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to the steady-state amplified spontaneous emission by the incoherent applied fields.
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1. Introduction

The collective behavior of quantum systems on interaction with a common radiation

field was first studied by Dicke [1]. Since then, the studies regarding the collective

interactions of an ensemble of few-level emitters with and via an environmental reservoir

and pumped by external coherent or incoherent sources of electromagnetic light have

been carried out intensively [1, 2, 3, 4, 5, 6]. The investigation of such interactions has

interested the scientific community because of the interesting effects and the possible

application in the field of quantum communication and quantum information. The

manipulation of collective fluorescence of an atomic sample via classical coherent fields

and a heat bath has been shown in Ref. [7]. Further, it has been shown that the

photon scattering by a collection of few-level emitters in incoherent environments leads

to violation of the Cauchy-Schwarz inequality [8]. Thus, it can be realized that, in

contrary to general intuition, quantum features can be obtained from the interaction of

quantum systems with a classical electromagnetic field (EMF) reservoir. This opens up

a lot of possible applications in quantum information science, for example, entanglement

between two arbitrary qubits has been shown to be generated when they interact with

a common thermal bath [9, 10, 11, 12]. Recently, other interesting developments like,

stationary entanglement at high temperatures for two coupled, parametrically driven,

dissipative harmonic oscillators [13] and room-temperature steady-state optomechanical

entanglement on a chip [14], have been shown. Disentanglement versus decoherence of

two qubits in thermal noise was investigated as well [15].

With such a motivation, in this paper, we investigate the quantum behaviors of

a collection of three-level ladder emitters surrounded by an incoherent reservoir. We

find that the steady-state distribution of radiators on the energy levels are not affected

by the presence of the cross-damping terms caused by the interference of transition

amplitudes. The collective effects drive the system into a final thermal steady-state

which is other than Boltzmann equilibrium distribution. The photon statistics changes

from super-Poissonian to sub-Poissonian depending on the number of atoms in the

sample, temperature and the mutual orientation of the induced dipole-moments. In

particular, we analyzed the steady state intensity and the normalized second-order

correlation function for the light generated on the lower atomic transition. We found

that there occurs a maximum in the steady-state intensity for moderately large atomic

samples with orthogonal transition dipoles. The physics behind such a behavior is that

the steady-state intensity of the emitted photons for the lower transition has a maximum

due to the amplified spontaneous emission by the incoherent field. Correspondingly, a

minimum is observed in the normalized second-order correlation function, resulting in

the emission of quasi-coherent light. When the orientation of the transition dipoles are

near parallel, the dip is not observed and the photon statistics is similar to that of a

two-level ensemble.

The paper is organized as follows. In Section 2, we consider the system of interest

and obtain the exact steady-state solution of the master equation that describes the
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system. Using the solution, we arrive at the distribution of the emitters on the atomic

states. Section 3 investigates the photon statistics of the spontaneously emitted photons

as function of number of atoms, bath characteristics and orientation of atomic dipoles.

The results are summarized in Section 4.

2. Master Equation and its exact steady state solution

The basic element of our investigation is a sample of N identical non-overlapping three-

level ladder emitters that interacts with an environmental incoherent reservoir like

thermal bath or broad-band incoherent lasers. The radiating atoms are located within

a volume with linear dimension less compared to the relevant emission wavelengths

{λ12, λ23} (Dicke model). However, the obtained results apply to extended atomic

samples as well where one atomic dimension is much larger than the relevant emission

wavelength [16]. The incoherent reservoir induces transitions between the atomic levels

with rates proportional to the mean incoherent photon number at corresponding atomic

transitions. The excited atomic level |1〉 (|2〉) spontaneously decays to the state |2〉 (|3〉)
due to the zero point fluctuation of the electromagnetic field, with a decay rate 2γ1(2γ2).

In the usual mean field, Born-Markov, dipole and rotating wave approximations,

the interaction of the atomic sample with the surrounding incoherent bath is described

by the master equation [2]:

d

dt
ρ(t) + i[ω12S11 − ω23S33, ρ] = −(1 + n̄1)[S12, (γ1S21 + γ21S32)ρ]

− (1 + n̄2)[S23, (γ2S32 + γ12S21)ρ]− n̄1[S21, (γ1S12 + γ21S23)ρ]

