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Abstract

Non-thermal, leptonic radiation processes have been extensively studied for the in-
terpretation of the observed radiation from jets of Active Galactic Nuclei (AGN).
This work addresses the synchrotron and Inverse Compton scattering (ICS) mecha-
nisms, and investigates the potential of a self-consistent, time-dependent approach
to currently unsolved problems. Furthermore, it examines how deviations from stan-
dard, one-zone models can modify the radiated spectrum. A detailed analysis of the
shape of the ICS spectrum is also performed.
In the �rst part a possible interpretation of the hard γ-ray blazar spectra in the
framework of leptonic models is investigated. It is demonstrated that hard γ-ray
spectra can be generated and maintained in the presence of energy losses, under the
basic assumption of a narrow electron energy distribution (EED). Broader spectra
can also be modeled if multiple zones contribute to the emission. In such a scheme,
hard �aring events, like the one in Mkn 501 in 2009, can be successfully interpreted
within a "leading blob" scenario, when one or few zones of emission become domi-
nant.
In the second part the shape of the Compton spectrum close to the maximum cut-
o� is investigated. Analytical approximations for the spectral shape in the cuto�
region are derived for various soft photon �elds, providing a direct link between the
parent EED and the upscattered spectrum. Additionally, a generalization of the
beaming pattern for various processes is derived, which accounts for non-stationary,
anisotropic and non-homogeneous EEDs. It is shown that anisotropic EEDs may
lead to radiated spectra substantially di�erent from the isotropic case. Finally, a
self-consistent, non-homogeneous model describing the synchrotron emission from
strati�ed jets is developed. It is found that transverse jet strati�cation leads to
characteristic features in the emitted spectrum di�erent to expectations in homoge-
neous models.



Zusammenfassung

Bezüglich der Herkunft der beobachteten Strahlung von Jets in Aktiven Galaktis-
chen Kernen (AGN) wurden nicht-thermische, leptonische Strahlungsprozesse in-
tensiv untersucht. In der vorliegenden Arbeit wird die Strahlungserzeugung durch
Synchrotron-Emission und inverse Compton-Streuung (ICS) diskutiert und das Po-
tential eines selbstkonsistenten, zeitabhängigen Models zur Erklärung aktuell noch
ungelöster Probleme analysiert. Des Weiteren werden die Auswirkungen von Abwe-
ichungen von Standardmodellen auf das emittierte Spektrum untersucht. Die Form
der ICS-Spektren wird im Detail diskutiert.
Im ersten Teil dieser Arbeit wird eine mögliche Erklärung der harten Gammastrahlen-
Spektren von Blasaren im Rahmen eines leptonischen Models untersucht. Dabei
wird gezeigt, dass sich harte Gammastrahlenspektren bei Annahme einer schmalen
Elektronen-Energieverteilung (EED) auch angesichts von Energieverlusten erzeugen
und erhalten lassen. Breitere Emissionsspektren können durch Überlagerung von
Beiträgen verschiedener Zonen generiert werden. In diesem Zusammenhang können
harte Emissionsereignisse, wie z.B. das in 2009 für Mkn 501 beobachtete, durch ein
"leading-blob" Szenario, bei dem eine oder mehrere Zonen dominieren, erfolgreich
erklärt werden.
Im zweiten Teil wird das Compton-Spektrum nahe der maximalen Energie der EED
untersucht. Die in dieser Arbeit hergeleiteten, analytischen Näherungen für die Form
des Compton-Spektrums erlauben eine direkte Verbindung des gestreuten Emission-
sspektrums mit der erzeugenden EED für verschiedene (soft photon) Felder. Auÿer-
dem wird eine Verallgemeinerung des relativistischen "beaming patterns" für den
Fall nicht-stationärer, anisotroper und inhomogener EEDs hergeleitet. Anisotrope
EEDs können dabei zu Spektren führen, die sich erheblich vom isotropen Fall unter-
scheiden. Zuletzt wird, motiviert durch neuere Simulations- und Beobachtungsergeb-
nisse, ein selbstkonsistentes (Synchrotron) Emissionsmodel entwickelt, bei dem der
zugrundeliegende Jet eine transversale Abhängigkeit (parallele Scherströmung) auf-
weist. Dabei zeigt sich, dass eine transversale Abhängigkeit zu charakteristischen
Eigenschaften des emittierten Spektrums führt, die sich signi�kant von den Er-
wartungen homogener Modelle unterscheiden und damit Einblick in die Jetstruktur
geben.
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Chapter 1

Introduction

1.1 Basic properties and the physics of AGN

Relativistic jets are common in astrophysical environment. Active Galactic Nu-
clei (AGN), Gamma Ray Bursts (GRBs) and microquasars have been proven to
exhibit highly collimated out�ows in which particles are accelerated to relativistic
energies and radiate. Among these sources, AGN are of particular interest. They
provide an excellent environment for investigating several aspects of modern as-
trophysics; accretion, formation and collimation of jets, magnetohydrodynamics,
particle acceleration theories and radiation mechanisms, all come into play. Addi-
tionally, AGN are directly related to the question of galaxy evolution. Since the
discovery of Quasars (Schmidt 1963), these object have been the most prominent
emitters among the most luminous and distant objects in the universe and have
rightfully attracted particular astrophysical interest.

1.1.1 The general picture of AGN

In general, AGN are galaxies with energetic phenomena in their nuclei (central
region) which can not be directly attributed to stellar processes. AGN produce very
high luminosities, of the order of 1046−1048erg/sec, (four orders of magnitude higher
than the luminosity of a typical galaxy) in a centered, compact volume (within par-
sec scales). Their continuum spectra is attributed to radiation from non-thermal
processes and can emerge over a wide range of the electromagnetic spectrum, from
very low radio frequencies up to TeV γ-rays. Strong variability (increase in lumi-
nosity by a factor of ∼ 2 or more) is present on various timescales, from years down
to less than a day, even on minute-timescales (Aharonian et al. 2007). The Spectral
Energy Distribution (SED) of these objects often exhibit emission (and occasion-
ally absorption) lines indicating excitation by the continuum emission. Roughly
speaking, a galaxy can be de�ned as AGN if it exhibits some of the aforementioned
characteristic features (not necessarily all of them at the same time) and around
1− 3% of the whole galaxy population can be accounted as AGN.

Nowadays, the generally accepted picture for the fueling and the observed prop-
erties of AGN is based on the existence of a rotating, supermassive black hole at the
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1.1. Basic properties and the physics of AGN

center of the galaxy. The supermassive black hole (SMBH) is surrounded by a thin
disk which accretes gas with angular momentum onto the SMBH (Salpeter, 1964;
Zeldovich & Novikov, 1964). The release of the gravitational energy of the infalling
matter is ultimately responsible for the large radiative output of those objects. Ac-
cretion onto a compact object is thus regarded to be the principal source of energy
for AGN.

In the simpli�ed picture of stationary, spherical accretion there exists an upper
limit for the luminosity of a source of mass M . This is achieved when the (outward)
radiation pressure (due to Thomson scattering) on a proton-electron pair is balanced
by the (inward) gravitational force and is called Eddington luminosity

Ledd =
4πGMmpc

σT
≈ 1.2× 1046

(
M

108M⊙

)
erg/sec. (1.1)

Here σT denotes the Thomson cross section, mp the proton mass, G the gravitational
constant and c the speed of light. Obviously accretion is not spherical in the case
of AGN, however the above formula represents a usefull characteristic limit for the
produced luminosity. The minimum mass of a central object that emits at the
Eddington limit is then

M = 8× 105
Ledd

1044erg sec−1
M⊙. (1.2)

For AGN luminosities of 1046 − 1048erg/sec, a central mass of the order of 108 −
1010M⊙ is required. On the other hand the rapid variability occasionally observed
on extremely small timescales suggests that the tremendous luminosity observed
originates in a very compact volume. This is due to causality arguments that restrict
the size of the emitting region. If ∆t is the variability timescale, then the source
can not extend to larger scales than the light crossing time, i.e. the radius of the
source must obey R < c∆t1. The relatively small sizes that the short variability
implies in combination with the large masses imposed by the Eddington limit suggest
that a SMBH is the best candidate for the central engine of AGN. Apart from this
argument, there is increasing evidence that favors the existence of SMBHs at the
nucleus of these galaxies (see e.g. Madejski 1999).

Our current picture of accretion disks is based largely on the work of Shakura
& Sunyaev (1973) (see e.g. King 2012 for a very brief review). In this classical
approach, the accretion disk is thin, steady, panchromatic (it has di�erent temper-
atures at di�erent radius R) and radiates locally as a black body. The e�ective
temperature pro�le scales as T (R) ∝ R−3/4. In some AGN the overall continuum
(stretched-out black body-like) spectrum can account for the observed UV/optival
emission, the so called "big blue bump". The in-detail description of the �ow of the
accreting matter has been however a major part of astrophysical studies (see e.g.
the textbook of Frank et al. (1995) and references therein).

The accretion onto a black hole is often associated with the launching of a jet
of plasma that produces the observed radiation. The formation and collimation of

1Note that for a relativistically moving source, as is often the case, Doppler boosting has to be
taken into account, see paragraph 1.1.6
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1.1. Basic properties and the physics of AGN

jets has been intensively studied in the hydrodynamical (HD) and magnetohydrody-
namical (MHD) formulation by applying both analytical and numerical techniques.
One can distinguish three main types of models (see e.g. Celotti & Blandford, 2001;
Sauty et al., 2002 for reviews).

(a) Hydrodynamical acceleration: An adiabatic �ow that propagates in the
external medium of decreasing pressure can get accelerated and collimated as in a
de Laval nozzle, as proposed in the so called "twin-exhaust" model of Blandford &
Rees (1974). The "weak point" of such a model is that the required gas pressure
needed from the external medium implies a large X-ray �ux which is not observed.

(b) Radiative acceleration: Acceleration by radiation pressure could in prin-
ciple explain the relativistic jets observed in AGN. This mechanisms is based on
radiation beams that are produced and collimated in funnels (vortices) along the
rotational axis of the accretion disk (see e.g. Lynden-Bell, 1978; Piran, 1982). How-
ever, intense radiation �elds are required and even if they exist Compton drag limits
severely the velocity of the �ow.

(c)Magnetohydrodynamical acceleration: Perhaps the most promising mech-
anism for the production of jets involve magnetic �elds. Extraction of energy may
occur from the accretion disk as an MHD wind is launched due to centrifugal force
if the angle between the poloidal component of the magnetic �eld and and the
disk surface is 60o. Alternatively, the relativistic jet can be powered by the rotating
black hole itself (Ru�ni & Wilson, 1975; Lovelace, 1976; Blandford & Znajek, 1977).

Independent of the formation mechanism, relativistic jets do occur in AGN and
can range from sub-parsec scales out to Mpc scales. Perhaps, the most direct ev-
idence for high speeds is superluminal motion. VLBI (Very Long Baseline Inter-
ferometry) observations of some sources have detected radio components that show
transverse (apparent) velocities that exceed the speed of light even up to ∼ 40c.
This discrepancy with special relatively can be solved only if the out�ow moves at
relativistic speeds close to the line of sight (Rees 1966). The transverse apparent
velocity βapp with respect to the "real" velocity β is

βapp =
β sin θ

1− β cos θ
. (1.3)

Thus for relativistically moving sources, β > 1/
√
2 ∼ 0.7, there exist some values of

the orientation angle θ at which superluminal motion is observed. The maximum
apparent velocity occurs at sin θ = 1/Γ, where Γ = (1−β2)−1/2 is the Lorentz factor,
and takes the value βmaxapp =

√
(Γ2 − 1). This means that if an apparent velocity of

e.g. βapp = 5 is detected, then the source has to move relativistically as it can not
have Lorentz factor less than Γmin =

√
β2
app + 1, providing strong evidence for the

existence of relativistic jets.
The observed, non-thermal, continuum spectrum is commonly attributed to the

radiation of particles that accelerate to highly relativistic energies in the jets. Apart
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1.1. Basic properties and the physics of AGN

from the continuum, broad emission lines are often detected. These are considered
to originate from rapidly moving clouds of gas above the accretion disk that may
extend up to 103Rg, where Rg the Schwarzschild radius. The area where these clouds
are located is commonly abbreviated as Broad Line Region (BLR). Above the BLR
there are slower-moving clouds that can extend as far as 1020cm and are responsible
for the narrow lines that may exist in the SED of some AGN. The main picture of
AGN is completed with the existence of a dusty torus around the central object that
obscures the radiation from the inner parts if the line of sight passes through this
torus.

In summary, the commonly accepted picture for AGN (on a very �rst approach)
has been formulated as following:

• A supermassive, rotating black hole in the center of the galaxy of mass 108 −
1010M⊙;

• A thin disk accreting onto the SMBH, from about 2 to beyond 100 gravita-
tional radii that emits mainly at UV and soft X-rays (though it is sometimes
responsible for the hard X-rays as well);

• The BLR which extends up to ∼ 103Rg and scatters away the radiation from
the inner parts;

• The NLR which extends from 104-106Rg;
• A dusty torus (with an inner radius of ∼ 103Rg) which obscures the central
parts of the AGN emission.

1.1.2 Uni�cation schemes and classi�cation of AGN

The numerous sources identi�ed as AGN exhibit di�erent observational charac-
teristics and their classi�cation according to phenomenological properties is rather
complex. In a very simpli�ed picture, AGN can be divided to sub-classes by two
main parameters; the radio-loudness and the width of the emission lines (see e.g.
Padovani 1999). Approximately 10% of the AGN population is radio-loud, i.e. their
radio luminosity exceed the optical luminosity by a factor of ten, Lrad/Lopt ∼ 10.
According to the width of their emission lines, AGN can be further divided into
type I (broad line emission galaxies; they exhibit lines that correspond to velocities
of the clouds of the order of 2, 000− 10, 000km/sec) and type II (narrow line emis-
sion galaxies with corresponding velocities of ∼ 500km/sec). For example, Seyfert
I and Seyfert II/radio-quiet Quasars (QSOs) are radio-quiet AGN of type II and I
respectively. Radio-loud type II AGN are called narrow-line radio galaxies (NLRG).
Radio-loud type I AGN are referred as broad-line radio galaxies (BLRGs). Ac-
cording to their radio morphology radiogalaxies of both types are also classi�ed as
Fanaro�-Riley (FR) I and II . Some objects have very weak emission lines, like the
so called BL Lacs which are radio-loud.

Although AGN appear di�erent, uni�cation schemes support the idea that they
are not truly di�erent objects. On the contrary, they share the same intrinsic prop-
erties but they are viewed under di�erent angles (see the reviews of Antonucci,
1993; Urry & Padovani, 1995). The observed radiation might e.g. be strongly en-
hanced due to Doppler boosting if the jet is pointing towards the observer or it can

4



1.1. Basic properties and the physics of AGN

be obscured by the torus if the viewing angle is large (see �g. 1.1) so that only
the NLR can be seen. For example, Seyfert I galaxies have been "uni�ed" with
Seyfert II galaxies with the former be seen edge-on (large viewing angles) and the
latter face-on (small viewing angles). In a similar way low-luminosity FR I sources
and high luminosity FR II radio galaxies correspond to BL Lacs and radio Quasars
respectively.

Jet

Obscuring
Torus

Black
Hole

Narrow Line
Region

Broad Line
Region

Accretion
Disk

Figure 1.1: Sketch illustrating the uni�ed picture of AGN (not to scale). Figure
from Urry & Padovani (1995)

1.1.3 Blazars: properties and observed spectrum

A sub-class of AGN of particular interest are the so called Blazars. Blazars
are radio sources that apparently exhibit the most extreme characteristics; rapid
variability (at all wavelengths and on all timescales), high polarization (both in
optical and radio frequencies) and in some cases a lack of any strong emission lines.
Blazars are characterized by broadband (from radio to VHE γ-rays), non-thermal
emission produced in relativistic jets pointing close to the line of sight to the observer
and thus their observed radiation is strongly boosted. This group of AGN includes
the Optically Violent Variable Quasars (OVVs) which are characterized by rapid
variability, highly polarized Quasars (HPQs) that exhibit high percentage of linear
polarization, the aforementioned BL Lacs and the Flat Spectrum Radio Quasars
(FSRQs) that tend to have �at radio spectra, i.e. Fν ∝ ν−α with α > −0.5. The
name "Blazars" originates from the astronomer Ed Spiegel, likely as an attempt to
combine the names of BL Lacs and Quasars.
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1.1. Basic properties and the physics of AGN

Blazars rightfully hold a special place among all AGN. Their broad band emission
covers almost 20 orders of magnitude along the electromagnetic spectrum, and thus
they are ideal sources for multiwavelength studies. They are very often strong γ-ray
emitters (up to TeV energies), implying that very energetic phenomena take place.
The relativistic beaming of the radiation ampli�es the brightness of these sources
so that they are prominent for detection even at low luminosities, or equivalently at
large distances. Due to this strong enhancement, the spectrum of Blazars is highly
dominated by the jet emission. The "noise" that originates from other parts of
the galaxy (accretion disk, BLR, torus etc..) is likely suppressed. For this reason
Blazars serve to de�ne the properties of the jet and to study the associated physics
that takes place in relativistic out�ows.

The continuum Spectral Energy Distribution (SED) of Blazars extends from
the low frequency radio band up to TeV γ-rays. It is dominated by non-thermal
emission and often shows two distinct components. A low-energy component from
radio up to UV and X-rays and a high energy component from X-rays to γ-rays
(see e.g. the SED of the Blazar Mkn 421 in �g. 1.2). Variability characterizes all
emission wavelengths and particularly at high energies very short timescales (down
to minutes) have been reported (e.g. Aharonian et al., 2007; Albert et al., 2007). Due
to Lorentz transformations the observed variability timescales ∆tobs are connected
to the intrinsic (comoving) timescale ∆tint as

∆tobs = ∆tint(1 + z)/D (1.4)

where D is the Doppler factor and z the cosmological redshift. Causality arguments
then limit the source size to

R . c∆tobsD/(1 + z), (1.5)

implying that the emission originates in a very compact region.
Theoretical radiation models that attempt to interpret the observed Blazar spec-

tra can be divided into two main categories, hadronic and leptonic models (see e.g.
a recent review from Boettcher 2012). Hadronic models propose that the main car-
riers of dissipated energy in the jet are energetic protons, whereas in leptonic models
the energy available for radiation is in electrons or e± pairs.

