponds to a different choice of
conformal coordinates, then x̂i = xih�xi� 
i� for some smooth function h with h�0� 
i�
nowhere zero on the boundary component Yi.

Proof. The horn � of (3) is conformal to the punctured unit disk using the complex
coordinate � = e2�iz with z = 
+ is� the cusp end corresponding to the puncture and
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716 Albin et al.

the funnel end corresponding to the boundary of the unit disk. In this coordinate,
the boundary defining function of the cusp end is given by �hc = −2�

log ��� and by �F =
− log ���

2� for the funnel end.
Using this coordinate near a cusp end, we see that a local change of conformal

coordinates near the cusp is given by a holomorphic function f��� = �g��� with
g�0� �= 0 and induces the new boundary defining function

�̂hc =
−2�

log �f���� � (1.1)

A quick inspection shows that f extends to give a smooth function on the boundary
compactification at the cusp (defined by �hc) and that �̂hc = �hch��hc� 
� with h a
smooth function with h�0� 
� nowhere zero.

Similarly, a local change of conformal coordinates near a funnel end is given
by a holomorphic function f defined for 1− � < ��� < 1 for some � > 0 and which
extends to a continuous function on the unit circle in such a way that �f���� =
1 whenever ��� = 1. It defines a new boundary defining function �̂F = − log �f����

2� .
By the Schwarz reflection principle, f extends to be smooth on the boundary
compactification (defined by �F) and �̂F = �Fh��F� 
� for some smooth function h
with h�0� 
� nowhere zero. �

In this paper, we will assume that the boundary defining function (4) and
the conformal coordinates �xi� 
i� in (1) and (2) are given and fixed. Notice that
whether or not an end is totally geodesic (6) depends on this choice. In the
funnel case, this notion is related with the important rôle played by ‘special’
or ‘geodesic’ bdf’s (see [2, 16]). These are bdf’s x such that � dx

x
�g is constant

in a neighborhood of the funnel boundary (the value at the funnel boundary is
independent of the choice of bdf). In order to make use of these results, we point
out that a bdf satisfying (6) is ‘close to’ geodesic for the associated F-hc metric.
By [16, Lemma 2.1] we know that there exists a geodesic bdf x̂ for g� unique in a
neighborhood of �FM� such that x̂2g�T�FM is the metric d
2i on each component Yi
of �F�M .

Lemma 1.2. Let g be a F-hc metric, x be a bdf satisfying the assumptions above, and
let 	0 = 	�x=0. Let x̂ be a geodesic bdf as described above that coincides with x along
the cusp ends. If we write x̂ = e�x then � = − 1

2	0 + ��x� as x → 0. If the funnel ends
are totally geodesic, then � = − 1

2	0 + o�x�.

Proof. Assume without loss of generality that we only have funnel ends. We need
to have x̂2g�T�M = e−	0x2g�T�M , but since

x̂2g = e2�x2g

this means we must have 2�+ 	0 = ��x�. We are also asking that � dx̂
x̂
�2g be constant

near x̂ = 0. The constant is necessarily equal to

∣∣∣∣dxx
∣∣∣∣
2

g

∣∣∣∣∣
x=0

= e−	0
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Ricci Flow and the Determinant 717

so we need to have

e−	0 = g

(
dx̂

x̂
�
dx̂

x̂

)
= g

(
dx

x
+ d��

dx

x
+ d�

)

=
(
e−	 + 2g

(
dx

x
� d�

)
+ g�d�� d��

)
�

Since g�d�� d�� = ��x2�, this implies �x� = o�1� if 	− 	0 = o�x�. �

Since the volume form of a F-hc metric blows-up at the funnel ends to second
order, this lemma implies as we will see that, for metrics totally geodesic along the
funnel ends, renormalization results that require a geodesic bdf also hold for a bdf
satisfying the assumptions above.

1.2. Renormalized Integrals

Let M be a manifold with boundary. A function f on M is polyhomogeneous if it is
smooth in the interior of M and, at each connected component N of �M , f has an
asymptotic expansion in terms of a bdf x for N and log x�

f ∼∑
as�px

s�log x�p�

We require that, for each � ∈ �� there are only finitely many as�p with Re s < �.
If � is a smooth non-vanishing density on �M� then the asymptotic expansion of

f can be used to meromorphically continue the function

z 
→
∫
M
xzf�

and then we define the renormalized integral of f to be

R∫
M
f� = FP

z=0

∫
M
xzf��

Alternately, one can use the asymptotic expansion of f to show that the function

� 
→
∫
x≥�

f�

has an asymptotic expansion as � → 0 and then define

H∫
M
f� = FP

�=0

∫
x≥�

f��

This method of renormalizing is often known as Hadamard renormalization and
is used in [24] while the previous method is known as Riesz renormalization and is
used in [25]. In [2, Section 2.3] it is shown that, under certain natural conditions
which will always hold in this manuscript, these two renormalizations coincide.
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718 Albin et al.

1.3. The Renormalized Area

Let �M� g� be a surface of infinite area. Given a total boundary defining function
on M� we can define the renormalized area of M , RArea�g�� by taking the
renormalized integral of the volume form of g. In sharp contrast to the usual area,
the renormalized area need not be positive.

The renormalized area generally depends on the choice of bdf used to define
it though, as we are working with a fixed bdf, RArea�g� is unambiguously defined
for a F-hc metric. The sign of RArea�g� does not reveal any information about
the behavior of the metric at infinity. Indeed, the renormalized area is clearly
additive under compact perturbations and one can compactly change the metric
(even conformally) and arrange for the renormalized area to be any real number,
positive or negative.

1.4. The Renormalized Gauss-Bonnet Theorem

In this section we describe the extension of the Gauss-Bonnet theorem to F-hc-
metrics.

Recall that the Gauss-Bonnet theorem for a surface with boundary �M� ḡ� says
that

where is a density on �M built up from the second fundamental form of �M

in M . In particular, if the boundary of M is totally geodesic, then
∫
M
R�ḡ� dAḡ =

4���M�. A straight-forward computation using Lemma 1.2 (see [2, Theorem 4.5])
shows that, if all of the funnel ends of g are totally geodesic (6), and x is as in (4),
then there is a renormalized Gauss-Bonnet theorem with no contribution from the
boundary.

Theorem 1.3 (Gauss-Bonnet for F-hc Metrics). Let �M� g� be a non-compact surface
with a F , hc metric. If Area�M� is finite, then

∫
M
R�g� dAg = 4���M��

If Area�M� is infinite and the infinite volume ends of M are totally geodesic, then

R∫
R�g� dAg = 4���M��

Remark 1.4. For exactly hyperbolic metrics this appears in [9, Section 2] for
surfaces and in [30] for higher dimensional hyperbolic manifolds without cusps;
see also [2] for higher dimensional asymptotically hyperbolic metrics that are
asymptotically Einstein.

If the funnel ends of g are not totally geodesic, one can check that the boundary
contribution in the corresponding renormalized Gauss-Bonnet theorem is essentially
the same as the boundary contribution to the Gauss-Bonnet theorem for the
incomplete metric x2Fg (where xF is a bdf for �FM).
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Ricci Flow and the Determinant 719

2. A Polyakov Formula for the Renormalized Determinant

In this section we will explain how the renormalized integrals described above can
be used to define renormalized traces which in turn can be used to define the
determinant of the Laplacian on non-compact surfaces.

2.1. The Renormalized Determinant

Since the work of Ray and Singer on analytic torsion [32], zeta regularization has
been used to define the determinant of the Laplacian. Starting with the identity, for
��i� ⊆ �+�

�s�s=0

(
N∑
i=1

�−s
i

)
= −

N∑
i=1

log �i = − log
N∏
i=1

�i�

Ray and Singer proposed to define the determinant of the Laplacian of �M� g� by
first setting

��s� = ∑
�∈Spec��\�0�

�−s (2.1)

and then formally defining

det = e−�s �s=0�� (2.2)

To make sense of this formula we note that if M is closed then, by Weyl’s law, the
sum defining ��s� converges if Re�s� > dimM/2 and defines a holomorphic function
on this half-plane. It is possible to extend this function meromorphically to the
whole plane and then (2.2) involves taking the derivative of this meromorphically
extended function at the origin, which turns out to be a regular point.

One way to justify the meromorphic extension is to rewrite ��s� using the heat
kernel of . It is easy to check that, for any � > 0�

�−s = 1
��s�

∫ �

0
tse−t� dt

t

and hence for Re�s� > dimM/2,

��s� = 1
��s�

∫ �

0
tsTr�e−t −��

dt

t
(2.3)

where � is the projection onto the null space of � i.e., the constant functions. As
t → 0 the trace of the heat kernel has an asymptotic expansion

Tr�e−t� ∼ t− dimM/2
∑
k≥0

akt
k

which implies that ��s� has a meromorphic continuation to the complex plane with
potential poles at

s ∈
{
dimM

2
�
dimM

2
− 1�

dimM

2
− 2� � � �

}
�
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720 Albin et al.

It can then be explicitly checked that zero is a regular point so that the right hand
side of (2.2) is well-defined.