− n̄2[S32, (γ2S23 + γ12S12)ρ] +H.c., (1)

where the collective atomic operators Sαβ = ΣN
j=1S

(j)
αβ = ΣN

j=1|α〉jj〈β| ≡ |α〉〈β| describe
the transitions between |β〉 and |α〉 for α 6= β and populations for α = β and obey the

commutation relation [Sαβ , Sα′β′ ] = δβα′Sαβ′ − δβ′αSα′β. Here, n̄i are the mean photon

numbers that represent the intensity of incoherent pumping. For thermal bath, the

mean thermal photon number is given by,

n̄i =
1

exp(β~ωi,i+1)− 1
,

where, ωi,i+1 = ωi − ωi+1, {i = 1, 2} and β = (kBT )
−1 where kB is the Boltzmann

constant and T is the temperature of the bath. For incoherent pumping,

n̄i =
Ri,i+1d

2
i,i+1

γi~2
,

where Ri,i+1 describes the strength of the incoherent pumping. Furthermore, 2γ1(2)

= 4d212(23)ω
3
12(23)/(3~c

3) is the single- atom natural line width. γ12 = γ2
|~d12|

|~d23|
cos θ and

γ21 = γ1
|~d23|

|~d12|
cos θ, with θ being the angle between the dipole moments ~d12 and ~d23,

describe the interference (cross-damping) effects among the atomic transitions |1〉 ↔ |2〉
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and |2〉 ↔ |3〉, and cannot be neglected for non-orthogonal dipole moments if ∆ =

|ω12 − ω23| ≤ Γeff = Nγ1(2)[1 + n̄1(2)].

The steady-state solution of the master equation, Eq. (1) is given by the relation:

ρs = Z−1e−ξ1S11e−ξ3S33 , (2)

where for γ12 = γ21 = 0 (i.e. when ~d12 ⊥ ~d23),

ξ1 = ln
[1 + n̄1

n̄1

]

, ξ3 = ln
[ n̄2

1 + n̄2

]

while for n̄1 = n̄2 ≡ n̄ and γ12 = γ21 6= 0,

ξ1 = −ξ3 ≡ ξ = ln
[1 + n̄

n̄

]

.

Here Z is chosen such that Tr{ρs} = 1. It is interesting to emphasize that the exact

solution, i.e. Eq. (2), has a diagonal form while the master equation itself Eq. (1)

has non-diagonal terms which arise due to the two transitions |1〉 → |2〉 and |2〉 → |3〉
coupling with the same electromagnetic field modes. The solution of the master equation

(1) was obtained by the direct substitution of Eq. (2) in the steady-state form of Eq. (1),

noting that: eξ1S11S21e
−ξ1S11 = S21e

−ξ1 and eξ3S33S32e
−ξ3S33 = S32e

ξ3 .

The steady-state expectation values of the atomic variables of interest can be

calculated using the expression for the steady-state solution of the master equation, i.e.

Eq. (2), and by making use of the symmetrical collective states |N, n,m〉 corresponding
to the SU(3) algebra [2, 4, 5, 7, 8]. The meaning of the symmetrical collective state

|N, n,m〉 is such that, n atoms are considered to be in the bare state |1〉, m− n in the

state |2〉, and N − m in the bare state |3〉, where N ≥ n ≥ 0, N ≥ m ≥ n. Using

the SU(3) eigenstate properties of the bare state atomic operators we can immediately

arrive at the expression for Z (see, also [17]), i.e.,

Z(ξ1, ξ3) =
e−ξ3N

1− eξ3
[f(ξ1 − ξ3)− eξ3(1+N)f(ξ1)]. (3)

Here,

f(ξ) =
1− e−ξ(1+N)

1− e−ξ

.

Both the collective steady-state populations on the bare atomic states and their

mutual correlations can be calculated from the relations:

〈Sk1
11S

k2
33〉s = (−1)k1+k2Z−1 ∂k1+k2

∂ξk11 ∂ξk23
Z(ξ1, ξ3), (4)

with 〈S22〉s = N − 〈S11〉s − 〈S33〉s, {k1, k2 = 0, 1, 2 · · ·}. In particular, for N = 1 one

obtains

〈S11〉s =
n̄1n̄2

(1 + 2n̄1)(1 + 2n̄2)− n̄1(1 + n̄2)
,

〈S22〉s =
n̄2(1 + n̄1)

(1 + 2n̄1)(1 + 2n̄2)− n̄1(1 + n̄2)
,

〈S33〉s =
(1 + n̄1)(1 + n̄2)

(1 + 2n̄1)(1 + 2n̄2)− n̄1(1 + n̄2)
, (5)
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and it can be observed that their corresponding ratios are in accordance with the

equilibrium Boltzmann distribution.

