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I. INTRODUCTION

Higher-spin theories constructed by Vasiliev [1–6] have
attracted much attention [7–14] as simple models of AdS/
CFT [15–17], with the CFT duals being vector models,
some of which are of practical value, e.g., the criticalOðNÞ
model [18–20].

The higher spin (HS) symmetry is an infinite-
dimensional extension of the conformal symmetry and is
strong enough to fix the form of all correlation functions
[21]. However, the Maldacena-Zhiboedov theorem [21],
which can be thought of as an extension of the Coleman-
Mandula no-go theorem, tells us that under some mild
assumptions such as unitarity, locality1 and operator prod-
uct expansion (OPE) it is impossible to have interacting
CFTs that allow infinitely many conserved HS charges. In
other words, if the bulk theory admits such a boundary
behavior that leaves HS symmetry unbroken, the corre-
sponding dual CFT is free. On the other hand, the extension
of the Maldacena-Zhiboedov result [22] shows that broken
HS symmetry still restricts correlation functions and thus
can be effectively used as a source of nontrivial integrable
models once the mechanism of breaking is understood. As
a starting point it is required to understand how the exact
HS symmetry can be used to efficiently determine the form
of correlation functions.

Recently by using the HS symmetry as a higher-
dimensional replacement of the Virasoro algebra, the
correlation functions of all orders of conserved currents
in the three-dimensional CFTs that have exact HS sym-
metry have been found in [23]. By the Maldacena-
Zhiboedov theorem these are free theories, either free
boson or free fermion. The main goal of [23] was to give
an explicit formula for all correlators relying on symmetry
requirements only.

The constructive formula for the n-point correlation
function proposed in [23] reads

hjðx1; �1Þ � � � jðxn; �nÞi
¼X

Sn

Trð�ðx; x1; �1Þ ? � � � ?�ðx; xn; �nÞÞ; (1)

and it is analogous to the definition of long-trace operators,
with the difference being that the trace is taken in the
infinite-dimensional HS algebra rather than in SUðNÞ.
Let us now explain the constituents of (1) in detail. On
the CFT side we focus on symmetric and traceless tensors,
ja1���as , which are in addition conserved @

mjma2���as ¼ 0 and

thus are primary fields to be referred to as currents. It is
convenient to pack all currents ja1���as into a generating

function,

jðx;�Þ¼X
s

ja1���as�
a1 � � ��as ¼X

s

j�1����2s
�� � � ���; (2)

where �a’s are null polarization vectors, �a�a ¼ 0. In 3d
the spinor language has a great advantage and instead of
lightlike vector �a we introduced two-component spinor
��. Then, given the left-hand side of (1), one can extract
the n-point correlation function of some particular currents
of spins s1; . . . ; sn as the order 2s1; . . . ; 2sn Taylor coeffi-
cient of��

1 ; . . . ; �
�
n . The definition of the right-hand side of

(1) requires a certain AdS/CFT inspired technique that was
laid down in [11,24,25]. The key object �ðx; xi; �iÞ is the
Fourier transform with respect to some auxiliary variable
of the boundary-to-bulk propagator for the master field
strength of the Vasiliev HS theory in AdS4. It depends on
the AdS4 coordinate x; on the boundary point xi where the
current jðxi; �iÞ is inserted; on the polarization ��

i that
encodes the index structure; on the auxiliary variable Y that
generates HS algebra and was left implicit.
There are a few important facts about �ðx; xi; �iÞ.

Firstly, it behaves like a (set of) conserved current with
respect to xi and �i. Secondly, it transforms in the adjoint
of the HS algebra,

�� ¼ ½�; ��?; (3)
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1Let us note that in context of HS theories the notion of local

CFTs should be treated with great care as the bulk theories are
nonlocal.
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where ? denotes the product with respect to Y in the HS
algebra. It is also assumed that the HS algebra admits a
trace, which has the right property to make (1) invariant
under all HS transformations (3). In particular, since the
conformal algebra is itself a subalgebra of the HS alge-
bra, (1) is conformally invariant and behaves as a con-
served current in each slot. From the bulk point of view, a
large adjoint transformation � ! g�1ðxÞ ?� ? gðxÞ,
where gðxÞ occupies only the SOð3; 2Þ subgroup, allows
one to move x freely in the AdS. Therefore, the depen-
dence on the bulk point x drops out of (1). Lastly, the sum
over the symmetric group makes the result symmetric in
its arguments. From the bulk point of view the sum is
necessary to have the trace (1) real, that is the symmet-
rization is driven by appropriate reality conditions for
master fields.

One can also view (1) as originating from a Witten-like
diagram (see Fig. 1) for a vertex

Vn ¼ Trð� ? � � � ?�Þ: (4)

Since the trace does not depend on the interaction point x in
the bulk the integral over AdS drops out. The sum of such
diagrams seems to be what the Vasiliev theory reduces to
with the boundary conditions that do not break HS
symmetry.

