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Abstract

In this and the companion paper, a novel holonomy formulation of the so-called
spin foam models of lattice gauge gravity is explored. After giving a natural
basis for the space of simplicity constraints, we define a universal boundary
Hilbert space on which the imposition of different forms of the simplicity
constraints can be studied. We detail under which conditions this Hilbert space
can be mapped to a Hilbert space of projected spin networks or an ordinary spin
network space. These considerations allow us to derive the general form of the
transfer operators which generates discrete time evolution. We will describe the
transfer operators for some current models on the different boundary Hilbert
spaces and highlight the role of the simplicity constraints determining the

concrete form of the time evolution operators.

PACS numbers: 04.60.Pp, 11.15.Ha
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1. Introduction

Together with the companion paper [15], this paper introduces and studies a class of lattice
gauge theories that occur as spin foam models of quantum gravity [89, 90, 10, 23, 11, 24, 79,
78, 54, 53,55, 57, 18, 84, 32].

As opposed to previous formulations that stressed the relationship to the loop quantum
gravity Hilbert space [93, 6, 8, 7, 9, 94, 71], and thus was given in terms of spin networks
and their geometric interpretation, we will here focus on a presentation that is as close as
possible to lattice gauge theory. There is some overlap with the formulations explored in the
context of auxiliary field theories on the group manifold [40, 80, 90, 91, 42, 88, 92, 82, 31,
63, 21], though our perspective is markedly different. Furthermore, there are similarities to the
formulations of spin foam models in connection variables [83, 85-87, 81, 74, 30] and as more
ordinary discretized theories [56, 78, 57, 35, 36], and non-commutative first-order formulations
[20, 21]. In a forthcoming work [65], we will show how to extract geometric meaning directly
from the formulation given here.

The formulation we explore here takes as its starting point the heuristic formulation of
lattice BF theory on a 2-complex. We then insert simplicity constraints in the holonomy picture
of this formulation, assuming the most general form common to most simplicity constraints.
This allows us to define a very natural space of simplicity constraints covering almost all
models in the literature, the exception being the model due to KKL [66, 67]. Combined with
the results on the structure of the simplicity constraints of spin foam models in [65], this
enables us to give natural extensions of the EPRL/FK and BC models to arbitrary, including
finite, groups that we explored in [15].

The key aim of this paper is to explore the consequences of this generic formalism. We
will give an explicit basis for the space of simplicity constraints in section 2.3 and discuss
which models lead to real partition functions. In section 3, we then explore different ways of
introducing boundaries and composing 2-complexes. These will lead to different notions of
boundary Hilbert spaces. Next to the known spin network [94] and projected spin network
[3, 72] spaces, we introduce a new universal boundary space common to all spin foam models
built on the same group. We will also show how the assumptions we make on the structure of
the simplicity constraints translate to the operator spin foam formalism, show how the usual
models fall into this category and give the basis coefficients of the established models in the
space of simplicity constraints in section 5.
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In section 6, we use the results obtained so far to derive the general form of the transfer
operator for any holonomy spin foam model in the different boundary Hilbert spaces. Transfer
operators arise from a spacetime decomposition of the partition function and indeed generate
the (discrete) time evolution on the given Hilbert space. Thus, transfer operators can be seen
as the discrete time equivalent of Hamiltonian operators. Indeed for standard lattice systems,
Hamiltonians can be derived from transfer operators by a limiting procedure. We will shortly
discuss the issue of how to take the limit in section 6. The general form of the transfer operator
allows us to illuminate the dynamics of spin foams, to highlight the role of the simplicity
constraints and to clarify the connections between the different boundary Hilbert spaces.

We end with a discussion and outlook in section 7.

2. Holonomy formulation of spin foam models

We will begin by recalling the formulation of spin foam models based on two arbitrary finite
or Lie groups G and H C G in terms of holonomies on an arbitrary 2-complex.

2.1. The data

We start with an arbitrary, finite, combinatorial 2-complex C. The 2-complex C consists of
faces, edges and vertices and we write f € Cy, e € C, and v € C,, respectively.

Each face of the 2-complex comes with a fiducial orientation given by the order of edges
and vertices around it, as well as a fiducial base vertex. This orientation is unrelated to any
orientation on a manifold from which the 2-complex might be constructed. The combinatorial
information, together with the fiducial orientation and base vertex, can be conveniently
encoded by thinking of a face as an ordered set of the vertices and edges bordering it,
f=(v,e,v',¢€,...v). The notation (a, b) C f will always mean that the ordered set (a, b)
exists as an uninterrupted subset in the ordered set f, ie. f = (v,...,a,b,...v). We will
similarly write v € e and e € f to denote adjacency relationships.

As per the data on these 2-complexes, we introduce one G element g,, = g, per half-
edge, and one G element g, per neighbouring edge and face, ¢ € f.* In order to have a
natural composition of group elements, this should be read from right to left, that is, the group
elements g,, and g;. associated with the ordered sets (a, b) and (b, c), respectively, compose
naturally to g,»8»c if we read g, as going from b to a and g, as going from c to b.

From these data, we define two types of face holonomies as

8f = l_[ 8ab8bf8bc
(a,b,c)Cf
beC, (1)

gf: 1_[ 8ab

(a,b)cf

or, more elliptically, g5 = gve8ef8ev'8ve'8es--- aNd &5 = gue&ev8ure - - -

2.2. The partition function

We will first consider the partition function for 2-complexes without boundary, that is, we treat
all edges and faces as internal. We will see later that most spin foam models considered in the
literature fall under the following definition.

4 Note that these 8gef have nothing to do with the holonomy from the midpoint of the edge to the midpoint of the face
that is introduced in the wedge formalism.
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Definition 2.1 (Holonomy spin foam model (no boundary)). Let C be a 2-complex with
orientations and base points on the faces, G a unimodular Lie or discrete group with Haar
measure dg and H C G a subgroup of G. Then, given two complex-valued distributions E and
w on G satisfying

o E(hg(h)™") = E(g) forallh € H,
e E(g =E(g") and w(g) = w(g™),
e w(g) = a)(ggg’l)for all g € G,

we define the holonomy spin foam partition function defined by E and w to be

Z(C) = / [ [deer (]‘[dgeu) [T1EG:H | ([T |- )
f

eCf vCe eCf

If we further have w(g) = w(g) and E(g) = E(g), we say that we have a real holonomy spin
foam model.

An immediate consequence of the properties of E and w is that Z(C) is independent of
the orientations and base vertices chosen.

Note that the partition function as given will usually diverge, even for compact groups.
For noncompact groups, there is also an ambiguity in the normalization of the Haar measure
and additional divergences due to gauge orbits. However, if w is a regular function and the
group is compact, the model will be well defined. For finite groups, this is always the case.

In the rest of this section, we will study some general consequences of this definition,
arising mostly from the structure of the integrand. Thus, we will ignore issues of convergence
from here on.

2.3. A basis for the space of theories

Note that as the conditions on £ and w are linear, the space of partition functions given two
groups H C G carries a linear structure. Thus, we can parametrize it by giving an explicit
basis for the space of distributions E and w.

The distribution w is a class function; thus, the characters form a basis, and for compact
groups, it can be expanded as

w(g) =Y _ dim(p)@” tr,(D,(g)), 3)
P

with D, (g) being the representation matrix of g in the unitary irrep p.

We will often set w = 8, or @” = 1 in which case the space of theories is simply
parametrized by the functions E satisfying the conditions of definition 2.1.

E encodes the analogue of the simplicity constraints for the spin foam model at hand. The
presence of the delta function on the face ensures that the product of group elements around the
face gy is flat. This is however not the usual holonomy around the face g, but g5 interwoven
with g.r. If we force g.r = 1, we have gy = g and obtain a theory of flat connections. The
presence of g.r and functions E that allow them to differ from the identity thus relaxes the
constraints on flatness.

Thus, they exactly play the role of the simplicity constraints in ordinary spin foam models.
We will see the precise relationship between the simplicity constraints in the usual operator
spin foam models and the functions E in the next section. We call this space of simplicity
functions £(G, H).

We can give an explicit basis for this space by expanding the functions in terms of the
irreducible unitary representations of G and H, which we denote by p and k, respectively. We

4
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have chosen for every irreducible representation some specific realization. We then chose an
orthonormal basis in Homg (p, k)

1(p, k)q “)
satisfying
1(p, 0310, K)a = Saarlx. 5)
Every E function can be written as
E(g) =Y dim(p)e] 4y try (Do () (p. K)al (. K)ar). (©6)
p.k

&(G, H) can then be parametrized through eZ 4~ The index d can be seen as a degeneracy
index for the case where the H reducible representation p contains more than one copy of the
irreducible k. We have a real holonomy spin foam model if

el =t (7)

ef satisfy certain (linear) relations due to the fact that E(G) = E(g™"). The precise form of
these depends on the groups in question and is given in appendix A.

3. Boundaries and Hilbert spaces

We can now introduce a notion of boundary, which will lead us to a new and more general
notion of boundary Hilbert space.

3.1. Boundaries

We can now introduce and study boundaries into the formalism. To do so, we chose an arbitrary
graph I in C, with edges I', C C, and vertices I', C C, subsets of the edges and vertices of
C, respectively, as the boundary graph of C. We then write I',, for the set of pairs v € e in
r,xr..

The partition function is then an element of the space L? (G'"!) by dropping the integration
over the group elements associated with these pairs:

2@t = [ |TTder | | TT dea | TTEGn | [[Toten |- ®)
f

ecf vCe ecf
evgl,,

This definition has the advantage that the inner product of the partition functions corresponds
to the gluing along the graph. That is, for two complexes C, C' with isomorphic boundary
graphs, we have

(ZT(0), 2" ()" = Z(Ccur ), )

where C Ur C’ indicates the 2-complex with I" in both complexes identified and now internal.
This follows immediately from definitions. For a real spin foam model, we, of course, can drop
the complex conjugation. Note that the edges and vertices of I" become edges and vertices of
C Ur C'. In particular, these edges can be bivalent.

The integrand in (2), given by

[T1EGH | [T |- (10)
f

eCf
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has the following symmetries:

8ev = b gy
(11
8ef — heilgefhe
forh, e HC Gand g, € G.
Due to the symmetries of the integrand, the partition function actually can be considered
to live in a smaller subspace of L*(G'Th, fe.