In general, for any N , the population distribution of collection of atoms are given

by:

〈S11〉s =
η−N
2

Z(ξ1, ξ3)(η2 − 1)

[(N + 1)(η1η2)
N+1 −N(η1η2)

N+2 − η1η2
(1− η1η2)2

− ηN+1
2

(N + 1)ηN+1
1 −NηN+2

1 − η1
(1− η1)2

]

,

〈S33〉s =
η−N
2

Z(ξ1, ξ3)(η2 − 1)2

×
[N + (η1η2)

N+1 − η2(η1η2)
N+2 − η1η2(1− (N + 2)η2 +N)− (N + 1)η2

(1− η1η2)2

+ ηN+1
2

1− ηN+1
1

1− η1

]

, (6)

with 〈S22〉s = N − 〈S11〉s − 〈S33〉s and ηi = n̄i/[1 + n̄i], {i ∈ 1, 2}. In this case, for

larger N , the collective interaction between the atoms drives the system into a thermal

steady-state away from a Boltzmann distribution [8].

Now, we consider the following limiting cases of the applied incoherent field and

the size of the system:

i) for a system with η1 = 0, η2 6= 0, we find that,

〈S11〉s = 0

〈S33〉s =
N − (N + 1)η2 + ηN+1

2

(1− η2)(1− ηN+1
2 )

,

i.e. we recovered the well-known results for a two-level (|2〉 ↔ |3〉) atomic sample [3].

ii) if {η1 6= 0, η2 = 0} or when there is no external incoherent pumping, {η1 = η2 =

0}, then 〈S11〉s = 0 and 〈S33〉s = N . The system is entirely in the ground state.

iii) for a weak incoherent bath (ηi < 1) and a large sample (N ≫ 1) such that

{(η1η2)N , ηN1(2)} → 0, we get,

〈S11〉s =
η1η2

1− η1η2
,

〈S22〉s =
η2

1− η2
,

〈S33〉s = N − η2
1− η2

− η1η2
1− η1η2

, (7)

iv) on application of a strong incoherent field (ηi = 1), we get,

lim
η1,η2→1

〈S11〉s
N

= lim
η1,η2→1

〈S22〉s
N

= lim
η1,η2→1

〈S33〉s
N

=
1

3
,

i.e., the atomic levels are equally populated (see Fig. 1).

When cross-damping effects are considered [18] then the corresponding expressions

for the population distributions can be obtained with the help of Eq. (2) in the limit
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Figure 1. The steady-state dependence of the scaled populations 〈S11〉/N (solid line),

〈S22〉/N (dashed line) and 〈S33〉/N (dotted line) as a function of η ≡ η1 = η2. Here

N = 20.

η1 = η2 ≡ η = n̄/[1 + n̄]. The mean value of the inversion operator (Sz = S11 − S33),

can be evaluated using the expression:

〈Sk
z 〉s = (−1)kZ−1 ∂k

∂ξk
Z(ξ), {k = 1, 2, · · ·} (8)

Hence,

〈Sz〉s = − N + ηN+1 + 2ηN+2 − (3 +N)η3+2N

(1− ηN+1)(1− ηN+2)

+
η(1 + 3η)

1− η2
. (9)

We consider the following limiting cases of Eq. (9):

i) a system in a weak incoherent reservoir (η → 0), has 〈Sz〉s = −N ;

ii) a fixed η < 1 and a large atomic sample, N ≫ 1, such that {(η1η2)N , ηN1(2)} → 0,

gives

〈Sz〉s = −N +
η(1 + 3η)

1− η2
;

and

iii) a strong heat bath (η → 1) leads to saturation, i.e.

lim
η→1

〈Sz〉s/N = 0.

Concluding this part, we emphasize that a weak incoherent reservoir leaves a

large sample of ladder emitters in their ground state, whereas equal distributions of

populations among the states is achieved on applying a strong incoherent field. The

coherence terms, that appear due to the quantum interference in the master equation

do not affect the steady-state behaviors of radiators on the bare atomic states. It can

be realized here that the steady-state inversion of atoms cannot be achieved in such a

process, i.e., 〈S11〉s ≤ 〈S22〉s ≤ 〈S33〉s or 〈Sz〉s ≤ 0 (see Fig. 1). The above conclusions

also apply for V -type emitters interacting with a thermal reservoir [19].
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3. First- and second-order correlation functions