In terms of the renormalized integrals of the previous section, since

1
��s�

∼ s + ��s2�� as s → 0�

we have

�′�0� =
R∫ �

0
Tr�e−t�

dt

t

where t is used to renormalize the integral at t = 0 and t−1 is used to renormalize
as t → �. This equality holds on closed manifolds, but notice that the right hand
side can serve as a definition of the (logarithm of the) determinant of the Laplacian
that does not require that the origin be a regular point for the meromorphically
continued zeta function.

On a non-compact surface �M� g�� the spectrum of the Laplacian consists of
eigenvalues and a continuous spectrum, so one cannot define ��s� by (2.1). There
is also a problem with extending definition (2.3) because the heat kernel of the
Laplacian is not of trace class. However this problem can be overcome by means of
a renormalized trace.

To motivate the renormalized trace recall Lidskii’s theorem which says that, if
A is an operator that acts via a continuous kernel 	A�

Af��� =
∫

	A��� �
′�f��′�d�′�

and A is of trace class, then

Tr�A� =
∫

	A��� ��d��

Since we already know how to renormalize integrals, we define the renormalized
trace of an operator A to be

RTr�A� =
R∫

	A��� ��d��

whenever the right-hand side makes sense.
Fortunately, the heat kernel of a F-hc metric is well-enough understood to

define its renormalized trace. The heat kernel for a metric with ends asymptotic
to hyperbolic cusps is described in [38] and for a metric with ends asymptotic to
hyperbolic funnels in [1], and it is straightforward to patch together a heat kernel
for a general F-hc metric from these. In either case it is shown that the distributional
kernel of e−t�diag is a smooth function in the interior of M with polyhomogeneous
expansions at the boundary of M and also as t → 0. From the analysis of the
Laplacian in [22, 38], we know that  has closed range and hence e−t converges
exponentially to the projection onto the null space of  as t → �. These properties
allow us to make the following definition.
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Ricci Flow and the Determinant 721

Definition 2.1. Let M be a non-compact surface with a F-hc metric g� and let x be
a total boundary defining function. The renormalized trace of the heat kernel of g
is defined to be

RTr�e−t� =
R∫

	e−t �diagdAg

where the renormalization is carried out using x. From [1] and [38] (see [5,
Appendix]) we know that, as t → 0,

RTr�e−t� ∼ ∑
k≥−2

akt
k/2 + ∑

k≥−1

ãkt
k/2 log t� (2.4)

The determinant of the Laplacian is defined to be

det = exp
(
−

R∫ �

0

RTr�e−t�
dt

t

)
�

As mentioned above, this definition directly extends the definition from
operators with trace-class heat kernel. We will show in Section 2.3 that it also
extends the definition of the determinant via the Selberg zeta function from
hyperbolic metrics (cf. [9, 36]). Another point in its favor is the main result of this
paper: it singles out constant curvature metrics as its critical metrics.

In (2.4), the logarithmic terms come from the cusp ends. In fact, as the next
lemma shows, many of the coefficients ãk automatically vanish.

Lemma 2.2. For any F-hc metric, the terms ãk in the short-time asymptotics of the
renormalized trace of its heat kernel (2.4) vanish if k is even. In particular, ã0 = 0.

Proof. Assume without loss of generality that there is only one cusp end. Recall
from [5, Appendix] that the asymptotic expansion (2.4) is derived by analyzing the
restriction of the integral kernel 	 of the heat kernel to the manifold with corners

diagH = �M ×�+√
t
� �M × �0��

where it is polyhomogeneous. This space has three boundary hypersurfaces: 
bf

and 
tf coming from the ‘old’ hypersurfaces �x = 0� and �t = 0� in M ×�+√
t
,

respectively, and 
cf the ‘front face’ resulting from blowing-up �M × �0�. The
logarithmic terms in the expansion come from the corner 
cf ∩
tf and, since we are
renormalizing, also from the corner 
bf ∩
cf .

At the latter corner, the log terms can be shown to arise from the short-time
expansion of the coefficient of x−1 in the expansion of the heat kernel at the face

bf . This can be identified following Vaillant [38, Chapter 4] with the heat kernel
of a model operator (the ‘horizontal family’) which in this case is multiplication by
a constant, namely − r

8 where r is the asymptotic value of the scalar curvature at

the cusp. Thus this corner contributes e
r
8 t√
t
log t to the short-time expansion of the

renormalized heat trace, and so does not contribute to ãk for k even.
To handle the former corner, 
cf ∩
tf , recall the well-known fact that for

closed manifolds of dimension n, the short-time asymptotics of the heat trace are of
the form t−n/2 times an expansion in t (as opposed to

√
t). The same ‘even-ness’ is
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722 Albin et al.

true in the expansion of the heat kernel of a F-hc metric at the boundary face 
tf .
It follows (see [5, Appendix]) that the asymptotics at the corner 
cf ∩
tf do not
contribute to ãk for k even. �

We can also define the � function of the Laplacian of g� for Re s � 0� by

��s� = 1
��s�

∫ �

0
ts RTr�e−t −��

dt

t
(2.5)

where � is the projection onto the L2 null space of  (i.e., the constant functions
if g has finite area and the zero function otherwise). Using (2.4) this function has a
meromorphic continuation to the complex plane, still denoted �. Since ã0 vanishes,
zero is a regular point of ��s� and the definition above coincides with

det = e−�′�0��

Remark 2.3. The renormalized trace was first defined by Melrose in his proof of
the Atiyah-Patodi-Singer index theorem [24] for asymptotically cylindrical metrics.
Melrose also pointed out that this definition allows one to extend the definition of
the zeta function and the determinant of the Laplacian as described above. See [18]
for an analysis of this extension to asymptotically cylindrical metrics including a
proof of the Cheeger-Müller theorem for the corresponding analytic torsion.

2.2. Relation with the Relative Determinant

A circle of ideas from scattering theory was introduced into this context by Müller
[27] as a way to overcome the problem of the heat kernel of the Laplacian not
being of trace class. Instead of extending the trace functional to operators that are
not of trace class a model operator is introduced so that the difference of the two
operators is of trace class. One can consider an operator that is naturally related
to the surface. In the case of finite area, i.e., only cusps ends, the natural model
operator is the following: decompose M as a compact part, M0� and the cusps ends,
Zhc. The cusps ends are each considered with one boundary that joins the end to the
compact part M0. The model operator is the direct sum of the self-adjoint extension
of the hyperbolic Laplacian on the cusp ends with respect to Dirichlet boundary
conditions at the boundaries, and the operator zero on M0. We denote this operator
as 0. The definition of the relative determinant depends on the following facts:

(1) e−tg − e−t0 is an operator of trace class for all t > 0.
(2) As t → 0+� there is an asymptotic expansion of the relative heat trace of the

form given in (2.4) with ã0 = 0.
(3) Since there is a spectral gap at zero we have that:

Tr�e−tg − e−t0� = 1+ O�e−ct��

as t → �� where 1 = dim kerg − dim ker0.

Then we can define the relative zeta function as:

��s� g� 0� =
1

��s�

∫ �

0
ts�Tr�e−tg − e−t0�− 1�

dt

t
�
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Ricci Flow and the Determinant 723

In the same way as for the regularized determinant, the asymptotic expansions
guarantee that the relative zeta function has a meromorphic continuation to the
complex plane that is regular at zero, and we can define:

det�g� 0� = e−�′�0�g�0��

The relative determinant has been considered on non-compact surfaces where the
metric is exactly hyperbolic outside a compact set by Müller [26, 27] and by
Borthwick et al. [8]. In a more recent work [6], the second author has extended the
definition of the relative determinant to surfaces whose ends are merely asymptotic
to hyperbolic cusps.

In either case, working with renormalized traces allows us to write

Tr�e−tg − e−t0� = RTr�e−tg �− RTr�e−t0��

��s� g� 0� = ��s� g�− ��s� 0�� and det�g� 0� =
det�g�

det�0�
�

Hence, when the relative determinant and the renormalized determinant are both
defined, they are essentially equivalent.

2.3. Relation with Selberg Zeta Function

Both in order to compute the critical value of the determinant of the Laplacian,
and to relate to other approaches to the determinant of non-compact surfaces, it is
important to understand the relation between the determinant as defined above and
the Selberg zeta function.

For compact hyperbolic Riemann surfaces, an interesting relationship between
the determinant of the Laplacian and the Selberg Zeta function was discovered by
D’Hoker and Phong [12] and further refined by Sarnak [34]. If M is a non-compact
surface with a F-hc-metric g of constant curvature, then this relationship still holds.
We can write M as �/� and define the Selberg zeta function Z�s�� for Re s > 1� by
the absolutely convergent product

Z�s� =∏
���

�∏
k=0

�1− e−�s+k������

where the outer product goes over conjugacy classes of primitive hyperbolic
elements of �� and ���� is the length of the corresponding closed geodesic. The
function Z�s� admits a meromorphic continuation to the whole complex plane.