ZeH = L2(GIF5L,|/(GIFU| % lee‘)), (12)

with the action of (g,,h,) € (G x H''!)y on g, by left and right multiplication:
(gvs he) > 8ve = gvgvehe~

We call this space the universal boundary space for the class of models £(G, H) and write
Hips-

This should be contrasted with the usual projected spin networks space:

Z € Hpsy = LX(G"1/(H™ ). (13)

The spin network basis for this space is discussed in appendix B. In the case of no
degeneracies, basis elements are labelled by a p per half-edge, an intertwiner between the p
per vertex and a k per edge, and we denote them as

|106U7 771)7 k€>'

3.2. Trimmed complexes and projected spin networks

If the neighbourhood of the boundary of C is of the form I' x [0, 1], we can make
contact to the projected spin network space L>(G'T<!/H™!). In projected spin networks,
the subgroup invariance is on the vertices of the boundary graph, rather than on the edges. If
the neighbourhood of I" is I x [0, 1], every boundary vertex has an associated internal edge
v x [0, 1]; by ‘splitting’ this associated internal edge, we can move the subgroup invariance
to the boundary vertices. To do so, we need a square root of the E function, with the same
subgroup covariance

E(g) = / dgF(&)F (¢ 'g). (14)

In terms of the basis coefficients, this gives fkp fkp = e,f. This means that whenever we
have a term of the form

/ dgdg f(gd)F(Q)F(g)

with g, ¢ € G, we can reparametrize with ¢ = g¢’ and obtain

/ dgdzf @F (9F (g'9) = / dgf (DE(9):

thus, if the E function defines a projector, we obtain E = F.

While F inherits the symmetries of E, i.e. F (hgh™') = F(g), for all h € H, we generally
have that F(g~') # F(g). Therefore, the amplitudes constructed from F will depend on the
orientations of the faces, and we will need to keep an explicit track of the orientation of the
group elements associated with the edges in question. We do this by writing g,ey = g;,iv for
(vev') C f instead of g, and we will split these as gﬁggz 'v,.

Consider now the partition function associated with a ‘cylindrical’ 2-complex C =
I' x [0, 1] with boundary equal to two copies of I', I"! and I'?. For simplicity for this section,

6
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we will specialize to the case w = 4. It is straightforward but notationally cumbersome to
extend the discussion to the general case by introducing a square root of the face weight.
This partition function can then be factorized into the operators defined by

/-’LF (8ve> gv’ev] = / 1_[ dgve’ 1_[ dg],:e/ l_[ dgvev’

vel,,e'¢l, vel,,e'¢l, ecl,
vee vee,e'ef (vev')Cf
X l_[ 8(gvegvev’gev’gv’e’g{)re/gv/evg:”vge”u)E(gvev/)F(g{)re/)F(gZHU)a (15)
eel’,

where (¢”v) (ve), (ev'), (v'e’) and (vev') C f,and e € T,. ¢” and ¢’ are the edges v x [0, 1],
and v’ x [0, 1]. The group elements in the delta function are those corresponding to the half of
the face f near the boundary edge e. Note that the group elements g, are reversely oriented
with respect to the boundary; they are on the ‘opposite side’ of the half-face in the delta.
w defines a map from the projected spin network space

HgSN — LZ(G‘F"l/H‘F"‘)
to the universal boundary space

H{JBS — LZ(Glrevl/(Glrvl X leel))
via

Yus ({gue}) = / l_[ dgv/evﬂr [guve» Evev]¥PsN({&venD)- (16)

ecl

This is constructed such that we have

1 2 1 2
Zr T (F X [0’ 1])[glue’ g%)e] = / dg:zev’ dg%}eu/'ur [g:)e’ gLev’]Mr [g%e’ g%ev’] 1_[ S(g:)ev’g%’eu)‘
eecl’
a7
This can be seen by an explicit calculation; however, these calculations are greatly
facilitated by the graphical notation we will introduce in the next section, and we will illustrate
them using examples there.
In the spin network basis for the case without degeneracies, the u map can be expressed
as

(evs o> Kelttlkevs s pe) = [ | 8puune [ [010] @) T0er ken) £ 10} T ]

esv e

dim(k,
lm( e) ept,

dimp % 1Y

In general, if the boundary of the 2-complex is of the form I" x [0, 1], we can factorize its
spin foam amplitude into the amplitude on the ‘trimmed complex’ C;, and p for the boundary
graph. The trimmed complex is the complex with ‘half of the boundary faces taken off’, or,
more technically, where we consider the boundary edges and vertices not to be part of the edge
set and vertex set of the 2-complex but to be in a separate set of boundary edges. We thus have
Cy, Ce, Cy, Ty, T, as separate spaces, however still with adjacency relations and orientations
amongst each other as before.

AN AN () (19)
with
2ot = [ ([Teer| [ TToea | (TToen| [ TT £ || TT Fleen
eCf vCe f ecC,,Cf eeC,,Cf
eeC, dbvee.el’, Jvee,el’,
(20

7
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Note that this crucially depends on the orientations of the faces touching the boundary,
and the composition of amplitudes only has the natural interpretation in terms of combining
complexes if the orientations match up.

We see that 1 embeds the projected spin network state space into the, in some sense larger,
universal boundary space defined above, and clearly Z' (C) lives in the image of u'; thus, we
can equally well see the partition function as an element of the projected spin network space.

3.2.1. Subgroup spin networks.  will generically have a non-zero kernel depending on E
or F, respectively. Thus, we can actually see Z as living in the coimage of p, which will allow
us to go to subspaces of projected spin networks, for example, H spin networks, as discussed
in [52]. This is the case, for example, in the EPRL spin foam model.

We can realize this restriction to subgroup spin networks explicitly if there is an @’ with
the properties of w such that the E function satisfies

E(@o(gdg'd"E() = / dhed (¢ gh)E () (&g E(g"). @1)
H

We can then glue via subgroup integrations on the boundary edges. Again, it is easy to
see that this leads to the correct gluing using the graphical notation in the next section. We
assume that every face has at most one boundary edge and replace w on those faces with o/,
as well as reducing the boundary group element to live in the subgroup. The partition function
then becomes

2ot = [ (TTaeer | { TT e | (TToren | | TT 8 || TTEG0 |-
eCf vCe f eCf eCf
eeC, e¢l, eel’,

(22)

where w* is w if the face does not contain a boundary edge, and ' if it does.

3.3. A graphical notation

It is illuminating to illustrate the structure of the convolutions in the partition function using
a graphical notation. This will allow us to explicitly keep track of the way group elements in
different faces are identified. The graphical notation will have three ingredients, corresponding
to the face amplitude w, the insertion of E around a face and the insertion and integration
of gev.

We will indicate w by a solid line. White circles crossed by the line indicate group elements
that are multiplied together to form the argument of w. The fins of the line indicate the order
in which the inserted group elements should be multiplied. Two circles joined by a dotted
line indicate the same group element. If one of them is crossed, the group elements should
be inverse of each other. The E function is indicated by a grey circle; the cross indicates that
the argument in the E function should be the inverse of that it is linked to. We will represent
its convolution square root F' with a grey half-circle. A white box indicates an insertion of
oriented group elements into the lines that pass through it. This is given in figure 1. A set of
relations that the weights typically satisfy can be succinctly expressed in this language, see
for example figure 2.

Using these ingredients, we can represent the structure of a face containing four edges as
in figure 3. The structure of two half-faces, and their composition in the projected spin network
space, is given in figure 4. It is now a straightforward application of the relations illustrated in
figure 2 to see that the two half-faces do indeed compose to a full face.

8
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9" 0

g g g

Q Q Q

o ) d

g E(g™")  F(g™")
il = (b (L)

Q
|
o

@

Figure 2. Some possible relations among the ingredients. The upper identity holds for @ = §, the
second is a consequence of the definition of F and the third is the subgroup property.

We can write out the composition illustrated in figure 4. Let that face be f = (012345670),
with 0,2,4,6 € C, and 1,3, 5,7 € C,. Taking care of the orientations in the delta function

and F, the integrand for a face on the right-hand side reads

3(8018012812823823372105’;0870)5(8458456856867 67§654g/;4834)
X E(8012)F(g§3)F(géo)E(g456)F(gé7)F(g§4)3(g’210§674)~ (23)
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Figure 4. Two half-faces convoluted.

After combining the delta functions, we obtain
5(8018012g12823853g§4g34g458456856867gé7840870)
x E(8012)F (gh3) F (¢50)E (8456)F (g47) F (g44)- (24)

which, with equation (14), gives the amplitude for a face in the normal partition function,
pictorial represented in figure 3,

3(8018012812823823483484584568568678670870) E (8012) E (8234) E (8456 ) E (g670)- (25)

If we further have the subgroup property on E, we can replace the convolution in G with a
convolution in H, thus reducing to the subgroup spin networks. This is illustrated in figure 5.

4. Gluing of 2-complexes

We will now show how the different Hilbert spaces discussed above correspond to different
gluing operations on the 2-complexes. To simplify illustrations, we will focus on the case
of the 2-complex dual to a triangulated surface, and various related 2-complexes. In that

10
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Figure 6. A part of a triangulation (dashed lines) and its dual (solid lines).

case, the dual 2-complex has trivalent vertices and bivalent edges; see, for example, figure 6.
The 2-complex contains a central face with four edges, which has the structure illustrated in
figure 3.

The partition function for this part of the amplitude is given in figure 7. This amplitude
can be obtained by various gluings from different building blocks, depending on how we take
it apart.

4.1. Face to face: the universal boundary space

The first gluing simply uses composition in the universal boundary space. As noted above,
arbitrary 2-complexes can be glued along arbitrary edges. Thus, we can in particular simply
take the faces of the 2-complex as individual partition functions. These partition functions for
single faces were introduced in the companion paper as effective face weights w;:

wr = Z(f). (26)

We obtain one such wy per type of face. In particular, we have only one such effective
face weight for a regular complex. These can then be composed simply by equation (9) to
yield arbitrary 2-complexes. This is sketched for the complex above in figure 8.
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Figure 7. The part of the partition function corresponding to the part of the triangulation shown in
figure 6.

Figure 8. The composition of the 2-complex from faces. Each small double arrow indicates a
composition in the universal boundary space associated with one edge.