The degree of second-order coherence of collective fluorescent light emitted from the

excited atomic levels can be defined as [20, 21, 22],

g(2)(~r, t) =
G(2)(~r, t)

[G(1)(~r, t)]2
, (10)

with

G(1)(~r, t) = 〈[E−(~r, t)E+(~r, t)]〉,
G(2)(~r, t) = 〈: [E−(~r, t)E+(~r, t)][E−(~r, t)E+(~r, t)] :〉,

being the first- and the second-order correlation functions of the radiated EMF,

respectively. Here E−(~r, t) and E+(~r, t) are the positive and negative frequency parts of

the amplitude of the EMF operator E at the space-point ~r, and : [· · ·] : means normal

ordering. In the far-zone limit of experimental interest, i.e., r = |~r| ≫ {λ12, λ23}, one
can express the first- and the second- order correlation functions via the collective atomic

operators. Taking then the long-time limit of Eq. (10) and making use of Eq. (2) the

steady-state coherence properties of the generated EMF will be investigated in the next

subsections.

3.1. Photon statistics of distinguishable photons

Let us consider that the atomic transitions |1〉 → |2〉 and |2〉 → |3〉 have dipole

moments orthogonal to each other (~d12 ⊥ ~d23). Then the emitted photons from the

corresponding transitions can be distinguished by their polarizations and frequencies

and can be detected by single-photon or two-photon detectors, respectively. For this

case, the normalized second-order coherence function can be defined as follows:

g
(2)
ij (0) =

〈J+
i J

+
j JjJi〉

〈J+
i Ji〉〈J+

j Jj〉
, (i, j = 1, 2) (11)

where, for brevity we have set J1 = S21 and J2 = S32, and 〈J+
i Ji〉 can be used to

quantify the intensity of emitted light from the transition i. The quantity g
(2)
ij (0) can

be interpreted as a measure for the probability for detecting one photon emitted in

transition i and another photon emitted in transition j simultaneously and its value

determines the nature of the emitted photons. g
(2)
ij (0) < 1 characterizes sub-Poissonian;

g
(2)
ij (0) > 1, super-Poissonian; and g

(2)
ij (0) = 1, Poissonian photon statistics of the

emitted EMF. Anti-correlation or correlation of the emitted light occurs when g
(2)
ij (0) is

smaller or larger than unity respectively. To evaluate these atomic correlation functions,

we can use the SU(3) eigenstate properties of the bare state atomic operators [2, 4, 5, 7, 8]

and the exact steady-state solution, i.e. the Eq. (2).

Firstly, we evaluate the fluorescent steady-state intensities of light emitted on

|1〉 → |2〉 and |2〉 → |3〉, with help of the following relations obtained from the master

equation (1):

G
(1)
1 (0) ∝ 〈S12S21〉s
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Figure 2. The steady-state dependence of the scaled intensities G
(1)
1 (0)/N2 (solid

line) and G
(1)
2 (0)/N2 (dashed line) as a function of η ≡ η1 = η2. Here N = 20.

=
η1

1− η1
[N − 〈S33〉s − 2〈S11〉s], (12)

G
(1)
2 (0) ∝ 〈S23S32〉s

=
η2

1− η2
[〈S11〉s + 2〈S33〉s −N ]. (13)

Particularly, Eqs. (12) and (13) were obtained from the steady-state form of the

corresponding equations for 〈S11〉 and 〈S33〉 using also the commutation relations

[S12, S21] = S11 − S22 and [S23, S32] = S22 − S33 as well as the relation 〈S11〉 + 〈S22〉 +
〈S33〉 = N . Consider the following limiting cases for G

(1)
1 (0) and G

(1)
2 (0):

i) if a weak incoherent field is applied to the sample, i.e., {η1, η2} → 0, gives G
(1)
1 (0)

= G
(1)
2 (0) = 0;

ii) large samples, N ≫ 1, with fixed {η1, η2} < 1, have

G
(1)
1 (0) =

η1
1− η1

[ η2
1− η2

− η1η2
1− η1η2

]

, (14)

G
(1)
2 (0) =

η2
1− η2

[

N − 2η2
1− η2

− η1η2
1− η1η2

]

, (15)

and

iii) in the strong field limit {η1, η2} → 1 and fixed N , we find that,

G
(1)
1 (0) = G

(1)
2 (0) =

N

12
(3 +N). (16)

One can observe here that for larger atomic systems and moderate strengths of

incoherent excitation the first-order correlation function G
(1)
1 (0) does not depend on