Hadronic models: Energetic photons can emit γ-rays via pp interaction with
surrounding gas or via pγ interaction with a photon �eld. π0-decay γ-rays can be
produced in pp interactions, but very high densities of thermal plasma are required
to explain the observed high luminosities (see e.g. Morrison et al. 1984). Alterna-
tively, if protons are a�ectively accelerated to the threshold for pγ pion production,
then synchrotron supported cascades will initiate (Mannheim, 1993; Mannheim &
Biermann, 1992), i.e. protons will interact with the synchrotron photons produced
by electrons that are co-accelerated with the protons (external photon �elds may
also be a possibility, e.g. thermal photons from the disk, Protheroe 1997). Electro-
magnetic cascades can be initiated by π0-decay, electrons from the π± → µ± → e±

decay, p-synchrotron photons and µ, π and K synchrotron photons. Proton accel-
eration to such high energies requires large magnetic �elds (of the order of tens of
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Figure 1.2: SED of the Blazar Mkn 421 (Credit: J.H. Buckley, Washington U.)

Gauss) and in such an environment primary proton synchrotron radiation also o�ers
an e�ective channel for production of high energy γ-rays (Aharonian 2000).

Leptonic models: In leptonic models electrons (or/and positrons) are the main
emitters. Once electrons are accelerated to relativistic energies, they interact with
the magnetic �eld and produce synchrotron radiation, which commonly accounts for
the low energy component of the Blazar spectra. The strength of the magnetic �eld
required is su�ciently smaller (of the order of ∼ 1G) than in the case of hadronic
models. The high energy component of the spectrum is attributed to Inverse Comp-
ton Scattering (ICS) due to upscattering of low energy photons by the same electron
population, as originally discussed in Jones et al. (1974). Depending on the nature
of the target photon �eld, the leptonic models can be referred to as synchrotron
self-Compton (SSC) or external Compton (EC) models. In the SSC model, the syn-
chrotron photons serve as the target photon �eld. Their up-scattering by the same
electron population produces the high energy γ-ray radiation (e.g., Maraschi et al.,
1992; Bloom & Marcher, 1996). In EC models the target photons come from a zone
external to the jet. In Blazars the main sources for external photon are

• UV/soft X-ray radiation from the accretion disk either reaching the jet directly
(Dermer et al., 1992; Dermer & Schlickeiser, 1993) or after re-processing in the
BLR (Sikora et al. 1994) or other material (e.g. Blandford & Levinson 1995)

• IR radiation from the dusty torus (Sikora et al. 1997).

Which of these mechanisms is responsible for the high energy emission of Blazars
(or if both contribute to the observed spectrum) is still unclear. Throughout this the-
sis, the issues examined are associated to (or approached within) leptonic processes.
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1.2. Radiation processes in leptonic models

The main radiation mechanisms involved (synchrotron and ICS) are presented in
the next paragraph, and they are embedded in a self-consistent approach.

Perhaps the two most triggering features in Blazar physics that have attracted
special attention are the variability detected at very short timescales and the origin of
very hard, intrinsic γ-ray source spectra after correcting for the absorption due to the
Extragalactic Background Light (EBL). Although the observed TeV spectra of these
sources are steep, their de-absorbed (EBL-corrected) spectra appear intrinsically
hard (see section 1.4). In chapter 2 we deal with this problem, proving a self-
consistent solution with leptonic models. Furthermore, in chapter 3 we examine the
possibility to account for hard spectra in a �aring state that normally (in a low
state) are softer.

1.2 Radiation processes in leptonic models

Radiation mechanisms hold an outstanding place in astrophysics, as they are
our "eyes" to the astrophysical objects of the universe. Emission processes are the
�rst step to explore the physical mechanisms that take place in a variety of sources
and thus, a deep understanding and in-detail investigation is unavoidably neces-
sary. In this thesis we focus on leptonic models and the main processes involved are
synchrotron radiation and ICS. These radiation mechanisms have been intensively
studied and remain two of the basic emission mechanisms that account for observa-
tions not only in Blazars and AGN in general, but also for a series of astrophysical
objects, e.g. pulsars, microquasars, GRBs etc.

1.2.1 Synchrotron radiation

Classically, a charged particle which moves on a curved path or is accelerated
on a straight-line path will emit electromagnetic radiation. When the reason of
acceleration is a magnetic �eld then the radiation is called synchrotron radiation (for
relativistic particle velocities). Synchrotron radiation was �rst suggested by Alfvén
& Herlofson (1950) to be the radiation mechanism responsible for the newly (back
then) discovered cosmic radio sources (such as supernova remnants and AGN). Since
then it has been investigated extensively in several textbooks and in the context
of astrophysical applications (Jackson, 1975; Rybicki & Lightmann, 1979; Longair,
2010).

In the presence of a (uniform) magnetic �eld of strength B, a charged particle
will gyrate around the �eld lines at helical trajectory. From the equations of motion
we can �nd the frequency of rotation

ωB =
qB

γmc
. (1.6)

If we denote by α the pitch angle (the angle between the �eld and the particle
velocity) then in the limit of relativistic velocities (u ≈ c) the total emitted power
is

−
(
dE

dt

)
= 2σT cUBγ

2 sinα2, (1.7)
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where UB = B2/8π is the magnetic �eld energy density and σT the Thomson cross
section. For an isotropic particle distribution, averaging over pitch angles leads to
the formula

−
(
dE

dt

)
=

4

3
σT cUBγ

2. (1.8)

The derivation of the synchrotron spectrum from the Lienard-Wiechert poten-
tials is well established and can be found in the aforementioned textbooks. Some
main points are the following: Due to light abberation e�ects the radiation of a rel-
ativistic particle (in the frame of the observer) is beamed within a cone of opening
angle ∼ 1/γ. A distant observer will thus receive pulses of radiation and the spec-
trum is the Fourier transform of these pulses once time delay e�ects are taken into
account. The duration of the pulse is ∆t ≈ (γ3ωB sinα)−1 and thus the spectrum
extends roughly up to the critical frequency

ωc =
3γ2qB sinα

2mc
. (1.9)

The full expression for the emitted spectrum for monoenergetic electrons of energy
Ee is

dṄγ

dϵγ
=

√
3q3B sinα

mc2hϵγ
F

(
ϵγ
Ec

)
, (1.10)

where

Ec = ~ωc =
3qBh sinα

4πmc

E2
e

(mc2)2
, (1.11)

and the function F (x) is given in terms of the modi�ed Bessel function K5/3(ξ)

F (x) ≡ x

∫ ∞

x

K5/3(ξ)dξ. (1.12)

The synchrotron spectrum peaks at ∼ 0.29Ec. The function F (x) for small and
large values of x has the asymptotic form

F (x) ∼


4π√

3Γ(1/3)

(
x
2

)1/3
, x ≪ 1

(
π
2

)1/2
x1/2e−x, x ≫ 1

(1.13)

where Γ(x) the Gamma function. Already from the above formula we expect the
synchrotron spectrum at low energies to exhibit a dependance on energy as ϵ

1/3
γ

and at high energies to have a (simple) exponential cuto�. For randomly oriented
magnetic �elds, one needs to integrate over the pitch angles, i.e. de�ne the function

G(x) =

∫
sinαF (x)dΩ/4π =

1

2

∫ π

0

F (x) sin2 αdα = x

∫ ∞

x

K5/3(ξ)

√
1− x2

ξ2
dξ.

(1.14)
The function G(x) can be expressed analytically in terms of modi�ed Bessel func-
tions (or alternatively in terms of Whittaker's functions, Crusius & Schlickeiser
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1.2. Radiation processes in leptonic models

1986), but there are also approximation formulas in terms of simple polynomials
(see e.g. Melrose, 1980; Zirakashvili & Aharonian, 2007). Throughout this thesis,
we have used the approximations derived in Aharonian et al. (2010), which provide
an accuracy better than 0.2% over the entire range of variable x

G(x) =
1.808x1/3

√
1 + 3.4x2/3

1 + 2.21x2/3 + 0.347x4/3

1 + 1.353x2/3 + 0.217x4/3
e−x. (1.15)

These functions correspond to relativistic and monoenergetic electrons interacting
with tangled magnetic �elds. There are, however, some interesting deviations from
these standard formulas. For example, an exception may occur if the magnetic �eld
in the source would be fully turbulent with zero mean component. In such a case,
the low-frequency part of the synchrotron spectrum could be harder than Fϵγ ∝ ϵ

1/3
γ

(Medvedev, 2006; Derishev et al., 2007; Reville & Kirk, 2010). Furthermore, if the
pitch angles of the particles are very small (less than 1/γ) then the emission di�ers
qualitatively from the usual synchrotron emission in the sense that it peaks at lower
energies and it falls o� linearly at small frequencies, ϵγ (Epstein, 1973; Epstein &
Petrosian, 1973).

In astrophysical problems we often encounter power-law electron distributions
(see also paragraph 1.2.2) of the form

dNe/dEe ∝ E−p
e Θ(Ee − Emin)Θ (Emax − Ee) , (1.16)

between a minimum and maximum energy, Emin and Emax, respectively. Here Θ(x−
x0) is the step function. The synchrotron radiation spectrum is then a power-law,
the index of which is related to the electron distribution index,

ϵγdṄγ/dϵγ ∝ ϵ
− p−1

2
γ (1.17)

and it spreads roughly from Emin
γ ∝ BE2

min to Emax
γ ∝ BE2

max, where B is the
magnetic �eld. Below the low energy cuto� Emin

γ the functional dependance of
the spectrum on the radiated photon energy is the same as the synchrotron kernel
function, i.e. ϵγdṄγ/dϵγ ∝ ϵ

1/3
γ . This feature is discussed in chapter 2 where we

investigate the assumption of a large value for the minimum cuto� of the electron
distribution for the interpretation of the hard spectrum sources, i.e. we examine
how both synchrotron and ICS appear in this case. In chapter 4 we also refer to the
shape of the synchrotron spectrum close to the maximum cuto� not only in the case
of a sharp, abrupt cuto� for the electron distribution, but under the more general
assumption of an exponential cuto� shape.

1.2.2 Inverse Compton Scattering

The interaction of relativistic electrons with low energy radiation through Inverse
Compton Scattering (ICS) provides one of the principal γ-ray production processes
in astrophysics. In a variety of astrophysical environments, from very compact ob-
jects like pulsars and Active Galactic Nuclei (AGN) to extended sources like super-
nova remnants and clusters of galaxies, low energy photons are e�ectively boosted
to high energies through this mechanism.
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1.2. Radiation processes in leptonic models

In the ICS process low energy photons of energy ϵγ are up-scattered by relativistic
electrons to higher energies Eγ. The basic features of the ICS have been analyzed
by Jones (1968), Blumenthal & Gould (1970). An extensive analysis can be found in
the aforementioned textbooks (Jackson, 1975; Rybicki & Lightmann, 1979; Longair,
2010). The total cross section of ICS is derived in quantum electrodynamics. In the
case of isotropic photons and electrons it can be shown that the spectrum of high
energy photons generated per unit time due to ICS from monoenergetic electrons is
(see e.g. Blumenthal & Gould (1970))

dṄγ/dEγ =

∫ ∞

0

W (Ee, ϵγ, Eγ)nph(ϵγ)dϵγ, (1.18)

where

Eemin =
1

2
Eγ

(
1 +

√
1 +

m2c4

ϵγEγ

)
, (1.19)

W (Ee, ϵγ, Eγ) =
8πr2ec

Ee η

[
2q ln q + (1− q)

(
1 + 2q +

η2q2

2 (1 + ηq)

)]
, (1.20)

and

η =
4 ϵγEe

m2c4
, q =

Eγ

η (Ee − Eγ)
. (1.21)

Here the function W (Ee, ϵγ, Eγ) in eq. (1.20) describes the total scattering proba-
bility. Ee comes from kinematic e�ects; it is the minimum energy that an electron
can have when it upscatters a soft photon of ϵγ to energy Eγ.

Two domains of scattering exist, depending on the energy of the ingoing photons
in the rest frame of the electrons. In the classical Thomson regime (coherent or
elastic scattering) the photons in the electron rest frame have energy much smaller
than the electron rest mass energy, η ≪ 1. The cross section in that case is ap-
proximately constant, σ ≈ σT and the maximum energy of the upscattered photons
is

Emax
γ = 4γ2ϵγ, (1.22)

while their average energy is

⟨Eγ⟩ =
4

3
γ2ϵγ. (1.23)

In the opposite case, (η ≫ 1, incoherent scattering), quantum e�ects become
important and electrons lose a substantial part of their energy in each scattering.
The maximum outgoing photon energy is then

Emax
γ = γmc2 (1.24)

as it obviously can not exceed the electron energy. Klein-Nishina e�ects lead to a
suppress of the cross section and this in turn has interesting e�ects on the electron
distribution and the emitted spectrum, as discussed in section 1.3.

The ICS spectrum of relativistic electrons has been intensively studied in the
literature. We know e.g. that the upscattering of soft photons by power-law electron
distributions produces power-law Compton spectra. The power-law index is di�erent
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in the Thomson and Klein-Nishina regimes. In the classical regime, it resembles the
synchrotron spectrum, i.e.

EγdṄγ/dEγ ∝ E
− p−1

2
γ , (1.25)

whereas in the Klein-Nishina limit it is steeper,

EγdṄγ/dEγ ∝ E−p
γ , (1.26)

(see e.g. Blumenthal & Gould, 1970; Aharonian & Atoyan, 1981c). In chapter 2
we examine the form of the spectrum below the low energy cuto�. This question
is related to how hard the ICS spectrum can be in either SSC or EC models. In
chapter 4 we examine a major issue of the radiated Compton spectrum that has
not been addressed in the literature, although the properties of the ICS spectrum
have been extensively investigated. We derive analytical approximations for the
shape of the high energy cuto� (for various target photons �elds), which provide as
with information for the acceleration processes that take place in the astrophysical
source.

1.3 A self-consistent approach: kinetic equation of

electrons

We have discussed the spectrum that arises from a power-law electron distribu-
tion, an assumption very often made in astrophysical application. However, for a
self-consistent approach, one needs to take into account the acceleration of particles
as well as the energy losses or/and the possible escape from the radiation source.

In a microscopical description the distribution function f(x,p, t) is de�ned by
the requirement that the number of particles in the volume element d3xd3p of phase
space is given by

dN = f(x,p, t)d3xd3p, (1.27)

where x the is space vector and p the momentum vector. The phase space volume
element as well as the distribution function are invariant under Lorentz transforma-
tion and thus, as naturally expected, the number of particles is also invariant. The
evolution of the distribution function is described by the Boltzmann equation

∂f

∂t
+ ẋ

∂f

∂x
+ ṗ

∂f

∂p
=

[
∂f

∂t

]
c

. (1.28)

The collision term on the right-hand side may account for various processes, such
as particle injection, acceleration, scattering, energy losses etc. If this term is zero
then the above equation is also referred to as Liouville equation. The reason is that
the left hand side represents the derivative of f along a trajectory and thus eq.
1.28 follows from the Liouville theorem which states that the distribution function
is constant along trajectories.
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1.3. A self-consistent approach: kinetic equation of electrons

In some astrophysical applications we often treat only injection/cooling prob-
lems. In that case the above equation 1.28 can be signi�cantly simpli�ed under the
continue loss approximation (also referred to as kinetic equation) according to which

∂F

∂t
+

∂(ĖeF )

Ee

= Q(Ee, t). (1.29)

Here, the function F is de�ned as F = dNe/dEe, under the assumption of isotropic
and spatially homogeneous distribution functions. In that case F = p2fdpd3x
(Ee = p for relativistic particles after setting c = 1). Q(Ee, t) is the source of parti-
cles and Ėe represents the energy losses. Energy losses can be radiative (synchrotron,
Compton, bremsstrahlung, due to pp or pγ interactions etc.) or non-radiative (e.g.
adiabatic losses). However, in this scheme particles are assumed to lose energy in
small fractions, which is not true e.g. for ICS losses in the Klein-Nishina regime.
The second assumption made here is that acceleration and energy losses of the parti-
cles are treated independently. The acceleration (for some cases) can be represented
phenomenologically by the injection term, implying that particles are accelerated in
a di�erent zone.

Fermi type acceleration

Particle acceleration can occur e.g. due to turbulence or plasma waves and in
this case it is commonly referred to as Stochastic Acceleration. Fermi 1949 �rst
proposed stochastic acceleration as a model for the production of cosmic rays (see
e.g. Petrosian 2012 for a recent review). Charged particles of velocity v ∼ c scatter
randomly at moving magnetized clouds of velocity u and they gain energy at a rate
∝ (u/c)2 mainly because the (energy gaining) head on collisions are more frequent
than the (energy losing) follow-up collisions. Because the energy gain is second order
in (u/c), this acceleration mechanism is also called 2nd order Fermi acceleration. The
scattering centers can be plasma waves or MHD turbulence (e.g. Sturrock 1966).
Later, Fermi (1954) suggested that particles can be accelerated by scattering back
and forth between the edges of a "magnetic bottle". This is the case of acceleration at
a shock front (Krymskii, 1977; Axford et al., 1978; Bell, 1978; Blandford & Ostriker,
1978). Energetic particles pass the shock and scatter o� magnetic �eld irregularities
(Alfven waves) in analogy to the magnetic bottle. This process is called Di�usive
Shock Acceleration (DSA) and because the gain in energy is proportional to vs/c,
where vs the shock velocity, is also known as 1st order Fermi acceleration2.

DSA normally produces power-law particle distributions, with a power-law index
of p ∼ 2 for strong shocks with compression ratio ρ = 4. Thus, a common assumption
is that the injection term has the form

Q(Ee, t) ∝ E−p
e Θ(Ee − Emin)Θ(Emax − Ee), (1.30)

2There are of course other types of particle acceleration mechanisms used in astrophysical
applications, such as acceleration in an electric �eld (e.g. Bednarek et al. 1996) or due to magnetic
reconnection (e.g. Lazarian et al. 2012). The Fermi-type acceleration processes are however among
the most popular and prominent theories.
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1.3. A self-consistent approach: kinetic equation of electrons

where Emin and Emax the minimum and maximum particle energy. If one addition-
ally assumes escape from the radiation zone at an "escape time" τ , then eq. 1.29
becomes

∂F

∂t
+

∂(ĖeF )

E
+

F

τ
= Q(Ee, t). (1.31)

The Green's function solution to this equation in the case of time-independent energy
losses and constant escape time was found by Syrovatskii (1959). Full analytical
solutions can be found for several types of injection and energy losses (Kardashev
1962). For example, for synchrotron type losses and constant power-law injection,
the resulting particle distribution has again a power-law form. In the fast cooling
regime (cooling timescale tcool smaller than escape timescale τ) this is a power-law
distribution steeper by a factor of 1,

F (Ee) =
1

Ėe

∫ ∞

Ee

dE ′
eQ(Ee) ∝ E−p−1

e . (1.32)

In the slow cooling regime (tcool ≫ τ), the power-law index remains the same

F (Ee) = τQ(Ee) ∝ E−p
e . (1.33)

On the other hand, if Compton losses in the Klein-Nishina regime dominate, then
the particle distribution will be harder due to the nature of the Klein-Nishina losses,
as was �rst realized by Blumenthal (1971). This e�ect is evident in the synchrotron
part of the spectrum which is as well harder, but not in the high energy Klein-
Nishina component because there, the suppression of the cross section compensates
the hardening of the particle distribution. Its importance in astrophysics has been
discussed in the context of di�erent non thermal phenomena, in particular by Aha-
ronian & Ambartsumyan (1985), Zdziarski et al. (1989), Dermer & Atoyan (2002),
Moderski et al. (2005), Khangulyan & Aharonian (2005), Kusunose & Takahara
(2005), Stawarz et al. (2006) and Stawarz et al. (2010).

