Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Coherent femtosecond low-energy single-electron pulses for time-resolved diffraction and imaging: A numerical study

MPG-Autoren
/persons/resource/persons21937

Paarmann,  Alexander
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons32794

Müller,  Melanie
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons32712

Xu,  Canhua
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science;

/persons/resource/persons21497

Ernstorfer,  Ralph
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1.4768204.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Paarmann, A., Gulde, M., Müller, M., Schäfer, S., Schweda, S., Maiti, M., et al. (2012). Coherent femtosecond low-energy single-electron pulses for time-resolved diffraction and imaging: A numerical study. Journal of Applied Physcis, 112(11): 113109. doi:10.1063/1.4768204.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000E-A0BB-4
Zusammenfassung
We numerically investigate the properties of coherent femtosecond single electron wave packets photoemitted from nanotips in view of their application in ultrafast electron diffraction and non-destructive imaging with low-energy electrons. For two different geometries, we analyze the temporal and spatial broadening during propagation from the needle emitter to an anode, identifying the experimental parameters and challenges for realizing femtosecond time resolution. The simple tip-anode geometry is most versatile and allows for electron pulses of several ten of femtosecond duration using a very compact experimental design, however, providing very limited control over the electron beam collimation. A more sophisticated geometry comprising a suppressor-extractor electrostatic unit and a lens, similar to typical field emission electron microscope optics, is also investigated, allowing full control over the beam parameters. Using such a design, we find ∼230 fs pulses feasible in a focused electron beam. The main limitation to achieve sub-hundred femtosecond time resolution is the typical size of such a device, and we suggest the implementation of more compact electron optics for optimal performance.