Note that the composition in H{JBS as given by (9) can be localized to a subset of the
boundary graph. That is, given I' € C and I'" € C’ and a graph I'? that is a subgraph of I" and
I/, we can treat only the common subgraph as boundary, and glue amongst it, yielding,

trl'b ZF (C)ZF’ (C,) — Zl"Urbl'" (C Ur‘h C,), (27)

where I U T is the graph obtained by identifying I'” € T, T and then deleting the identified
re . 4 . . e N .
graph, and tr' indicates integrating the elements of Hyzq ® H'ygg against the element

Hev 8(86U$U71)'

12
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Figure 9. The composition of the 2-complex from the content of the simplex. Each small double
arrow indicates a composition in the universal boundary space associated with one edge.

Note that due to gauge invariance at the two-valent vertices, w; depends only on as many
variables as f has edges. It will be convenient to also introduce a)} such that

a)f(gve’ 8ev's 8v'e's 8e'vs - - ) = w_/f(gvegev’9 gve8evs -+ )

4.1.1. A special case: wedges to wedges. In the case of the complex dual to a triangulation,
each type of face can occur; thus, effective face weights are not a convenient choice for
constructing theories. However, we can construct a second kind of dual 2-complex C’
constructed from the so-called wedges. That is, we take as faces the intersections of the
faces of the dual 2-complex and the simplices. In our two-dimensional example, this means
that each triangle now contains three such wedges. These can then be composed in the universal
boundary space again. The advantage is that now we only need one type of amplitude that we
are gluing: the content of a simplex. This is illustrated in figure 9; the new complex C’ is on
the right.

Calling the complex of wedges o*, and using the trace from equation (27), we can thus
write the entire partition function for a dual complex made from wedges:

ZC) =u" ®Z(a*). (28)

4.2. Half-face to half-face: the spin network spaces

As noted above, the gluing of two trimmed partition functions in Hjgy, also generates a natural
composition:

(ZT(C0), 27 (C))ben = Z2(CTrC)). (29)

Due to the topological restrictions near the boundary required for trimming the partition
function, all edges of I' in C Up C’ are bivalent, and CUprC’ is the 2-complex obtained by
identifying the two copies of I', erasing the bivalent edges in I', and then the bivalent vertices
in I'y,. This is the composition usually done in spin foam models.

For the case of a 2-complex dual to a triangulation, this is a natural type of gluing; an
example is illustrated in figure 10. The half-faces and composition on the left-hand side are
exactly those illustrated in figure 4.
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Y

Figure 10. The composition of the 2-complex from half-faces. Each small double arrow indicates
a composition in the projected spin network space associated with one edge.

Figure 11. The composition of half-wedges around a face.

4.3. Half-faces around a face

We can generalize the above gluing by using the partition function with § functions on the
half-faces, and gluing around a face amplitude o in the following sense.

For a set of boundary edges e,,a = 1...n in a set of trimmed complexes Ca,
we can form the new partition function on a trimmed complex with an interior face
f=,e,V,e,...,e,0):

Z~ Uéa Z/dgeuw (ngl,>1_[2~a(c~a)- (30)
f a a

This is illustrated in figure 11.
In this way, we can parametrize the partition function of the dual complex of a triangulation
by the complex of trimmed wedges in a simplex and the face weight.

5. Standard spin foam models in the holonomy language

In this section, we show that the BC, EPRL and FK models can be expressed in the language
above. To do so, we will relate the holonomy model defined above to the operator models of
[18]. We can then give natural generalizations of the BC, EPRL and FK models to arbitrary
and, in particular, finite groups.

14
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Figure 12. Orthogonality in the graphical notation.

5.1. From operators to holonomies

We can relate the OSFM to the ones by the insertion of the group integrations g, at each pair
of edge and face by using the orthogonality of group elements:

dim(p) / dgD, (gD, % (g) = 89848,, . (31)

The structure of the manipulation is the easiest to see using an extension of the graphical
notation. We will decorate the lines with irreducible representations. We can then break them
into segments with indices living in the representation with arrows indicating the ingoing and
outgoing indices. In figure 12, we use this calculus to express equation (31). A line joining two
objects indicates the composition of tensors. A line coming into a tensor indicates an index in
a representation space (downstairs) and a line outgoing indicates an index in the dual space
(upstairs).

We will start by deriving the holonomy formulation given in the previous section, from
the edge operator formalism of [18]. There, we have, for a colouring of the faces by irreducible
representations p, an operator P on each edge. These operators are then contracted according
to the structure of the 2-complex. For simplicity, we will focus on the case where the edge
orientation and the face orientation agree. Then, we have P, € Hom(p; ® pp ... ps), where
fs f', f” 2 e. In all models studied so far except the KKL. model [67, 66], P has an additional
factorization property which implies that it can be expressed in the following way:

~bs ~b ~b
p@ =PG(G)E£’/{®EI s

ew) = F6w) o ®.-- ®Eely Poy), 32)
where (a) is a multi-index ranging over ay, with f > e, and Pg is the projector on the gauge-
invariant subspace. E € L(p ) are a set of one linear operator per representation space which
satisfy relations ensuring that the fiducial orientations do not enter in contracting the edge
operators. These are not group-covariant. We will usually supress the dependence of E on the
representation space as it should be clear from the context on which space it acts. If we write

this projector explicitly as a gauge averaging, we obtain the following:

b
P = / dgue dgey (fg) Dy, (8ue) Ec] Doy (gen). (33)
Se
The graphical representation of the edge operator is given in figure 13.
Inserting the resolution of the identity (31) and introducing a sum over representations,
we obtain

PEEZ/)) - /dgvedgeu’ l_[dgff ®Dpfz;(gvﬂ) Dpfﬁ/f» (gef) Dl’f;‘ff (geu’)
fae foe ‘
. 1\ 2
X Zdlm(pef)DPefb{f (gef) E".’:’ (34)

Pef
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Figure 13. Factorization of the edge operator in the graphical notation.

Pef Pef

Figure 14. The E functions.

with ) por dim(p.r)D,, Hif (ggfl) Ei’}f being the function E. The representation matrices around
a face can be contracted to a character, and as we decoupled the representation label on
the operators E, the sum over or can be performed exactly to arrive at the distribution (3)
and we arrive at (2). Note that the conditions on E that imply independence of the fiducial
orientations now imply E(g) = E(g~') and the end result is indeed invariant under reversing
the orientations.

The graphical representation of this insertion of identities is given in figure 14.

In the companion paper [15] as well as in [12], more general edge operators that do not
have this factorization property are also considered. Then, there still is a holonomy formulation,
given that the face amplitude is simply the dimension of pr. We briefly recall this construction
and illustrate it in the graphical calculus in figure 15.

The dimension as a face amplitude can be given by the trace of the identity operator, or a
closed circle in the graphical notation. The crucial ingredient is then a function on n copies of
the group, given simply by

Cess s 8er) = Y | [ [dimper)Dp, 3! (gep) | Pia)- (35)
ey N

The reason for this formula is clear by figure 15. From this diagram, we can also see that
the C functions are glued with delta functions. In particular, the integrand is schematically

given by
[Tty - ) TT TT 6(sts,™)- (36)

v (eve)Cf

16
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Figure 15. The C functions.

In the GFT language, C are simply the propagators and [ ] (eve'ycf O (gz fg';, f’l) is the vertex
function, or interaction, that glues them.

5.2. The specific models for Spin(4)

Having in hand the relationship to the operator formalism, we can now easily give the
formulation of the various established spin foam models in the holonomy language. We
begin with the BF, BC [23] and EPRL models [53] which are quite straightforward and then
discuss the FK [57] and BO [21, 20] in the subsequent subsections.

5.2.1. BEF Barrett—Crane and Engle—Pereira—Rovelli-Livine. =~ We specify now to G =
Spin(4) and H = SU(2) = Spin(4)diag~the diagonal SU(2) subgroup, with irreps labelled
by p and k, respectively. The operators E in L(p) for the first set of models are given by the
following:

Egp =1, (37
for BF theory,

Epc =do(p) Y 8(p, (k, k)I(p, 0)I (p,0), (38)
k

for the Barrett—Crane model, where d.(p) is an arbitrary edge measure factor, and for the
EPRL model [54, 55, 53], we have

Egere = do(p) Y 8(p, py (NI (0, I (p, )’ (39)
k

where we write p, (k) = (S52k, 152k).
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We can then obtain E(g) by the formulas of the previous section. For the EPRL model,
the functions Efpy; (g) is given by

Efppy (8) = Zdim(p)de(pﬁ(/}, py () tr, (D, ()1 (p, ) (p, k), (40)
p.k
and for Barrett—Crane, we obtain
Egc(g) = Z dim(p) d,(p)8(K)3(p, (K, K')) tr, (D, (I (p, )I(p, k)"). (4D)
kK
The SU(2) irrep k' plays a very different role than in the EPRL model, namely it restricts
the form of the irrep p but does not appear in the injection maps I(p, k). We can further
simplify this by noting that
by Doy (@I (k, k), ) (K, k), 0)7) = I((k, k), 0) Dt () (K, k), 0)
= n(g'g ) dimk) ", (42)

with the Spin(4) element g decomposing into the left and right SU(2) as g = (g*, g 7). Thus
for choice d.(p) = 1, we have simply

Enc(9) = 8(g'8 ") = Sspintaran, (&) (43)
where, for a general subgroup H C G, we write
Su(g) = / dns(gh™") (44)
H

for the delta function that forces a group element to lie in the subgroup.
Thus, we arrive at a particularly simple form for the Barrett—Crane model as an integral
over a product of SU(2) delta functions:

Zpc(C) = / [ ]ar (]‘[dgfv) [Ts @)™ [ T]s(eh)s(e;) |- (45)

eCf vCe eCf f

For the FK model, the E function is most easily expressed in terms of coherent states, that
is, the eigenstates of the Lie algebra generators. For an SU(2) representation labelled by the
half-integer k, these are the states o (n) that satisfy (n - L)oy (n) = ikoy (n), where n is a unit
vector in R®. All o (n) for the same n differ at most by a phase. The E function for the FK
model is given by

Erc(¢*,¢7) =) dim(k) / dn (o} (m)Dy (g% e (m)) () (M) Dy (g7 )ere (m)), (46)
k

which is well defined as the phases of o (n) and “Z (n) cancel.
The BF theory, of course, is simply given by setting

Egr(g) = 4(g). 47
The coefficients in the basis of section 2.3 for the various models then are
e BF: ef =1

e BC: ¢} =d.(0)8k0 2y 8(p, (K, k)
e EPRL: ¢} = d,(0)8((32k, 152k, p).