Atoyan & Aharonian (1999) have derived a generalized solution of eq. 1.31 in
which both energy losses and escape can depend on time. These are interesting
cases that are actually expected to take place in astrophysical environments. A
time-dependent escape of the particles from the source of radiation is a natural
consideration, whereas the case of time-dependent energy losses allows to examine
some promising models, e.g. the evolution of particles in an expanding source. In
chapter 2 we develop a full solution based on Atoyan & Aharonian (1999) for the
case of adiabatic losses along the total energy range (and below the low-energy
cuto� of the electron distribution). This approach o�ers a reasonable interpretation
to the hard spectra. A solution of the particle' s kinetic equation is used also in
chapter 6, where we demonstrate that in a (strati�ed) jet a self-consistent approach
is equivalent with solving the kinetic equation in which, the time variable is replaced
by the spatial coordinate along the motion of the �ow. In that case, we show that
some special features may appear in the synchrotron spectrum, which are related to
the cooling break of the electrons, i.e. the energy at which we pass from the slow
cooling to the fast cooling regime.
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Power-law distributions are predicted as well in the stochastic acceleration sce-
nario (with di�erent power-law index) and also in acceleration at a gradual velocity
shear (see e.g. Rieger et al. 2007). However these two cases can not be treated
with eq. 1.31, as di�usion in momentum space has to be taken into account. The
appropriate description of the problem e.g. in the case of stochastic acceleration
is via a Fokker-Planck type momentum di�usion equation (which is also derived
from the Boltzmann equation), that includes di�usion in momentum (see Skilling,
1975; Melrose, 1980). Then, the isotropic phase space distribution (averaged over
all momentum directions) evolves according to

∂f

∂t
− 1

p2
∂

∂p

(
p2Dp

∂f(p)

∂p

)
+

f(p)

τ
+

1

p2
∂

∂p

(
p2ṗf(p)

)
= Q(p, t). (1.34)

Here, the second term represents the stochastic acceleration process and Dp is the
momentum-di�usion coe�cient. The third and fourth term are, as before, the escape
and energy loss terms. For a monoenergetic source term, i.e. Q(p, t) ∝ δ(p−p0) and
if the escape of the particles controls the evolution of the system, then the resulting
particle distribution in the steady state is a power-law, harder than in the case of
DSA (see e.g. Rieger et al. 2007),

dNe/dEe ∝ E−1
e . (1.35)

On the other hand, if (synchrotron-type) energy losses dominate, the steady state
solution of the Fokker-Planck equation is a relativistic, Maxwell-type electron dis-
tribution,

dNe/dEe ∝ E2
ee

−(Ee
Ec

)b , (1.36)

where, Ec denotes the cuto� energy and the index b is the shape of the exponential
cuto�. These distributions are extensively discussed in Chapter 2 where we show
that they o�er an attractive solution to the hard spectrum problem. Furthermore,
in chapter 3 we develop a multi-zone scenario according to which the combination
of relativistic Maxwell-type distribution can lead to the formation of broad spectra
with hard �aring events.

Doppler Boosting

After discussing the acceleration and radiation of the particles as well as the need
for a self-consistent approach, the last point for calculating the observed spectrum
concerns the Doppler boosting of the emitted luminosity. When the source moves
relativistically (as is proven to be the case for AGN jets), its radiation is beamed and
the radiated �ux enhanced (see e.g. Rybicki & Lightmann 1979). Thanks to special
relativity, we can �nd the relation of the various parameters between the comoving
and observed frame that arise from Lorentz transformations. Furthermore, we know
that due to light aberration an isotropic spherical source is seen to emit radiation
within a small cone of opening angle ∼ 1/Γ, where Γ is the Lorentz factor.

There are however several complications that take place in astrophysical sources.
For example, the radiation from a blob and a stationary jet are boosted di�erently.
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Di�erent beaming patterns hold also for the cases of EC and synchrotron/SSC ra-
diation. These questions are addressed in detail in chapter 5. We derive (based on
a solution of the photon transfer equation) the beaming patterns in the aforemen-
tioned cases for generalized (non-homogeneous, anisotropic, non-stationary) electron
distributions.

1.4 Interaction with the EBL

The EBL is the di�use light between the galaxies that comes from the stars. Its
origin is extragalactic and so is expected to be isotropic on large scales. Its spectrum
consists of two bumps spreading from UV to far infrared (see �g. 1.3). The �rst
component peaks at wavelengths around ∼ 1µm and consists of emitted photons
from stars. Part of this light is absorbed by dust in the universe and is re-emitted
in the infrared energy range, forming the second bump of the EBL which peaks at
∼ 100µm.

Direct measurements of the EBL are very di�cult because of strong foreground
emissions from the Milky Way and the Sun, especially the zodiacal light (Hauser &
Dwek 2001). The exact �ux level and shape are still a matter of debate as several
authors have attempted to estimate the EBL with di�erent techniques (for a recent
review see Domínguez et al. 2011 and references therein). There are basically three
approaches to calculate the EBL: (a) Backward evolution which starts with the
local galaxy population and scales it back in time, as a power-law in the redshift
(e.g. Stecker & Scully 2008). Complementary to the aforementioned approach
is the attempt to correct for the changing luminosity functions and SEDs with
redshift and galaxy type (e.g. Kneiske et al., 2004; Franceschini et al., 2008). (b)
Evolution directly observed and extrapolated based on a large set of multiwavelength
observations (e.g. Domínguez et al. 2011) and (c) Forward evolution which begins
with initial cosmological conditions and evolves taking into account gas cooling in
dark matter halos, formation of galaxies including stars and AGN, feedback for
these phenomena, stellar evolution, emission, absorption and re-emission of light
from dust (e.g. Gilmore et al. 2012).

Among other, the EBL �ux level and shape is highly relevant for understanding
the TeV emission from Blazars. The reason is that the TeV photons interact with the
EBL photons, through the pair productions process, γγ → e+e− (see e.g. Gould &
Schréder 1967). This mechanism results in the deformation of the intrinsic spectrum
because the optical depth depends on the energy of the emitted photons. The
deformation usually manifests as a softening, i.e. the observed photon index is
larger than the one characterizing the intrinsic spectrum. This e�ect is more evident
for more distant sources as the optical depth depends also on redshift (see �g.1.4).
Vice versa, when a soft photon TeV spectrum is observed, then the EBL corrected
intrinsic spectrum may be harder. In principle this should not be a problem as
we don't know in detail the intrinsic Blazar spectra. However, in some cases the
resulting spectra are very hard and can not be simply interpreted within standard
leptonic models.

Obviously di�erent models for estimating the EBL lead to di�erent hardness
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of the intrinsic spectrum, however, there is not a single EBL model for which all
sources are soft enough so that standard models can account for the emitted spectra
(for an extensive discussion on the hard spectrum sources and the problems arising
see Costamante 2012). On the other hand, evaluating the current EBL models only
by assuming the non-existence of very hard spectra does not appear to be a valid
criterium. As we show in chapter 2, under certain assumptions hard spectra can be
formed with leptonic models.

Figure 1.3: The EBL �ux level and shape according to di�erent models. The �gure
is taken from Domínguez et al. 2011
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Figure 1.4: Schematic sketch for the deformation of the emitted spectrum due to
the interaction of TeV photons with the EBL. Credit: E.D. Bloom (SLAC)

1.5 Aim of this thesis

The main objective of this thesis concerns an in-detail investigation of radiation
processes in AGN, embedded in a self consistent treatment, i.e. taking into account
the time evolution of the emitting particles, including radiative and non-radiative
(e.g. adiabatic) losses. In leptonic models the two basic radiation mechanisms
are synchrotron radiation and ICS. Synchrotron-Compton models have been both
popular and very often successful in the interpretation of the observed spectra of
Blazars. However, there are still unsolved problems and open issues that need to
be investigated in the context of leptonic models before alternative solutions are
adopted. The most common assumptions concern one-zone modeling and no time
evolution. However, in such complex systems like Blazars, these are likely to be
oversimpli�cations. Blazars are often observed in �aring states and furthermore
non-homogeneous out�ows are expected.

Related issues are addressed in chapter 2 and chapter 3 , particularly associ-
ated with the "puzzle" of the hard spectrum sources. As far as the AGN physics
is concerned, one main open issue is the unusually hard intrinsic Blazar spectra
that are revealed after correcting for the EBL. Leptonic models face strong di�cul-
ties in interpreting these observations within the standard one-zone models, as they
normally predict much steeper spectra in the TeV regime. In chapter 2 we show
that such spectra can be self-consistently explained within classical leptonic models
once adiabatic losses or stochastic acceleration is taken into account. The basic
assumption needed is a narrow electron energy distribution, which can be formed
and maintained quite naturally within the aforementioned scheme.
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Apart from such self-consistent solutions we can also consider multi-zones for
the emitting region. A suitable combination of narrow distributions (as Maxwellian-
type electron distributions) may then allow to interpret broader spectra too. Such
a scheme is capable of interpreting the broad spectrum of Mkn 501, equally or even
better than one smooth function which that is often examined. Furthermore, it
allows to explain hard �ares, like the one seen in Mkn 501 in 2009, once one (or
few) of the components become more energetic, either due to energy enhancement
or change of orientation. This consideration is developed within a "leading" blob
model which is explored in chapter 3 .

Obviously, though for so long and often studied, the leptonic models have more
to reveal concerning either one-zone models or more complex and possibly realistic
con�gurations. Even in on more basic level, namely regarding the radiation processes
themselves not embedded in a physical model that takes into account the evolution of
the particles, there are still unexplored issues proved to be important regarding the
information they o�er for the physics of the source. One of these issues is the shape of
the ICS spectrum close to the high energy cuto�. This is analyzed in chapter 4 . By
developing analytical approximations we directly link the exponential index as well
as the cuto� energy of the emitted spectrum to the corresponding parameters of the
parent electron distribution. These formulas allow us to extract crucial information
for the electrons and their acceleration process in the source. Additionally, they
shed light onto other matters like a possible dependance on the magnetic �eld from
the spatial coordinates, or a more accurate extraction of the source parameters by
the comparison of the two peaks of the SED.

Apart from the emission mechanisms themselves, the observed spectrum is af-
fected by the Doppler boosting due to the relativistic motion of the source. This is
an essential ingredient for linking the observed �ux in respect to the intrinsic �ux.
In chapter 5 we develop a solution of the photon transfer equation that allows
us to derive the di�erent beaming patterns for various processes, i.e. synchrotron
radiation, EC and SSC, in a concise way. In these calculation we extend the beam-
ing pattern formulas to include generalized particle distributions, non-stationary,
non-homogeneous and non-isotropic. This allows us to examine the interesting case
in which the particles exhibit an energy-dependent anisotropy. Interestingly, the
observed spectrum does not only exhibit di�erences as far as the total luminosity
is concerned but it also appears harder depending on the angle of observation. In
principle, dropping some basic assumptions, like isotropy or homogeneity, can reveal
interesting characteristics of the spectrum in respect to one-zone models. To some
extend, the "leading" blob model is also a non-homogeneous model, that successfully
explains spectral features that the standard models fail to interpret.

Concerning more realistic source con�gurations, it is particularly interesting to
examine non-homogeneous models where the relevant parameters vary in a contin-
uous way. In chapter 6 we investigate an out�ow with transverse strati�cation
assuming that particles are injected at the base of the jet, e.g. by DSA at a stand-
ing shock. The bulk Lorentz factor, the magnetic �eld, the particle number density
as well as the maximum energy are then assumed to vary across the jet. In a �rst
step we deal only with synchrotron radiation and we show that a variety of strati�-
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cation consequences arise. For example, the spectrum appears di�erent for di�erent
angles of observations. Furthermore special characteristics appear, like additional
spectral breaks, which are a direct evidence for non-homogeneous models. In total,
even in this �rst step, the observed (synchrotron) spectrum appears in some cases
substantially di�erent from the spectra that corresponds to one-zone models.
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Chapter 2

Formation of hard VHE γ-ray Blazar

spectra

The very high energy γ-ray spectra of some TeV Blazars, after being corrected
for absorption by the extragalactic background light (EBL), appear unusually hard.
The interpretation of these hard intrinsic spectra poses challenges to conventional
acceleration and emission models. A time-dependent, self-consistent consideration is
crucial, because even extremely hard initial electron distributions can be signi�cantly
deformed due to radiative energy losses.

The main goal of this chapter is to examine whether very hard γ-ray spectra
can be realized in time-dependent leptonic models. We investigate the parameter
space that allows for such a consideration both for synchrotron self-Compton (SSC)
and external Compton (EC) scenarios. We demonstrate that very steep spectra
can be avoided if adiabatic losses are taken into account. Another way to keep
extremely hard electron distributions in the presence of losses is to assume stochastic
acceleration models that naturally lead to steady-state relativistic, maxwellian-type
distributions.

We show that in either case leptonic models can reproduce TeV spectra as hard
as Eγ dN/dEγ ∝ Eγ for SSC models and Eγ dN/dEγ ∝ E

1/3
γ in an EC scenario.

Unfortunately this limits, to a large extend, the potential of extracting EBL from
gamma-ray observations of Blazars1.

2.1 The puzzle of hard γ-ray Blazar spectra

Though the standard one-zone SSC model, as well as the EC model, have been
the bread and butter for interpreting the high energy spectrum of Blazars, some re-
cent detections of VHE (Very High Energy) γ-rays from Blazars at redshift z ≥ 0.1
(in particular, 1ES 1101-232 at z = 0.186 and 1ES 0229+200 at z = 0.139), pose
challenges to the conventional leptonic interpretation. As discussed in detail in
the introduction, VHE γ-rays emitted by such distant objects arrive after signif-
icant absorption caused by their interactions with extragalactic background light

1The results discussed in this chapter are based on Lefa et al. 2011
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2.1. The puzzle of hard γ-ray Blazar spectra

(EBL) via the process γγ → e+e− (e.g., Gould & Schréder 1967). Reconstruction of
the absorption-corrected intrinsic VHE γ-ray spectra based on state-of-the-art EBL
models then yields unusually hard VHE source spectra, that are di�cult to account
for with the standard inverse Compton assumption.

The di�culty lies in the e�ect that the radiation losses have on the emitting elec-
tron distribution. Even if we (continuously) inject in the source the hardest possible
distribution, monoenergetic electrons, i.e. Q(γ) ∝ γδ(γ − γ∗), then synchrotron-
type losses will result in the development of a power-law distribution of the form
ne(γ) ∝ γ−2, as one can directly see from solution of the kinetic equation in the
steady-state case

ne(γ) ∝
1

γ̇

∫ ∞

γ

γδ(γ − γ∗)dγ ∝ γ−2Θ(γ∗ − γ). (2.1)

Note that hard VHE emission spectra can not be achieved even if one assumes
that particles cool due to ICS in the Klein-Nishina regime, in which case the steady
state particle distribution would indeed be harder due to the di�erent energy depen-
dance of the radiative losses (roughly speaking γ̇KN ∝ ln 4γϵ/mc2, see e.g. Blumen-
thal & Gould 1970). Nevertheless, this modi�cation would have a strong impact
only on the synchrotron component of the spectrum, but not in the TeV energy
band, because the particle distribution hardening is compensated by the reduction
of the scattering e�ciency (Moderski et al. 2005). The characteristic γ−2 behavior of
the electron distribution results in a photon spectrum of the form dNγ/dEγ ∝ E−Γ

γ ,
with a photon index of Γ = 1.5. Sources with smaller photon indices have been
reported. Even the 1.5 photon index is di�cult to achieve, as these sources peak at
very high energies where Klein-Nishina e�ects make the spectrum even steeper.

Current uncertainties on the EBL �ux level and spectrum (cf. Primack et al.
2011 for a recent review) introduce di�culties in de�ning how hard the absorption-
corrected source spectra are. However, for some sources the emitted spectra still
tend to be very hard, with an intrinsic photon index Γ ≤ 1.5, even when corrected
for low EBL �ux levels (Aharonian et al., 2006, 2007a). One characteristic case
concerns the distant (at z = 0.186) Blazar 1ES 1101-232, detected at VHE γ-ray
energies by the H.E.S.S. (High Energy Stereoscopic System) array of Cherenkov
telescopes (Aharonian et al., 2006, 2007a). When corrected for absorption by the
EBL, the VHE γ-ray data result in very hard intrinsic spectra, with a peak in the
SED above 3 TeV and a photon index Γ ≤ 1.5 (see e.g. �g. 2.1). A similar behavior
has also been detected in the BL Lacertae 1ES 0347-121 at z = 0.188 (Aharonian et
al. 2007) whereas even more extreme values for the de-absorbed photon index were
reported for the TeV Blazar 1ES 0229+200 at z=0.139 (Aharonian et al. 2007b).
Though there is a non-negligible uncertainty in the EBL �ux, the intrinsic spectra are
unusually hard even when one considers the lowest levels of the EBL (Franceschini
et al. 2008). Other models predicting higher EBL �ux lead to even harder photon
index close to 1 (e.g., Stecker & Scully 2008).

Interestingly, a recent analysis of Fermi LAT data for the nearby TeV Blazar Mkn
501 indicates a hard γ-ray spectrum (Γ close to 1) at lower (10-200 GeV) energies
(Neronov et al. 2011). Already in the original paper by the FERMI collaboration
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1ES 1101−232, March 5−16, 2005

1ES 1101−232, June 5−10, 2004

Figure 2.1: Spectral energy distribution of 1ES1101-232 for two di�erent epochs
(�gure taken from Aharonian et al. 2007). Open red circles denote the H.E.S.S. data
whereas the blue data at the TeV range represent the de-absorbed spectrum. With
black lines a homogeneous SSC model is presented, which fails to �t the ICS part
of the spectrum in both periods.

(Abdo et al. 2011), a strong spectral hardening is indicated during the ∼ 30 days
�are. This is strong evidence for unusually hard γ-ray spectra independent of the
question related to the level of EBL. Another (extreme) example for the existence
of hard spectra regards the MAGIC observations of the Quasar 3C279 at z=0.536
(Aleksi¢ et al. 2011) during 2007 and 2009. In January 2007 a very short �are was
detected (on timescales of a day) for which an extremely hard intrinsic spectrum,
Γ = −0.32±1.01 was inferred. Though the error bars are large, even the lower limit
for the photon index implies a hard �are.