Borthwick et al. showed [9, (5.2)] that if

Rg�s� = �+ s�s − 1��−1

and ��s� is any function satisfying

(
1

2s − 1
�

�s

)2

log��s� = −RTr�Rg�s�
2� (2.6)

D
ow

nl
oa

de
d 

by
 [

M
PI

 M
ax

-P
la

nc
k-

In
st

itu
te

 f
ur

 G
ra

vi
ta

tio
np

hy
si

k]
 a

t 0
2:

16
 1

5 
Ja

nu
ar

y 
20

15
 



724 Albin et al.

then there are constants E and F such that

��s� = Z�s�eE+Fs�1−s�

(
��s�

�2��s�2
2 �s�

)��M�
(
2s
√
��s − 1

2
���s − 1

2
�

)−nC

(2.7)

(here �2�s� is Barnes’ double Gamma function). We will show that, with the
determinant defined above, det�+ s�s − 1�� satisfies (2.6) and hence (2.7). As in
[34], by examining the asymptotics as s → � we will determine the values of E and
F in this case.

Theorem 2.4. Let M be a non-compact surface and g a F-hc-metric on M of constant
curvature. The zeta regularized determinant det�+ s�s − 1�� satisfies (2.6) and hence
(2.7). The constants E and F in this case are equal to

E = ��M�

(
1
2
log 2�− 2�′R�−1�+ 1

4

)
� F = −��M�

where �R is the Riemann zeta function. It follows that

det�� =
{
CF−hcZ

′�1� if Area�g� < �
CF−hcZ�1� otherwise�

with

CF−hc = eE�2��−��M��
√
2��−nC �

Remark 2.5. The reason a derivative is taken in the case of a finite area surface is
that to compute det�� one needs to exclude the zero eigenvalue of .

Proof. In [4, (7.9)] it is shown that (2.4) implies

− log det�+ w� =
∫ �

0
�RTr�e−t�− f0�t��e

−tw dt

t

− a0 logw − 2
√
�a−1

√
w + a−2w�−1+ logw�

+ ã−1

√
w

(
�log

(
−1
2

)
− logw�

(
−1
2

))
(2.8)

where the ak and ãk are the coefficients in the short time asymptotic of the trace of
the heat kernel (2.4) and

f0�t� = a−2t
−1 + ã−1t

−1/2 log t + a−1t
−1/2 + a0� and

(2.9)
�log�z� �=

∫ �

0
tze−t log t

dt

t
�

If we set w = s�s − 1� so that �
�w

= 1
2s−1

�
�s
, it follows that ([4, (7.21)])

(
1

2s − 1
�

�s

)
log det�+ s�s − 1��

=
∫ �

0
�RTr�e−t�− a−2t

−1�e−ts�s−1� dt − a−2 log�s�s − 1��
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Ricci Flow and the Determinant 725

and hence

(
1

2s − 1
�

�s

)2

log det�+ s�s − 1�� = −
∫ �

0
t
(
RTr�e−t�

)
e−ts�s−1�dt

= −RTr
(∫ �

0
te−t�+s�s−1��dt

)

= −RTr�+ s�s − 1��−2�

which establishes (2.6) and (2.7).
To determine E and F� we can then proceed exactly as in the proof of

[4, Theorem 2]. Finally, because zero is in the spectrum of the Laplacian on a
hyperbolic surface precisely when its area is finite,

det�� =
{
lims→1

det�+s�s−1��
s�s−1� if Area�g� < �

det�+ s�s − 1���s=1 otherwise �

In fact, the proof of [4, Theorem 2] also give us the values of the first few
coefficients in the short time asymptotic (2.4) of the trace of the heat kernel

a−2 =
RArea�M�

4�
� ã−1 =

nC

4
√
�
� a0 =

��M�

6
�

(2.10)

a−1 =
nC

2
√
�

(
�log�− 1

2 �

4
√
�

+ 1− log 2

)
�

When the scalar curvature is not constant but the metric has totally geodesic
ends, we get the same coefficients as the next lemma shows.

Lemma 2.6. Let g be a F-hc metric on M .

1) If the ends of g are totally geodesic with scalar curvature asymptotically equal to −2
in each end, then in the expansion (2.4) the first coefficients are given by (2.10).

2) If 	 = ��x2F� and 	 = ��xhc�� then
∫ t

0 e
−�t−s�	e−sds is of trace class.

Remark 2.7. Although we only compute the coefficients a−1 and ã−1 when the
scalar curvature is equal to −2� they can be obtained in the general case by an
appropriate rescaling argument.

Remark 2.8. If there are only cusps, see also [6] for a different proof of (2).

Proof. For the first part of the lemma, notice that the ‘interior contributions’
are given by the same integration of local terms, but with integrals replaced with
renormalized integrals whenever the volume is infinite. Thus, we need to check the
contributions coming from the cusp and funnel ends are the same for a metric with
totally geodesic ends and a metric which is hyperbolic in a collar neighborhood of
each end.

First let us focus on what happens near a cusp. Without loss of generality, we
can assume that we have only cusp ends, in fact only one cusp. By assumption,
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726 Albin et al.

we know that (2) is satisfied with 	���M = 0. For these metrics the heat kernel is an
element of Vaillant’s heat calculus [38, §4],

e−tg ∈ � 2�2�0
H �M��

The superindices in � 2�2�0
H �M� refer to the behavior of e−t as t → 0 in the interior

of M� as t → 0 and x → 0� and as x → 0 for t > 0. Let ghc be a metric which is
hyperbolic in a neighborhood of the cusp end. We will see, using Duhamel’s formula
and Vaillant’s composition formula, that the difference between e−tg and the heat
kernel of ghc vanishes at the cusp as t → 0. Suppose that in a neighborhood E of
�hcM we can write the metric as

g = e	
(
dx2

x2
+ x2d
2

)
= e	ghc

for some smooth 	 = ��xk� with k > 0. By introducing the interpolating family

g� = e�	ghc�

the heat kernels of g and ghc in this neighborhood are related by

e−tg = e−thc +
∫ 1

0
��e

−t�d�

= e−thc −
∫ 1

0

∫ t

0
e−�t−s��	�e

−s� ds d��

From the proof of [38, Theorem 4.9], we know that �e
−s� is an element of

� 0�0�0
H �M� in Vaillant’s heat calculus. For 	 in ��xk�� 	�e

−s� is an element of
� 0�k�k

H �M� and hence using Vaillant’s composition formula [38, Theorem 4.6]

∫ t

0
e−�t−s��	�e

−s�ds ∈ � 2�2+k��
H �M�

for some index set � bounded below by k. This implies that the aj and ãj in the
short-time asymptotics (2.4) are given by the same formula as those in the short-
time asymptotics of e−thc for j < �k− 1�/2. Elements in � 2�2+k��

H �M� are trace-class
at positive time for k > 0� so the discussion above also establishes (2) along the
cusp ends. A similar argument using [1] instead of [38] (and the fact that 	 = ��x2F�)
establishes the lemma along the funnel ends. �

2.4. Polyakov Formula

In this section we extend Polyakov’s formula for the change in the determinant of
the Laplacian upon a conformal change of metric. For the relative determinant,
this formula is due to Borthwick et al. [8] (for metrics with no cusps and exactly
hyperbolic outside a compact set) and to the second author [6] (for metrics with no
funnels).

We will assume that the metrics involved are F-hc metrics with totally geodesic
ends. As explained in the previous section, the latter assumption simplifies the
behavior of the heat kernel and includes the metrics of constant scalar curvature.
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Ricci Flow and the Determinant 727

Thus we will analyze the behavior of the determinant of the Laplacian for a family
of metrics g��� = e����g0 where g0 is a smooth F-hc metric and

���� = �̃���+
nF+nhc∑
i=1

�i�����xi�� with �̃ ∈ x2����M × �0� T���� (2.11)

where �i ∈ ����� and � ∈ ��
c ��0�+��u� is a cut-off function equal to 1 for u < �

2
and to 0 for u > 3�

4 .

Theorem 2.9 (Polyakov Formula). Let �M� g0� be a non-compact surface with a
smooth F-hc metric. Let ���� ∈ ����M� be a smooth family of functions satisfying (2.11)
and g��� = e����g0. Then the determinant of the Laplacian satisfies

�� log det� = − 1
24�

R∫
M
�′���R�dA� (2.12)

if the area of M is infinite, and

�� log det� = − 1
24�

∫
M
�′���R�dA� + �� logArea��M� (2.13)

if the area of M is finite.

Proof. Let � denote the Laplacian of g���� so that � = e−����0. Then

��
RTr�e−t� � = FP

z=0
��Tr�x

ze−t� �

= −FP
z=0

Tr
(
xz
∫ t

0
e−�t−s���−�′�����e

−s�ds

)

=
nF+nhc∑
i=1

�′
i���FPz=0Tr

(
xzt��xi��e

−t�
)+ Tr��̃′���t�e

−t� �

+
nF+nhc∑
i=1

�′
i���

∫ t

0
FPz=0Tr

(
xz�e−�t−s�� � ��xi��e

−s� �

)
ds

= RTR��′���t�e
−t� � = −t�t

RTR��′���e−t� �

where in the third equality we have used that
∫ t

0 e
−�t−s�� �̃′����e

−s� is of trace class
and that

RTr
(
�e−�t−s�� � ��xi��e

−s� �
) = 0�

Indeed, since this term is the regularized trace of a commutator, its value depends
on the asymptotic expansion of the various operators at Yi. Since ��xi� ≡ 1 near Yi,
this means

RTR�e−�t−s�� � ��xi��e
−s� � = RTR�e−�t−s�� � �e

−s� � = 0�

the latter commutator vanishing identically.
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728 Albin et al.