We see from the conditions derived in section 2.3 that for real d.(p), all these spin foam
models are indeed real holonomy spin foams.

18
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5.2.2. Freidel-Krasnov for y > 1. The FK model is defined in terms of coherent states. For
y < 1, itis equivalent to the EPRL model. To obtain its basis coefficients for y > 1, we need
to work some more. In this section, we use the shorthand |m) = o (m).

The operator E ,» for the FK model is given by

~ dm . . P
E, = d.(p) / ol CORB IR A (48)
with the representations p = (jT, j~) subject to constraints similar to those in the EPRL
model. Let
y+1- y—1-\ - 1
R, =3—*k —k):k=0,-,...¢. 49
Y {( 2 2 ) 2 49)
We can write
. dm o o
E(g) =) _ dim(p)d.(p)Sr, (p) / 2 mle lm)* g ) (50)
p T
Now we want to compute
e = Te ' (o, H)E,I(p, k). (51)

2k + 1
Note that/(p, k~) is given by its matrix elements in the coherent state basis; thus, if p = (jT, j7)
with j* = VTilk and j*, j~, k admissible, we have that
(I(p, k)[m)*, [n ")+ @ [n™)>")

_ A/ 2k + 1 (n, n+>2(k+j+

C
with € (-, -) being the invariant bilinear form and

G ARG R+ T MR+ = )

- (n, n—)Z(H—j’ —iMe (n+ n- )2(1" +jT—k) , (52)

c? 53
(2)12jHIEH! 43
is derived in the bogk by Kauffman and Lins [68].
Since I (p, k)E o1 (p, k) is proportional to identity, we only need to find
(1721, 1 (0, KE,I(p, k)]1/2)*), (54)
for the case p € R, . Then, this is equal to
d, _2k +1 / d_m<1/2 m>2(k+j+*j7)<l/2 ’;l>2(k+j7*j+)€(m ’,,—1)2(j’+j+7k)
C? 4 ’ ’ ’
x (m, 1/2)2® =0 (i 1/2)2 67 =D ¢ (m, )20 +T=0), (55)
But we know
6\* 6\*
|(1/2, m)|* = (cos 5) : (172, m)|? = (sin 5) : (56)

where 6 is the angle between the direction of m and the north pole. We can introduce polar
coordinates

ef = (1721, I'(p, E I (p, k)[1/2)*)

2%k 1 2 T 0 2(k+jT—j7) 0 2(k+j"—j1)
=de—+/ dd)/ d6'sin6 ( cos = sin —
47TC2 0 0 2 2

- ﬁ " i 2(k+7 =77 (g 2(k+j"—=j%)
=d, 272 dn2sinn cosn(cosn) (sinn)
47TC2 0
2k+1 (k+ jt — j)! i~ — jH)!
—d +1 G+ —j))k+j ])‘ 57)
C? 2k+ 1!

19
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‘We thus obtained
o 2jH1EjH!
k

ST ARG SR 9

_Vi

Substituting j* k, we have that for o = (j*, j7), the basis coefficient is given by

p_ g + Di)!((y — DE)!

e, = (59)
(Yk+0)!(yk —k)!
For y > 1, k is the minimal representation in the decomposition and
eg =d,. (60)

Finally, making the conditions on p explicit again, we can write

C P Cs((yHl7 y=17 (y+DON(y=Dh)!
d FKV>1'ek =d.(p) Zk(s(( 2 k, 2 k)’ ) (Vhk+HO (vhk—k)!

Thus, the FK model also falls into the class of real holonomy spin foam models.

5.2.3. Baratin—Oriti. Let 8 = )’:—1 We will use the following y-dependent transformation
from SU(2) to SU(2):

SU(2)  cos@ + i sin@ = u — uP = cos O + i1 sin B, ©61)
where the class angle 64 and the unit vector /g are determined by conditions [21]

sinfg = |B|sinf, sign(sincosbg) = sign(cosh), i =sign(B)n. (62)
Let us note that

@™ =@ (ug™) =g (63)

The fusion coefficients for the BO model are given in [21] (equations (37) and (58)). From
them, one can derive

E{ e yiviny = / du D), (D). (@™ f dii D), (D], .. (@), (64)
Thus, the E function
E(g".¢7) =Y dim(j*)dim(j)EN, | . DI (¢F DL (g (65)
Ji
is equal to
E(g".g) =) _ dim(j") dim(j )/dudu X g g (@) it (66)
itiT
:/dudﬁa(u”ﬁg Ye(wh)lafgth. (67)

We can simplify the equation by solving the first delta function for i so that i = ug_

E@gg)= / du 8(w) " (g )fgt"). (68)

In the case of 8 = 1, this E function reduces to one of the BC model. The BO model is also a
real holonomy spin foam model.
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6. The transfer operator for holonomy spin foams

So far, we have discussed at length the structural aspects of holonomy spin foam models, their
boundary Hilbert spaces and their gluings. This raises the question if, having the boundary
Hilbert spaces at hand, we can define a Hamiltonian dynamics reflecting the one defined by
the spin foam models.

The first step in deriving such a Hamiltonian dynamics from a given partition function is
to obtain transfer operators. In standard lattice theories, for example, lattice gauge Yang—Mills
theory, such transfer operators correspond to finite time steps. To obtain the Hamiltonians as
infinitesimal time evolution generators for such systems, one would have to take the limit of
infinitesimal time by scaling the coupling constants in time—and space directions in a certain
way defined by the dynamics of the system [69, 70]

The issue of obtaining the Hamiltonians is more involved in gravitational systems, as
the lattice constants and the time separation are rather encoded in the boundary states of the
system. Furthermore, the question of exact and broken diffeomorphism symmetry comes in
[13, 44, 46]. Only in the case that exact diffeomorphism symmetry is preserved in the
discretization, we can expect the appearance of Hamiltonian constraints in the canonical
formulation [44, 13]. If this holds also for the partition function, the transfer operator is a
product of projection operators from which the Hamiltonian and diffeomorphism constraints
can be read off [77, 76, 17, 16]. In this case, no limiting procedure is necessary. If
diffeomorphism constraints are broken, one can either attempt a limiting procedure involving
the boundary states or alternatively attempt to obtain an improved model by coarse graining
which then carries a notion of diffeomorphism symmetry [13, 14, 47, 46, 45, 15, 43].

A third possibility is to adopt the viewpoint that the dynamics is inherently discrete, a
viewpoint which is, for instance, emphasized in the framework of consistent discretizations
[58, 59]. In this case, the transfer operator can only be defined for finite time steps, and a limit
cannot be taken (in general).

Here, we will consider the finite time transfer operator and comment more on the issues
of taking the limit to obtain the time evolution generators afterwards. We will consider a
spacetime lattice with a regular slicing in the time direction, i.e. each (thick) time slice is of
the form I'y x [0, 1]. The discussion can be generalized to some extent to an irregular lattice
and a notion of local time evolution; see, for instance, [48, 49] for a discussion in classical
Regge calculus.

The definition of the transfer operator requires a choice of slicing of the underlying lattice
and initially we choose one which will make the transfer operator as similar as possible to the
one encountered in lattice gauge theory [69, 70, 95, 16]. As we will see, such a slicing fits
well to the universal boundary Hilbert space introduced in section 3.1. In this formulation, the
effective face weights introduced in [15] and recalled in section 4.1 will play a prominent role.
From a simplicial geometry viewpoint, the faces are dual to the bones of the triangulation,
which carry the curvature. Thus, this slicing offers a new perspective on the Hamiltonian
dynamics and the semiclassical limit: it does not concentrate on the vertex (i.e. simplex)
amplitude but on the gluing of simplices around the bones, where the curvature and hence the
essential dynamical information reside.

On the other hand, this slicing is somewhat unusual in discrete gravity, where one often
builds a transfer operator by gluing simplices to the hypersurface [1, 48, 49]. In this case,
equal time hypersurfaces can be understood as (dual to) (D — 1)-dimensional triangulations.
As we will see in the course of the discussion, we can switch to a slicing more adapted to a
simplicial viewpoint by using the © map between the projected spin network and the universal
Hilbert space introduced in section 3.2. The x4 map can then be understood to project onto the

21



Class. Quantum Grav. 30 (2013) 085005 B Dittrich et al

Figure 16. The composition of two effective face weights as it occurs in the definition of K.

solutions of the simplicity constraints—the (stripped) transfer operator will be sandwiched
between such projectors.

6.1. Transfer operator for general models

Transfer operators can be defined if we have a discrete ‘time’ direction in our 2-complex
in the sense that the complex C is the 2-skeleton of the complex (C; x [0, 1])", with
C!'x[1]= Cf“ x [0]. In that case, we call the edges and faces in the various C! spatial, and
the other edges and faces temporal.

We call the graph of horizontal edges I'*. Then, the partition functions Z(C,) and
Z(I"* x [0, 1]) act naturally on the space H[rﬁ;s, Z(Cy) simply by multiplication.

It follows directly from the gluing in H(l};BS according to (9) that the partition function of
C can then be written as

Z(C) = (Z(C)Z(Ts x [0, 1)) Z(Cy). (69)
This has the structure of a partition function written in terms of transfer operators. For the
rest of this section, we call Z(C;) =W, Z(I'y x [0,1]) = K and Z(C,)Z(Ty x [0,1])) =T,
ie.
T = WK, (70)
and
Z(C)=T"W. (1)

The operators W and K can be written very efficiently in terms of the effective face weights wy
which we recalled in section 4.1 in (26). Recall that these are simply given by the amplitude
of a face, as illustrated in figure 3.

As the entire 1-skeleton of C; is in the boundary space, the only integrations in W are
those involving g.r. These are exactly the integrations one performs to obtain the effective
face weights w;. The operator W acts as a multiplication operator in the holonomy basis of
the universal Hilbert space and is just given as a product of the effective face weights

Wigel = [ ] or(ie})). (72)

feCs

where the notation {g}/ indicates the set of all group elements belonging to the face f.

For K, we have a similar simplification. Its structure is illustrated in figure 16. In addition to
the integrations over g, ¢, we have also to take into account the integrations over g, associated
with the time-like edges, which we will denote by g.,. By ¢, and g, we denote holonomy
variables associated with edges in the spatial hypersurfaces at two consecutive time steps. The
integration kernel of the operator K in the holonomy representation is given by

K[g2 8] = f (IMeg..) TT @it (73)
felyx[0,1]
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Figure 17. The decomposition of the effective face weights into reduced face weights and gauge
projectors.

where each effective face weight a)/f({g}f) depends on four variables g, associated with the
two time-like edges of the time-like face, a set of variables g} associated with the space-like
edges of this face shared with the graph I’y x [0] and a corresponding set ¢, shared with
Iy x [1].