Apart from the challenges arising for inverse Compton interpretations, hard VHE
spectra obviously carry important information about the level of the EBL, and thus
a deep understanding of the mechanisms acting within these sources becomes now
even more critical.

2.2 Suggested solutions

The "simplest" way to overcome the problem is to assume that there is no
absorption. In fact, this is possible in Lorentz invariance violation scenarios (Kifune
1999). The break of Lorentz invariance above a certain energy will be imprinted
at the mass shell condition with an additional term Φ(p,M, µ) that depends on the

23



2.2. Suggested solutions

mass, the momentum and an arbitrary constant µ related to the model which is
assumed for the symmetry breaking

ηijp
ipj = m2 + Φ(p,M, µ). (2.2)

The parameter M is a constant related to the scale at which the threshold anomaly
becomes important. Here, ηij = (+,−,−,−) is the Minkowski metric and pi =
(E,−p⃗) the four-momentum. For the pair production process the above modi�ed
relation in combination with energy and momentum conservation alter the threshold
of the interaction, since

2ϵEγ(1− cos θ)− 2E2
γΦ(p,M, µ) > 4m2, (2.3)

preventing the TeV photons to interact with the infrared photons of the EBL. We
should note however that this e�ect is likely to be true only above 2 TeV (Stecker &
Glashow 2001), whereas the hard spectra problem that we face in the case of distant
Blazars is relevant to sub-TeV energies as well.

Another non standard mechanism to avoid severe absorption in the EBL has
been suggested by De Angelis et al. (2009) (see also Hooper & Serpico 2007) who
proposed that the γ-ray photon is mixing with a very light axion-like particle (ALP).
These ALPs propagate una�ected by the EBL, reducing in this way the mean free
path of the photons and thus allowing softer intrinsic spectra. However, this sce-
nario requires the existence of exotic particles. To some extend a similar idea was
suggested by Essey et al. (2011) who assumed that the γ-rays from Blazars may be
dominated by secondary γ-rays produced along the line of sight by the interactions
of cosmic-ray protons with background photons. While primary γ-rays emitted by
the Blazar are attenuated in their interactions with the EBL, cosmic rays with ener-
gies 1016 - 1019 eV can cross cosmological distances and produce secondary γ-rays in
their interactions with the background photons. Protons are de�ected by magnetic
�elds and thus this mechanism leads to upper bounds of the intergalactic magnetic
�eld (see also Essey & Kusenko, 2010; Essey et al., 2010; Essey & Kusenko, 2012;
Prosekin et al., 2012), which have not yet been con�rmed by an alternative method
of magnetic �eld estimation.

In more standard astrophysical scenarios, formation of hard γ-ray spectra could
be related to production and absorption processes. Photon-photon absorption can
result in arbitrarily hard spectra provided that the γ-rays pass through a hot photon
gas with a narrow distribution such that Eγϵo ≫ mc2. In this case, due to the
reduction of the cross-section the source becomes optically thick at lower energies
and thin to higher energies leading to formation of hard intrinsic spectra (Aharonian
et al., 2008; Zacharopoulou et al., 2011). In such a scheme the primary TeV spectrum
could be due to synchrotron radiation of protons, whereas the low energy part is
attributed to synchrotron radiation of secondary electrons.

Finally, if we relate the hard γ-ray spectra to the production process then this
implies hard parent particle distribution. Outside standard leptonic models, a num-
ber of alternative explanations have been explored in the literature. In analogy to
pulsar winds, Aharonian et al. (2002) have analyzed the implications of a cold ultra-
relativistic out�ow that initially (close to the black hole) propagates at very high
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2.3. Stationary SSC with an energetic electron distribution

velocities. In this case, upscattering of ambient photons can yield sharp pile-up fea-
tures in the intrinsic source spectra. However, very high bulk Lorentz factors would
be required (Γb ∼ 107) and it seems not clear whether such a scenario can be applied
to Blazars. On the other hand, if Blazar jets would remain highly relativistic out to
kpc-scales (Γb ∼ 10) and able to accelerate particles, a hard (slowly variable) VHE
emission component could perhaps be produced by Compton up-scattering of CMB
(Cosmic Microwave Background) photons (Böttcher et al. 2008).

Hard spectra can occur in standard leptonic scenarios as well. In order to produce
hard γ-ray spectra, hard electron energy distributions are required. Although stan-
dard shock acceleration theories, both in the non-relativistic and relativistic regime,
predict quite broad, n(Ee) ∝ E−2

e -type, electron energy distributions, there are non-
conventional realizations which could give rise to very hard spectra (Derishev et al.,
2003; Stecker et al., 2007). On a more phenomenological level, Katarzy«ski et al.
(2006) have shown that the presence of an energetic power-law electron distribution
with a high value of the minimum cuto� energy can lead to a hard TeV spectrum.
In general, however, injection of a hard electron distribution is not a su�cient con-
dition as electrons are expected to quickly lose their energy due to radiative cooling
and thereby develop a standard n(Ee) ∝ E−2

e form below the initial cuto� energy. In
order to avoid synchrotron cooling, one needs to assume unrealistically small values
for the magnetic �eld (Tavecchio et al. 2009).

In this chapter we explore the conditions under which a narrow, energetic par-
ticle distribution is able to successfully account for the hard VHE source spectra in
time-dependent leptonic models. To this end, we examine di�erent electron distribu-
tions within the context of standard leptonic models, i.e. the one-zone SSC and the
external Compton scenario. We show that time-dependent generalization including
adiabatic losses can self-consistently allow for hard TeV spectra to be maintained,
without the need to avoid energy losses. As a second alternative, we discuss pile-up
(Maxwellian-type) electron distributions that are formed in stochastic acceleration
scenarios. These distributions are steady state solutions for which radiative (syn-
chrotron or Thomson) losses are already included. They provide an interesting
explanation for very hard TeV components as their radiation spectra share many
characteristics with the (hardest possible) mono-energetic distributions.

2.3 Stationary SSC with an energetic electron dis-

tribution

Within a stationary SSC approach, the hardest possible (extended) VHE spec-
trum is approximately Fν ∝ ν1/3, where Fν = dF/dν is the spectral �ux (di�erential
�ux per frequency band). This has a simple explanation: As discussed in the intro-
duction, the emitted synchrotron spectrum of a single electron with Lorentz factor γ
in a magnetic �eld B, averaged over the particle's orbit, obeys j(ν, γ) ∝ G(x), where
G(x) is a dimensionless function with x = ν/νc and νc ≡ 3γ2eB sinα/(4πmec). For
x ≪ 1, the functional dependence of G(x) is well approximated by G(x) ∝ x1/3,
while for x ≫ 1 one has G(x) ∝ x1/2e−x (e.g., Rybicki & Lightmann 1979). Hence,
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2.3. Stationary SSC with an energetic electron distribution

at low frequencies ν ≪ νc, the synchrotron spectrum follows j(ν) ∝ ν1/3. Compton
upscattering of such a photon spectrum in the Thomson regime by a very energetic,
narrow electron distribution will preserve this dependence and therefore yield a VHE
spectral wing as hard as Fν ∝ ν1/3 as shown below.

2.3.1 Power-law electron distribution with high value of low-

energy cuto�

A homogeneous SSC scenario with a high value for the low-energy cuto� of the
non-thermal electron distribution has consequently been proposed by Katarzy«ski
et al. (2006) in order to overcome the problem of the Klein-Nishina suppression of
the cross-section at high energies and reproduce VHE spectra as hard as 1/3. Let
us assume that the electron population follows a power-law distribution of index p
between the low- and high-energy cuto�s

N ′
e(γ

′) = K ′
eγ

′−p, γ′
min < γ′ < γ′

max , (2.4)

as often used in modeling the Blazar spectra. Here, prime quantities refer to the
blob rest frame and unprimed to the observer's frame. Taking relativistic Doppler
boosting (D) into account, the observed synchrotron �ux from an optically thin
source at distance dL is given by the integral of N ′

e(γ
′)dγ′ times the single particle

emissivity j′(ν ′, γ′) over the volume element and all energies γ′ (e.g., Begelman et
al. 1984), i.e.

F syn
ν =

D3

d2L

∫
V ′

∫
γ′
j′(ν ′, γ′)N ′

e(γ
′)dγ′dV ′ . (2.5)

The above expression yields the common power-law of index α = (p− 1)/2 between
the frequency limits νmin ∝ D(Bγ2

min) and νmax ∝ D(Bγ2
max). Below and above

those limits, the electrons with energy around the minimum and maximum cuto�
dominates and thus the spectrum approximately exhibits a slope Fν ∝ ν1/3 for
ν < νmin, and an exponential cuto� for ν > νmax, i.e.

F syn
ν ∝


ν1/3, ν ≪ νmin
ν− p−1

2 , νmin ≤ ν ≤ νmax
ν1/2e−ν , ν ≫ νmax

(2.6)

The hard 1/3-slope appears in the VHE range of EC γ-rays when the synchrotron
photons are up-scattered to higher energies by the electron population given by
equation (2.4) with a high γmin and provided that the Thomson regime applies.
Obviously, in the Klein-Nishina regime it will be signi�cantly steeper. In any case,
however, there exists a characteristic energy below which the Compton spectrum
mimics the behavior of the synchrotron spectrum Fν ∝ ν1/3.

Note that the ICS spectrum of a monochromatic photon �eld by monoenergetic
electrons approximately follows Fν ∝ ν at low energies (cf. Blumenthal & Gould
1970). Thus, any photon �eld which is softer (�atter) than Fν ∝ ν will dominate
the lower-energy part of the up-scattered emission and thus, in the standard SSC
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2.3. Stationary SSC with an energetic electron distribution

scenario the 1/3-VHE slope (the 4/3-slope in the νFν representation) is the hardest
that can be achieved.

An exception to this may occur if the magnetic �eld in the source would be fully
turbulent with zero mean component. In such a case, the low-frequency part of the
synchrotron spectrum could be harder than Fν ∝ ν1/3 (Medvedev, 2006; Derishev
et al., 2007; Reville & Kirk, 2010), which will be re�ected to low energy part of the
Compton component.

The "critical Compton energy" is usually ϵmin ≃ Dγ2
min(bγ

2
min), where b ≡

(B/Bcr)mec
2, Bcr = m2

ec
3/(e~), except for the case of deep Klein-Nishina (KN)

regime, i.e., when up-scattering of the minimum synchrotron photons by the min-
imum energy electrons occurs in the KN regime so that 4

3
bγ3

min > 1. If the latter
applies, then the corresponding energy below which one can see the hard 1/3-slope is,
as expected, γminmec

2, and it approximately corresponds to the peak of the emitted
luminosity for any power-law electron index (see Fig. 2.2). In total

F SSC
ν ∝ ν1/3, ν < νcmin ∝


Bγ3

min if 4
3
bγ3
min < 1

γmin if 4
3
bγ3
min > 1

(2.7)

In the KN regime, the peak appears especially sharp (e.g., Tavecchio et al. 1998),
and the Compton �ux has a strong inverse dependence on the value of γmin. For
example, for the realization presented in Fig. (2.2), the emissivity in this regime
roughly scales as jC ∝ γ−2.5

min , so that slight changes in γmin can lead to signi�cant
variations in amplitude of the Compton peak �ux. On the other hand, as long as
p < 3 (positive synchrotron slope in a νFν representation) the synchrotron peak
luminosity would remain approximately constant.

A power-law electron distribution with a large low-energy cuto� has been used in
Tavecchio et al. (2009) in order to reproduce the SED of the Blazar 1ES 0229+200
within a stationary SSC approach. The high value of γmin ∼ 105 then ensures that
the hard Compton part of the spectrum with 1/3-slope is in the TeV range. The
generic di�culty for such an approach is that an energetic electron distribution
is expected to quickly develop a γ−2-tail below γmin due to synchrotron cooling,
thereby making the Compton VHE spectrum softer (see Fig. 2.3). To overcome this
problem, Tavecchio et al. (2009) suggested an unusually low value for the magnetic
�eld, B ∼ (10−4 − 10−3) G, that would allow the electron distribution to remain
essentially unchanged on timescales of up to a few years. Obviously, one would then
not expect to observe signi�cant variability on shorter timescales. We should note
however that this requirement can be relaxed if one assumes that the detected γ-ray
signal is a superposition of short �ares which can not be individually detected.

Arguments based on magnetic �ux conservation naively suggest that the mag-
netic �eld value, when scaled from the black hole region to the emission site, should
be at least one or two orders of magnitude larger so that one would need to destroy
magnetic �ux for such a scenario to work. On the other hand, a narrow but very
energetic electron distribution in combination with such low magnetic �eld strengths
implies a strong deviation from equipartition, thereby obviously facilitating an ex-
pansion of the source.
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Figure 2.2: Stationary SSC spectra for di�erent values of the low-energy cuto�.
Above γmin ∼ 3 × 105 we are very deep in the Klein-Nishina regime and the peak
of the Compton emission appears very sharp. As one reduces γmin, the suppression
of the cross-section decreases and the minimum Compton energy drops to lower
energies. Thus, the peak of the Compton �ux raises signi�cantly, whereas the syn-
chrotron peak remains constant. A Doppler factor D = 50 has been used.

2.3.2 Relativistic Maxwellian electron distribution

As far as a narrow energetic particle distribution is concerned, a relativistic
Maxwellian distribution may come as a more natural representation. Such an elec-
tron distribution can be the outcome of a stochastic acceleration process (e.g., 2nd
order Fermi) that is balanced by synchrotron (and/or Compton) energy losses, or
in general any energy loss mechanism that exhibits a quadratic dependence on the
particle energy (see e.g., Schlickeiser, 1985; Aharonian et al., 1986; Henri & Pelletier,
1991; Stawarz & Petrosian, 2008).

Consider for illustration the Fokker-Planck di�usion equation which describes
the stationary distribution function f(p) of electrons that are being accelerated by,
e.g., scattering o� randomly moving Alfvén waves in an isotropic turbulent medium,

1

p2
∂

∂p

(
p2Dp

∂f(p)

∂p

)
+

1

p2
∂

∂p

(
βsp

4f(p)
)
= 0 , (2.8)

where Dp is the momentum-space di�usion coe�cient. Particle escape is neglected
in eq. (2.8), as the timescale for synchrotron cooling is expected to be much smaller
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Figure 2.3: Evolution of the observed SSC spectrum for constant injection of a
narrow power-law electron distribution, with modi�cations due to synchrotron cool-
ing taken into account. The magnetic �eld is B = 1G. The hard (1/3) synchrotron
and Compton spectral wings are observed for timescales shorter than the cooling
timescale of the γ0-particles, i.e., in the present application for timescales ≤ 0.1
days. The �gure shows the expected spectral evolution for a total (observed) time
t ∼ 1 day. Parameters used are R0 = 7.5× 1014 cm, γmin = 7× 104, γmax = 2× 106,
power law index p = 2.85 and Doppler factor D = 25. The total injected power is
Q ∼ 1041 erg/sec.

than the one for electron escape.
For scattering o� Alfvén waves, one has Dp = p2

3τ
(VA
c
)2 ≡ D0p

2−αp , with VA =
B√
4πρ

the Alfvén speed and τ = λ/c ∝ pαp , αp ≥ 0, the mean scattering time
(e.g., Rieger et al. 2007). If the turbulent wave spectrum W (k) ∝ k−q is assumed
to be Kolmogorov-type (q ≃ 5/3) or Kraichnan-type(q = 3/2), the momentum-
dependence becomes αp = 1/3 and αp = 1/2, respectively. Bohm-type di�usion,
on the other hand, would imply αp = 1, while hard-sphere scattering is described
by αp = 0. Note, however, that if one considers electron acceleration by resonant
Langmuir waves, even Dp = const (αp = 2) may become possible (Aharonian et al.
1986).

The synchrotron energy losses that appear in the second term of Eq. (2.8) are

dp

dt
= −βsp

2 = −4

3
(σT/m

2
ec

2)UBp
2 (2.9)
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2.3. Stationary SSC with an energetic electron distribution

In the γ-parameter space, the solution of Eq. (2.8) yields a relativistic Maxwell-
like energy distribution,

dNe(γ)/dγ = f(γ) = Aγ2e−(
γ
γc
)
1+αp

, (2.10)

(αp ̸= −1) with

γc =

(
[1 + αp]D0

βs

)1/(1+αp)

(mec
2)−1 , (2.11)

and constant A to be de�ned by the initial conditions. Note that this is a steady-
state solution including radiative losses and there is no need to invoke extreme values
for the magnetic �eld. The critical Lorentz factor γc approximately corresponds to
the energy at which acceleration on timescale

tacc =
3

4− αp

(
c

VA

)2

τ (2.12)

is balanced by (synchrotron) cooling on timescale tcool = 1/[βsp]. Depending on
the choice of parameters, a relatively large range of values for γc is possible and
thus, cuto� energies of the order of γc ∼ 105 may well be achieved. Consider, for
example, Bohm-type di�usion with τ = ηrg/c, rg = γmec

2/(eB) the electron gyro-
radius and η ≥ 1. Using tacc = tcool, the maximum electron Lorentz factor becomes
γc ≃ 106 (vA/0.01c) (1 G/B)1/2η−1/2.

The synchrotron spectrum that arises from a Maxwell-like electron distribution is
dominated by the emission of electrons with γc (Fig. 2.4). It exhibits the character-
istic 1/3-slope up to the corresponding "synchrotron cuto� frequency" hνsyn

c ∼ Dbγ2
c

where b = B/Bcr and Bcr = m2c3/e~. Thus the Compton spectrum is very similar
to the one resulting from a narrow power-law if one chooses a value for the cuto� en-
ergy close to the minimum electron energy of the power-law distribution. The peak
of the Compton �ux then contains information for the cuto� energy as νcpeak ∝ γc.