Let us note that the formula (1) is quite general and can
be applied to any CFT with HS symmetry, e.g. free scalar
and boson in d dimensions, free limit of super Yang-Mills,
generalized free fields and perhaps to the duals of 3d HS
theories, etc.

According to [19,20] the currents ja1���as should be

originated either from free scalar � or from free fermion
c . These are the conformal primaries appearing in the
OPE ��� or c � c . The only difference between free
boson and free fermion at the level of currents ja1���as is that

the first member of the family j0, j0 ¼ �2 or j0 ¼ c 2,
which is not a genuine current, may have different confor-
mal weights, � ¼ 1 or � ¼ 2 depending on whether it is
made of a boson or a fermion, respectively. In [23] only the
case with � ¼ sþ 1 boundary conditions was considered,
while the case of the � ¼ 2 operator, which we
will refer to as ~j0, was not included. Therefore, the part
of the correlators of the free fermion model were not
reproduced. This is the gap we would like to fill in the
present paper, so we would like to compute various corre-
lators of the form

h~j0 � � � ~j0jðx1; �1Þ � � � jðxn; �nÞi: (5)

The results of the paper shows that (1) works well,
giving all correlators of the operators that are dual to the
higher-spin multiplet in the bulk of AdS4. Our results are
closely related to the recent paper [26] by Gelfond and
Vasiliev. In [26] the operator product algebra of free boson
and free fermion was found explicitly and then used to
compute all the correlators. The advantage of having the
operator algebra at hand is that the overall prefactors,
which are left undetermined in our approach, can be fixed
in terms of N (N is the number of free fields in the
multiplet). Complementary to [26] our method relies on
the AdS/CFT and provides a link between the computa-
tions entirely in the bulk and on the boundary. We expect
that our basic formula (1) is the prolongation of [26] to the
bulk of AdS. At the same time our work and [23] are
similar to [26] in a sense that both approaches are in fact
spð2MÞ covariant with M ¼ 2 for the case of interest
AdS4=CFT3 since soð3; 2Þ � spð4Þ. Particularly, using
this fact the authors of [26] were able to straightforwardly
generalize their results to reproduce correlation functions
of 4d conserved currents as being realized via embedding
into spð8Þ. These formally coincide2 with those of [23] as
the basic building blocks, the conformally invariant
structures, remain the same as well as the general
spð2MÞ formula of [23] used to derive the correlation
functions.
The outline of the paper is as follows. For the reader’s

convenience, we summarize our key results in the next
section and then present our derivation in the following
sections. In particular, we derive the generating functions
and correlation functions in Sec. III. The conclusions are
in Sec. IV. Certain technicalities are collected in the
Appendix.
In this paper we use the same strategy and techniques as

developed in [23], where all the results for� ¼ sþ 1 have
been obtained. For the reader’s convenience, in our deri-
vation we will quote the main results of [23] and put them
side by side with the new results obtained involving ~j0.

FIG. 1. Witten diagram in twistor space.

2We mean that the dependence on the tensor conformally
invariant structures is the same, but the prefactors jxi � xjj��

come with powers � that depend on d of course.
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II. MAIN RESULTS: EXAMPLES

In theVasiliev higher-spin theory there is a free parameter3

� that allows one to interpolate smoothly between the duals.
Our results correspond to the free boson at � ¼ 0 and free
fermion at � ¼ �=2. We prefer to keep � everywhere.
The correlators we consider are connected correlators and
they are defined up to an overall factor, which cannot be
fixed in (1).

Before going to the examples, note for tensor operators it
is convenient to use conformally invariant structures, i.e. P,
Q and S, as introduced in [27,28]. However, we find that
starting from two ~j0 insertions it is no longer convenient to
make use of the S structure, especially in correlators of
orders higher than three. Instead, we find it more conve-
nient to introduce a new object R. Some basic properties of
these structures are listed in Table I. In our calculation, we
will need the following (they only differ from those in
Table I by numerical factors):

Qi ¼ � 1

8
�i½x�1

iðiþ1Þ � x�1
iði�1Þ��i;

Piðiþ1Þ ¼ 1

4
�ix

�1
iðiþ1Þ�iþ1; 1 � i � n� 1;

P01 ¼ Pnðnþ1Þ ¼ Pn1 ¼ � 1

4
�nx

�1
n1 �1;

Rjk ¼ � c

2ð2iÞk�j
�jx

�1
jðjþ1Þ � � �x�1

ðk�1Þk�k;

R0j ¼ Rnj; Rjðnþ1Þ ¼ Rj0; 8 j;

(6)

where n is the order of correlation functions. The meaning
of the above definitions is that P, Q, S and R structures
involve a pair or a triple of the points adjacent along the
cycle 1; 2; . . . ; n for the n-point function. Note that

Rjk � �jx
�1
jðjþ1Þ � � �x�1

ðn�1Þnx
�1
n1 � � �x�1

ðk�1Þk�k (7)

if j > k (after the replacement R0j ! Rnj orRjðnþ1Þ ! Rj0,

if any). Finally, c ¼ 1 if Rjk does not contain x�1
n1 and

c ¼ �1 otherwise.
In the examples below js refers to the insertion of ja1...as ,

i.e. � ¼ sþ 1 operator. In particular the generating
function corresponding to js contains (� ¼ 1)-operator
j0 ¼ �2. The insertion of the (� ¼ 2) operator c 2 is
denoted by ~j0. Of course, all correlators involving j0 and
~j0 simultaneously must vanish.