Each time-like edge has one boundary vertex in Iy x [0] and one in I'y x [1], and each
vertex in Iy x [0] or ['y x [1] has only one temporal edge going out. Thus, we can drop e in
&, and simply write g/.

Recall that the effective face weights w, naturally live in the universal boundary space
of a segmented line and thus have a gauge freedom that acts as g, — g,&v.. Hence, we
can apply gauge transformations to the vertices in I'y x [0] and I'y x [1] such that all the
group variables associated with the time-like edges are equal to the identity. This allows us to
write the integration over these group elements associated with the time-like edges as gauge
projectors on the vertices of the graph I'y:

K = PgKoPs, (74)

where

Polgs, 8] = /G <H dg@) (Ha(g’;,zivgie)> (75)

vell ecv
is simply the projection on gauge-invariant functions on the vertices of the graph.
Ky is obtained by setting the group variables in ws or equivalently a)} associated with the
time-like edges equal to the identity element:

KO [g/:m gizu] = l_[ Wf(e) (gvle’ 8evy» g,vze’ g,em )’ (76)
e

where vy, v, are the source and target vertexes of the edge e and f(e) = e x [0, 1] is the
time-like face associated with the edge e € T'.

This structure is illustrated in figure 17. A simple application of the top relation in figure 2
will return us to figure 16.

The operator Ky does not map from the universal boundary space to the universal boundary
space as it does not produce a state with G invariance at the vertices but acts in L?(G'T!)
instead. The projector Py then brings us back to the gauge-invariant universal boundary space.

It will be convenient to write Ky = ]—[e K, as an operator in the usual sense, in terms of left
and right shift operators (L(g) > f)(-) = f(g~") and (R(g) > f)(-) = f(-g), respectively. To
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this end, we introduce a bra—ket notation such that we write an element f (g1, g2) € L*(GxG)
as f (g1, &) = (g1, &1/)-
The operator K, can then be written as
4
K, = f dga dgs H(dgiE(gi))wf(ngXI)Ll (84)R1(8184)L2(8B83)R2(82), 77)
i=1

where the left and right shift operators act as

Li(8)R1(85)L2(8:)R2(8a) 181, 82) = |8, ' 8180. 87 ' 8284). (78)

In summary, the transfer operator is given by

T=W-K=|[Tos | {[TP0 | |TTK| | []Po]- (79)

feCy velCy eeCy velCy

where W acts as a multiplication operator in the holonomy basis and factorizes over the faces,
Pg., is the projector on the G gauge-invariant subspace at the vertex v and we defined the
action of K, in equation (77).

6.2. Transfer operator in the spin network basis and simplicity constraints

The operator K, is the simplest in the spin basis. As K, just acts on one edge, it is sufficient
to consider the one-edge Hilbert space L?>(G x G). A basis for this space would be given
by |p1, i1, j1; P2, i2, j2), Where iy, ji, i», jo are magnetic indices in the representations p1, 0z,
respectively.

However, to compactify the notation, it is useful to introduce a basis adapted to the H
group in a given p representation. The basis we introduce is of Gelfand-Tsetlin type [62]. It
is labelled by

jo ko d,my, |k, d,m}) =1(p, k)m), (80)

where £ is the label of the H representation, d is the multiplicity index (in the multiplicity-free
case, it will be omitted) and |m) is a basis in the k representation. Thus, we replace the (four)
magnetic indices of the p representations in L*(G x G) by four indices j; <> {k;, d;, m;}.

The basis in the space of H-invariant functions is thus spanned by

D lpr tka, mid, {k, mY; pa, {ha, o}, {k, m}),

(81)

1
) k ) ;k; ) k ) = Y
lo1, ki, mi}s ks pa, {ka, ma}) T

the same functions as given in (B.8).
As follows from (77) and figure 17, the operator K, can be decomposed into the following
more elementary components:

K. = KK°K; K\KL, (82)
where
K = / dga dgs ws(gsgy')Ri(ga)La(g8) = f dgws (R (g) / dg'Ri(8)La(g) (83)
and

K} =/d81E(g1)R1(81) K =/dg2 E(82)R2(g2) (84)

K= [dnEebe K= [ E@Li. (85)
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Let us note that K} and K, commute with the rest of the operators and KjK*K; commutes
with Pg.
We also have

- Z &"P,, (86)
P

where P, is the projection onto the subspace in L? (G x G) spanned by the following orthonormal
basis labelled by ji, j»
1

J/dim(p)

The operators K;/’ act on the basis |p1, i1, ji; p2, i2, j2) as follows. The operator Kj
changes only the index j; = {k, d, m} by the multiplication of the matrix

el; S (88)

Similarly, the operators K3, K3, K}, act only on the indices jy, i, i1, respectively.
In the multiplicity-free case, we have a straightforward eigenfunction expansion of both
K}K} and K}K°K3. The eigenvectors with non-vanishing eigenvalues for K{K*Kj are given by

1
|pa {kls ml}v {ka m2}> = Zelzlpv {klv WI1}, {kv m}v P, {k» m}$ {k27 m2}>9

> dim(k)(e’;))2 km

le JisJs oy Js J2)- (87)

(89)

with corresponding eigenvalues

S 1S |7 w . k)2
KiK°K;|p, {ki, mi}; {ky, mo}) = dim(p) (Z dim(k)(e}) ) |, {ki, mi}; {ka, ma}). (90)
k
These are also eigenvectors for KK}, with eigenvalues
e';; e’;;z. ©n

In summary, the eigenvectors with a priori non-vanishing eigenvalues for K, are given by (89)
with eigenvalues

ek dlm(p) (Z dim(k) (e ) (92)

Thus, the eigenvalues are independent of the labels m;, m, and come with a multiplicity
dim(k;) dim(k,). Note that K, vanishes on states |py, i1, ji; i2, j2) With p; # p; as well as on
states with p = p; = p; but orthogonal to (89).

In the gravitational models, the E functions and therefore ¢; impose the simplicity
constraints. Hence, we can say the same of K,—it maps onto a subspace of the universal
boundary Hilbert space on which the (primary) simplicity constraints hold in some form?.
As the K, map to a subspace which can be interpreted as solutions to the primary simplicity
constraints, let us also consider the question whether W, or some suitable subset of holonomy
operators, leaves this subspace of the universal boundary Hilbert space-invariant.

W is a multiplication operator that factorizes over the spatial plaquettes. The contribution
from a given plaquette is of the form

kev,dey My (k,.d. .m }
wf—Zdlm(mw'“ [T0%md (ga)ee o S Smomr DEG ™) (ger),  (93)

ev? EL evTeyf ev’ ev’
ecfs

3 As the discrete form of the primary simplicity constraints does not even commute weakly, one has the choice to
impose them strongly, i.e. as operator equations, as in the BC model [24] or in a certain weak form as in the EPRL
model [55].
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where the edge e joins v with v'. From now on, we will consider only the multiplicity-free
case, thus omit the index d.
These are contractions between 8, ,8,,,¢; and basic holonomy operators

{k {k,
Ippl,kl,ml ks 02, kymy — ZD 1km’1n} ev1 D {’Zz m} (gevz) (94)

Note that ¥, k,.m, :k; ps.ko,m, aCting on the constant function creates the states

lo, k1, mi}; ks p2, {ko, ma}).

Thus, the action of W involves the multiplication of holonomy operators of the form (94). We
will therefore consider the product of two such holonomy operators. This is a straightforward
calculation, in which one first rewrites

D, (9D}, i (g) = Z crre C"p/”” ’”D",/ (), (95)

v

with C} ﬁ}f " being the Clebsch-Gordan coefficients of G. Here, we assume that G is multiplicity
free, i.e. there is maximally one copy of a given irrep in the tensor product of two irreps. We
will assume the same property to hold for the subgroup H; furthermore, we already assumed
that there is maximally one copy of a given H representation £ in a given G representation.

In this case, the Clebsch—Gordan coefficient for G contracted with the maps I (p, k) reduces
to the Clebsch—Gordan coefficients of H which we can write in the Gelfand—Tsetlin-like basis
as

cre'p {k.m},{k/,m,]{k 'y Ckkk mm/m ) (96)

Finally, the summation over the index m in the holonomy operators (94) leads to the following
contraction of Clebsch—Gordan coefficients

Z C/(k/k” Ckk kK’ L= 9 (k k/ k//)8m " (97)

where 0 (k, k', k”) = 1ifk, k', k” couple to the trivial representation and is vanishing otherwise.
The product of two holonomy operators of the form (94) is therefore given by

wpl,kl,ml;k;ﬂz,kz,mz X Wp{,k’l,m’l‘k"pé Kb il

kK| K! N N4
= > GO K KOG ks ks 98)
oo

Here, we sum over all repeated magnetic indices. The result is again a linear combination of
basis states (94).

From expression (98), we note the following: (a) Even if initially the representations
satisfy p; = p and p| = pj, this will in general not hold for the basis states appearing on
the right-hand side of (98). (b) Consider the case that we multiply two basic holonomies (94)
satisfying p = p; = p, and p’ = p| = p} which have been contracted with ¢} and e,‘:,/ in the
k and k' indexes, respectively. The basis states in the product holonomy are then contracted
with

Z elel ok, kK k") (99)

in the £” index. In general, the product of holonomy operators of the form (94) will not generate
a proper subspace. An exception is the Barrett—Crane model in which the E function has an
enhanced symmetry that allows a restriction to spin network states with k = 0. In this case,
0(0,0, k") # 0 indeed leads to the condition k" = 0.

26



Class. Quantum Grav. 30 (2013) 085005 B Dittrich et al

The fact that the holonomy operators (94) do not lead in general to a proper subspace might
not be a surprise to the expert as the secondary simplicity constraints, which are conditions
on the holonomies [100, 5, 51, 50], are usually not imposed in spin foam models. Indeed,
the hope is that the imposition of the primary simplicity constraints on two consecutive time
slices leads to the automatic imposition of the secondary constraints, whose function in a
canonical formulation is to ensure that the primary simplicity constraints are preserved under
time evolution. Later on, we will redefine the transfer operator to rrllake this nlotion more

explicit. Here, we just note that one possibility is to consider 7" = K PGWPgK; as we can
interpret K, to impose the simplicity constraints.