Note that for an electron distribution of the form of eq. (3.1) that exhibits an
exponential cuto� ∝ exp[−(γ/γc)

β], the corresponding cuto� in the synchrotron
spectrum appears much smoother, ∝ exp[−(ν/ν∗)

β/(β+2)] (Fritz, 1989; Zirakashvili
& Aharonian, 2007). The position of the synchrotron peak �ux, νp, is then also
dependent on β, and one can show that for β = 1 (or αp = 0 in the previous
notation) an important factor ∼ 10 arises, so that νp = 9.5νc, whereas for β = 3
the synchrotron peak corresponds approximately to the electron cuto� as νp = 1.2νc
(e.g., Fig. 2.4). For an extended discussion on the cuto� energies for the synchrotron
and ICS spectrum see chapter 4.
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2.3. Stationary SSC with an energetic electron distribution
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Figure 2.4: SSC modeling with di�erent electron distributions. Black line:

Power-law with large value of the minimum energy (as in Tavecchio et al. 2009).
The parameters used are γmin = 5× 105, γmax = 4× 107, power law index p = 2.85,
B = 4×10−4 G, ke = 6.7×108 cm−3, R = 5.4×1016 cm and Doppler factor D = 50.
Red line: Relativistic Maxwellian distribution Ne = Keγ

2 exp(− γ
γc
) with parame-

ters γc = 1.5× 105, B = 0.07 G, Ke = 3× 10−14cm−3, R = 2× 1014cm and D = 33.
The peak of Compton �ux occurs in the KN regime as (B/Bcr)γ

3
c ≃ 160 ≫ 1. Blue

line: Relativistic Maxwellian distribution Ne = Keγ
2 exp(− γ

γc
)3 with parameters

γc = 5.3× 105, B = 0.06 G, Ke = 4× 10−15 cm−3, R = 2× 1014 cm and D = 33.
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2.4. Time dependent case - expansion of the source

2.4 Time dependent case - expansion of the source

Expansion of the source could change the conclusions drawn above. In particular,
if one assumes a very low magnetic �eld such that synchrotron losses are negligible,
then adiabatic losses may become important and alter the electron distribution. In
this section, we examine the behavior of the system for a power-law electron distri-
bution with a high value of the low-energy cuto� discussed above. For simplicity,
we consider a spherical source that expands with a constant velocity u,

R(t) = R0 + u(t− t0) . (2.13)

The relativistic electron population will be a�ected by synchrotron losses,

Psyn = −dγ

dt
=

σTB(t)2γ2

6πmec
, (2.14)

and by adiabatic losses (e.g., Longair 1982),

Pad = −dγ

dt
≃ 1

3

V̇

V
γ =

Ṙ(t)

R(t)
γ =

u

R(t)
γ . (2.15)

As the emission region expands, the magnetic �eld decreases. We consider a scaling
B ∝ (1/R)m ∝ (1/t)m with 1 ≤ m ≤ 2 to study the evolution of the system.
The limiting value m = 2 corresponds to conservation of magnetic �ux for the
longitudinal component, whereas m = 1 holds for the perpendicular component.
(Note that for m = 1 the ratio of the electrons' energy density to the magnetic �eld
energy density remains constant). Which energy loss process then determines the
electron behavior depends mainly on the magnetic �eld strength and the size of the
source. A simple comparison of the above relations shows that when Pad > Psyn,
i.e.,

B(t)2R(t) <
6πmec

2

σT

(u
c

) 1

γ
= 2.3× 1019

(u
c

) 1

γ
(2.16)

adiabatic losses dominate over radiative losses. For example, if one considers expan-
sion at speed u ∼ c and an initial source dimension R0 ∼ 1014 cm, then for energies
below γ ∼ 107 the magnetic �eld can be as large as B ∼ 0.1 G and for energies less
than γ ∼ 105 the adiabatic losses are still dominant for a value of B ∼ 1 G. If the
expansion of the source would not a�ect the hard slope at TeV energies, this could
thus allow for a relaxation of the values used for SSC modeling of the source. In
order to investigate this scenario in more detail, one needs to solve the electrons'
kinetic equation

∂Ne(γ, t)

∂t
=

∂

∂γ
(PadNe(γ, t))−

Ne(γ, t)

τe
+Q(γ, t) , (2.17)

where τe is the characteristic escape time and Ne the di�erential electron number.
For simplicity, we neglect the escape term (τe → ∞), assuming that the sources
expands with relativistic speeds u ∼ (0.1− 1)c. For a constant expansion rate and
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2.4. Time dependent case - expansion of the source

continuous injection with rate Q(γ, t) → Q(γ,R), we can replace the time variable
t by the source dimension R. Then, the general solution of the kinetic equation (eq.
(30) from Atoyan & Aharonian 1999) for the case of dominance of adiabatic losses
is reduced to

Ne(γ,R) =
R

R0

N0

(
R

R0

γ

)
+

1

u

∫ R

R0

R

r
Q

(
R

r
γ, r

)
dr , (2.18)

where the �rst term corresponds to the initial conditions, the contributions of which
quickly disappears, and the second term relates to the continuous injection of rela-
tivistic electrons. R0 is the source dimension at the initial time t0.

We consider zero initial conditions (N0 = 0) and power-law injection of relativis-
tic particles at constant rate

Q(γ,R) = Q0γ
−p1 Θ(γ − γ0,min)Θ(γ0,max − γ)Θ(R−R0) , (2.19)

where Θ denotes the unit step function

Θ(x− x0) =

{
1, x > x0

0, x < x0 ,
(2.20)

p1 > 0 is the momentum index and R0 the radius at which injection starts. At
radius R, electrons with initial cuto� energies γ0,min and γ0,max will have energies
γR,min and γR,max, respectively, as they evolve according to Eq. (2.15), i.e. we have

γR = γ0
R0

R(t)
∝ 1

t
. (2.21)

From the properties of the step-function, the integral can be written as

Ne(γ,R) =
Q0γ

−p1

u

∫ R

R0

(
R

r

)1−p1
Θ

(
r − Rγ

γ0,max

)
Θ

(
Rγ

γ0,min
− r

)
dr

=
Q0γ

−p1

u

∫ min[R, Rγ
γ0,min

]

max[R0,
Rγ

γ0,max
]

(
R

r

)1−p1
dr (2.22)

The comparison of the values for the lower and maximum limits of integration will
result in the di�erent branches of the solution, whereas ensuring that the two limits
do not overlap reveals a critical radius R∗ = R0γ0,max/γ0,min at which γR,max, i.e. the
energy of an electron with initial injected energy γ0,max at R, becomes less than the
initial γ0,min. The following two cases can be distinguished:

For R < R∗, or equivalently as long as γR,max > γ0,min, we have

N(γ,R) =
Q0

p1u
R



γ−p1
[
1−

(
γ

γ0,max

)p1]
, γR,max < γ < γ0,max

γ−p1
[
1−

(
R0

R

)p1]
, γ0,min < γ < γR,max

γ−p1
0,min −

(
Rγ
R0

)−p1
, γR,min < γ < γ0,min

(2.23)
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2.4. Time dependent case - expansion of the source

For R > R∗, or equivalently as long as γR,max < γ0,min, the solution is

N(γ,R) =
Q0

p1u
R



γ−p1
[
1−

(
γ

γ0,max

)p1]
, γ0,min < γ < γ0,max

γ−p1
0,min − γ−p1

0,max, γR,max < γ < γ0,min

γ−p1
0,min −

(
Rγ
R0

)−p1
, γR,min < γ < γR,max

(2.24)
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Figure 2.5: Illustration of the evolution of the electron distribution for constant
injection and dominant adiabatic losses. The expansion of the source does not
modify the power-law index above the initial low-energy cuto� γ0,min, whereas below
it the distribution becomes approximately �at. The electron number density depends
on the radius as ne ∝ R−2

The two solutions exhibit the same behavior. The di�erential electron number
density drops with radius as ne(γ,R) = Ne(γ,R)

Volume
∝ R−2, and above the initial low-

energy cuto� γ0,min adiabatic losses do not modify the power-law index ne(γ, t) ∝
γ−p1 (Kardashev 1962). Below γ0,min the resulting distribution is constant with
respect to the electron energies, ne(γ,R) ∝ γ0 (Fig. 2.5). The γ0-part of the electron
population does not show up in the spectrum meaning that the contribution of the
injected γ0,min electrons (generating a 1/3-synchrotron wing) remains dominant at
low energies (Fig. 2.6). Thus now, in contrast to the synchrotron cooling case,
below the injected cuto� the �ux is Fν ∝ ν1/3. For this reason, the classical hard
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2.4. Time dependent case - expansion of the source

spectrum picture at the TeV range can remain for timescales analogous to the source
size. Even though electrons cool adiabatically as the source expands, the hard 1/3-
synchrotron slope always appears below the synchrotron frequency related to the
initial minimum Lorentz factor

νsyn
min ∝ γ2

0,minB(R) ∝ 1

tm
. (2.25)

Note that any decrease of this break energy occurs due to a decrease of the magnetic
�eld. This is di�erent to the pure synchrotron cooling case, where the corresponding
break energy follows the evolution of the minimum electron energy so that νsyn

min ∝
1/t2. The same consideration holds for the energy regime where Compton scattering
occurs. When we are deep in the KN regime (b(R)γ3

0,min > 1) the energy below which
the hard slope remains is, as mentioned above,

νCmin ∝ γ0,min . (2.26)

It therefore does not move to lower energies though the corresponding synchrotron
frequency does (in the pure synchrotron cooling case, obviously, νCmin ∝ 1/t2). As the
source expands and the magnetic �eld drops, there will be an instant t corresponding
to a radius R at which the KN regime no longer applies, and the break Compton
frequency becomes

νCmin ∝ B(R)γ4
0,min ∝ 1

tm
, (2.27)

which now moves to lower frequencies with the same rate as the synchrotron one
(note that this reveals a very di�erent time-dependence compared to the pure syn-
chrotron cooling case where now νCmin ∝ 1/t4). However, the peak of the Compton
�ux still remains close to the initial γ0,min energy (Fig. 2.7 left panel), and in total
the decrease of the synchrotron peak �ux is much stronger than the decrease in
the Compton peak �ux (Fig. 2.7 right panel). In general, the dependence of the
magnetic �eld on the radius R has important consequences for the behavior of the
system even though the synchrotron losses are not important. The synchrotron peak
�ux varies as

F syn
ν ∝ NeB(R)2 (2.28)

and as we know from the solution of the kinetic equation that Ne ∝ R, the vari-
ability of the synchrotron luminosity should re�ect the magnetic �eld dependence.
The Compton �ux, on the other hand, does not necessarily vary quadratically with
respect to the synchrotron �ux. As discussed above, the drop of the minimum
Compton energy (which occurs naturally within the expansion-scenario) reduces
the suppression of the cross-section and thereby supports the Compton emission.
The variability pattern after "saturation" can therefore approach a quasi-linear de-
pendence (cf. Fig 2.7 right panel). Initially, during the raising phase before the two
luminosities reach their maximum, the Compton �ux can vary much more strongly,
almost more than quadratically, with respect to the synchrotron �ux. Moreover,
close to saturation the Compton luminosity can exhibit a delay with respect to the
synchrotron one as it reaches its maximum at later times compared to the syn-
chrotron luminosity.
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2.5. The external Compton scenario
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Figure 2.6: (a) Evolution of the observed SSC spectrum with constant injection
of a narrow power-law and dominant adiabatic losses. As the source evolves, the
synchrotron peak decreases and gets shifted to smaller energies following the decrease
of the magnetic �eld. For the magnetic �eld, we use an initial value B0 = 0.075 G
and we assume that it scales as B = B0 (R0/R) (i.e., m = 1). The initial radius is
R0 = 7.5 × 1014 cm, expanding up to R = 10R0 (at u = 0.1 c) and corresponding
to observed timescales of the order of t ∼ 30/D days. The total injected power is
Q ∼ 5 × 1041 erg/sec. Other parameters used are γmin = 3 × 105, γmax = 2 × 107,
power law index p1 = 2.85, Doppler factor D = 25 and Q0 = 1.5× 1052 sec−1. Note
that timescales are comparable to the synchrotron cooling case. (b) Same as in left
panel but for a di�erent magnetic �eld scaling, m = 2. Other parameters are the
same.

The above considerations apply to situations where the expansion of the source
completely determines the evolution of the system. In reality, synchrotron losses
could modify the electron distribution at high energies, namely for

γ > γ∗ =
6πmec

2

σTRB(R)2

(u
c

)
. (2.29)

However, as synchrotron losses decrease faster than adiabatic losses, one only needs
to ensure that initially γ∗ > γ0,min. The change of the electron power index from
−p1 to −p1 − 1 due to synchrotron cooling (cooling break) above γ0,min would then
not disturb the hard 1/3 slope in the TeV range.

2.5 The external Compton scenario

An alternative hypothesis to the SSC scenario concerns the Comptonization of a
radiation �eld external to the electron source. In general, the optical-UV radiation
�eld produced by a standard accretion disk could represent a non-negligible external
source of photons to be up-scattered to the VHE γ-ray part of the spectrum. In
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Figure 2.7: (a) Evolution of the SSC spectrum with dominant adiabatic losses
(for B ∝ 1/R, i.e., m = 1) from R0 = 7.5 × 1014 cm to R = 10R0. Whereas the
synchrotron peak gets with time signi�cantly shifted to lower energies, the Compton
peak can appear almost static. Synchrotron and Compton �uxes are shown until
maximum (with red lines) and after (with black lines).(b) Evolution of the corre-
sponding observed luminosities. The Compton �ux reaches its maximum at greater
radius (i.e., later) compared to the synchrotron one. While during the raising phase
the variability pattern approximately shows a quadratic behavior, the correlation
becomes almost linear during the declining phase.

the introduction we discussed that this radiation �eld could be up-scattered either
directly by the relativistic electrons of the jet (with target photons coming mostly
from the accretion disk, Dermer & Schlickeiser (1993)) or more e�ectively after
being reprocessed/re-scattered by emission line clouds like the broad line region
(BLR) (Sikora et al. 1994). In external Compton (EC) scenarios, the geometry of
the source and the location of the photon �eld with respect to the jet are of high
importance as they can result in strong boosting or de-boosting e�ects on the photon
energies. Here we explore the possibility of producing a hard TeV spectrum within
the EC approach. We consider the BLR case, where the photon �eld is strongly
boosted in the frame of the jet and up-scattered to higher energies.

Let us consider a blob of relativistic electrons that travels with the jet of bulk
Lorentz factor Γ along the z-axis. The jet passes through a region assumed to be
�lled with isotropic and homogeneous photons that obey a Planckian distribution
of temperature T ∼ 104 − 105K (corresponding peak frequency νd = 2.82kT/h ∼
5× 1014 − 1015 Hz). The central disk photon �eld is then characterized by a special
intensity

Idν =
2hν3

c2(e
hν
kT − 1)

, (2.30)

a fraction ξ < 1 of which we assume is isotropized by re-scattering or reprocessing
in the BLR (Sikora et al. 2002), so that the spectral energy density of the target
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2.6. Summary and application to 1ES 0229+200

photon �eld is

UBLR
ν =

ξLdν
4πcr2BLR

, (2.31)

where Ldν = 4π2r2dI
d
ν is the spectral luminosity of the disk and where we take rd ∼ rs

for the disk radius.
In order to take anisotropic e�ects into account, we transform the electron distri-

bution from the comoving blob frame K ′ to the rest frame K of the external photon
�eld, which in our case coincides with the observer's frame (Georganopoulos et al.
2001). Electrons are assumed to be isotropic in the blob frame K ′. In the photon
frame K they exhibit a strong dependence on the angle θ, which is the observer's
angle. As the up-scattered photons travel inside a cone of opening angle 1/γ, we can
make the approximation that they follow the direction of the electrons. The angle
between the electron momentum and the bulk velocity of the jet coincides with the
observer's angle. The observer practically sees radiation only from electrons that in
the photon frame are directed towards him. The observed �ux then is

Fϵγ =
D3

d2L

∫
N ′
e(
E

D
) W (E, ϵph, ϵγ) nph(ϵph)dE dϵph (2.32)

where Ne(E) denotes the di�erential number of electrons per energy per solid angle,
and W = Eγ

dN
dtdEγ

is the scattered photon spectrum per electron (Blumenthal &
Gould 1970). The unprimed quantities refer to the external photon �eld frame with
number density nph(ϵph) and the primed ones to the blob rest frame. Eq. 2.32 is
derived analytically in chapter 5.

We show the calculated Compton spectrum for a Maxwellian electron distribu-
tion in Fig. 2.8. The resulting TeV slope appears even harder than in the SSC case,
with a limiting value of Fν ∝ ν. Any photon �eld which is softer than Fν ∝ ν
will dominate the Compton spectrum at low energies, as in our SSC model case
where the up-scattered (synchrotron) photon spectrum follows Fν ∝ ν1/3. In all
other cases, like in the external Compton scenario with a Planckian photon �eld
(that at low energies follows Fν ∝ ν2), the characteristic behavior of the Compton
cross-section appears, implying that the Compton spectrum at low energies (i.e.,
below ∼ γ2

c ϵc, where γc is the electron break frequency in the photon rest frame)
is dominated by the contribution from the upscattering of the peak photons with
ϵc ∼ 3kT , yielding a Fν ∝ ν dependence.

A similar consideration holds for a narrow (energetic) power-law electron distri-
bution in an expanding source scenario. A hard VHE component Fν ∝ ν should
then appear below Dγ0,min. The critical energy below which one can see this hard
behavior of the Compton �ux will not move to lower energies as the external target
photon �eld is quasi-stable, so that the condition for the deep Klein-Nishina regime
γ0,minϵc > 1 does not change.

2.6 Summary and application to 1ES 0229+200

The observed hard γ-ray spectra of Blazars are di�cult to explain within the
most popular leptonic synchrotron Compton models. The n(E) ∝ E−2 shape, that
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Figure 2.8: External Compton scenario for a Maxwellian-type electron distribution
(with αp = 0). The observed spectrum is calculated for di�erent angles θ to the
observer. The synchrotron slope follows Fν ∝ ν1/3. In the TeV range Fν ∝ ν, i.e.,
harder than in the SSC case. The dashed line corresponds to the assumed disk
spectrum. The bulk Lorentz factor of the jet is Γ = 13 and the peak energy of
the electron distribution is γc = 2 × 104. For the disk photon �eld a temperature
T = 1.75× 104 K is assumed. The relevant radius Rd of the disk is considered to be
of the same dimension as the jet (1015 cm). The magnetic �eld is B = 1 G and a
fraction ξ = 0.1 of the disk photons is assumed to be rescattered by the BLR.

the electron energy distribution is expected to quickly develop due to synchrotron
cooling, usually results in a Fν ∝ ν−1/2 radiation spectrum and therefore represents
the limiting value of how hard the up-scattered spectrum can be in the TeV range.
Moreover, modi�cation due to Klein-Nishina e�ects can make the up-scattered TeV
spectrum steeper and shift the Compton peak to much lower energies than observed.