A. Two-point functions

Two point functions are fixed by conformal symmetry
up to a number:

hjsjsi / 1

x212
ðcos 2�cos 2P12 þ sin 2�sin 2P12Þ;

h~j0~j0i / 1

x412
:

(8)

B. Three-point functions

Three point functions are known to be fixed up to a
number of constants:

hjsjsjsi / 1

x12x23x31
½cos 3� cos ðQ1 þQ2 þQ3Þ

� cosP12 cosP23 cosP31 þ isin 3�

� sin ðQ1 þQ2 þQ3Þ sinP12 sinP23 sinP31�;

h~j0jsjsi / sin 2�
cos ðQ2 þQ3Þ

x12x23x31
R02 sinP23;

h~j0~j0jsi / sin �
sinQ3

x12x23x31
R03; h~j0~j0~j0i ¼ 0: (9)

The first formula, borrowed from [11,23] correctly repro-
duces three-point functions of free boson (first part) and
three-point functions of the conserved currents, js, s � 1
of free fermion (second part). These two contributions
were previously obtained by solving Vasiliev equations to
the second order in [8]. The second formula coincides
with the one from [28], which was claimed to have been
obtained from the Vasiliev theory too. Let us note the
appearance of the odd conformally invariant structure4 S,
which is a particular case of our R structure: R02 /
�3x

�1
31 x

�1
12 �2 � S1. The third correlator is in fact fixed

up to an overall coefficient by the conformal symmetry
and in this degenerate case the R structure coincides with
Q: R03 / �3x

�1
31 x

�1
12 x

�1
23 �3 �Q3. The last correlator,

which vanishes identically irrespectively of �, is correct
both for the free fermion theory and the critical boson.

TABLE I. Conformal structures. Note R is not independent
from P, Q or S. Coordinates on the boundary are parametrized
by symmetric bispinors x � ðx��Þ ¼ ðx��Þ and we have chosen
to suppress the spinor indices. The subscript on xi refers to the
ith point at which some operator is inserted, �i is the boundary
polarization, xij ¼ xi � xj and xij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detxij

p
is the distance

between the ith point and the jth point. Parity is determined
under the transformation x ! �x and � ! i�, with positive
being even and negative being odd.

Conformal

structures

Explicit coordinate

representation

Number of

points Parity

Pij �ix
�1
ij �j 2 Even

Qi
jk �i½x�1

ij � x�1
ik ��i 3 Even

Sjik
�ixijxjk�k

xijxjkxki
3 Odd

Rij �ix
�1
iðiþ1Þ � � �x�1

ðj�1Þj�j j� iþ 1 ð�Þj�iþ1

3There are infinitely many free constants in the parity-
violating Vasiliev theory, � being the first of them. We expect
that the effect of the rest of the constants is just to renormalize �.

4S as defined in [28] contains a factor of P, which we removed
from our definition.
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The latter seems to be accidental as our considerations
based on the exact HS symmetry do not apply to the
critical boson. All the three-point functions above can
be found also in [26].

C. Four-point functions

The four-point functions were missing in the literature
before [23] apart from a very specific correlators used
in [21],

hjsjsjsjsi /
X
S4

cos ðQ1 þQ2 þQ3 þQ4Þ
x12x23x34x31

ðcos 4� cosP12 cosP23 cosP34 cosP41 þ sin 4� sinP12 sinP23 sinP34 sinP41Þ;

h~j0jsjsjsi / sin 3�
X
S4

sin ðQ2 þQ3 þQ4Þ
x12x23x34x31

R02 sinP23 sinP34;

h~j0~j0jsjsi / sin 2�
X
S4

cos ðQ3 þQ4Þ
x12x23x34x41

½iR03P34 þ R02R24ð�2 ! �3;x2 $ x3Þ�;

h~j0~j0~j0jsi / sin �
X
S4

sinQ4

x12x23x34x31
R04;

h~j0~j0~j0~j0i /
X
S4

trðx�1
12 x

�1
23 x

�1
34 x

�1
41 Þ

x12x23x34x41
:

(10)

The first formula is borrowed from [23]. Despite contain-
ing two-pieces, first of the free boson and second of the free
fermion, the free fermion piece vanishes when at least one
of the polarizations � is set to zero in accordance with the
fact that the � ¼ sþ 1 propagator cannot account for the
� ¼ 2 operator ~j0. The correlators with different number
of insertions of ~j0 are given afterwards. In particular,
h~j0~j0~j0~j0i depends nontrivially on the two conformally
invariant ratios and this dependence is reproduced by the
enumerator.