The operator W naturally factorizes over plaquettes and we can expect that it leads to
the curvature term F in the gravitational Hamiltonian constraints, which are of the form FEE
with E representing flux (infinitesimal shift) operators. On the other hand, we can also seek
an expression which factorizes over the vertices of I';. Such a form brings us back to the usual
vertex amplitude representation of spin foams and shows the consistency of the procedure.

For this calculation, the gauge invariance at the vertices of 'y is essential; hence, we
choose the basic states |p.y, 11y, ke) given in (B.12) which, using the GT basis, are defined by

_ H(ev) \Y dlm(p)ev

[Pevs Nus ke) = m 1:[ M. jev... UDPW (gve)ju{ke,ma}Dpﬂ' (gev’){ke,me}jm' (100)

Let us note that W preserves the gauge-invariant Hygs (with respect to the gauge action at the
vertices of the underlying graph).
We want to compute the matrix elements

(p;va 77:), k;|W|peva nv’ ke) = (pévv 77;, k;|PGWPG|IOeU’ nv’ ke) (101)
W is a multiplication operator in the holonomy basis; hence, to compute the matrix
elements, we introduce two resolutions of unity into the matrix elements (101). These

resolutions of unity lead to an integration over the group elements g, and g.,,. The holonomy
operator associated with a given edge e is then given by
(WE){i_fei/(e+l)}({p,f}) = 1_[ Z D,U/ (gv1e)iue,{k/e,m/e}eZ;erf (gevz){kfe,mfe}qif(em’ (102)
fae kfe,my,

where the contribution (W,) comes with magnetic indices {if.if+1)} that are contracted
between the different edges of a face. (Relative orientation of the edges and the face is
unimportant if the model is real; otherwise, we assume here that these orientations agree.)
W, are contracted and then summed over p; (multiplied with ®”/ dim(py)) to obtain the full
operator W.

The computation then proceeds in the following steps which are completely analogous to
the construction of vertex amplitudes in spin foam models; see, for instance, [16, 84].

(a) The integration over the group elements g,,. and g.,, leads to the Haar projector

Py (01 o) = / dgDy, (@i Dy ()i (103)

on each half-edge. For instance, for the first half-edge, the projector is on the invariant
subspace in the tensor product

Vo, ®Vy,, ® (X)faev,,f. (104)

(b) The Haar projectors on each half-edge can be split into a sum over a basis of orthonormal-
invariant vectors or intertwiners 1 of the corresponding representation space.

Pijriniy (P12 s Pn) = Y 0)iyedy (- (105)
n
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Figure 18. The labelling of the faces and edges around a spatial vertex.

(c) The magnetic indices of the invariant vectors on the left in (105) associated with half-

edges v;e and of the invariant vectors on the right in (105) associated with half-edges ev;
contract now at the vertices of the graph I';. Thus, all the magnetic indices of (W, )i, i .1}
contract among each other. The magnetic indices iy,e, jev,» iy, ,» Jop, @ssociated with the
representation matrices of our spin networks are contracted with the intertwiners 7,, 1,
of these spin networks.

(d) The resulting amplitude is the vertex amplitude ABF for G-BF theory. Here, a vertex of

I’y is to be understood as a vertex in the following 2-complex: The edges e of ' are
‘horizontal’ edges in this 2-complex and labelled with intertwiners 7,., which appeared
in the expansion of the Haar projectors. Additionally, we have the spatial faces, on which
W is defined and which are labelled by p;. There are additional ‘vertical’ edges and
faces, which carry the labels of the spin networks between which we compute the matrix
elements. For each v € Ty, we have an edge pointing down and labelled with ) and an
edge pointing up labelled by 1,. There are also two vertical (half-)faces attached to each
(half-)edge (ve) € T’y which are labelled by p,, and p,,. The orientation of these faces
is such that these agree with the orientation of e for the ‘up’ faces and are opposite with
respect to the orientation of e for the ‘down’ faces. This 2-complex around a vertex is
depicted in figure 18.

Thus, ABF depends on all the algebraic data attached to (half-)edges and faces adjacent
to the vertex v in this 2-complex. This includes the intertwiners 7,., 1,,, 1, which involve
the representation spaces p for faces sharing f as well as p,., o, for edges in I'; sharing
v. The vertex BF amplitude is then defined by the contraction of the invariant vectors in
the corresponding representation spaces:

AN (Mews s M) = U, W 1y 000 Mol | [ M- (106)

ev

(e) We are left with half of the invariant vectors arising from the Haar projectors associated

28

with the edges of I'y. These are contracted with the I (pf, k¢.) etz e,fffgl ( Ofs kfe)m el part
of the operators W, as well as with the Zm I(ov,es ke) ivlﬁmel T (Pev, » /’cg)mc,}l,2 part of the spin
network state | pey, 1y, k.) and the corresponding primed counterpart. Thus to each edge
in Ty, we associate the amplitude

(01} f3¢:Pv1e50y, 03 Pevy s Py
(P‘f){k;/}ffag,k:,k; ] pr (ﬂv,e, nevz) = <77v]e| (1(pev27 ke)I(pvles ke)T
R 1P} k)0, k)T Q) € 1oy, ke (o, keff) Dewy)- (107)
fae
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(f) Finally, the matrix elements of W are given by
<pe/'v’ n:jvk;|W|pevv nvvke> = Z NHAEF(%U: ﬂv, 7]:))

Nevs Of ket v
(05} r2esPv1e 00, o5 Pevy s Py,
x H(Pg){kef},/se,kpl,k; T (Mg e, ) (108)

where A/ collects all the dimension factors and face amplitudes

o dim(pe,) [ dim(p;,)
=11|d P L. 109
N U im(pp) ]‘[\/ ¥ \/ N (109)

Thus, the matrix elements of W provide us almost with the full spin foam amplitude
for an equal time slice. What is missing to obtain the full amplitude are the insertions
of ef for the edge face pairs consisting of time-like faces and space-like edges as well
as the edge amplitudes P, for the time-like edges. These are indeed provided by the
operators K,.

6.3. The transfer operator on the projected spin network Hilbert space

So far, we discussed the transfer operator in the unsymmetric form 7 = W - K. In lattice gauge
theory, one often chooses rather a symmetric form Ty = W'/2KW /2, In the case of spin
foams, W might not be a positive operator. Indeed, for the gravitational spin foams, it is rather
easy to construct a square root of K, so that we can consider 77 = [], K}/?PcWPg [ K!/>.
We have seen that K, is almost a projection operator and have given the eigenvectors and
eigenvalues (89), (92). Indeed for the EPRL model, the non-null eigenvectors (89) reduce to

=(1+V 'l_y'k),{k,ml};{k,mz}>, (110)

— "k,
2 2

so that the index structure is the same as for (non-gauge-invariant) H spin network functions,

i.e. the spin network basis of the standard loop quantum gravity Hilbert space. By formally

identifying the eigenvectors with this spin network basis, we can define the transfer operator on

the LQG Hilbert space. In principle, this applies also to the Barrett—Crane model; the non-null

eigenvectors are however just labelled by one H representation label

ue€ = 1p = (k. k), {0, 0}, {0, 03), (111)
whose functionality is in addition quite different from the EPRL model.

A more elegant and geometric method is to use the pp, map introduced in section 3.2,
which maps from the Hilbert space of projected spin network functions to the universal
boundary Hilbert space. (As in this section, we will therefore assume that the face weights are
given by delta functions w; = dg; however, as mentioned there, this can be generalized.) The
1 map was defined such that the effect of the time-like plaquettes, i.e. K, can be written as

K = pr.pf,. (112)
In the following, we will suppress the index [y.
Thus, we can define the transfer operator in the projected spin network space by
ZEC) = @Wpy ie. Tosy=u'Wp (113)
Remember that the integration kernel of p is given by

(gulev geuz|ﬂ|gvlevz> = / l_[dgvlevz 1_[ dg(i;t l_[dgvt

el (ve)el' vely

[T 8(8uie8urevs8evsunt & Brsev, 85y 8rvn ) E (8urens ) F (85,0 ) F (850, )- (114)

eel’y

EPRL _
Uk,ml Jmy T
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where F satisfies [ E(g)f(g)dg = [F(g)F(g'¢)f(g)dgdg. F can be expanded in the
same way as E and for the coefficients, we have e,f = f,f fkp . In the following, we will assume
that E is a projector, i.e. f{ = e} . Here, ¢ indicates a time-like edge, i.e. g, is a group element
associated with a time-like edge starting at the vertex v, g, a group element along a time-like
edge ending in v’.

In the same way as for the operator K, we can extract a gauge-invariant projector
from p, i.e.

w=PFo] e (115)
e
where . is given by
<gv1e7 gev2|ﬂe|gv1evz> = /dgulevz dgf)l, dgf&,

X 8(gv1egvlevzgevggiztg'vzev]gfvl)E(gvlevz )F(gizt)F(gful)- (116)

In a spin network basis of the universal boundary Hilbert space and the projected spin network
space, respectively, we obtain

<1017 {klv ml}’ k’ p2’ {kZ’ m2}|l’ve|/0/, {k/ ’ m/l}v {k/ ’ m/z})

dim(k) / ’ ’
= dlm(p’) ‘Smﬂ"gpzp/ef f]fl (Sklk’l fki 8k2k/27 (1 17)

where we also used a Gelfand-Tsetlin basis for the non-gauge-invariant projected spin
networks.

Thus, the image of 1, is spanned by the non-null eigenvectors for K, discussed previously
and given in (110) and (111) for the EPRL and BC models, respectively. The co-kernel of 1,
or image of ui in the projected spin network space is labelled by the same indices, i.e.

0. = I(k, k), {0, 0}, {0,0})

~EPRL __ 1+Vk [1—yl
k,my,my 2 ’ 2

k) , {k, m}, {k, m2}>. (118)

Thus, we can, for instance, for the EPRL model formally understand the transfer operator
as an operator on the LQG Hilbert space. This might however not be very useful, if one wants
to understand the structure of the transfer operator in terms of holonomy and flux operators.
In particular, the holonomy operators appearing in the transfer operator are G holonomies and
thus act on either the universal boundary Hilbert space or the projected spin network space,
both of which are Hilbert spaces over copies of the group G.

6.4. Example: the BF model

Let us first consider the BF model; see also [16] for a discussion of the corresponding transfer
operator in the context of standard lattice gauge theory. The BF theory will be the only case
where the transfer operator will be actually a projector.