However, intrinsic source spectra as hard as Fν ∝ ν−1/2 exist, even when one
only corrects for the lowest level of the EBL, most notably in the case of 1ES 1101-
232 and 1ES 0229+200 (Aharonian et al., 2006, 2007b). Most likely, the real source
spectra are even harder. Investigating the possibility of forming hard VHE Blazar
spectra appears therefore particularly important. Methodologically, it seems nec-
essary to �rst examine the "conventional" radiation and acceleration mechanisms,
that have often been successful in interpreting Blazar observations, before adopting
very di�erent and often more extreme solutions.
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2.6. Summary and application to 1ES 0229+200

The results of this work show that within a simple homogeneous one-zone SSC
approach, a power-law particle distribution with a large low-energy cuto� can in
principle produce a hard (α = 1/3) � slope in the VHE domain (Fν ∝ να) by re�ect-
ing the characteristic low-energy slope of the single particle synchrotron spectrum
(cf. also Katarzy«ski et al. 2006). As shown in section 2.5, even harder VHE spec-
tra approaching Fν ∝ ν (α = 1) can be achieved in the external Compton case
for a Planckian-type ambient photon �eld. In total, the hardest possible intrinsic
spectrum follows

F ICS
ν ∝

 ν1/3 for SSC

ν for EC
(2.33)

A power-law electron distribution with a high low-energy cuto� has been used in
Tavecchio et al. (2009) to model the emission from 1ES 0229+200 within a stationary
SSC approach. In order to avoid the above noted synchrotron cooling problem, an
unusually low value for the magnetic �eld strength was employed, leaving the particle
distribution essentially unchanged on the timescales of several years. This goes along
with a strong deviation from simple equipartition by several orders of magnitude
(i.e., uB/ue <∼ 10−5). While it is known from detailed spectral and temporal SSC
studies of the prominent γ-ray Blazar Mkn 501 that TeV sources may be out of
equipartition (Krawczynski et al. 2002), the SSC modeling of 1ES 0229+200 suggest
the hard spectrum sources belong to the more extreme end (within external Compton
models values closer to equipartition may be achieved, depending on the external
photon �eld energy density). On the other hand, a large electron energy density
(strongly exceeding the magnetic �eld one) could well facilitate an expansion of the
source, and this motivates a time-dependent analysis:

Using a time-dependent SSC model, we have shown that the hard (α = 1/3)-
VHE slope can be recovered, when adiabatic losses dominate over the synchrotron
losses for the low-energy part of the electron distribution (i.e., for Lorentz factors
less than the injected γmin). The main reason for this is, that the resultant electron
distribution below γmin becomes �at and therefore does not show up in the SSC
spectrum. Interestingly, this scheme also allows us to relax the very low magnetic
�eld constraints.

We also examined the relevance of a Maxwellian-like electron distribution that
peaks at high electron Lorentz factors ∼ 105. Such a distribution represents a simple
time-dependent solution that already takes radiative energy losses into account, and
turns out to be capable of successfully reproducing the hard spectra in the TeV range
(with limiting values α = 1/3 and α = 1, respectively). Maxwellian distributions
can be the outcome of a stochastic acceleration process balanced by synchrotron
or Thomson cooling. Depending on the physical conditions within a source, e.g., if
particles undergo additional cooling in an area di�erent from the acceleration one
(Saugé & Henri, 2006; Giebels et al., 2007), or if the medium is clumpy supporting a
"multi-blob" scenario in which the observed radiation is the result of superposition
of regions characterized by di�erent parameters (see chapter 3), the combination of
pile-up distributions may allow a suitable interpretation of di�erent type of sources.
For the case presented here, they demonstrate a physical way of achieving the high
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Figure 2.9: The hard spectrum Blazar 1ES 0229+200 at z=0.139 with SED mod-
eled within an SSC approach using Maxwellian-type electron distributions. All pa-
rameters used are the same as in Fig.2.4. Data points shown in the �gure are from
Zacharopoulou et al. (2011), where the intrinsic (de-absorbed) source spectrum has
been derived based on the EBL model of Franceschini et al. (2008) with (i) EBL
level as in their original paper ("low level EBL") and (ii) (maximum) EBL level
scaled up by a factor of 1.6 ("high level EBL").

low-energy cuto�s needed in leptonic synchrotron-Compton models for the hard
spectrum sources.

In �g. 2.9 we demonstrate that a narrow electron distribution could provide a
satisfactory explanation for the hard TeV component in 1ES 0229+200. In particular
we consider a relativistic Maxwell-type distribution within the SSC scenario. The
TeV data are corrected using the model of Franceschini et al. (2008) for a low and
high EBL �ux. Even in a more extreme case (of high EBL �ux) the emitted spectrum
can be satisfactorily modeled.

Our results illustrate that even within a leptonic synchrotron-Compton approach
relatively hard intrinsic TeV source spectra may be encountered under a variety of
conditions. While this may be reassuring, the possibility of having such hard source
spectra within "standard models" unfortunately constrains the potential of extract-
ing limits on the EBL density based on γ-ray observations of Blazars, one of the hot
topics currently discussed in the context of next generation VHE instruments.
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Chapter 3

"Leading blob" model in a stochastic

acceleration scenario

Evidence for very hard, intrinsic γ-ray source spectra, as inferred after correc-
tion for the absorption in the extragalactic background light (EBL), has interesting
implications for the acceleration and radiation mechanisms acting in Blazars. A key
issue so far has been the dependance of the hardness of the γ-ray spectrum on di�er-
ent existing EBL models. The recent FERMI observations of Mkn 501 now provide
additional evidence for the presence of hard intrinsic γ-ray spectra independent of
EBL uncertainties. Relativistic Maxwellian-type electron energy distributions that
are formed in stochastic acceleration scenarios o�er a plausible interpretation for
such hard source spectra. In this chapter we show that the combined emission from
di�erent components with Maxwellian-type distributions could in principle also ac-
count for much softer and broader, power law-like emission spectra. We introduce
a "leading blob" scenario, applicable to active �aring episodes, when one (or a few)
of these components become distinct over the "background" emission, producing
hard spectral features and/or hardening of the observed spectra. We show that
this model can explain the peculiar high-energy characteristics of Mkn 501 in 2009,
with evidence for �aring activity and strong spectral hardening at the highest γ-ray
energies1.

3.1 The 2009 hard �are of Mkn 501

In the previous chapter we discussed in detail the problems arising in the inter-
pretation of hard spectra within standard leptonic scenarios, i.e., SSC or EC models.
The noted small photon indices are generally not easy to achieve, because radiative
cooling tends to produce particle energy distributions that are always steeper than
dNγ/dEγ ∝ E−2

γ , irrespective of the initially injected particle spectrum. The corre-
sponding TeV photon index would then be Γ ≥ 1.5. Moreover, as the emission from
these objects peaks at very high energies, where suppression of the cross-section due
to Klein-Nishina e�ects becomes important, even steeper intrinsic photon spectra

1The results discussed in this chapter are based on Lefa et al. 2011b
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3.1. The 2009 hard �are of Mkn 501

are to be expected.
Nevertheless, sources like the distant Blazars 1ES 1101-232 and 1ES 0229+200 do

exhibit hard intrinsic spectra and an interpretation within standard leptonic models
is desirable before alternative solutions are adopted. One of the key issues remains
the uncertainty of the EBL �ux level that a�ects information on how hard the
intrinsic spectra of these sources truly are. The recent Fermi detection of variable
γ-ray emission from the nearby (z = 0.034) TeV Blazar Mkn 501 in 2009 now
removes this point of uncertainty, providing strong evidence for hard intrinsic γ-ray
source spectra independently of questions related to the EBL. As already indicated
in the original FERMI paper on Mkn 501 (Abdo et al. 2011), the spectrum above
10 GeV seems to become much harder during a (∼ 30-day) �aring state. A recent,
independent analysis of the same data by Neronov et al. (2011) shows that the (10
GeV-200 GeV) �are spectrum could be as hard as Γ ≃ 1.1 (see �g. 3.1). While
the FERMI collaboration did not comment much on the possible origin of the hard
�are spectrum, Neronov et al. (2011) put forward the hypothesis that the hard
spectrum �are could result from an electromagnetic cascade in the intergalactic
medium, provided that the strength of the intergalactic magnetic �eld is smaller
than 10−16 G and that primary γ-rays at 100 TeV energy can escape from the
central compact region.

A �are with similar characteristics has also been detected in the Quasar 3C279,
at z = 0.536, in January 2007 (Aleksi¢ et al. 2011). The MAGIC data corrected for
the EBL absorption with the model of Domínguez et al. (2011) reveals a very hard
�are with photon index Γ = −0.32± 1.01 at the range of 150− 300GeV. Although
the errorbars are large, the low limit for the value of the photon index, Γ ∼ 0.69
is still very small. This detection provides additional evidence for the existence of
intrinsically hard spectra during �aring states.

We have shown that in chapter 2 a leptonic context very narrow electron distribu-
tions are able to produce hard γ-ray source spectra. These can be either power-law
distributions with large value of the minimum cuto�, provided that the magnetic
�eld is su�ciently small to avoid radiative losses (Katarzy«ski et al., 2006; Tavecchio
et al., 2009), or that adiabatic losses dominate at low energies (Lefa et al. 2011).
Alternatively, relativistic Maxwell-like distributions formed by a stochastic acceler-
ation process that is balanced by radiative losses can be a viable option (Lefa et
al. 2011). In both cases VHE spectra as hard as EγdNγ/dEγ ∝ E

1/3
γ for the SSC

case, and EγdN/dEγ ∝ Eγ for EC models can be generated. Maxwellian-type parti-
cle distributions are especially attractive for the interpretation of the inferred hard
γ-ray source spectra because they resemble to some extent mono-energetic distribu-
tions (the hardest possible injection spectra). However, an important question that
arises is whether such distributions can also account for softer and broader photon
spectra.

Interestingly, the hard high-energy component of Mkn 501 emerged in a �aring
state in May 2009, during which little �aring activity was detected at energies below
10 GeV. This suggests that the �are is related to an emission zone that is con�ned
both in space (compact) and time (short, on a timescale of ∼ 30 days). Additionally,
there is no evidence for a similar, simultaneous increase at X-ray energies (Abdo et
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3.1. The 2009 hard �are of Mkn 501

al. 2011).
Here we propose a leptonic multi-zone scenario that can accommodate softer

emission spectra as well as �aring episodes with hard spectral features, like the
one observed in Mkn 501. In this scenario, the observed radiation comes from
several emitting regions ("blobs"), in which electrons are accelerated to relativistic
energies through stochastic acceleration, forming pile-up distributions. All blobs
are considered to have similar parameters except from the characteristic energies
("temperatures") of their Maxwell-like distributions. We note that a "multi-blob"
scenario, with power-law components characterized by di�erent trajectories (viewing
angles) has also been proposed in the past to account for the TeV emission from non-
aligned AGNs (Lenain et al. 2008). What distinguishes the model introduced here
is that, due to acceleration and losses, each component is considered to only carry
a narrow (pile-up) particle distribution, with broad spectra being formed by an
ensemble of components. We show, for example, that in the case where the total
energy of the particles is the same for all blobs, the combined emission leads to a
spectrum very similar to the one arising from a power-law distribution dN/dE ∝ E−p

with index p = 2. On the other hand, distinct spectral feature can appear once a
leading zone dominates. This could happen, for example, if (a) the value of the
temperatures changes from blob to blob, and/or if (b) the energetics of a single blob
changes.
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Figure 3.1: (a) Spectral energy distribution for Mrk 501 averaged over all obser-
vations taken during the multifrequency campaign performed between 2009 March
15 and 2009 August 1 as presented in Abdo et al. (2011). The TeV data from
MAGIC and VERITAS have been corrected for the absorption in the extragalactic
background light using the model reported in Franceschini et al. (2008). (b) FERMI
spectrum of Mrk 501 for the 30 day period during the �are as analyzed in Neronov
et al. (2011). Data points in the TeV band show VERITAS measurements. Model
curves show emission from electromagnetic cascade initiated by 100 TeV γ-rays in
the intergalactic medium
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3.2 A multi-zone scenario

Let us consider N regions in which electrons are stochastically accelerated (e.g.,
by scattering o� randomly moving Alfvén waves) up to energies where acceleration is
balanced by synchrotron or inverse Compton (Thomson) losses. Their steady-state
energy distributions ne(γ) then take on a relativistic Maxwellian-type form

ni(γ) = Aiγ
2e

−
(

γ
γci

)b

, (3.1)

(b ̸= 0; i = 1, .., N) with exponential cuto� Lorentz factor

γci =

(
bD0

βs

)1/b

(mec)
−1 , (3.2)

and normalization factor Ai. Here, βs refers to energy losses due to synchrotron
radiation given by

dp

dt
= −βsp

2 = −4

3
(σT/m

2
ec

2)UBp
2 , (3.3)

and the constantD0 is given by the di�usion coe�cientDp =
p2

3τ
(VA
c
)2 ≡ D0p

3−b, with
VA = B√

4πρ
the Alfvén speed and τ = λ/c ∝ pb−1 (where b ≥ 1), the mean scattering

time (see previous chapter). The shape of the exponential cuto� (characterized
by the parameter b) is related to the turbulence wave spectrum W (k) ∝ k−q via
b = 3−q. Note that if the particle distributions would be shaped by inverse Compton
cooling in the Klein-Nishina regime, a smoother exponential cuto� is expected (e.g.,
Stawarz & Petrosian 2008).

For simplicity, we consider below the situation where all blobs have similar prop-
erties (e.g., magnetic �eld strength, linear size, Doppler factor) but di�erent values
for the characteristic energy γci . In the case of synchrotron losses and scattering o�
Alfvén waves, γci depends on the magnetic �eld and the bulk density of the �ow.
Thus, the modi�cation in γci that we assume for each blob might be related to a
non-homogeneous bulk �ow.
The total energy density Ei that the relativistic particles gain through scattering o�
Alfvén waves is calculated to be

Ei =

∫ ∞

1

γni(γ)dγmec
2 = Aimec

2γ
4
ci

b
Γ[
4

b
,
1

γbci
] , (3.4)

where Γ[a, z] is the incomplete Γ function. We can now express the normalization
factor as a function of the "temperature" (γci) and the energy Ei,

Ai =
Eib

mec2γ4
ci
Γ[4

b
, 1
γbci

]
, (3.5)

which decreases as the cuto� energy increases, with a dependency well approximated
by Ai ∝ γ−4

c for all values of the coe�cient b. This is easily seen if we change the
lower limit of the previous integration to 0, in which case the result becomes

Ai =
4Ei

mec2γ4
ci
Γ[(4 + b)/b]

, (3.6)
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with Γ[z] denoting the Γ function.
The combination of the above electron distributions can lead to power-law-like

particle distributions if the temperatures of the di�erent components do not di�er
signi�cantly and if the components contribute equally to the overall spectra. The
power-law index then essentially depends on the amount of energy given to the non-
thermal particles in each blob, i.e., on how the total energy Ei of each component
scales with temperature (γci). Steep spectra may arise if, e.g., the low temperature
components dominate whereas harder spectra may occur if more energy is contained
in the high-temperature blobs.
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Figure 3.2: The total electron energy distribution from N = 4 blobs with di�erent
temperatures (γc), but the same total energy Ei, tends to establish a power-law
dNe/dγ ∝ γ−2 between the minimum and the maximum characteristic energies γc.
Below γc,min, dNe/dγ ∝ γ2, whereas for γ > γc,max one has dNe/dγ ∝ e−(γ/γc,max)2 .
Here, the exponential cuto� index is b = 2, B = 0.1 G and Ei = 2× 1044 erg.

In Fig. 3.2 an example for the total di�erential electron number is shown assum-
ing Ei = constant. For the plot, an exponential cuto� index b = 2 and N = 4 have
been chosen. The temperatures are equally spaced on logarithmic scale. Then, the
total di�erential energy distribution approximately forms a power-law dNe/dγ ∝ γ−s

with index s ≃ 2 between the minimum and maximum temperatures. As discussed
above, this "special" value of the power-law index results from the assumption that
the blobs have temperatures with equal logarithmic spacing and that all of them have
the same total energy, so that the peak γ2dNe/dγ is the same for each zone. This can
be demonstrated more formally by looking for the "envelope", i.e., the mathematical
function that describes the curve which is tangent to each of the curves ni in the
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3.2. A multi-zone scenario

(dNe/dγ, γc) plane. This function approximates the sum of the energy distribution
of the di�erent components as N ≫ 1 and gives the characteristic behavior of the
total distribution between the minimum and the maximum temperature and can be
found by solving the set of equations

F (γ, γc) = 0, ϑγcF (γ, γc) = 0 , (3.7)

where
F (γ, γc) ≡ dNe/dγ − A(γc) γ

2 exp[−(γ/γc)
b]. (3.8)

If we assume that the energy in non-thermal particles is the same for each compo-
nent, we �nd

dNe/dγ = c′(b) γ−2, γc,min < γ < γc,max , (3.9)

where the parameter c′(b) depends only on the magnetic �eld

c′(b) = 4(4/b)4/be−b/4/mec
2Γ[

4 + b

b
]. (3.10)

On the other hand, if particle acceleration to higher energies goes along with a
decrease in total energy, e.g., E ∝ 1/γc, then steeper power law spectra can appear,
i.e., dNe

dγ
∝ γ−3. Note that in all these cases, radiative cooling is already taken into

account.
Changing the total energy with γci in each component could also be interpreted

as changing the number of contributing blobs as a function of γci , assuming that
each component has the same energy. This could be formally accommodated by
introducing a statistical weight wi, so that the overall spectrum is expressed as

dNe/dγ =
i=N∑
i=1

wini(γ) . (3.11)

Harder spectra may then occur, for example, if more blobs with higher temperatures
exist and vice versa. Hence, a conclusion similar to the above can be drawn, once
the statistical weights vary with temperature (γci). In a continuous analogue, we
may write

dNe/dγ =
i=N∑
i=1

wini(γ) →
∫ TN

T1

W (T )n(γ, T )dT (3.12)

where W (T ) is the spectrum the number of components per temperature. Since
Maxwellian-type electron distributions behave, to some extent, like mono-energetic
ones, the total energy distribution between the minimum and the maximum tem-
perature mimics the spectrum of the number of the blobs W (T ) (provided W (T )
does not rise quicker than T 2). Thus, in principle a variety of spectra may arise,
depending on the choice of W (T ). Conversely, observations of extended power law-
like energy distributions then impose constraints on how W (T ) of a source can vary
with temperature.