N while G
(1)
2 (0) increases linearly with N , i.e., G

(1)
2 (0) ≈ n̄2N . In the limit of intense

incoherent pumping the radiated fluorescence intensities in both atomic transitions scale

as N2, similar to the superradiance phenomenon [1, 2]. Fig. (2) depicts these intensities

as a function of the incoherent pumping strength. An interesting result here is that

G
(1)
2 (0)/N2 shows a maximum for lower pumping intensities. From Eq. (13), G

(1)
2 (0)

can be written as n̄2[〈S33〉s − 〈S22〉s]. The value of G
(1)
2 (0) increases with the pumping
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Figure 3. The steady-state dependence of the second-order coherence function g
(2)
22 (0)

as function of η ≡ η1 = η2. Here solid, dashed and dotted curves are for N = 2, 20,

and 200, respectively.

parameter η. After a certain value, the value of G
(1)
2 (0) decreases due to the rapidly

decreasing nature of [〈S33〉s − 〈S22〉s], and hence exhibits a maximum due to amplified

spontaneous emission by the external incoherent excitation.

We now shall investigate the coherence properties of the light emitted on |2〉 → |3〉
atomic transition. For N = 2, the coherence factor g

(2)
22 (0) changes from unity (coherent

light) to values less than one (i.e., it exhibits sub-Poissonian photon statistics, see Fig. 3).

Hence, the emitted light possesses quantum features. For a moderately large atomic

system, the fluorescent field generated on this particular atomic transition has partial

coherent properties because g
(2)
22 (0) < 2. The light-statistics of a large sample behaves as

follows. For a weak bath (η < 1) it is incoherent since limN→∞ g
(2)
22 (0) = 2, showing the

super-Poissonian statistics of photons, while for an intense incoherent reservoir (η = 1),

it is partially coherent, since

lim
η→1

g
(2)
22 (0) =

8(N − 1)(N + 4)

5N(3 +N)
→ 8

5
, when N ≫ 1.

It should be noted here that the minimum for the coherence factor g
(2)
22 (0), shown in

Fig. (3), occurs near the value of η for which G
(1)
2 (0) is maximum, leading to the emission

of quasi-coherent light. Therefore, there occurs an enhancement of the multiparticle

spontaneous emission corresponding to the maximum of G
(1)
2 (0) and quasi-coherent light

emission corresponding to the minimum of g
(2)
22 (0) due to the surrounding incoherent

reservoir and multi-level structure of the emitters in the system. The incoherent

pumping scheme developed here for orthogonal dipoles can be useful in higher frequency

domains due to absence of good coherent sources. As can be seen from our results, one

can obtain quasi-coherent light via incoherent pumping.
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3.2. Photon statistics of indistinguishable photons

When decay interference effects are accounted, i.e., for near parallel dipoles (~d12 ‖ ~d23),

the second-order correlation function can be represented as follows:

g(2)(0) =
〈(J+

1 + J+
2 )

2(J1 + J2)
2〉

〈(J+
1 + J+

2 )(J1 + J2)〉2
. (17)

It is emphasized here that due to the quantum decay interference the atomic

transitions are indistinguishable. The correlation function, in this case, is detected

by a two-photon detector. Eq. (17) contains off-diagonal terms that cannot be

directly evaluated with the solution obtained in Eq. (2). However, we can represent

the correlation functions entering Eq. (17) via those atomic correlations that can

be evaluated with the steady-state solution in Eq. (2). Therefore, using the master

equation, Eq. (1), we can show that:

G(1)(0) ∝ 〈(J+
1 + J+

2 )(J1 + J2)〉s = − η

1− η
〈Sz〉s,

G(2)(0) ∝ 〈(J+
1 + J+

2 )
2(J1 + J2)

2〉s =
η2

(1− η)2

[1 + η

1− η
〈Sz〉s + 2〈S2

z 〉s
]

, (18)

and, thus, g(2)(0) can be written as,

g(2)(0) =
[(1 + η)/(1− η)]〈Sz〉s + 2〈S2

z 〉s
〈Sz〉2s

, (19)

with

〈S2
z 〉s =

a(η,N)η3+2N − b(η)ηN+1 + c(η,N)

(1− η)(1− η2)(1− ηN+1)(1− ηN+2)

+
2η(1 + 3η)

1− η2
〈Sz〉s. (20)