In the case of the BF model, we have e,f = 60(p, k), where 6 (p, k) = 1 if k appears in the
reduction of p over H and 0 (p, k) = 0 otherwise. Also, as the face weights are given by delta
functions on the group, we have »” = 1.

K, projects onto states

Up koo = DN/ dim(K)0 (0, k) |, thi, mi}; k; p, tha, ma})
k

= Y T kDmibinl (0, k) om0y i1, i £y 2, o), (119)

i1, 1,02, j2,m
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which are just linear combinations of spin network states that have been subdivided with a
trivial two-valent edge. The eigenvalues of K, are given by

Apkymizkymy = @9(0, k1)6 (p, ka) Xk:dim(k)O(p, k)* = 6(p, k16 (p, ka), (120
i.e. are equal to 1 as long as the indices in v, g, m,:,,m, define a non-vanishing vector. Thus,
K. is a proper projection operator and acts as identity on states that can be embedded into the
standard lattice gauge theory Hilbert space for G.

The operator W is a multiplication operator in the holonomy basis given by the effective
face weights associated with the spatial plaquettes. As E(g) = 5(g), the effective face weights
are also given by delta functions evaluated on the holonomy around the plaquette

w}(gUlElg€]U27 gvzez i ') = 5(gU1€1g€1U2gU2€2 . ')‘ (12’1)

Hence, W is a projection® onto the states satisfying the flatness conditions.
Hence, the transfer operator T is a projector implementing the Gauss constraints, which
impose gauge invariance, as well as the flatness constraints on the plaquettes.

6.5. Example: the BC model

Let us also discuss the Barrett—Crane model as here an enhanced symmetry of the E function
allows us to reduce the boundary Hilbert spaces.

For the Barrett—Crane model, the e,’j coefficients factorize e,f = &0 Zk, 8, ky- The
operator K, projects onto states

v = (K, k), {0, 0}; 0; (K", k), {0, 0}) (122)
and the corresponding eigenvalue is given by Ay = m
More in general, we can see that the holonomy operators (94) with k = O, i.e.

Yo kimi ;0 pokamy» G€METate a closed subspace. Hence, the dynamics only involves this
subspace of the universal boundary Hilbert space. Indeed, the integrand of the partition
function, that is, the effective face weights, does show an enhanced symmetry in the case
of the Barrett-Crane model: the E function is given as E (g5, g°) = 8suq) (g8 (g%)~!), where
(g", &%) € SU(2) xSU(2). Itis invariant under SU(2) multiplication (of the diagonal subgroup
in SU(2) x SU(2)) from the left and from the right. This is a stronger symmetry than in the
general case where E is just required to be invariant under the adjoint action of the subgroup
H. Because of this enhanced symmetry, the effective face weights just depend on variables
G x G/H, associated with every half-edge. The subspace of the Hilbert space spanned by basis
states with £ = 0 is exactly the subspace-invariant under this H group action.

Let us turn to the W operator and see in which sense it is a constraint on the curvature (as
the case in BF theory). The effective face weights can be computed to

N
a)}(Kellevleza Keyv,Kvpess - - D= / (H d)/l> SH(

N
HyjKerjKUj€j+l le>- (123)

I=1 J=1

. . . -1
Here, y; are group variables in H = SU(2) and k. abbreviates g5, (g%,) ", the product of left
and (inverse) right copy of the group. N denotes the number of edges in the face f.

The requirement for a non-zero face weight is that there exists a set of group elements
k7, which have to be in the conjugacy class of «; := K,y ky,e,.,, such that the product of «; is
© As it involves the delta function, it is not a proper projection operator in the case of Lie groups. A mathematical
clean description can be obtained by interpreting W as a rigging map which maps to the dual of some dense subspace

of the Hilbert space; see, for instance, [77].
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equal to the identity. For faces with more than two edges, this condition is generically satisfied
and the effective face weights only vanish on measure-zero submanifolds in the configuration
space. Thus, we cannot read off a curvature constraint for the general case.

6.6. Discussion of transfer operator and its limit

A question of intense research is the relation between the dynamics as defined by the spin
foam models on the one hand and the dynamics as defined by the Hamiltonian constraints
in loop quantum gravity [98] on the other hand [77, 1, 2, 39, 37]. The model example is 3D
gravity, which is equivalent to BF theory [77]. In this case, the transfer operator is a projector
and its image can be described by quantum constraints which reflect the diffeomorphism
symmetry of the model. These constraints can also be encoded into recursion relations (in the
spin representation) which can be interpreted as the Wheeler—DeWitt equations of 3D quantum
gravity [22, 38].

In 4D gravitational models, the situation is complicated by two main issues. One is that
diffeomorphism symmetry in discrete 4D gravity models is generically broken even on the
classical level, so that one cannot expect the transfer operators to be a pure projector and to
lead to constraints [44, 13, 48]. There is an exception to this general picture in cases where the
dynamics allows only for flat geometries. This is the case for special triangulations described
in [51, 49] and more specifically for the so-called tent moves at four-valent vertices [48], on
which we will comment more below.

The second main issue is the appearance of simplicity constraints. The natural boundary
Hilbert spaces for the current spin foam models are based on G = SO(4) (or G = SO(3, 1))
holonomies, whereas the LQG Hilbert space is based on H = SU(2) holonomies. Although
we can formally define the transfer operator (i.e. for the EPRL model) as an operator on the
LQG Hilbert space, it rather involves the multiplication operator W with G holonomies.

Let us comment more on the two issues and point out avenues for further research. In the
case of broken diffeomorphism symmetry, the transfer operator is rather an evolution operator
corresponding to some finite time step instead of a projection operator. Thus, one could ask for
the limit in which this finite time step is taken to be small in order to extract the time generator,
that is, the Hamiltonian. Indeed, this is the standard procedure for lattice gauge theory in which
the time step is encoded in the lattice constant (in the time direction). In gravity, however, we
do not have such an explicit lattice constant (or another coupling constant). Rather, the time
distance is boundary state dependent and might only emerge semiclassically. That is, to take the
limit of infinitesimal time steps, we need to entangle this procedure with some semiclassical
limit. We discussed different boundary Hilbert spaces; hence, different types of semiclassical
states are possible, including Hall-like semiclassical states [99, 19] adapted to the universal
boundary Hilbert space and coherent states used in the discussion of the semiclassical limit of
spin foam models [26, 28, 29, 25, 27, 64, 41].

An alternative to considering the limit of infinitesimal small time-like distances is to
‘improve’ the transfer operator by basically coarse graining [14, 17, 43], i.e. considering an
effective transfer operator 7’ = T". This again is similar to standard statistical lattice theories,
where the limit TV for N — oo leads to a projector on the eigenspace corresponding to the
highest eigenvalue of 7. However, in general, some scaling is required in order to obtain an
interesting projector, i.e. the highest eigenvalue should be rather highly degenerate. To this
end, it might be necessary to refine also the spatial discreteness, as the limit of continuous time
but discrete space might rather not lead to a restoration of diffeomorphism symmetry [75].

Here, we discussed a global transfer operator which acts on the entire hypersurface. An
alternative, more adapted to the ‘multi-fingered’ time evolutions, is the so-called tent moves,
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discussed in [96, 44, 13, 48], which rather evolve single vertices in the hypersurface. To define
the corresponding transfer operator, one needs to provide the possibility of gluing wedges,
which is discussed in section 4. Tent moves are especially interesting as these would lead to
localized, vertex-based (Hamiltonian) constraints (in case the symmetries are realized). Indeed
for classical Regge calculus, tent moves at four-valent edges lead to constraints as the simplicial
geometry remains flat in this case [48, 49] and diffeomorphism symmetry is preserved. Here,
it would be interesting to know if the spin foam transfer operator corresponding to a tent move
at a four-valent vertex leads to a projector and therefore constraints or not. More generally,
the question is whether we can obtain a dynamics describing flat geometries for triangulations
that in Regge calculus only allows for flat metrics due to topological reasons [51].

The second more technical main point concerns the simplicity constraints. As we have
seen, the transfer operator naturally involves W as a G-group holonomy and boundary Hilbert
spaces based on G. Hence, even if we can formally define matrix elements of the transfer
operator on the LQG Hilbert space (based on H holonomies), a comparison to a (Hamiltonian)
operator expressed in terms of H holonomies and fluxes is rather difficult. An alternative is
provided by the recent work [33, 34] which provides a canonical connection formulation based
on G holonomies. In this case, the Hamiltonian constraints have to be augmented by a term that
makes them gauge-invariant with respect to the (primary) simplicity constraints. One could
argue that this term is taken care off in spin foams, as K, (or K!/? or 1) projects back onto the
solutions of the (primary) simplicity constraints. However, heuristically the transfer operator
is the exponential of the Hamiltonians. The additional term in the continuum Hamiltonian
constraints takes care of staying on the simplicity constraint hypersurface at all times. In
contrast, with the spin foam transfer operator, we rather project onto the simplicity constraint
hypersurface in between discrete time steps. The discrete time steps itself involve G-group
holonomies which in general map out of the subspace defined by the simplicity constraints.
This is reminiscent of discussions in [4], which argues that simplicity projectors should be
inserted at each point of the G holonomies. More generally, this problem is connected with
the issue of how secondary simplicity constraints [5, 100, 51, 50] are implemented into spin
foams. The work here offers the possibility to check in which sense the imposition of primary
simplicity constraints at consecutive time steps leads to an imposition of secondary simplicity
constraints, as, for instance, argued in [73]. These insights might allow a relation between G
holonomies and holonomies involving the Ashtekar—Barbero connection [97], which in turn
will ease the comparison of the transfer operator with the Hamiltonian constraints.

7. Discussion

We have shown that the new holonomy representation presented in this and the companion
paper [15] provides several advantages. There is a clear parametrization of the space of models.
From the parameters, one can easily read off the reality of the amplitudes, and it turns out that
the BC, EPRL, FK and BO models have real amplitudes in this representation. The holonomy
models lead to a natural boundary Hilbert space, which is introduced in this work. This
universal boundary Hilbert space is the same Hilbert space for different choices of simplicity
functions E. Thus, different possibilities to impose the simplicity constraints can be compared
in one and the same Hilbert space. Furthermore, as the models can be naturally defined on
arbitrary 2-complexes, we also can obtain arbitrary (and not only four-valent) graphs on which
the boundary Hilbert spaces are based. A (dynamical) notion of cylindrical consistency, related
to coarse graining, can also be introduced on these Hilbert spaces [12, 45].