Next let � = ���� denote the L2 projection onto constants in the case of finite
volume and zero otherwise. We will use the obvious facts that ��Tr��� = 0 and
�tTr��

′����� = 0.
We can proceed as follows

�

��

�

�s

∣∣∣∣
s=0

�e����g�s� =
�

�s

∣∣∣∣
s=0

(
1

��s�

∫ �

0
ts

�

��
RTr�e−t� −��

dt

t

)

= �

�s s=0

(
− 1
��s�

∫ �

0
ts�t

RTr��′����e−t� −���dt

)

= �

�s s=0

(
s

��s�

∫ �

0
ts−1RTr��′����e−t� −���dt

)

Since 1
��s�

∼ s + ��s2� as s → 0� this is equal to

Res
s=0

∫ �

0
tsRTr��′����e−t� −���

dt

t
= FPt=0

RTr��′����e−t� −��� (2.14)

In the interior, we know that �′���e−t has a short-time expansion of the form

�′����e−t� −�� ∼ �−1

t
+ �0 + o�1�

where the coefficients �k are precisely those functions that occur on a closed surface,
multiplied by �′���� e.g. �0 = R

24��
′���. Because �′���− �′

i��� = ��x2i �� we then see
from Lemma 2.6 as well as the construction of the heat kernel in [38] for cusps
(see [5, Appendix]) and [1] for funnels that

FP
t=0

Tr��′���e−t� � = 1
24�

∫
M
�′���R�dA��

Thus, we conclude that

FP
t=0

RTr��′����e−t� −���

= 1
24�

∫
M
�′���R�dA� −

1
Area��M�

∫
M
�′���dA�

where the final term is replaced by zero if the volume of M is infinite, and, if not,
can be rewritten

1
Area��M�

∫
M
�′���dA� =

1
Area��M�

∫
M
���e

�����dA0 = �� logArea��M��

Finally, since

�

��

�

�s

∣∣∣∣
s=0

�e�g�s� = − �

��
log det�

this finishes the proof. �
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Ricci Flow and the Determinant 729

To study the determinant of the Laplacian, it is natural to impose the following
normalization condition

RArea�g� = −2���M�� (2.15)

as otherwise one can increase the determinant “artificially” by scaling the metric
(e.g., consider g��� = e�Cg for a constant C in the Polyakov formula). Notice that
the case where ��M� = 0 is special, since (2.15) then implies there must be at least
one funnel end, but it does not rule out this sort of scaling. On the other hand, in
this case, these scalings are no longer problematic, since they leave the determinant
invariant as can be seen from the Polyakov formula. This leads naturally to the
following definition.

Definition 2.10. A F-hc metric g satisfying (2.15) is said to be critical for the
determinant of the Laplacian if for any � ∈ ��

c �M� with
∫
M
�dg = 0� we have that

∫
M
�Rgdg = 0�

Thus, when ��M� �= 0, a critical F-hc metric is precisely one with constant scalar
curvature −2. When instead ��M� = 0, a critical F-hc metric is one with constant
negative scalar curvature.

Now suppose that ���� = �� for a fixed smooth function � satisfying

� = �0 + �̃� with �̃ = ��x2� and �0 a constant� (2.16)

and let g1 = e�g0. For metrics of finite area we can integrate equation (2.13) and use
(3.5) to find

log detg1
− log detg0

=
∫ 1

0
�� log dete��g0

d�

=
∫ 1

0

[
− 1
24�

∫
M
�′R�dA� + �� logArea��M�

]
d�

= logArea1�M�− logArea0�M�− 1
24�

∫
M

(
�′R0 +

1
2
��0��2

)
dA0 (2.17)

where (2.16) guarantees both that there is no boundary term from applying Green’s
theorem and that ����2 is integrable. In the same way, for infinite area metrics,
integrating (2.12) yields

F��� = log detg1
− log detg0

= − 1
24�

R∫ (
�R0 +

1
2
��0��2

)
dA0

= −��M�

6
�0 −

1
24�

∫ (
�̃′R0 +

1
2
��0�̃�2

)
dA0�
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730 Albin et al.

3. Ricci Flow on Surfaces with Funnel, Cusp Metrics

Hamilton [17] (see also [10]) studied the Ricci flow on closed surfaces and showed
that, if the Euler characteristic is negative, then a solution to the normalized Ricci
flow exists for all time and converges exponentially to a hyperbolic metric in
the conformal class of the original metric. Hamilton’s result and approach were
extended to non-compact surfaces with asymptotically hyperbolic cusp ends by Ji
et al. [20]. In this section, we further extend their result to non-compact surfaces
whose ends are asymptotic to funnels or hyperbolic cusps.

In this section we will assume less regularity on the metrics we work with than in
the previous sections. Let M be a surface with boundary and choose a background
F-hc metric  that is exactly hyperbolic in a neighborhood of the cusp ends. For
� ∈ �0� 1� and a continuous function v define

�v�0�� = sup
�∈M

�v���� + sup
{ �v���− v��′���

d��� �′�
� d��� �′� < 1

}
�

where the distance between two points is measured with respect to . Let �0��
F−hc�M�

denote the space of functions for which �v�0�� < �� where along the cusps the
collapse of the injectivity radius is dealt with as in [20] by passing to a covering
space. For k ∈ �� we say that v ∈ �0��

F−hc�M� is an element of the Hölder space
�k��

F−hc�M� if, whenever V1� � � � � Vk are vector fields of bounded pointwise length with
respect to � we have

V1 · · ·Vjv ∈ �0��
F−hc�M� for j ≤ k�

Notice that, along a cusp, vector fields of bounded pointwise length are linear
combinations of the vector fields

x�x�
1
x
�
�

Similarly, we say we say that v ∈ �0
F−hc�M� is an element of the space �k

F−hc�M� if,
whenever V1� � � � � Vk are vector fields of bounded pointwise length with respect to �
we have

V1 · · ·Vjv ∈ �0
F−hc�M� for j ≤ k�

Both �k��
F−hc�M� and �k

F−hc�M� are Banach spaces in a natural way. Although we will
use the Hölder space �k��

F−hc�M� later on (starting in Proposition 3.9), we will only
need for the moment the simpler space �k

F−hc�M�.
In this section, we will work with metrics g0 as in Definition 1. However,

instead of assuming the function 	 is smooth up to the boundary, we will assume
that 	 ∈ �k+2

F−hc�M� ∩���M� for some k ≥ 1. We will also assume that for each i ∈
�1� � � � � nF + nhc�, there is a constant �i ∈ � and  > 0 such that

	− �i ∈ x i�
k+2
F−hc�M�� (3.1)

It will sometimes be convenient to take different decay conditions for cusp and
funnel ends. In that case, we will use the notation  =  F for i ∈ �1� � � � � nF� and
 =  hc for i ∈ �nF + 1� � � � � nF + nhc�.
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Ricci Flow and the Determinant 731

We point out that under these assumptions, the scalar curvature of g0 satisfies

Rg0
− ri ∈ x i�

k
F−hc�M� (3.2)

where ri = −2e−�i is the asymptotic value of the curvature at the end Yi.

3.1. Ricci Flow and Renormalized Area

Let M be a surface, g a metric on M and R the scalar curvature of g. On a surface
the curvature is determined by the scalar curvature, in particular the Ricci curvature
of g is 1

2Rg� and the normalized Ricci flow equation is

{
�tg�t� = �� − Rt�g�t�

g�0� = g0
(3.3)

where � is a constant. This flow preserves the conformal class of g0� so we can write

g�t� = e��t�g0

for some smooth function � which satisfies

�′�t� = � − Rt� (3.4)

It is useful to recall that under a conformal change of metric we have

g�t� = e−��t�0� dAt = e��t�dA0� Rg�t� = e−��t��Rg0
+ g0

��t��� (3.5)

where g�t� is the positive definite Laplacian, as then from (3.4) it is easy to derive
equations for the evolution of these quantities,

�tg�t� = �Rg�t� −��t� �tdAt = �� − Rg�t��dAt�
(3.6)

�tRt = −g�t�Rg�t� + Rg�t��Rg�t� −���

In particular, the normalized Ricci flow can be written as a scalar equation

��

�t
= −e−��g0

�+ Rg0
�+�� ��0� ≡ 0� (3.7)

As on a compact surface, one natural choice for the constant � is to take
the (renormalized) average curvature. If the funnel ends are totally geodesic
(i.e.,  F > 1), so that the renormalized Gauss-Bonnet theorem holds, then the flow
with this choice of � will preserve the renormalized area.