The SSC spectrum, arising as the sum of the di�erent Maxwell-like distributions
of Fig. 3.2, is shown in Fig. 3.3. The synchrotron �ux resembles the �ux that
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Figure 3.3: Resulting SSC emission from the combination of di�erent compo-
nents with Maxwellian-like electron distributions. The synchrotron �ux exhibits a
power-law behavior, Fν ∝ ν−1/2, approximately between the energies related to the
minimum and maximum temperature. The same holds for the Compton �ux in the
Thomson regime, while in the Klein-Nishina regime the spectrum becomes steeper.
Doppler factor D = 30 and cuto� index b = 2 have been used. Other parameters
are R = 3× 1014 cm, B = 0.1 G, Ei = 2× 1044 erg.

would be emitted by a power-law particle distribution of index 2. Between the
frequencies related to the minimum and maximum temperatures, νmin ∝ Bγ2

c,min

and νmax ∝ Bγ2
c,max, it exhibits a Fν ∝ ν−1/2 behavior. For ν < νmin it follows

the characteristic Fν ∝ ν1/3 synchrotron emissivity function, while for ν ≥ νmax the
exponential cuto� becomes smoother (Fritz, 1989; Zirakashvili & Aharonian, 2007)

Fν ∝ exp [−(
ν

νmax

)
b

2+b ]. (3.13)

In the present model, the electrons in each blob are considered to only up-scatter
their own synchrotron photons and not the ones emitted from the other blobs. The
photon �elds produced by the other components therefore do not contribute to the
emitted Compton spectrum of each blob. In the Thomson regime the up-scattered
photon spectrum again approaches a power-law behavior similar to the synchrotron
one, i.e. Fν ∝ ν−1/2. Once Klein-Nishina e�ects become important, the suppres-
sion of the cross-section makes the high-energy spectrum steeper, as expected. In
the case of discrete zones, where the particle distributions and synchrotron pho-
tons are almost mono-energetic, this happens at (intrinsic) energies greater than
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γci(B/Bcr)γ
2
ci

> 1, where Bcr = m2
ec

3/(e~). Here, (B/Bcr)γ
2
ci
is the peak energy

of the synchrotron photons emitted by the i-th blob with temperature γci . Below
ν ∝ γ2

c,minBγ2
c,min the Compton �ux reveals the characteristic 1/3-slope, re�ecting

the low-energy synchrotron spectrum. In the Klein-Nishina regime, the exponential
VHE cuto� mimics the shape of the electron cuto�, Fν ∝ exp [−(ν/νmax)

b], and is
steeper compared to the synchrotron spectrum.

3.3 The origin of hard γ-ray spectrum �ares

Once a single component becomes dominant in the overall emission, as naturally
expected for a �aring state, hard spectral features can arise. This is more evident in
the Compton part of the spectrum as (in the Thomson regime) the separation of the
VHE peaks scales as ∼ γ4

c and is greater than in the synchrotron case (∼ γ2
c ). The

energetics of such a leading component, which is responsible for an observed �are,
could change for a number of reasons: The total (intrinsic) energy o�ered to the
accelerated particles or/and the temperature of the distribution could increase, for
example, due to changes in the bulk �ow properties or due to an increased injection
of seed particles over a �nite time. Another possibility concerns an increase in the
Doppler factor. Already a slight change of the viewing angle, for example due to the
propagation along a curved jet trajectory (e.g., Rieger & Du�y 2004), could lead to
the observation of a month-type high-energy �are without an accompanying change
of the intrinsic energetics of the components.

The aforementioned possibilities can be applied to explain the (∼ 30 d) high-
energy �are of Mkn 501 observed in 2009. Two examples (using four "blobs") are
shown in Fig. 3.4: In the left panel, the �aring state is mainly attributed to an
increased injection over the duration of the �are (i.e., the normalization of the two
components with the highest temperatures is increased by roughly a factor of two).
In the right panel, the �aring state is instead modeled by an increase in the Doppler
factor (from D = 30 to D = 40). In both cases, strong spectral hardening becomes
apparent above 10 GeV, while the emission below 10 GeV does not vary much. For
simplicity, other blob parameters (e.g., magnetic �eld strength, blob size) have been
kept constant to values consistent with the observed variability. This means that
both the light-travel time tl ∼ 2R/(Dc) ≤ 0.1 d and the observed synchrotron
cooling time scale

ts ∼ 0.3 (105/γc)(0.1 G/B)2(30/D) days (3.14)

are much smaller than the observed variability. With these assumptions, modeling of
the observed (steeper than Γ = 1.5) "lower energy" GeV spectrum requires the total
energy of each component to drop as the temperature increases (e.g., Ei ∝ γ

−1/4
ci ).

This condition may, however, be modi�ed in more complex models by varying other
parameters. For the assumed set of parameters, the synchrotron �ux tends to be
lower than the observed X-ray �ux (Fig. 3.5). This could suggest that the latter is
dominated by a di�erent part of the jet, which would be consistent with the fact
that little �ux variation has been observed in X-rays.
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Figure 3.4: (a) SSC emission from the sum of di�erent (N = 4) blobs for the
"low" (dashed-line) and "�aring state" (blue line) of Mkn 501. The total energy
given to the particles scales as Ei ∝ γ

−1/4
ci and for the low state the temperatures

are log(γc) = 3.9, 4.15, 4.6 and 5.2, respectively. The parameters that are kept
constant are the magnetic �eld B = 0.1 G, the blob radius R = 1014 cm, the cuto�
index b = 3 and the Doppler factor D = 30. For the �aring state, the two blobs
with highest temperatures are assumed to be enhanced by a factor of ∼ 2 with their
temperatures slightly increased. Below 10 GeV, the �ux is almost constant with
respect to the low state. For data points, see Abdo et al. (2010) and Neronov et al.
(2011). (b) Same as in the left panel but assuming the �aring state to occur due to
a change of the Doppler factor of the two components with the highest temperatures
from D = 30 to D = 40.
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Figure 3.5: Same as �gure 3.4 with the synchrotron part of the spectrum included.
The X-ray regime is considered to be dominated by emission from a di�erent part
of the jet. Thus, during the �are no/little variability at X-ray energies would be
observed as long as the synchrotron contribution from the "�aring" components does
not exceed the measured X-ray data.
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3.4 The case of the Quasar 3C279

A very hard �are was also observed from the Quasar 3C279 (z = 0.536) during
January 2007 (Aleksi¢ et al. 2011). After correcting for EBL absorption based on
the model of Domínguez et al. (2011) the intrinsic photon index is Γ = −0.32±1.01,
which corresponds to νFν ∝ ν1.68±1.01. Such small spectral indices can be achieved
with the EC for a very narrow electron distribution, e.g. a relativistic Maxwellian
distribution. However, within the errors, the SSC model can as well interpret the
observed �are (see �g. 3.6). One main di�erence with the case of Mkn 501 is the
duration of the �are. The �are of 3C279 occurred on much shorter timescales (in
the order of a day). As we wish to explain this �are within a stochastic acceleration
scenario, we need to ensure that the time needed for the electrons to accelerate
remains shorter than the duration of the �are. Indeed, following equation 3.14 we
�nd that, for the parameters chosen here, the cooling timescales for the electrons
with maximum energy is shorter than the duration of the �are.

As before we consider that the observed �are is caused by an enhancement of
a small blob inside the jet where electrons are stochastically accelerated and form
a relativistic Maxwell-type distribution. The rest of the radiation is assumed to
come from other components and thus it is not shown in the �gure. Both SSC
and EC models can reproduce the small photon index within the error. However,
the EC scenario approaches better the mean value of the photon index. The syn-
chrotron component is also presented in order to show that there is no violation of
the simultaneous low energy data.

3.5 Conclusion

In chapter 2 we have shown that narrow energetic electron distributions, can
successfully explain the very hard intrinsic γ-ray spectra that arise in some sources
once EBL absorption is taken into account (see also Lefa et al. 2011). In particu-
lar, the relativistic Maxwell-type distributions o�er an interesting interpretation, as
they are steady state solutions of the corresponding Fokker-Planck equation where
energy losses are taken into account. However, the sources that exhibit very hard
intrinsic spectra are few and a reasonable question that directly arises is whether
these distributions have the potential to explain SEDs that appear to be broader.

Here we have demonstrated that the superposition of emission from such distribu-
tions could also accommodate much softer and broader γ-ray spectra. To show this,
a multi-zone scenario was considered in which particles are accelerated through a
stochastic acceleration process balanced by radiative (synchrotron/Thomson) losses
in multiple zones characterized by di�erent temperatures (i.e., achievable maximum
electron energies). For the parameters examined here, particle escape can be ne-
glected, and the particle distribution in each zone essentially takes a Maxwellian-
type shape (however, a combination of power-law distributions with large value of
the minimum cuto� would lead to similar conclusions).

Under reasonable conditions and provided the zones are distributed quasi homo-
geneously in temperature space (using an equal logarithmic spacing), the resultant
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Figure 3.6: (a) SSC emission from Maxwellian electrons for the Quasar 3C279. The
parameters used are the electron cuto� energy γc = 7 × 104, the index β = 2, the
magnetic �eld B = 0.3G, the source radius R = 1014cm and the Doppler factor δ =
40. The deviation from equipartition is Log (Ue/UB) = 4.8. The (theoretical) slope
at the high energy data is somewhat less than 4/3, from 0.8 to 1 approximately. All
the data here are have been obtained simultaneously. (b) EC model from maxwellian
electrons for 3C279. The parameters used are the electron cuto� energy γc = 4.×104,
the index β = 2, the magnetic �eld B = 0.3G, the source radius R = 1015cm and the
Doppler factor δ = 24. The deviation from equipartition is Log (Ue/UB) = 2.7. The
(theoretical) slope at the high energy data is a slightly less than 2 (approximately
1.8.)

overall (combined) particle energy spectra then approaches a power-law particle dis-
tribution dNe/dγ ∝ γ−s over the energy range corresponding to the lowest and the
highest temperature, with power index s only depending on how the total energy (in
non-thermal particles) in each zone scales with temperature (cuto� Lorentz factor
γc). In the case where all parameters, apart from the temperature, are kept con-
stant (in particular the total energy in each component), the resultant power index
approximates s → 2. For similar magnetic �elds and Doppler factors, softer/harder
power-law γ-ray spectra could arise when the lower/higher temperature components
dominate. The larger the number of zones, the smoother the approximation will be.
Some peculiar structure may become apparent for a small number of blobs and/or
if there is a large gap in temperatures.

In the scheme proposed, the dominance of one (or a few) of the radiating com-
ponents could lead to a �aring state during which hard spectral features become
apparent. This leading component might increase its luminosity for di�erent rea-
sons, e.g., due to a change in the Doppler factor or the injected energy. By using
parameters in the typical range of leptonic SSC �are models such a scenario can, as
shown above, account for the 2009 �are in Mkn 501 during which a strong hardening
of the emission spectra above 100 GeV was observed (Abdo et al., 2011; Neronov et
al., 2011). We note that Mkn 501 is indeed known to be a source where detailed tem-
poral and spectral modeling has provided evidence for the contributions of di�erent
components (such as a steady X-ray component plus a variable SSC component, see
Krawczynski et al. 2002).
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While in the case of Mkn 501 an SSC approach has been employed, similar
features are to be expected in external Compton scenarios. In the latter case, an
even stronger spectral hardening up to Fν ∝ ν may occur, while in the SSC case
this is limited to Fν ∝ ν1/3 (Lefa et al. 2011). For example, the VHE �are that was
detected in the Quasar 3C279 exhibits a very small value of the photon index, and
is more easily explained within an EC model, though the large errors allow for an
SSC interpretation.

The suggested scenario for Mkn 501 is of a more phenomenological nature, but
it can explain in an interesting way VHE features that are otherwise di�cult to
interpret within the SSC framework. It will be interesting to check to what extent
this also applies to other sources, apart from 3C279 and investigate the parameter
space for which the combination of narrow electron distributions can account for
broader spectra which more often appear in Blazars.
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Chapter 4

On the spectral shape of radiation

due to Inverse Compton Scattering

close to the maximum cut-o�

A large part of the previous chapters we mainly focused on the importance of the
low energy cuto� of the emitting electron distribution. The value of the minimum
electron energy plays an important role in the interpretation of the hard TeV spectra.
In this chapter we explore the high energy cuto� of the electron distribution, which is
as well crucial when modeling observed spectra within leptonic models. In particular,
the spectral shape of radiation due to ICS is analyzed, in the Thomson and the
Klein-Nishina regime, for electron distributions with exponential cuto�. We derive
analytical, asymptotic expressions for the spectrum close to the maximum cuto�
region. We consider monoenergetic, Planckian and synchrotron photons as target
photon �elds. These approximations provide a direct link between the distribution
of parent electrons and the up-scattered spectrum at the cuto� region1.

4.1 On ICS and the importance of the maximum

cuto�

In the introduction we discussed that the ICS mechanism provides one of the
principal γ-ray production processes in astrophysics. The observed spectra of various
astrophysical sources is often attributed to the upscattering of low energy photons.

The basic features of the ICS have been analyzed by Jones (1968) and Blumenthal
& Gould (1970). The case of anisotropic electrons and/or photons has been studied
by Aharonian & Atoyan 1981c; Narginen & Putanen 1993; Brunetti 2000; Sazonov &
Sunyaev 2000 and recently by Poutanen & Vurm (2010). The impact of the Klein-
Nishina e�ect on the formation of the energy distribution of electrons was �rst
realized by Blumenthal (1971). Its importance in astrophysics has been discussed
in the literature in the context of di�erent non-thermal phenomena, in particular by
Aharonian & Ambartsumyan 1985; Zdziarski et al. 1989; Dermer & Atoyan 2002;

1the results presented in this chapter are based on Lefa et al. 2012
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Moderski et al. 2005; Khangulyan & Aharonian 2005; ?; Stawarz et al. 2006; ?.
Generally, the energy spectrum as well as the e�ects related to ICS are nu-

merically calculated using the exact expression for the Compton cross section. On
the other hand, compact, analytical approximations can serve as useful tools for a
deeper understanding of the properties of Compton radiation and the implications
of the complex numerical calculations. In particular, inferring the energy distribu-
tion of the parent particles from the observed spectrum is a much more e�cient
procedure when analytical approximations are available. For example, a power-law
distribution of electrons normally results in power-law photon spectra. If the ob-
served photon index is Γ (in a dNγ/dEγ ∝ E−Γ

γ representation), then we can obtain
the power-law index of the electron distribution dNe/dEe ∝ E−Γe from the relation
Γe = 2Γ− 1, for the Thomson regime, and from Γe ≈ Γ− 1, if the scattering occurs
in the Klein-Nishina regime.

This however only applies to the energy interval far from the cuto� (the "main"
part of the electron distribution). At the highest (and lowest) energies, there should
be a break/cuto� in the electron distribution and in fact, the corresponding break
at the radiation spectrum contains a lot of interesting information on the parent
electrons. In particular, the peaks in the SED appear at this energy range in the
majority of cases, indicating that the source luminosity is mostly radiated at the
maximum cuto�. Moreover, as the main, power-law part of the distribution, the
shape of the cuto� carries as well important information for the acceleration of the
particles and in general the mechanisms acting in the source. Although the shape
of the spectrum close to the highest energy cuto� is critical, this topic has not yet
been adequately addressed. In this chapter we examine the shape of the Compton
spectrum close to the maximum cuto� and we derive analytical formulas that allow
to approximate the radiated �ux in this speci�c energy range.

In general, the shape of the electron distribution around the cuto� can be ex-
pressed as an exponential, exp[−(Ee/Ec)

β]. This allows us to describe a quite broad
range of distributions, even very sharp, abrupt, step-function like cuto�s for β ≫ 1.
Apart from the convenience of such a mathematical description, exponential cut-
o�s naturally arise in theoretical considerations. For example, in di�usive shock
acceleration, power-law particle distributions with exponential cuto� are formed
when (synchrotron) energy losses are taken into account (Webb et al. 1984) and the
cuto� index is very important for investigating the acceleration mechanism. Ana-
lytic solutions show that in the case of Bohm di�usion a simple exponential cuto�
exp [−Ee/Ec] arises, whereas the index approaches β = 2 if Ėe ∝ E2

e type energy
losses are taken into account, e.g. synchrotron or Thomson losses (see Zirakashvili
& Aharonian 2007).

In stochastic acceleration scenarios, where pile-up particle distributions are formed
when acceleration is balanced by synchrotron type losses, the shape of the electron
cuto� is directly related to the assumed turbulent wave spectrum (Schlickeiser, 1985;
Aharonian et al., 1986), e.g. β = 5/3 for Kolmogorov, β = 3/2 for Kraicman like
or β = 2 for the hard sphere approximation. Of course, if more complicated en-
ergy losses dominate, like in the case of Klein-Nishina losses in radiation-dominated
environments, more complex shapes for the electron distribution cuto� may be ex-
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pected in both stochastic and di�usive shock acceleration scenarios (e.g. Stawarz &
Petrosian, 2008; Vannoni et al., 2009)

Nevertheless, it seems reasonable to consider particle distributions that exhibit
exponential cuto� in a general form, for investigating and modeling the radiated
spectra. In Fritz (1989) and Zirakashvili & Aharonian (2007), the shape of the
synchrotron spectrum close to the high energy cuto� has been discussed. They
found that when the electron distribution possesses an exponential cuto� of index
β, then the radiated synchrotron spectrum exhibits a smoother cuto�, of index
β/(β + 2). Apart from the practical importance, this analytic result demonstrates
that a δ-function approximation for the synchrotron radiation emissivity does not
give the correct result.

Here we examine the corresponding Compton spectrum, in the Thomson and
Klein-Nishina regimes, considering di�erent target photon �elds so that both SSC
and EC scattering can be addressed. We derive analytically the asymptotic behavior
of the up-scattered photon distribution close to the cuto� region. We consider a
general electron energy distribution of the form

dNe

dEe

= Fe(Ee) = AEα
e e

−(Ee
Ec
)
β

, (4.1)

where Ee = γmc2 is the electron energy and Ec = γcmc2 is the cuto� energy. This
presentation allows us to consider either a power-law distribution (for α = −|α|)
with exponential cuto� or a relativistic Maxwell-like distribution (for α = 2), that
may be formed in stochastic acceleration scenarios. We consider monochromatic,
Planckian and synchrotron photons as target photon �elds. The resulting IC spectral
shape is discussed for the Thomson and the Klein-Nishina regime and we show that
is not always identical to the synchrotron spectrum, as is often silently assumed.
Finally, we discuss basic features and physical properties of the radiated spectrum.

4.2 Compton spectrum for monochromatic photons

In this section we calculate the asymptotic behavior that the Compton spectrum
exhibits close to the maximum cuto�, when monochromatic photons (with isotropic
angular distribution) are up-scattered. Let as consider the general function of eq.
(4.1), that describes the di�erential number of electrons. Electrons are considered to
be isotropically and homogeneously distributed in space. In this case the spectrum
of photons generated per unit time due to ICS is (see e.g. Blumenthal & Gould
1970)

dṄγ/dEγ =

∫ ∞

0

∫ ∞

Eemin

W (Ee, ϵγ, Eγ)Fe(Ee)nph(ϵγ)dEedϵγ, (4.2)

where

Eemin =
1

2
Eγ

(
1 +

√
1 +

m2c4

ϵγEγ

)
, (4.3)

W (Ee, ϵγ, Eγ) =
8πr2ec

Ee η

[
2q ln q + (1− q)

(
1 + 2q +

η2q2

2 (1 + ηq)

)]
, (4.4)
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and

η =
4 ϵγEe

m2c4
, q =

Eγ

η (Ee − Eγ)
. (4.5)

Here the functionW (Ee, ϵγ, Eγ) in eq. (4.4) describes the total scattering probability,
taking into account Klein-Nishina e�ects. The parameter η in eq. (4.5) de�nes the
domain of the scattering. For η ≪ 1 the Thomson regime applies whereas for η ≫ 1
we are in the Klein Nishina regime. In the case of monochromatic photons, the
number density is nph(ϵγ) = n0δ(ϵγ − ε0) and we will set n0 equal to 1 for this
case. From now on we set mc2 = 1 throughout the calculations for simplicity, apart
from the formulas at which the �nal results are demonstrated. The case of α < 0
will be referred to as power-law distribution, whereas α = 2 will be referred to as
Maxwellian distribution.