The general case of n-point correlation functions
requires more technicalities and is discussed below.

III. GENERATING FUNCTIONS AND
CORRELATION FUNCTIONS

In this section, we will calculate (1) specified to the
4d Vasiliev theory. A few basic definitions are given
below:

(i) The 4d HS algebra is the Weyl algebra with spð4Þ
vectors YA as generating elements obeying

½YA; YB� ¼ 2i	AB; (11)

where 	AB is the spð4Þ invariant metric, which is
used to raise and lower indices YA ¼ 	ABYB, YA ¼
YB	BA. It is convenient to use the Weyl ?-product
realization. Then, the elements of the HS algebra are
functions of formally commuting variables YA with
the product

fðYÞ ? gðYÞ ¼
Z

dUdVfðY þUÞgðY þ VÞeiVAUA

¼ fðYÞ exp fi@QA	AB ~@BggðYÞ: (12)

In the calculation, we will suppress spinor indices in
most places.5

(ii) The adjoint HS field� in (1) is a Fourier transform of
the boundary-to-bulk propagator for the master field

strength B [1–5]. Namely, � ¼ B ? � and �ðyÞ ¼R dp
2� e

ipy. Here YA ¼ ðy�; �y _�Þ, i.e. Y ¼ ðy; �yÞ.
(iii) We need the boundary-to-bulk propagator of B with

� ¼ sþ 1 boundary conditions, which describes
bosonic fields of all spins in the bulk, and � ¼ 2
propagator for the scalar component of the HS
multiplet. The propagators, [7,8], see also [23], read

� ¼ sþ 1;

Bi ¼ Bðx; xi; �iÞ
¼ Kie

�iyFi �yðe�iy�iþi� þ eiy�iþi�

þ e�i �y ��i�i� þ ei �y
��i�i�Þ; (13)

�¼ 2; B0
i ¼B0ðx;xiÞ¼K2

i ð1� iyFi �yÞe�iyFi �y;

(14)

where the spinors � and �� are the bulk polarization
spinors, these are obtained by the parallel transport of
the boundary polarization�i to the bulk.F � F� _� is
the wave vector from the bulk point x towards the

5For this purpose, we follow the convention that implicit spinor
indices will always be contracted from the upper-left to the lower-
right direction, e.g. YMY � YAMA

BYB. To be consistent with this,
the implicit index positions on amatrix are alwaysM ¼ M		 and a
generalized notion of ‘‘transpose,’’ �M	
 ¼ 	
�ðMTÞ��	�	, is in-
troduced so that indicesona transposedmatrix are also at the correct
positions. Note the relation 	AB ¼ diagð	��; 	 _� _�Þ.
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boundary point xi.Ki is theWitten� ¼ 1 propagator
for the scalar field. More details given in Poincare
coordinates can be found in the Appendix.

A. Strategy

Given the above definitions, we will take the following
steps to calculate (1):

(1) Suppose that there are n currents on the boundary,
we have

B ¼ Xn
i¼1

Bi or B0
i: (15)

Our strategy to compute Vn ¼ TrððB ? �ÞnÞ is to
calculate first Zn ¼ TrðB1 ? � ? � � � ? Bn ? �Þ and

then to apply the permutation group Sn on Zn to
obtain Vn.

6

(2) To calculate Zn, it will be convenient to start with

�i ¼ Kie
�iyFi �y�iy�i�i �y ��iþi�i ¼ Kie

�i
2YfiY�iY�iþi�i ;

fi ¼
Fi

�Fi

 !
; (16)

where �A ¼ f��; �� _�g, �i is a constant and we
have suppressed the spinor indices. Then Bi can be
obtained by applying the following projections,
successively:


̂0: �i ! �i0 ¼ Kie
�iyFi �y�iy�iþi�;


̂: �i0 ! �0
i0 ¼ Kie

�iyFi �yðe�iy�iþi� þ eiy�iþi�Þ;
�̂: �0

i0 ! Bi ¼ Kie
�iyFi �yðe�iy�iþi� þ eiy�iþi� þ e�i �y ��i�i� þ ei �y

��i�i�Þ:
(17)

For B0
i, we have

B0
i ¼ Kið1� iyFi �yÞ�ij�i¼�i¼0 ¼ Ki

�
1� i

2
YfiY

�
�ij�i¼�i¼0 ¼ Ki

�
1� i

2
@�f@�

�
i
�ij�i¼�i¼0; (18)

@�f@� ¼ @�A
fBA@�B ; @�A

ðY�Þ ¼ YA; @�AðY�Þ ¼ �YA: (19)

(3) Since both Bi and B0
i can be obtained from �i either by projection or by an operator that is irrelevant for the star

product, we can firstly calculate ( ~� ¼ � ?� ? �)

Zn ¼ Trð�1 ? � ? � � � ?�n ? �Þ ¼
8<
:�1 ? ~�2 ? � � � ?�n�1 ? ~�njY¼0 : n even;R dy

2��1 ? ~�2 ? � � � ?�n�2 ? ~�n�1 ?�nj �y¼0 : n odd;
(20)

and then apply the above operations to recover Zn.
In the following subsections, we work backwards along the steps outlined here.