Lemma 3.1. Suppose that M is a non-compact surface and g�t� is a smooth family of
metrics satisfying (1) and (2) for some 	 ∈ �k+2

F−hc�M� satisfying (3.1) with  F > 1. If we
assume that RArea0�M� �= 0 and that �tg�t� = �� − Rt�g�t� with

� = �R = 4���M�
RArea0�M�

�
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732 Albin et al.

then, for all t, we have

RAreat�M� = RArea0�M��

If instead we assume that RArea0�M� = 0 then, for any � ∈ �� a smooth solution
g�t� to �tg�t� = �� − Rt�g�t� satisfies RAreat�M� = 0 for all t if ��M� = 0, or else
�
�t

RAreat�M��t=0 �= 0 if ��M� �= 0.

Proof. Working with an arbitrary value of �� we find

�

�t
RAreat�M� = FP

z=0

�

�t

∫
M
xzdAt = FP

z=0

∫
M
xz�′�t�dAt

= FPz=0

∫
M
xz�� − Rg�t��dAt

= ��RAreat�M��−
R∫
M
Rg�t�dAt

= ��RAreat�M��− 4���M�

from which the result follows when RArea0�M� = 0. If � �= 0� then this implies that
for some constant A,

RAreat�M� = Ae�t + 4���M�

�
�

We can find A by setting t = 0�

RAreat�M� =
[
RArea0�M�− 4���M�

�

]
e�t + 4���M�

�
(3.8)

and the result follows. �

One other natural choice is to take � = ri so that the asymptotic behavior of the
curvature at Yi is preserved along the flow, see Corollary 3.6 below. This choice is
particularly useful to study the behavior of the metric and the curvature at infinity.

3.2. Asymptotic Behavior of a Solution at Infinity

Given a metric g0 satisfying (1) and (2) and g�t� a solution to (3.3), we would like
to know when these asymptotic behaviors will be preserved along the normalized
Ricci flow. It turns out to be convenient to study the asymptotic behavior of the
metric g�t� in terms of the solution ��t� of (3.7), since in this setting one can easily
invoke the maximum principle. The following elementary lemma and proposition
are essentially taken from [37, Section 3.4]. We include their proofs for completeness.

Lemma 3.2. Let t 
→ h�t� be a smooth family of complete Riemannian metrics
on M for t ∈ �0� T� with curvature uniformly bounded. Let u� v ∈ �2��0� T�×M� ∩
�1��0� T�× �M� be two functions such that u ≥ v on �0� T�× ��M and u�0�m� ≥ v�0�m�
for all m ∈ M . Given A ∈ �� exactly one of the following two possibilities happens:

(i) u�t�m� ≥ v�t�m� for all �t�m� ∈ �0� T�× �M or else
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Ricci Flow and the Determinant 733

(ii) there exists �t�m� ∈ �0� T�×M such that

u�t�m� < v�t�m�� �h�t�u��t�m� ≤ �h�t�v��t�m��

�u�t�m� = �v�t�m�� du
dt
�t�m� ≤ dv

dt
�t�m�− A�v�t�m�− u�t�m���

Proof. Replacing u� v with u− v� 0� we can assume v = 0. Replacing u by eAtu� we
can also assume that A = 0.

In that case, if (i) holds, then clearly (ii) cannot hold. Conversely, if �i� does not
hold, then the minimum of u is negative and there exists �t�m� ∈ �0� T�× �M where
this minimum is achieved. Since we assume that u ≥ v on �0� T�× ��M� this point is
in �0� T�×M and, at this point, we have

u�t�m� < 0� �u�t�m� = 0�
�h�t�u��t�m� ≤ 0� du

dt
�t�m� ≤ 0�

so that �ii� holds. �

Proposition 3.3. With the same assumptions as in Lemma 3.2, suppose that u and v

also satisfy

du

dt
≥ −h�t�u+ �X�t�u+ F�t�m� u��

dv

dt
≤ −h�t�v+ �X�t�v+ F�t�m� v��

for all �t�m� ∈ �0� T�×M where t 
→ X�t� is a smooth family of smooth vector fields
and F is a function which is uniformly Lipschitz in the last variable. Then u�t�m� ≥
v�t�m� for all �t�m� in �0� T�×M .

Proof. Subtracting the second equation from the first equation and using the
Lipschitz property of F� we get

d

dt
�u− v� ≥ −h�t��u− v�+ �X�t��u− v�− C�u− v� (3.9)

where C is the Lipschitz constant of F . Choosing A > C in Lemma 3.2, we see that
(ii) cannot occur and hence (i) holds. �

We will first put this into use to study the asymptotic behavior of the scalar
curvature along the flow.

Proposition 3.4. Fix i ∈ �1� � � � � nhc + nF� and let � be a smooth solution to (3.7) with
� = ri = −2e−�i , where we suppose that the function 	 of Definition 0.1 satisfies (3.1)
for some  > 0 and k ≥ 2. If ��t� is in �k+2

F−hc�M� for t ∈ �0� T�, then for all t ∈ �0� T�,

Rg�t� − ri�0� ∈ x i�
k−2
F−hc�M��
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734 Albin et al.

Proof. The evolution equation of Rg�t� − ri is given by

�

�t
�Rg�t� − ri� = −g�t��Rg�t� − ri�+ Rg�t��Rg�t� − ri��

For ! > 0� consider � = x!i �Rg�t� − ri�. Then its evolution equation is given by

��

�t
= −g�t��+ �X�t��+ f�� ��Yi = 0�

where Xp�t� = 2x!i g
pq�qx

−!
i is a family of vector fields in �k+2

F−hc�M� TM� and f =
−x!i g�t�x

−!
i + Rg�t� is in �k

F−hc�M�.
Since Rg�t� is uniformly bounded, we can choose positive constants C and C1

such that v = CeC1tx +!
i satisfies

�v

�t
= C1v ≥ −g�t�v+ �X�t�v+ fv�

��−v�

�t
= −C1v ≤ −g�t��−v�+ �X�t��−v�+ f�−v��

and v�t�m� ≥ ���t�m�� for all t ∈ �0� T� and m outside a collar neighborhood of Yi.
This last property is to insure we control what happens at the other ends of the
surface. Choosing C > 0 big enough, we can also assume that v�0�m� ≥ ���0�m��
for all m ∈ M . We can then apply Proposition 3.3 to conclude that

−v�t�m� ≤ ��t�m� ≤ v�t�m�

for all �t�m� ∈ �0� T�×M . Thus, this gives that

−CeC1tx i ≤ Rg�t� − ri ≤ CeC1tx i �

We can derive similar estimates for the derivatives of Rg�t� (up to order k− 2) by
looking at their evolution equations, from which the result follows. �

More generally, unless we have that ri = � to start with, the asymptotic value
ri of the scalar curvature in the end Yi will vary with t. To emphasize this potential
dependence on t, we will use the notation ri�t�. It is easy to see that for � < 0

r ′i �t� = −ri�t��� − ri�t�� ⇒
�� − ri�t��

�ri�t��
= �� − ri�0��

�ri�0��
e�t

which implies that

� − ri�t�

ri�t�
= � − ri�0�

ri�0�
e�t ⇒ ri�t� =

ri�0��
ri�0�+ �� − ri�0��e�t

(3.10)

Proposition 3.5. Let � be a smooth solution to (3.7) with 	 ∈ �k+2
F−hc�M� for some k ≥

2 satisfying (3.1) for some  > 0. Suppose ��t� is in �k+2
F−hc�M� for t ∈ �0� T�. Then for

each i� there exists a smooth function ci � �0� T� → � such that

��t�− ci�t� ∈ x i�
k−2
F−hc�M� ∀ t ∈ �0� T�� (3.11)
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Ricci Flow and the Determinant 735

Proof. Fix i ∈ �1� � � � � nhc + nF�. Recall that under the rescaling in time and space
given by

� = e−�t − 1
−�

� h = e−�tg�

the normalized Ricci flow equation �g

�t
= �� − Rg�g becomes the usual Ricci flow,

�h

��
= −Rhh� (3.12)

Similarly, under the change of variable � = e−�′ t′ −1
−�′ , h = e−�′t′g′, where �′ is a non-

zero constant, equation (3.12) becomes

�g′

�t′
= ��′ − Rg′�g

′�t′��

This means that at the cost of rescaling in time and space if necessary, we are free
to choose the constant � as we want in (3.4). To study the behavior of � near
Yi, the best choice is to take � = ri�0�. In that case, we need to show that ��t� ∈
x i�

k−2
F−hc�M� for all t ∈ �0� T�. Let ! ∈ �0�  � be given. Then the function �i = x!i�

satisfies the equation

��i

�t
= −e−��g0

�i + x!i Rg0
�+ x!i� + e−�f�i + �X�t��i�

(3.13)
����M = 0�

where X�t� ∈ �k+2
F−hc�M� TM� is a family of vector fields on M and f ∈ �k

F−hc�M�.
Notice in particular that supM �X�t��g�0� < � for all t ∈ �0� T�. We can rewrite this
equation as