The universal boundary Hilbert space results from a definition of ‘equal time’ slices which
is most natural for lattice gauge theory. Alternatively, we can adopt slices and gluings more
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custom to spin foams and obtain as boundary Hilbert space the Hilbert space of projected spin
networks. We detail the conditions under which such a map between the different slicings
is possible and construct the corresponding p-map. These considerations allowed also a
discussion on the different kind of basic building blocks, i.e. faces, half-faces and wedges, and
the possible gluings which allow a combination of these building blocks to the full partition
function.

We explicitly constructed the representation of different current spin foam models in our
new representation—the main difference between the models is the simplicity functions E that
imposes the simplicity constraints.

Finally, we derived a general form of the transfer operator on the different boundary
Hilbert spaces. On the universal Hilbert space, this form is given by T = Ké/ 2PGWPGKé/ 2
with W representing a product over holonomy operators over faces, Pg is the projector on
the G-invariant subspace and Ké/ * can be seen as imposing the simplicity constraints on the
Hilbert space. Similarly on the Hilbert space of projected spin network functions, we have
T' = u"Wu with u, 1" taking over the role of K to impose the simplicity constraints. This
form might shed some light on the discussion of how to best impose simplicity constraints
into spin foams [5, 50, 34, 61]. In the current models, the secondary simplicity constraints are
not imposed. It is argued that the imposition of primary simplicity constraints on each time
step should also lead to the imposition of secondary constraints. (Note however that even the
primary constraints are imposed weakly in the EPRL-type models.) Indeed, here this is made
obvious in the form of the transfer operator, who is projected by either Ky or p. Of course,
the projections are only inserted at discrete time steps and not continuously in time. Related
to this issue is that fundamentally, the transfer operator still includes a G = SO(4)-holonomy
operator and not a holonomy operator based on the Ashtekar—Barbero connection. A question
for future research is how this form relates to a discretion which starts from the beginning with
the SU(2) Ashtekar—Barbero connection, which arises by classically solving for the simplicity
constraints [60]. This question can be also studied in a semiclassical limit using semiclassical
states in either of the boundary Hilbert spaces or the techniques presented in [65].
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Appendix A. The basis of E functions

In this appendix, we discuss in some detail the precise derivation of the basis of E functions
(6), and the conditions satisfied by the coefficients e.
In the space Homy (p, k), we can introduce a scalar product by

Homy (p, k) x Homy(p, k) 3 (I, ') = (I, I'Ystomy (oo 1x = I'T. (A1)
For every p, we have an antiunitary, group-covariant map

Jo i p— p. (A2)
If p and p are distinct, we assume that J; = Jp’l. If p = p, then we may assume in addition

that J> = s,1, (where s, = £1).
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Similarly, for every k, we have an antiunitary map
Ji i k— k. (A.3)
If k and k are distinct, we assume that J; = Jo "Itk = I_c, then we may assume in addition that
J,f = s¢ 1 (where 5, = £1).
We can thus define the antiunitary (in the scalar product (A.1)) map

M, : Homy (p, k), — Homy (5, k), M, (I) = JPIJ;. (A4)
Here, J' is defined by
(I =0T (A.5)
In the case when p = p and k = k,
M3 = sk Tomu(p.b)- (A.6)
—
£1
Let us define
D(g),.x : Homy (p, k) — Homy (p, k) (A7)
by the matrix elements
(I, D(g)pil') =t I'D, (I . (A.8)
We can then expand E as such
E(g) =) dim(p) Thom, (o0 €L Dpi(g™"). (A.9)
p.k

where e; : Homy (p, k) — Homy (p, k). £(G, H) can then be parametrized through e} .
We will need the following set of useful relations satisfied by D. We see that

(I, Dy (g )I') = wI'D} ()" = tr(I')TD,, ()]

= (I, Dp (@) = (D x(@1,1'); (A.10)
thus, D, 1 (g7') = D, x(8)".
Similarly
(M D, (M, k(1)) = (M1 (D), D; ()M i (I'))
=ty I' I3, Dy(g) I3, I' J} = (I, Dpil'), (A.11)
where we used the identity valid for any antiunitary J and linear A
trJAJ" = trA. (A.12)
Thus, D, (g) = M} D, ; ()M, 1.

e,f are not completely free, but are restricted by the condition that E(g) = E(g™").

This implies that they have to satisfy a set of equations relating the coefficients for complex
conjugate representations. By definition, we have that

trefDpi(g™") =tref Dyu(g) =tref M D, 1(Mpi = trM, el M’ ,D;(2).  (A.13)

The condition for the E function reads’

_ oo
eg =Mp,kef M,,. (A.15)
7 Matrix elements of f)p,k satisfy
dp/dg(llvbp,k(871)12><13vbp.k(g)lét) = 8,0 Stk di (I, la) (I3, Io); (A.14)

thus, the basis forms a set of independent functions of g.
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Let us note that if p % /5 or k # k, we can choose bases in such a way that M, i acts by
complex conjugation, then

5 T
eg =e . (A.16)
The same is possible if s;s, = 1 but not in the case when sys, = —1.% From now on, we

will assume that 5,5, = 1 whenever p = p and k = k. In many models we consider, p and k
are indeed isomorphic to p and k, in which case the condition simply says that ef has to be

symmetric.
Furthermore as
trefD, (g7 =trelD, 1 (9) = twe! ™D, i(g) (A.17)
as mentioned in the main body of the text, we have a real holonomy spin foam model if
el =el. (A.18)
In the cases where we have (A.16), this reads
o = el (A.19)

Using the formula, E(g) = Zp dim(p) tr e]ijp,k(g) and (A.16).

Appendix B. The spin network basis

In this appendix, we give some more detail on the spin network basis for the space HIFJBS.
It is convenient to start with the basis for the larger space L?(G'"!). By the Peter—Weyl
theorem, this is given by the matrix elements of representations, i.e.

lp. i, j) = v/ dim(p)D,(8)ij, (B.1)

with the dimension factor providing the correct normalization,

(1011, = (o) Gm (@) [ D)0,
G
= /dim(p) dim(p) / gDy (g1 D, ()i
G

=818 600 - (B.2)
A basis is thus simply given by the tensor product of basis elements

Q) 10ev: ievs jeu) = [ [ Vdim(per) Dy, (8e1)ic s € LG, (B.3)

HIFJBS is the subspace of states in L2 (G/"'!) that are invariant under the action of the symmetries.
In order to give a basis of this subspace, it will actually be more convenient to use the orientation
on the edges to introduce the oriented basis. For this, we choose an arbitrary orientation for
each edge. We will encode this by writing (v, e, v') € T for the oriented edge e running from
vertex v’ to v.

® (peu’v iev’a jev’| ® |peva ieu: jev)- (B4)
(v’,e,ev)d“
We now want to go to the G-invariant subspace of p,, at the vertices, and the H-invariant

subspace at the edges. We begin by implementing the invariance under H. To do so, we contract
the inner indices at each oriented edge with an H-covariant operator. These are parametrized

8 If the degeneracy is 1, then always sis, = 1 since the restriction of J, to k is equal to Jj.
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similarly to the E functions, by the matrices &y 4, which can be contracted with a basis of
H-invariant maps between p and p’ giving

Bir =Y Bkaal(0, Daiml (0 6)) -
kd,d'm
Contracting these on the indices i,, in the middle of the edge gives

|pevv jeuv Ee) = 1_[ \/dlm (peu’) dim(pev)Dpwr (g;vl')jt,l,/i(,l,/ Ee,it,”r,iﬂ,Dpeu (gev)iﬂ,jﬂ- . (BS)

e
(v',e,v)Cl
This is normalized as
/7 o —~/ . ~ —~/ T ~
(s o Bilpevs Jevs Ee) = [ [ 8puors8iunir, | [r EL' e (B.6)
ev e

Note that j,, is in the dual to p,, if (e, v) C I', and in p,, directly if (v,e) C T.
For the case where there are no degeneracies d, d’, the coefficients E 44 simplify to Ey.
Thus, we can directly work with the basis of H-invariant operators

1
g =T, k)il (p, k),
cit = gy O Kind (00,

labelled by k with the property
tr 2, 8, = . (B.7)
We then obtain the states

: _ Vdim(pey) dim(pev)
|pevafev’k>— 1:[ \/m

,e.v)CT
X D, (o) i L Perrs Ke)iym I (Pevs ke i Dpey (8ev)injon- (B.8)
which are normalized as
(P;w j;v’ k;|pevv Jevs ke) = l—[ 8/)(,.,/);, ajevjj,l, l_[ (Skgk} (B.9)
ev e

To implement the G invariance at the vertices, we can simply contract with intertwiners
Ny € Inv(®pg,), where p}, is the dual representation if (v, ) C I" and the usual representation
if (e, v) C I'. Contracting all these, we obtain the state

|pevv Nv, Ee) = 1_[ N0, jepsn. 1_[ \/dim(pev’) dlm(pev)

(v’,e,ev)cl"
-1 -
xD,,,(g.) iy SesicsiaDpe, (8ev)iey oo - (B.10)
This is normalized as
— — =T =
(p My Bl Oevs Mo Be) = [ [ 8purs, [ [milmo) [ [ tr B E. (B.11)
ev v e

For the case without degeneracies, this again simplifies to the states

\/dim(pev/) dim(pev)
evs ’ ke = fevs.ee
[Oevs Nus ke) 1:[ NV, e, 1:[ dim(k)

(' e,v)Cl’
X D,OE,,J (g;;l/)jeu,iw](pev” ke)iel,/mﬁ](pev ’ ke);,k,'pr(,l, (gev)iwjm, > (B.12)
which are normalized as
(Pews Mys kel Pevs Mo, Ke) = 1_[ 8 pesily 1_[(77“7711) Hakek;' (B.13)
ev v e
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This should be contrasted to the basis of projected spin networks which is given in terms of H
intertwiners ¢ as

kv, Lys Pe) = l_[ Loy, .. l_[ Vdim(p,)1( ., kev),Tnmj(,UDp,, (gvev’)j,,v,jev/l(pea kev’)jev/,mw/ s
v e
(B.14)

and is normalized as

(K, . pllkers ts pe) = [ | Sk, [ T0100) T T 800r- (B.15)
ev v e
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