Here,

a(η,N) = (3 +N)2 − (2 +N)(4 +N)η +N(6 +N)η3

− (1 +N)(5 +N)η2,

b(η) = 1 + 4η − 8η3 − 5η4,

c(η,N) = N2 − (N2 − 1)η − (N2 − 4)η2 + (N2 − 9)η3,

and can be obtained from Eq. (8). Setting N = 1 in Eqs. (9,20) we arrive at the

corresponding expressions given in [23],

〈Sz〉s =
η2 − 1

1 + η + η2
, 〈S2

z 〉s =
η2 + 1

1 + η + η2

The limiting cases for G(1)(0) in Eq. (18) are as follows:

i) for a weak incoherent field (η → 0) and fixed N , it can be shown that G(1)(0) = 0

;

ii) for a large sample (N ≫ 1) and a fixed η < 1, we find that

G(1)(0) = − η

1− η

[

−N +
η(1 + 3η)

1− η2

]

≈ n̄N ; (21)
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Figure 4. Steady-state variance of the second-order coherence function g(2)(0) as a

function of the parameter η. Solid, dashed and dotted curves are for N=1, 2, and 200,

respectively.

and

iii) for a strong incoherent field (η → 1) and fixed N , we get

G(1)(0) =
N

6
(3 +N). (22)

Thus, in the limit of intense pumping and large atomic samples the radiated fluorescence

intensity shows a quadratic dependence of N , whereas for moderate intensities it is a

linear function of N . In this case, for atoms emitting indistinguishable photons, the

scaled intensity does not show any maxima.

The values of the second-order correlation function for different limiting cases are

as follows:

i) for N = 1 and η 6= 0, we have,

g(2)(0) = 1− η

(1 + η)2
.

The emitted light shows sub-Poissonian photon statistics. Increasing the number of

atoms leads to partial coherence of the emitted electromagnetic field because 1 <

g(2)(0) < 2 (see Fig. 4).

ii) in the limit of a weak incoherent field (η → 0), we get

g(2)(0) = 2−N−1,

iii) in the limit of a strong incoherent bath (η → 1), we obtain

g(2)(0) =
8N2 + 24N − 17

5N(3 +N)
. (23)

and

iv) for fixed η < 1 and large samples, N ≫ 1, one obtains

G(2)(0) ≈ 2(n̄N)2, (24)

and, thus, g(2)(0) shows super-Poissonian photon statistics since in this case

limN→∞ g(2)(0) = 2 [see Eqs. (21,24)]. Partial coherence features occur for η = 1 and

N ≫ 1 because limN→∞ g(2)(0) = 8/5 [see Eq. 23].
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The second-order correlation function for a three-level system with near parallel

dipoles behaves similar to that for a two-level sample [3]. This can be seen also by

introducing new atomic operators, i.e., S+ =
√
2(S23 + S12), S

− =
√
2(S21 + S32) and

Sz = S11 − S33 obeying the commutation relations for su(2) algebra: [S+, S−] = 2Sz

and [Sz, S
±] = ±S±. For equal decay rates, the master equation (1) can be represented

via new operators as follows:

d

dt
ρ = −γ

2
(1 + n̄)[S+, S−ρ]− γ

2
n̄[S−, S+ρ] +H.c.,

and looks like the master equation describing two-level atoms [3]. Hence, there is no

amplified steady state spontaneous emission for such a system.

4. Summary

The interaction of an ensemble of ladder-type emitters with an environmental incoherent

reservoir is investigated. The steady-state solution of the master equation and steady-

state population distributions for the system are obtained and it is shown that collective

effects force the system away from the Boltzmann-like thermodynamic equilibrium for

systems with more than one atom. Particularly, the ground-state emitters obey the

Bose-Einstein statistics. We analyzed the photon statistics of the emitted light under

different conditions. The emitted EMF in the case of one or two-atom sample emitting

distinguishable photons, or a single atom emitting indistinguishable photons exhibit

quantum properties. In case of atoms, emitting distinguishable photons, for larger

samples, amplified steady-state spontaneous emission of quasi-coherent light occurs.

Therefore, the investigated model can be useful in higher frequency domains as a source

of quasi-coherent light. Furthermore, the first- and second-order coherence functions

do not exhibit any critical behaviors, i.e., discontinuities or abrupt changes proper to

phase transition phenomena. Finally, the steady-state expectation values of any atomic

variables of interest do not depend on spontaneous decay rates.

Rydberg atoms possessing almost equidistant energy levels and embedded inside

a cavity with a low quality factor are suitable candidates to test some of the results

described here [24]. With suitable cavity parameters one can avoid the difficulties

connected with the condition, ~d12 ‖ ~d23 [25].
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