��i

�t
= −g�t��i + �X�t��i + f1�t�m��i + f0�t�m� (3.14)

with f0�t�m� = −e−��t�m�x!i Rg0
+ x!i� and f1�t�m� = e−��t�m�f . We know by

Proposition 3.4 and (3.2) that

f0�t� ·� ∈ x!+ ��
F−hc�M� ∀ t ∈ �0� T�� (3.15)

Thus, since � is uniformly bounded, we can choose positive constants C�C1

sufficiently large so that v = CeC1tx +! satisfies

�v

�t
= C1v ≥ −g�t�v+ �X�t�v+ f1v+ f0�

(3.16)
��−v�

�t
= −C1v ≤ −g�t��−v�+ �X�t��−v�+ f1�−v�+ f0�

and v�t�m� ≥ ��i�t�m�� for t ∈ �0� T� and m outside a collar neighborhood of Yi in�M . We can also choose C > 0 so that v�0�m� ≥ ��i�0�m�� for all m ∈ M . We can
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736 Albin et al.

then apply Proposition 3.3 to conclude that

−v�t�m� ≤ �i�t�m� ≤ v�t�m�� ∀ �t�m� ∈ �0� T�×M�

Thus, this gives that

−CeC1tx ≤ � ≤ CeC1tx �

We can derive similar estimates for the derivatives of � (up to order k-2) by looking
at their evolution equations (which can be derived by using the identity � = � +
1
2R�), from which the result follows. �

Corollary 3.6. Let ��t� be as in Proposition 3.5. Then the scalar curvature Rg�t� of the
metric g�t� = e��t�g0 is such that

Rg�t� − ri�t� ∈ x i�
k
F−hc�M� ∀ t ∈ �0� T��

where ri � �0� T� → � is given by (3.10). When � = ri�0�� then ri is constant along the
flow.

Proof. This is a direct consequence of Proposition 3.4 and Proposition 3.5. �

When we will apply Polyakov’s formula to a family of metrics g�t� = e��t�g0
evolving according to the Ricci flow, it will be convenient to know that the
conformal factor ��t� remains smooth up to the boundary along the flow. This is
the content of the next proposition.

Proposition 3.7. Let � be a smooth solution to (3.7) with initial metric g0 satisfying
(1) and (2) with 	 ∈ ��

F−hc�M� ∩����M� satisfying (3.1) for some  > 0. Suppose that
��t� is uniformly in ��

F−hc�M� for t ∈ �0� T�. Then

��t� ∈ ����M� ∩��
F−hc�M� ∀ t ∈ �0� T��

Proof. Notice that if there are no cusp ends, then ����M� ⊂ ��
F−hc�M�. However, if

�hc�M �= ∅� then this inclusion is false. In fact, near a cusp end, we have that

f ∈ ��
F−hc�M� ∩����M� �⇒ f ��hc�M is locally constant. (3.17)

To show that ��t� ∈ ����M�� we will inductively construct the Taylor series of �
at the boundary. Thus, we need to show that there exists �k ∈ ����0� T�× ��M� for
k ∈ � ∪ �0� such that(

��t�−
N∑
k=0

��x��k�t�x
k

)
∈ xN+1��

F−hc�M� ∀N ∈ � ∪ �0� (3.18)

in a collar neighborhood of ��M� where � � �0�+�� → �0�+�� is a smooth cut-off
function with ��x� = 1 for x < �

2 and ��x� = 0 for x > 3�
4 .

If �k exists, notice by (3.17) that it is locally constant on �hc�M . Without loss
of generality, we can assume that ��M has only one boundary component which is
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Ricci Flow and the Determinant 737

associated either to a cusp or a funnel. We first need to define �0. If ��t� were in
����M� as claimed, then the evolution equation for �0 would be

��0

�t
= −e−�0ri�t�+�� �0�0� ≡ 0� (3.19)

Thus, we can define �0 to be the unique solution to (3.19). Rescaling the flow
and the metric if necessary, we can assume that � = ri = −2 so that Rg�t� + 2 ∈
x ��

F−hc�M�. Then �̃1�t� = ��t�− �0�t���x� satisfies the evolution equation

��̃1

�t
= −e−��g0

�+ Rg0
�+� + ��x� �e−�0�−2�−��

= −e−�g0
�+ Rg0

�−e−� + e−��x��0�

+ (−e−��x��0Rg0
− 2��x�e−�0

)+��1− ��x��

= −g�t��̃1 + f̃1�̃1 + h̃1 (3.20)

where f̃1 = Rg0
e−��x��0� 1−e−�̃1

�̃1
� is in ��

F−hc�M� for all t ∈ �0� T� and has the same

regularity as � at the boundary, while h̃1 ∈ x���
F−hc�M� ∩����M��. Thus using a

barrier function of the form v = CeC1tx for some C�C1 > 0 large enough, we can
proceed as in the proof of Proposition 3.5, to show that �̄1 = �̃1

x
∈ ��

F−hc�M� for all
t ∈ �0� T�. From (3.20), its evolution equation is of the form

��̄1

�t
= −g�t��̄1 + �X1�t�

�̄1 + f̄1�̄1 + h̄1�t�m�� �̄1�0� ≡ 0� (3.21)

where X1�t� ∈ ��
F−hc�M� TM� and f̄1�t� ·� is in ��

F−hc�M� for all t ∈ �0� T� and has
the same regularity as � at the boundary, while h̄1 ∈ ��

F−hc�M� ∩����M� for all t ∈
�0� T�.

Suppose now for a proof by induction that �0� � � � � �N−1 have been defined to
satisfy (3.18) and that

�̄N = �−∑N−1
k=1 ��x��kx

k

xN
∈ ��

F−hc�M� (3.22)

satisfies the evolution equation

��̄N

�t
= −g�t��̄N + �XN �t�

�̄N + f̄N �̄N + h̄N (3.23)

where XN�t� ∈ ��
F−hc�M� TM� and with f̄N �t� ·�, h̄N �t� ·� in ��

F−hc�M� having the same
regularity as �̄N−1 at the boundary (with the convention that �̄0 = �). We then
define �N ∈ ����0� T�× ��M� to be the unique solution of the evolution equation

��N

�t
= �f̄N ���M��N + h̄N ���M� �N�0� ≡ 0� (3.24)

Then �̃N+1 = �̄N − ��x��N satisfies the evolution equation

��̃N+1

�t
= −g�t��̄N + �XN �t�

�̄N + f̄N �̄N + h̄N
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738 Albin et al.

− ��x��f̄N ���M��N − ��x��h̄N ���M�
= −g�t��̄N + �XN �t�

�̄N + f̄N ��̄N − ��x��N�

+ �f̄N − f̄N ���M���x��N + (
h̄N − ��x�h̄N ���M

)
= −g�t��̃N+1 + �XN �t�

�̃N+1 + f̄N �̃N+1 + h̃N+1 (3.25)

where h̃N+1�t� ·� ∈ x��
F−hc�M� has the same regularity as �̄N−1 at the boundary. Thus,

using a barrier function of the form v = CeC1tx for some C�C1 > 0 large enough, we
can again proceed as in the proof of Proposition 3.5 to show that �̄N+1�t� �= �̃N+1

x

is in ��
F−hc�M�. Moreover, it satisfies the evolution equation

��̄N+1

�t
= g�t��̄N+1 + �XN+1�t�

�̄N+1 + f̄N+1�̄N+1 + h̄N+1 (3.26)

with f̄N+1�t� ·�� h̄N+1�t� ·� ∈ ��
F−hc�M� having the same regularity up to the boundary

as �̄N and with XN+1�t� ∈ ��
F−hc�M� TM�.

In this way, we define inductively �k ∈ ����0� T�× ��M� such that (3.18) is
satisfied for all N ∈ �. �

3.3. Short-Time Existence and Uniqueness

The short-time existence of a solution of (3.7) follows from the more general result
of Shi [35] who established the short-time existence of the Ricci flow on a complete
Riemannian manifold with bounded curvature. In our context, since the equation
can be written in the scalar form (3.7), it is possible to prove uniqueness relatively
easily using the maximum principle.

Proposition 3.8 (Short-time Existence and Uniqueness). Consider the equation (3.7)
with initial metric g0 satisfying (1) and (2) with 	 ∈ �k+2

F−hc�M� satisfying (3.1) for some
 > 0 and k ≥ 2. In particular, there exists K > 0 such that �Rg0

� < K everywhere on
M . Then there exists T = T�K��� > 0 depending on K and � such that (3.7) has a
unique smooth solution ��t� on �0� T�×M satisfying

��t�− ci�t� ∈ x i�
k−2
F−hc�M�

for some smooth functions ci � �0� T� → �.

Proof. Short-time existence follows from the short-time existence result of Shi
[35] for the Ricci flow on complete manifolds with bounded curvature. The decay
property of the solution follows from Proposition 3.5.