B. The building block of generating functions

In this subsection, we firstly calculate Zn in (20). Let us note that our computations are spð2MÞ covariant although we
need the specialization to spð4Þ only.

Given (16), we find that

6We will not consider contact terms in this calculation. So in fact we are calculating

Vn ¼ TrððB ? �ÞnÞ � ðcontact termsÞ:
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�1 ?�2 ¼ K1K2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1þ f1f2j
p e�i

2Yðf1
f2ÞY�iYð�1
�2Þ�i
2ð�1
�2Þ;

f1 
 f2 ¼ ð2þ f2 � f1Þðf1 þ f2Þ�1;

�1 
�2 ¼ 1

2
ð1þ f1 
 f2Þ�1 þ 1

2
ð1� f1 
 f2Þ�2;

�1 
�2 ¼ � 1

8
�1ðf1 
 f2 þ f2 
 f1Þ�1 � 1

4
�1ð1þ f2 
 f1Þ�2 � 1

8
�2ðf1 
 f2 þ f2 
 f1Þ�2

þ 1

4
�2ð1þ f1 
 f2Þ�1 þ�1 þ�2: (21)

In the special case �f ¼ f and f2 ¼ 1, one can find the following useful properties:

ðf1 þ � � � þ fnÞ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jf1 þ � � � þ fnj

q
;

ðf1 
 f2Þ�¼ f1 
 f2;

f1 
 ðf2 
 f3Þ ¼ ðf1 
 f2Þ 
 f3 ¼ f1 
 f2 
 f3 ¼ f1 
 f3;) f1 
 � � � 
 fn ¼ f1 
 fn;

ðf1 
 f2Þðf1 
 f3Þ ¼ 1þ f1 
 f2 � f1 
 f3;

ðf1 
 f3Þðf2 
 f3Þ ¼ 1� f1 
 f3 þ f2 
 f3;

�1 
 ð�2 
�3Þ ¼ ð�1 
�2Þ 
�3 ¼ �1 
�2 
�3 ¼ �1 
�3;) �1 
 � � � 
�n ¼ �1 
�n;

�1 
 ð�2 
�3Þ ¼ ð�1 
�2Þ 
�3 ¼ �1 
�2 
�3;

(22)

where most relations were already known in [23]. Note, in
particular, that the 
 product for fi and�i are ‘‘forgetful.’’
Using such properties, it is easy to write down the general
result,

�1?�2 � � �?�n ¼Nn exp

�
� i

2
Yðf1
fnÞY� iYð�1
�nÞ

þ ið�1
���
�nÞ
�
;

Nn ¼ 22�n
Yn
i¼1

Kiþ1

j1þfifiþ1j1=4
;

�1
���
�n ¼�1

8

Xn
i¼1

½�iðfiþ1
fiþfi
fi�1Þ�i

þ2�ið1þfiþ1
fiÞ�iþ1�þ
Xn
i¼1

�i;

(23)

where for any given n, we have defined Knþ1 ¼ K1,
fnþ1 ¼ f1, f0 ¼ fn and �nþ1 ¼ ��1.

Note (20) also contains ~�i’s. This can be easily taken

into account by noticing that, to go from�i to
~�i, one only

needs to do the following replacement in (23):

fi ! ~fi ¼ I0fiI0 ¼ �fi; �i ! ~�i ¼ I0�i;

I0 ¼ �1

1

 !

 12:

(24)

The constant �i is the same for �i and
~�i. Plugging these

results into (20) and (23), one can find that

Zn ¼ 22�2n
Yn
i¼1

ei½Q̂
iþP̂iðiþ1Þþ�i�

xiðiþ1Þ
; Q̂i � Q̂i

ðiþ1Þði�1Þ;

Q̂i
jk ¼ �iQi

jk�i; Qi
jk ¼ � 1

8
ð~fj 
 fi þ fi 
 ~fkÞ;

P̂ij ¼ �iP ij�j; P ij ¼ � 1

4
ð1þ ~fj 
 fiÞI0: (25)

For later convenience, let us introduce �0 ¼ �n. Let us
also absorb the minus sign in �nþ1 into P nðnþ1Þ ¼ P 01 ¼
P n1, so that

�nþ1 ¼ �1; P n1 ¼ 1

4
ð1þ ~f1 
 fnÞI0: (26)

Now suppose that the jth through kth nods are all� ¼ 2
scalars, then from (18)

Zj;k
n ¼ Yk

i¼j

Ki

�
1� i

2
@�f@�

�
i
Znj�j¼���¼�k¼0;

¼ R̂ðj�1Þðkþ1ÞZnj�j¼���¼�k¼0;

R̂ðj�1Þðkþ1Þ ¼ �j�1Rðj�1Þðkþ1Þ�kþ1;

Rðj�1Þðkþ1Þ ¼ ik�jþ2P ðj�1Þjf̂jP jðjþ1Þ � � � f̂kP kðkþ1Þ; (27)

where f̂i is defined in (A5). In deriving this result, we have
assumed that not all points are � ¼ 2 scalars. For the case
when all n points are � ¼ 2 scalars, we note
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Z2;n
n ¼ �1R1ðnþ1Þ�1e

Q̂1

22�2n
Yn
i¼1

ei�i

xiðiþ1Þ
;) Z1;n

n ¼ K1

�
1� i

2
@�f@�

�
1
Z2;n
n j�1¼0 ¼ tr½f̂1R1ðnþ1Þ�22�2n

Yn
i¼1

ei�i

xiðiþ1Þ
: (28)

C. Projections and correlation functions

Given Zn and Zj;k
n we can now impose the projections defined in (17).

Firstly note � ¼ �F ��, with which one can obtain

Qi � Q̂ið�iÞ ¼ Q̂ið ��iÞ; Pij � P̂ijð�i; �jÞ ¼ P̂ijð ��i; �jÞ ¼ �P̂ijð�i; ��jÞ ¼ �P̂ijð ��i; ��jÞ;
Rjk � R̂jkð�i; �jÞ ¼ R̂jkð ��i; �jÞ ¼ �R̂jkð�i; ��jÞ ¼ �R̂jkð ��i; ��jÞ; (29)

where Q̂ið�iÞ ¼ Q̂ij ��i¼0, P̂ijð�i; �jÞ ¼ P̂ijj ��i¼ ��j¼0 and so on. Now using (17), we find


̂0Zn ¼ 22�2n
Yn
i¼1

ei½QiþPiðiþ1Þþ��

xiðiþ1Þ
;


̂
̂0Zn ¼ 22�n
Yn
i¼1

eiðQiþ�Þ

xiðiþ1Þ

�Yn
i

cosPiðiþ1Þ þ in
Yn
i

sinPiðiþ1Þ
�
;

Zn ¼ �̂ 
̂ 
̂0Zn ¼ 4
Yn
i¼1

eiQ
i

xiðiþ1Þ

�
cos n�

Yn
i

cosPiðiþ1Þ þ sin n�
Yn
i

sinPiðiþ1Þ
�
;


̂0Z
j;k
n ¼ 22�2nRðj�1Þðkþ1Þ

Yn
i¼1

ei½QiþPiðiþ1Þþi��

xiðiþ1Þ

���������j¼���¼�k¼0
;


̂
̂0Z
j;k
n ¼ 21�n�kþjin�ðk�jþ2ÞRðj�1Þðkþ1Þ

Yn
i¼1

eiðQiþ�Þ

xiðiþ1Þ

Y0
i0
sinPi0ði0þ1Þ;

Zj;k
n ¼ �̂ 
̂ 
̂0Z

j;k
n ¼ � i

4k�j
ð� sin �Þn�ðk�jþ1ÞRðj�1Þðkþ1Þ

Yn
i¼1

eiQ
i

xiðiþ1Þ

Y0
i0
sinPi0ði0þ1Þ;

(30)

where
Q0

i0 goes over all points for which Pi0ði0þ1Þ � 0 and one has to set �j ¼ � � � ¼ �k ¼ 0 for Zj;k
n .

Our last step is to obtain Vn. This can be achieved by applying the permutation group, Sn, on Zn or Z
j;k
n . Inside Sn one

can firstly consider the dihedral subgroup, Dn, in which each of the reflections ŝ acts as

ŝðQiÞ ¼ �Qi; ŝðPijÞ ¼ �Pij;

ŝðRjkÞ ¼ �Rjk;) DnZn ¼ 8n

"
cos n� cosQ

Yn
i

cosPiðiþ1Þ
xiðiþ1Þ

þ sin n�fnðQÞYn
i

sinPiðiþ1Þ
xiðiþ1Þ

#
;

DnZ
j;k
n ¼ �i

2n

4k�j
ð� sin �Þn�ðk�jþ1ÞRðj�1Þðkþ1Þ

Yn
i¼1

1

xiðiþ1Þ

Y0
i0
sinPi0ði0þ1Þfn�ðk�jþ1ÞðQÞ;

(31)

whereQ ¼ P
n
i¼1 Q

i, fnðxÞ ¼ cos x for n even and fnðxÞ ¼
i sin x for n odd. As a result,

SnZn ¼ 4
X
Sn

�
cos n� cosQ

Yn
i

cosPiðiþ1Þ
xiðiþ1Þ

þ sin n�fnðQÞYn
i

sinPiðiþ1Þ
xiðiþ1Þ

�
; (32)