To prove uniqueness, suppose �1 and �2 are two solutions. By the proof
of Proposition 3.5 (see also (3.19)), we know that �1���M = �2���M . In fact, by
Proposition 3.5, we have that v = �1 − �2 is in x �k−2

F−hc�M� and satisfies

{
�v
�t
= −g1�t�

v+ F�t�m��1�− F�t�m��2�� g1�t� = e�1�t�g0�

v�0� ≡ 0�
(3.27)
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Ricci Flow and the Determinant 739

where

F�t�m��� = �−g0
�2�m� t�− Rg0

�m��e−�� t ∈ �0� T�� m ∈ M� � ∈ �� (3.28)

Since �1 and �2 together with their derivatives are uniformly bounded on �0� T��
there exists a constant A > 0 such that

�F�t�m��1�− F�t�m��2�� ≤ A�v�t�m�� ∀ �t�m� ∈ �0� T�×M� (3.29)

Consequently,

�v

�t
≥ −g1�t�

v− A�v�� v�0� ≡ 0� v��M = 0� (3.30)

By Proposition 3.3 applied to v and 0� this means that v�t�m� ≥ 0 for all �t�m� ∈
�0� T�×M . Interchanging the rôles of �1 and �2� we can also show that v ≤ 0� which
implies that v ≡ 0, that is, �1 ≡ �2 on �0� T�×M� establishing uniqueness. �

3.4. Long-Time Existence

To prove long-time existence, it suffices to get an a priori bound on the scalar
curvature, for then we can apply Proposition 3.8 recursively to get long-time
existence. As noticed by Hamilton [17], on a compact surface, such an a priori
estimate follows from the existence of a potential function. This approach was
recently generalized to surfaces with cusps ends by Ji et al. [20].

To get long-time existence in our case, we need to generalize the construction
of the potential function given in [20] to also include funnel ends.

Proposition 3.9 (Potential Function). Let g be a Riemannian metric on M satisfying
(1) and (2) with 	 ∈ �3

F−hc�M� satisfying (3.1) for some  F > 2 and  hc > 0. Let � < 0
be arbitrary if �FM �= ∅ and � = �R if �F�M = ∅. Then there exists a unique function f
and constants ci such that

−gf = R−��

(
f −

nF+nhc∑
i=1

ci log xi

)
∈ C2��

F−hc�M�� sup
M

��f �g < �� (3.31)

with
∫
M
fdg = 0 if �F�M = ∅ and

�f − c1 log x1��Y1 = 0�
�

�xj
�f −

nF∑
i=2

ci log xi�

∣∣∣∣
Yj

= 0� j ∈ �2� � � � � nF�

otherwise.

Proof. If M is compact, this is very easy to prove. If �M� g� has only cusp ends,
this was proved in [20], in fact with weaker decay assumptions on 	. To prove the
proposition when there are funnel ends, the idea is to reduce to the case where there
are only cusp ends (or when M is compact) via a doubling construction.

Thus let us start with a F-hc-metric g for which �F�M �= ∅ (Figure 1).
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740 Albin et al.

Figure 1. �M� g�.

By (3.2), we know that for i ∈ �1� � � � � nF��

Rg − ri ∈ x
 F
i C1

F−hc�M�� (3.32)

By assumption, there also exists a constant �i such that

�	− �i� ∈ x
 F
i C3

F−hc�M�� (3.33)

Then the function

�i = e�i�ri −�� log xi (3.34)

is such that

�−�i − �R−��� ∈ x
 F
i C1

F−hc�M�� (3.35)

Moreover, since we chose xi to be equal to one outside a collar neighborhood of Yi,
we see that �i has its support contained in a collar neighborhood of Yi.

Thus, if we set f̃ = f −∑nF
i=1 �i� we can rewrite −f = R−� as

−f̃ = h� with h = �R−� +
nF∑
i=1

�i� ∈ �1
F−hc�M�� (3.36)

In a collar neighborhood of �F�M� equation (3.36) takes the form

−e−	x2FgE
f̃ = h (3.37)
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Ricci Flow and the Determinant 741

Figure 2. �M� g̃�.

where gE
is the Laplacian associated to the incomplete cylindrical metric gE =

dx2 + �∗
FhF where hF is a metric on �F�M and �F is the projection from the collar

neighborhood of �F�M onto �F�M .
Thus, with respect to the metric

g̃ = e−	�x2Fg� (3.38)

where � ∈ ��
c ��FM × �0� ��xF� is a nonnegative cut-off function equal to 1 for xF <

�
2 and equal to zero for xF > 3�

4 � equation (3.37) can be rewritten as

−g̃f̃ = h̃� h̃ = h

e−	�x2F
� (3.39)

The metric g̃ is incomplete (Figure 2) and if we glue two copies of �M along Y1
to get

�1 = �M ∪Y1
�M� (3.40)

then the metrics g̃ on each copy of �M glue together to give a smooth metric ĝ1 on
�1 (Figure 3). The Riemannian manifold ��1� ĝ1� has 2�nF − 1� ends where the
metric is asymptotic to an incomplete cylinder and 2nhc ends were it is asymptotic
to a cusp.

Let

�F�1 �
(

nF⋃
i=2

Yi

)⊔(
nF⋃
i=2

Yi

)
(3.41)

be the part of the boundary associated to cylindrical ends. We can consider the
double of �1 along �F�1

�2 = �1 ∪�F�1
�1� (3.42)
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742 Albin et al.

Figure 3. ��1� ĝ1�.

The metric ĝ1 on each copy of �1 glue together to give a smooth metric ĝ2 on
�2 (Figure 4). Clearly, ��2� ĝ2� is a complete surface with 4nhc cusp ends (or is a
compact surface if nhc = 0).

Let x̂ ∈ ����̄2� be a boundary defining function on �̄2 whose restriction to
each copy of �M in �̄2 is equal to xhc. Let ĥ1 be the function on �1 whose restriction
to one copy of M in �1 is h̃ and whose restriction to the other copy is −h̃. Let ĥ2 be
the function whose restriction to each copy of �1 in �2 is ĥ1. By (3.32) and since
 F > 2� we have that ĥ2 ∈ x̂ hc�0��

ĝ2
��2�. Then on �2, one can consider the equation

−ĝ2
f̂ = ĥ2 on �2� (3.43)

Clearly, by symmetry,
∫
�2

ĥ2dĝ2 = 0 so that we can apply the result of [20] to

conclude that there exists a unique solution f̂ with constants ĉi, i ∈ �1� � � � � 2nhc�

such that

�f̂ −
4nhc∑
i=1

ĉi log x̂i� ∈ �2��
ĝ ���

Figure 4. ��2� ĝ2�.
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Ricci Flow and the Determinant 743

and

−ĝ2
f̂ = ĥ2�

∫
�2

f̂dĝ2 = 0� sup
�2

��f̂ �ĝ2 < �� (3.44)

Since this solution is unique, we see by symmetry that the restriction of this
solution to one of the copies of �M in �2 will solve the equation −gf̃ = R−�
with bounded gradient, Dirichlet boundary condition on Y1 and Neumann boundary
condition on ∪nF

i=2Yi. Thus f = f̃ +∑nF
i=1 �i will be the desired solution and is clearly

unique. �

It is also interesting to consider the following variant of the construction which
only involves Neumann boundary conditions.

Proposition 3.10. Let g be a Riemannian metric satisfying (1) and (2) with 	 ∈
����M� ∩�3

F−hc�M� satisfying (3.1) for  F = 2 and some  hc > 0. Suppose that �FM �=
0 and that RArea�g� �= 0 so that �R is well-defined. Then there exists a unique f and
constants ci such that

−gf = R−�R� �f −
nF+nhc∑
i=1

ci log xi� ∈ C2��
F−hc�M�� sup

M

��f �g < ��

with

�

�xF
�f −

nF∑
i=2

ci log xi�

∣∣∣∣
�F�M

= 0 and
∫
M
x2Ffdg = 0�

Proof. We proceed as in the proof of Proposition 3.9 to define the functions �i� h̃
and f̃ and the metric g̃. However, instead of �1 and �2� we consider directly the
double of M along �F�M�

� = �M ∪�F�M �M�

The metrics g̃ on each copy of M glue together to give a metric ĝ on � having only
cusp ends. On �� we consider the function ĥ whose restriction to each copy of �M
in � is h̃ and the equation

−ĝf̂ = ĥ� (3.45)

Since 	 ∈ ����M�� we only need  F = 2 to deduce from (3.32) that ĥ ∈ x̂ hc�1
ĝ ���.

A quick computation shows that
R∫
M
g�idg = 0 so that

∫
�
ĥdĝ = 2

∫
M
h̃dg̃ = 2

∫
M
hdg = 2

R∫
M
�R−�R�dg = 0� (3.46)

This means that we can use the result of [20] to solve (3.45). Restricting to M ⊂ �
and adding an appropriate constant gives the desired potential function. �

With these potential functions, it is then easy to get long-time existence for the
normalized Ricci-flow converging to a constant scalar curvature metric as t → +�.
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744 Albin et al.

Theorem 3.11.

(i) (Ji-Mazzeo-Šešum) Suppose that �F�M = ∅ (finite volume case) and that ��M� < 0.
Let g0 be a metric on M as in Proposition 3.9. Then the solution g�t� = e��t�g0
to the normalized Ricci flow (3.3) with � = �R with initial metric g0 exists for all
t > 0 and converges exponentially fast to a complete metric of constant negative
curvature in its conformal class.

(ii) Suppose that �FM �= ∅ and that g0 is a metric on M satisfying (1) and (2) with 	 ∈
�4

F−hc�M� satisfying (3.1) for some  F > 2 and  hc > 0. Then the solution g�t� =
e��t�g0 to the normalized Ricci flow (3.3) with � < 0 and with initial metric g0
exists for all t > 0 and converges exponentially fast to a complete metric of constant
negative curvature in its conformal class.

(iii) If we assume that RArea�g0���M� < 0 and that g0 is a smooth metric as in (ii) but
with  F = 2 (instead of  F > 2) ,then the same result holds with � = �R.

Remark 3.12. By Proposition 1.1, we know also that ���� ∈ ���M�.

Proof. Statement (i) of the theorem is the result of Ji-Mazzeo-Šešum [20]. With the
potential function of Proposition 3.9, the proof of statement (ii) is basically the same
as the one originally given by Hamilton [17] in the compact case and by [20] in the
cusp case. We will repeat it for the convenience of the reader.

Thus, let g0 be as in statement (ii) of the theorem and let g�t� be the solution of
(3.3) with � < 0. Let f�t� denote the potential function of (3.31) associated to the
metric g�t�. As in [17], one computes that

−
�f

�t
= −�−f +�f� (3.47)

Now, if �i = ci log xi with ci � �0� T� → � for i ∈ �1� � � � � nF� are the functions such
that

f̃ = f −
nF∑
i=1

�i ∈ �2��
F−hc�M��

one sees from (3.34) (3.19) and (3.10) that the evolution equation for �i is
��i

�t
= ��i

so that from (3.47), we have

−
�f̃

�t
= −

(
− f̃ +�f̃ −

nF∑
i=1

�i

)
� (3.48)

Since each term satisfies the Neumann boundary conditions at Y2� � � � � YnF and
the Dirichlet boundary condition at Y1 (modulo a constant for �1), we see by
considering the corresponding equation on �2 that there exists a function K �
�0� T� → � such that

�f̃

�t
= −f̃ +�f̃ −

nF∑
i=1

�i + K�t��
�f

�t
= −f +�f + K�t�� (3.49)

The trick is then to consider the function

h = −g�t�f + ��f �2g�t�� (3.50)
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Ricci Flow and the Determinant 745

As in [17], one computes that

�th = −g�t�h− 2�Z�2 +�h ≤ −g�t�h+�h� (3.51)

where Z is the trace-free part of the second covariant derivative of f . From the
construction of the potential function f , the function h�t� as an asymptotic value
hi�t� in the end Yi which is determined by the function �i. This value is uniformly
bounded in t (as are ri�t� in (3.10) and ci�t� in (3.11)). This means we can therefore
apply the maximum principle to (3.51) to get that there exists a constant K such
that hmax�t� ≤ Ke�t for all t. This implies that

Rt = h− ��f �2 +� ≤ Ke�t +�� (3.52)

To get a lower bound for R−�� suppose that the minimum of R−� on M
becomes negative at a certain time t0 (if not we get R−� ≥ 0 as a lower bound).
If Rmin is the minimum of the curvature at this time, then we have that Rmin ≤ �.
By (3.10), the only way the curvature can blow up is if the minimum of R becomes
very negative and is attained in the interior of M . In that case, from the evolution
equation of R, we get that

d

dt
Rmin ≥ Rmin�Rmin −�� ≥ ��Rmin −��� (3.53)

from which we deduce that Rmin −� ≥ Ce�t for some constant C. Combining with
our upper bound, we see that

Ce�t ≤ R−� ≤ Ke�t� (3.54)

In particular, this gives an a priori bound on the curvature from which we get long-
time existence. In fact, from (3.54), we also see that R converges to the constant
� exponentially fast as t → +�. Looking at covariant derivatives of the evolution
equation of R in (3.6) and bootstrapping gives the corresponding a priori estimates
for all higher derivatives of R. Integrating the flow, this gives that g�t� converges
exponentially fast to a metric g� with constant scalar curvature �.

For statement (iii), we use instead the potential function of Proposition 3.10 and
proceed in a similar way. We leave the details to the reader. �

4. Ricci Flow and the Determinant of the Laplacian

Given a F-hc metric g0 on a non-compact surface M� we can now optimize the
determinant of its Laplacian within its conformal class. For surfaces of finite
area, the analysis of the determinant on closed surfaces in [29] applies easily to
the determinant defined with renormalized traces. For infinite area surfaces the
situation is more delicate, but also includes situations where the Euler characteristic
is nonnegative. The main difficulty is the fact that the renormalized integral of a
positive density need not be positive (e.g., Section 1.3). To deal with this, we shall
have to impose restrictions on the value of the asymptotic curvature in the funnel
ends of the metrics we consider. Notice also that our definition of the determinant
of the Laplacian for a F-hc metric in §2.1 requires that the factors e	 in (1) and
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746 Albin et al.

(2) be in ����M�� since we make use of the constructions of the heat kernel in [1]
and [38]. Thanks to Proposition 3.7, this will be preserved along the flow provided
	 is also in ��

F−hc�M�. We will also need to make a careful choice of the coordinates
�xi� 
i� in (1) and (2) adapted to the hyperbolic metric in the conformal class.

Theorem 4.1. Let g� be a hyperbolic F-hc metric on a non-compact surface M . Fix
the coordinates �xi� 
i� near each boundary component of M in such a way that (1) and
(2) hold for g� with 	 ≡ 0. Suppose g0 is another F-hc metric in the conformal class of
g� with totally geodesic ends on a non-compact surface M satisfying (1) and (2) with
	 ∈ ����M� ∩��

F�hc�M�. Assume that

RArea�g0� = −2���M� and ri = −2 for i ∈ �1� � � � � nF�� (4.1)

When ��M� = 0� assume that there is at least one funnel end and that 	 satisfies (3.1)
with  F > 2. Then among all F-hc metrics g0 with totally geodesic ends, conformal to
g�� and satisfying (4.1) the determinant of the Laplacian is greatest at the hyperbolic
metric g�.

Proof. Assume first that ��M� �= 0. Consider normalized Ricci flow starting at g0
with normalization constant

� = �R = 4���M�
RArea�g0�

< 0�

We know from Lemma 3.1 and Theorem 3.11 that, because of (4.1), this flow
exists for all time, preserves the renormalized area, and converges to a hyperbolic
metric. We know from Proposition 3.5 that �′�t� = �0�t�+ �̃�t� with �̃�t� = ��x2F�
and �0 ∈ ����0�+���. We also know from Proposition 3.7 that ��t� ∈ ����M� ∩
��

F−hc�M�. Keeping in mind Lemma 3.1, we can therefore apply the Polyakov
formula of Theorem 2.9 to get

�t log det�g�t�� = − 1
24�

R∫
�′�t�RtdAt

= 1
24�

R∫
�Rt −��2dAt +

�
12�

R∫
�Rt −��dAt

= 1
24�

∫
�Rt −��2dAt ≥ 0� (4.2)

where the last integral does not need renormalization because of (4.1). This shows
the determinant is increasing along the flow. This will prove the theorem provided
we show the determinant converges to the determinant g���, where g��� is the
metric of constant negative scalar curvature towards which the flow is converging.
To see this, notice that if

L�t� =
∫
�Rt −��2dAt�

then using the evolution equations (3.6), we compute that

�tL�t� =
∫
�2�Rt −���tR�dAt +

∫
�Rt −��2�t�dAt�
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Ricci Flow and the Determinant 747

=
∫
�2�Rt −���−Rt + Rt�Rt −���dAt −

∫
�Rt −��3dAt

= −2
∫

���Rt −���2dAt +�
∫
�Rt −��2dAt +

∫
�Rt −��2RtdAt�

The first term is obviously negative, while the third terms is negative provided Rt is
negative, which is true for t sufficiently large. Thus, for t sufficiently large, we get
that,

�tL�t� ≤ �L�t��

which implies L�t� converges to 0 exponentially fast as t goes to infinity. This means
that det�g�t�� converges to det�g����, from which the theorem follows.

When ��M� = 0, consider the normalized Ricci flow starting at g0 with
normalization constant

� = −2�

We know from Theorem 3.11 that this flow exists for all time, stays within the class
of metrics we are considering, and converges to a hyperbolic metric. Clearly, (4.2)
still holds in this case since

R∫
�Rt + 2�dgt = 4���M�+ 2�R!Area��gt� = 0�

Since Rt + 2 = ��x2�� we can prove the theorem following the same argument as in
the previous case.

Finally, since the functional F��� in (2.18) is concave when � and �� are in
L2� notice that this implies the maximum of the determinant is unique and confirms
that among all F� hc metrics g conformal to g� and satisfying the hypotheses of the
theorem, there is a unique hyperbolic metric. �
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