SnZ
j;k
n ¼ � i

4n0�1
ð� sin�Þn�n0

X
Sn

Rðj�1Þðkþ1Þfn�n0ðQÞ

�Yn
i¼1

1

xiðiþ1Þ

Y0
i0
sinPi0ði0þ1Þ; (33)

where n0 ( ¼ k� jþ 1, when k � j) is the total number of
~j0 insertions. In the case when all n points are � ¼ 2
scalars, we have
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h~j0 � � � ~j0i ¼
X
Sn

Z1;n
n ¼X

Sn

tr½f̂1R1ðnþ1Þ�22�2n
Yn
i¼1

1

xiðiþ1Þ
:

(34)

Note SnZn ¼ Vn ¼ hjs � � � jsi in cases without a � ¼ 2

scalar, but SnZ
j;k
n is not equivalent to Vn in cases with

� ¼ 2 scalar operators. The reason is that Zj;k
n only con-

tains contributions from cases where all � ¼ 2 scalars
are labeled continuously, while other possibilities are not
included. In the case with several� ¼ 2 scalars, this means
there are mixed sequences such as

� � �js~j0 � � �~j0js � � �js~j0 �� �~j0js � � �js~j0 � � �~j0js � � � : (35)

In this sequence, the Q, P and R structures can be read off
as follows:

jsðiÞ ! Qi; jsðiÞjsðiþ 1Þ ! Piðiþ1Þ;

jsðiÞða sequence of ~j0ÞjsðkÞ ! Rik;
(36)

where jsðiÞ means that js is on the ith position in the
sequence, and similarly ~j0ðiÞ means that ~j0 is on the ith
position in the sequence. Using f� � �g to denote the above

sequence, and using Zf���g
n to denote the corresponding

generating function, we find

SnZ
f���g
n ¼ ði sin �Þn�n0

4n0�1

X
Sn

fn�n0ðQÞYn
i¼1

1

xiðiþ1Þ

���1
f���g

Y
R
Yði sinPÞ;

Vnðwith ~j0Þ ¼
X
f���g

SnZ
f���g
n ; (37)

where the last two
Q

in SnZ
f���g
n go over all nonvanishing

R’s and P’s, which are determined according to (36); and
�f���g is the operator that takes the canonical sequence

f~j0 � � � ~j0js � � � jsg to the particular sequence f� � �g that is
involved. As an example, let us note

h~j0~j0jsjsi ¼ SnZ
f~j0~j0jsjsg
4 þ SnZ

f~j0js~j0jsg
4

¼ � 1

4
sin 2�

X
Sn

cos ðQ3 þQ4Þ
x12x23x34x41

� ½iR03P34 þ��1
f~j0js~j0jsgR02R24�; (38)

where �f~j0js~j0jsg is the operator that takes the sequence

f~j0~j0jsjsg to f~j0js~j0jsg, cf. the third correlator of (10).
As a side remark, we have explicit i factors floating

around in our final results (32) and (37), and also inside
Rij as in (A7). The appearance of these i factors is due to

the fact that we have neglected some extra phase factors
that naturally arise in (21), as is shown in [26]. Consistency
requires that the result must be Hermitian and all these i

factors must cancel when all phase factors are taken into
account properly. Our main objective here is to obtain the
basic structure of correlation functions since an overall
factors are undetermined within our approach.

IV. CONCLUSION

In this note we complete the calculation of n-point
correlation functions of conserved currents in unbroken
4d Vasiliev theory initially carried out for � ¼ sþ 1
operators in [23]. The missing link that we deal with
in our paper is the correlation functions that contain
� ¼ 2 scalar operator ~j0 (5). The obtained results are in
agreement with Maldacena-Zhiboedov theorem, with
three- and some four-point calculations performed using
different methods [7,8,11,21,28] and in agreement with
very recent calculation [26] where n-point functions were
reproduced from the current operator algebra. Our
method is applicable only when HS symmetry is unbro-
ken and it is promising to look whether it can be improved
to the case when HS symmetry is broken. The trace
formula (1) determines the correlation functions up to
overall coefficients and makes the calculations very sim-
ple. The price to pay for this simplicity is that we only
reproduce the connected part of correlation functions
unlike the complete result of [26]. The great advantage
of the proposed method is its manifest conformal and HS
invariance. HS boundary-to-bulk propagators as well as
conformal structures arise in a coordinate independent
way. All have beautiful interpretation in HS algebra, the
former correspond to projectors in star-product algebra,
while the latter appear naturally through the induced

-product defined on a projector space. The use of coor-
dinates is thus the matter of presenting the results to make
contact with the available ones in the literature.
Our method can be straightforwardly generalized to any

dimension although in higher dimensions HS algebra has
no longer simple realization similar to lower d spinorial
Weyl algebras. That the analogous d-dimensional calcula-
tion is not going to be simple at all has been already
demonstrated at the level of HS propagators in [12] unless
the induced product on the space of projectors is under-
stood.7 On the other hand, the spinorial route to HS alge-
bras naturally extends to simplectic HS algebras.
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APPENDIX: TECHNICALITIES

The � ¼ 1 propagator can be constructed from the
following:

�i ¼ Kie
�iyFi �y�iy�i�i �y ��i ; �i ¼ 	i�i;

��i ¼ �	i ��i; Ki ¼ Kð
; x; xiÞ ¼ 


x̂2i þ 
2
;

Fi ¼ Fð
; x; xiÞ ¼ �
�
2Kix̂i þ i

x̂2i � 
2

x̂2i þ 
2

�
;

	i ¼ 	ð
; x; xiÞ ¼ e�i�=4Ki

�
1ffiffiffiffi



p x̂i � i
ffiffiffiffi



p �
;

�	i ¼ �	ð
; x; xiÞ ¼ e�i�=4Ki

�
1ffiffiffiffi



p x̂i þ i
ffiffiffiffi



p �
;

(A1)

where � and �� are real constant boundary polarization
vectors, and

x̂i � x� xi;

x ¼ �x2 �x0 � x1

x0 � x1 x2

 !
;

) x2 ¼ � det ðxÞ ¼ x20 � x21 � x22:

(A2)

Note the properties

Fi
�Fi ¼ 1; �	i	i ¼ 	i

�	i ¼ ��	i
�	i ¼ �	i

��	i ¼ �iKi;

��	i ¼ �Fi	iFi; 	�1
i Fi

��	
�1 ¼ 	�2

i
�F�1
i ¼ 1

Ki

:

(A3)

From � ¼ �F ��, one can derive that ��� ¼ � and �� ¼ �i�.
It will be convenient to write

�i ¼ Kie
�i

2YfiY�iY�i ; Y ¼ y

�y

 !
;

�i ¼
�i

��i

 !
¼ 
i�

0
i ; fi ¼

Fi

�Fi

 !
;


i ¼
	i

�	i

 !
; �0

i ¼
�i

��i

 !
:

(A4)

From (A3), one has

�fi ¼ fi; f2i ¼ 1;


�1
i f̂i �


�1
i ¼ i

�1

1

 !

 12;

f̂i � �iKifi;

(A5)

where 12 means two-dimensional unit matrix.

From (25) and (27), we find that �Qi
jk ¼ Qi

jk,

trðfiQi
jkÞ ¼ �1 and

�
iQi
jk
i ¼ 1

8

x�1
ij � x�1

ik � � �
� � � �ðx�1

ij � x�1
ik Þ

0
@

1
A;

�
iP ij
j ¼ � 1

4

1 �i

i 1

 !

 x�1

ij ;

�
j�1Rðj�1Þðkþ1Þ
kþ1 ¼ c

2ð2iÞk�jþ2

1 �i

i 1

 !



 Yk
i¼j�1

x�1
iðiþ1Þ

!
; (A6)

where c ¼ 1 if x�1
n1 is not involved while c ¼ �1 if

otherwise. As a result,

Qi ¼ � 1

8
�i½x�1

iðiþ1Þ � x�1
iði�1Þ��i;

Pij ¼ c

4
�ix

�1
ij �j;

Rðj�1Þðkþ1Þ ¼ � c

2ð2iÞk�jþ2
�j�1

 Yk
i¼j�1

x�1
iðiþ1Þ

!
�kþ1:

(A7)

Note that the off diagonal elements of �
iQi
jk
i do not

contribute to these structures. One can further find that

Z1;n
n ¼ tr

�
� 1

ð2iÞn
1 �i

i 1

 !

 ðx�1

12 x
�1
23 � � �x�1

n1 Þ
�
22�2n

�Yn
i¼1

1

xiðiþ1Þ

¼ �8
trðx�1

12 x
�1
23 � � �x�1

n1 Þ
ð8iÞnx12x23 � � � xn1 : (A8)

Under the inversion, xi ! x�1
i and �0

i ! x�1
i �0

i .
One has

xij ! x�1
i � x�1

j ¼ �x�1
i xijx

�1
j ¼ �xixijxj

x2i x
2
j

;

x2ij ¼ �jxijj ! �jx�1
i xijx

�1
j j ¼ � jxijj

jxijjxjj ¼
x2ij

x2i x
2
j

;

x�1
ij ¼ xij

x2ij
! �xixijxj

x2i x
2
j

	 x2ij

x2i x
2
j

¼ �xix
�1
ij xj;

#k ! ð��0
i1
x�1
i1
Þð�xi1x

�1
i1i2

xi2i3x
�1
i3i4

� � �xik�2ik�1
x�1
ik�1ik

�0
ik
Þ ¼ #k;

(A9)
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where #k ¼ �0
i1
x�1
i1i2

xi2i3x
�1
i3i4

� � �xik�2ik�1
x�1
ik�1ik

�0
ik
. This implies, in particular, that Pij and Qi are conformal invariants.

One can then check that under (A9),

Zn !
 Yn

i

x2i

!
Zn; Zj;k

n !
 Yn

i

x2i
Yk
j0¼j

x2j0

!
Zj;k
n ; Z1;n

n !
 Yn

i

x4i

!
Z1;n
n ; (A10)

which all transform as expected.
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