4.2.1 Thomson Regime

In the limiting case of 4ε0Ec ≪ 1, where all the scatterings occur in the Thomson
regime, the photons take a small fraction of the electron energy. Thus, from the
previous relation, it follows that Eγ ≪ 1/(4ε0) and the lower limit of the integration
becomes

Ee ≥ Eemin ≈
√
Eγ/(4ε0) ≫ Eγ . (4.6)

Therefore, in this case ηq = Eγ/Ee ≪ 1 and eq. (4.4) can be written as

W (Ee, ε0, Eγ) =
8πr2ec

Eγmax

[2q ln q + (1− q) (1 + 2q)] , (4.7)

and in this approximation q = Eγ/Eγmax, where Eγmax = 4ε0E
2
e . Using the electron

distribution of eq. (4.1) and changing the integration variable from Ee to q, the
integral of eq. (4.2) for the Compton spectrum becomes

dṄγ/dEγ =

∫ 1

0

2πr2ec

2α
ε
−α+1

2
0 E

α−1
2

γ e
− ξ

qβ/2 q−
α+1
2 [2q ln q + (1− q) (1 + 2q)] dq, (4.8)

where

ξ =

(
Eγ

4ε0E2
c

)β/2
. (4.9)

We are interested in the behavior of the spectrum near the exponential cuto�, i.e.
Eγ >> 4ε0E

2
c or ξ >> 1. Then the integrant is dominated by values of q very close

to unity and in order to perform the above integration it is convenient to change
again variables to τ = q−β/2 so that

dṄγ/dEγ =

∫ ∞

1

2πr2ec

2α
ε
−α+1

2
0 E

α−1
2

γ f(τ)e−ξτdτ, (4.10)

where

f(τ) = 2
4τ

α−3
β ln τ − βτ

α−1
β − βτ

α−3
β + 2βτ

α−5
β

β2τ
. (4.11)

60



4.2. Compton spectrum for monochromatic photons

The function f(τ) is also dominated by values of τ close to unity. Thus, we
expand f(τ) in series around τ = 1. By keeping terms up to �rst order, the resulting
spectrum is

dṄγ

dEγ

∣∣∣∣∣
T

=
8πr2ecA(mc2)α+1

2α
ε
−α+1

2
0 E

α−1
2

γ

β2ξ2
e−ξ , for Eγ ≫

ϵγE
2
c

(mc2)2
. (4.12)

The above expression gives the asymptotic behavior of the Thomson spectrum with
exponential accuracy at the cuto� region. When monochromatic photons are up-
scattered by electrons with index β, the radiated �ux exhibits a smoother cuto�, of
index β/2, i.e.

dṄγ

dEγ

∣∣∣∣∣
T

∝ exp

[
−
(
Eγ(mc2)2

4ε0E2
c

)β/2]
. (4.13)
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Figure 4.1: (a) Asymptotics in the Thomson regime for monochromatic photons.
The ηc = 4ε0Ec parameter that de�nes the domain of scattering for the cuto� elec-
trons is ηc = 0.0004 (Ec = 102 and ε0 = 10−6 both in mc2 units). For this �gure
relativistic Maxwell-like electron distributions are used with di�erent shapes of ex-
ponential cuto�, β parameter. The exponential cuto� of the up-scattered photon
spectrum posses an index of β/2. As in all �gures, black solid lines show the nu-
merical spectrum, whereas colored, dashed lines correspond to the analytic approxi-
mation. (b) Same as in the left panel but for power-law electrons. The asymptotics
approach the numerical solution only for Eγ ≫ 4ε0E

2
cut. For smaller values of Eγ

the numerical spectrum is smoother than the approximated one.

As expected, the cuto� in the photon spectrum, 4ε0E2
c /(mc2)2, corresponds to

the maximum photon energy that an electron of energy Ec can radiate in the Thom-
son regime. We also note that in this case, an abrupt cuto� (β → ∞) of the electron
energy distribution would correspond to an abrupt cuto� of the photon spectrum.
In �g. 4.1 the analytic formula of eq. (4.12) and the full, numerical spectrum are
presented, for a Maxwellian and a power-law distribution respectively. Asymptotics
are better for α = 2. For the power-law distribution the numerical and analytical
solution converge for very large values of the parameter ξ. In both cases, very close
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4.2. Compton spectrum for monochromatic photons

to the cuto� energy, the numerical spectrum is smoother than the approximated
one.

Finally, for a "pure" power-law distribution without exponential cuto� (α nega-
tive and β = 0) one can integrate eq. (4.10) directly to obtain the result

dṄγ

dEγ

∣∣∣∣∣
T

=
2πr2ecA(mc2)3

2α
ε
−α+1

2
0 E

α−1
2

γ
4(α2 − 4α + 11)

(α− 3)2(α2 − 6α + 5)
, if α < 3, (4.14)

that demonstrates that in the Thomson regime the radiated spectrum follows a

power-law of the form dṄγ/dEγ ∝ E
α−1
2

γ .

4.2.2 Klein-Nishina Regime

When η = 4ε0Ee ≫ 1, photons take almost all the energy of the electrons in one
scattering. Then, we may de�ne the parameter ζ ≡ 4ε0Eγ and the low limit of the
integration in eq. (4.3) becomes Eemin ≈ Eγ. Let us change variables to x ≡ Eγ/Ee.
As ζ ≫ 1, we keep only the leading terms

dṄγ

dEγ

=
8πr2c

ζ

∫ 1−1/ζ

0

[
1 +

x2

2(1− x)

]
Fe(Eγ/x)dx. (4.15)

Here we have approximated the upper limit of the integration by 1−1/ζ because the
integral in eq. (4.15) diverges logarithmically at x = 1. For an electron distribution
with exponential cuto� the main contribution to the integral comes from regions of x
close to unity, so that 1 ≪ x2

2(1−x) and we can neglect the �rst term of the expression
in the brackets,

dṄγ

dEγ

=
4πr2c

ζ

[∫ 1−1/ζ

0

x2dx

(1− x)
Fe(

Eγ

x
)

]
. (4.16)

Now the integral of eq. (4.16) can be calculated for energies close to the cuto�
region, Eγ ≫ Ec, leading to a spectrum of the form

dṄγ

dEγ

∣∣∣∣∣
KN

=
πr2c(mc2)2

ε0Eγ

[
ln

(
4ε0Eγ

(mc2)2

)
− ln β − β ln(

Eγ

Ec

)− γ

]
Fe(Eγ), for Eγ ≫ Ec,

(4.17)
where γ = 0.5772 is the Euler's constant. In the Klein-Nishina regime where elec-
trons loose almost all their energy in each scattering, the Compton Spectrum prac-
tically re�ects the behavior of the electron distribution. Thus, in this case, the
exponential cuto� maintains the index β and is steeper than in the Thomson case

dṄγ

dEγ

∣∣∣∣∣
KN

∝ exp

[
−
(
Eγ

Ec

)β]
. (4.18)

As before, the photon cuto� energy corresponds to the maximum photon energy
that electrons of energy Ec radiate in the Klein-Nishina regime. Moreover, an abrupt
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4.2. Compton spectrum for monochromatic photons

electron distribution cuto� would result in an abrupt photon spectrum cuto�. The
asymptotics of eq. (4.17) are presented in �g. 4.2; as can be seen, they provide a
good approximation just after the peak of the SED.

The fact that the exponential index becomes β/2 and β in the Thomson and
Klein-Nishina regime, respectively, indicates that using a δ-function approximation
for the cross section provides a correct result for the calculated spectrum in these two
regimes (for an extended discussion on the applicability of δ-function approximation
see Coppi & Blandford (1990)). Obviously this is not true for values of ηc close to
unity (see �g. 6.3), where ηc = 4ε0Ec refers to the electron cuto� energy. As we
are interested in the highest energy part of the spectrum, the approximation in the
Klein-Nishina regime is satisfactory even for values of ηc that do not signi�cantly
exceed unity. This happens because since ηc > 1 for the electron cuto� energy it
holds for all the energies Ee > Ec that actually form the shape of the exponential
cuto�. On the contrary, for the Thomson regime one needs all the radiated photons
above the cuto� to be emitted at this regime, which indicates rather small values of
η for the approximation to be good, especially for small β factors.
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Figure 4.2: (a) Asymptotics in the Klein-Nishina regime for monochromatic pho-
tons and Maxwell-like electrons. The ηc parameter that de�nes the domain of the
scattering is ηc = 400 (Ec = 106 and ε0 = 10−4 both in mc2 units). The photon
spectrum exhibits a cuto� index β, same as the electron distribution. The analyti-
cal approximation is in very good agreement with the numerical spectrum just after
the peak of the SED. (b) Same as in the left panel but for a power-law electron
distribution.

A similar calculation can be performed for a "pure" power-law electron distri-
bution, with β = 0. If we rewrite the second term of eq. (4.15) in the form

∫ 1−1/ζ

0

x2

1− x
x−aFe(Eγ/x) = Fe(Eγ)

∫ 1−1/ζ

0

x2dx

1− x
+ Fe(Eγ)

∫ 1

0

(x2+α − 1)dx

1− x
,

(4.19)
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Figure 4.3: Asymptotics for a Maxwell-like distribution with β = 2 for di�erent
values of the parameter ηc that de�nes the domain of the scattering for electrons
with energy Ec. In the Klein-Nishina regime the approximation is good even for
not very large values of ηc. In the Thomson regime the approximation becomes
acceptable for η ∼ 0.004 ≪ 1. In the intermediate domain the exact numerical
spectrum decays more sharply than the approximated one, indicating that while
4ε0Ec < 1, part of the electrons with Ee > Ec already up-scatter the soft photon in
the Klein-Nishina regime.

we can perform the above integration resulting in an emitted spectrum of the form

dṄγ

dEγ

∣∣∣∣∣
KN

=
πr2cA(mc2)2

ε0
E−α−1
γ

[
ln

(
4ε0Eγ

(mc2)2

)
− 3α2 + 15α + 14

4α(α + 1)(α + 2)
− γ −Ψ(α)

]
,

(4.20)
where Ψ(α) is the digamma function de�ned as the logarithmic derivative of the
Γ function (Ψ(α) = Γ′(α)/Γ(α)). This formula shows that the emitted Compton
spectrum is much steeper in this than in the Thomson regime due to the suppression
of the cross-section. The functional dependance of eq. (4.20)

dṄγ

dEγ

∣∣∣∣∣
KN

∝ E−α−1 (4.21)

has been obtained in Blumenthal & Gould (1970) (see e.g. their eq. (2.87)), and
Aharonian & Atoyan (1981c) (see their eq. (32)). These formulas di�er in the
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4.3. Compton spectrum for a broad photon distribution

term related to the power-law index α, due to the di�erent approach used for the
calculation of the asymptotics. This di�erence is negligible.

4.3 Compton spectrum for a broad photon distri-

bution

Once we have calculated the radiated spectrum for monochromatic photons,
we can examine the behavior of the Compton spectrum for various photon �elds.
The case of monochromatic photons is important for understanding the scattering
mechanism and a necessary step for further calculations. However, in nature the
photon �elds are usually broader than the monochromatic one, except if we deal
with emission lines. Here we will consider a Planckian photon distribution which is
often the case in external Compton scenarios and we will examine as well the case
of synchrotron photons from the same parent electron distribution, that are used as
the target photon �eld in synchrotron self-Compton models.

4.3.1 Planckian photon �eld

Let as assume a Planckian distribution for the photon �eld so that the di�erential
number density is given by

nph(ϵγ) =
1

π2~3c3
ϵ2γ

eϵγ/kT − 1
. (4.22)

For the Thomson regime, where now we demand 4kTEe ≪ 1, we can use the Wien
limit (ϵγ ≫ kT ) at which

nph(ϵγ) =
1

π2~3c3
ϵ2γe

−ϵγ/kT . (4.23)

This is acceptable as the asymptotic behavior of the Compton spectrum at high
energies is mostly de�ned by the soft photons with energy around and greater than
kT .

In that case the integration of the spectrum eq. (4.12) over the photon energies
can be evaluated by the saddle point method of integration. After replacing ε0 with
ϵγ in eq. (4.12), the integral is written as

dṄγ

dEγ

∣∣∣∣∣
T

BB

=

∫ ∞

0

dṄγ

dEγ

∣∣∣∣∣
T

nph(ϵγ)dϵγ =

∫ ∞

0

g(Eγ, ϵγ)e
S(Eγ ,ϵγ)dϵγ, (4.24)

where

g(Eγ, ϵγ) =
8πr2eA

2απ2~3c2
E

α−1
2

γ ϵ
3−α
2

γ

β2ξ2
(4.25)

and

S(Eγ, ϵγ) = −
(

Eγ

4ϵγE2
c

)β/2
− ϵγ

kT
. (4.26)
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4.3. Compton spectrum for a broad photon distribution

Here BB stands for black body. Let as de�ne the parameter ξ1 that is related to the
cuto� of the up-scattered photon spectrum for the case of monochromatic photons,
if we replace ϵγ with kT

ξ1 ≡
Eγ

4kTE2
c

. (4.27)

This parameter simply describes the outgoing photon energy normalized to the
maximum energy which Ec electrons radiate when they up-scatter photons of energy
kT . One can use the saddle point method for the above integration because the
integral at large energies (ξ1 ≫ 1) is determined by the soft photon energy interval
around the energy x0 which optimizes the function S(Eγ, ϵγ). The saddle point x0

is at

x0 =
β

2

(
2ξ1
β

) β
β+2

kT. (4.28)

Then, the Thomson spectrum for a Planckian photon distribution is calculated to
be dṄγ/dEγ = g(Eγ, ϵ∗) exp[−S(Eγ, x0)]

√
2π/− S ′′(Eγ, x0) where S ′′ the second

derivative of S at the saddle point x0. After rearranging the terms, we retrieve the
following expression

dṄγ

dEγ

∣∣∣∣∣
T

BB

=
4πr2eA(kT )

5
2 (mc2)α+1

2απ2~3c2

√
π

β + 2
x
−α

2
0 E

α−1
2

γ e−
β+2
2 ( 2ξ1

β )
β

β+2

, for Eγ ≫
4kTE2

c

(mc2)2
,

(4.29)
Therefore, when the target photon �eld is a black-body, the shape of the cuto� is

a�ected by the soft photon distribution and the exponential cuto� in the Thomson
spectrum is smoother in comparison to the monochromatic photons case. The index
now becomes β/(β + 2) as

dṄγ

dEγ

∣∣∣∣∣
T

BB

∝ exp
[
− β + 2

2

(
2

β

Eγ(mc2)2

4kTE2
c

) β
β+2 ]

. (4.30)

This exponential cuto� is always smooth (less than unity) and it becomes unity
in the case of an abrupt electron distribution cuto�, as limβ→∞ β/(β + 2) = 1.
Interestingly, the Thomson spectrum for Planckian photons at high energies exhibits
the same exponential cuto� shape as the synchrotron spectrum. This is the only case
where the two components of the spectrum show the same behavior for arbitrary
index β. For the Maxwellian and power-law type distributions of electrons, eq. 4.30
is presented in �g. 4.4.

In the Klein-Nishina regime the shape of the exponential cuto� does not depend
on the up-scattered photon distribution but, as mentioned above, preserves the
electron index β. Integration of eq. (4.17) over photon energies (after replacing ε0
with ϵγ) requires the calculation of the following integrals∫ ∞

0

1

ϵγ
n(ϵγ)dϵγ =

(kT )2

6~c3
, (4.31)∫ ∞

0

1

ϵγ
n(ϵγ) ln (4ϵγEγ)dϵγ =

(kT )2

6~c3
(ln (4kTEγ)− 0.1472) . (4.32)
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Figure 4.4: Asymptotic behavior of the Thomson spectrum at the cuto� region,
for Maxwell-like (left panel) and power-law electrons (right panel) up-scattering
Planckian photons. Parameters used are Ec = 102, KT = 10−6 so that ηc =
4kTEc = 0.0004 ≪ 1. The exponential cuto� possesses an index β/(β + 2).

Then, the asymptotic behavior of the up-scattered spectrum close to the cuto�
follows the formula

dṄγ

dEγ

∣∣∣∣∣
KN

BB

=
π2r2eA(KT )2(mc2)2

~3c2
Fe(Eγ)

Eγ

[
ln

4KTEγ

(mc2)2
− ln β − β ln

Eγ

Ec

− 0.724

]
, Eγ ≫ Ec.

(4.33)
Thus, in the Klein-Nishina regime the cuto� is always much sharper than in

the Thomson regime. The spectra for Maxwellian and power-law distributions of
electrons are shown in �g. 4.5. For values of the index β = 1, 2, 3, the corresponding
shape in Thomson regime becomes 1/3, 1/2 and 3/5 respectively, always less than
unity. For an abrupt cuto� (β → ∞), the Klein-Nishina spectrum appears sharp as
well, while the Thomson spectrum exhibits a simple exponential cuto�.

4.3.2 Synchrotron photon �eld

In synchrotron self-Compton models, the electrons up-scatter the photon which
they produced via synchrotron radiation. In contrast to external Compton models,
we do not have an analytic expression for the target photon density. However, we
can use an approximation for the synchrotron spectrum at energies around the syn-
chrotron cuto�, i.e. for ϵγ ≥ bE2

c , given that the main contribution to the scattering
process at high energies comes from this energy range. Here b = 3qBh/4πmc(mc2)2.

4.3.3 Synchrotron spectrum

In the case of chaotic magnetic �elds, the synchrotron emissivity of an electron
with energy Ee is described by the equation

dṄγ

dϵγ
=

√
3q3B

mc2hϵγ
G̃

(
ϵγ
ϵs

)
, (4.34)
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Figure 4.5: Compton spectrum in the Klein-Nishina regime for Maxwellian elec-
trons (left panel) and Planckian photons. Ec = 106, Ke = 10−4 and ηc = 4kTEc =
400 ≫ 1. The spectrum shows a cuto� of index β, same as the electron energy distri-
bution. At the right panel the case for power-law electrons upscattering Planckian
photons is shown.

where

ϵs = bγ2 =
3qBh

4πmc

E2
e

(mc2)2
(4.35)

is the "critical" energy for synchrotron emission. The synchrotron power ϵγṄγ/dϵγ
peaks at 0.29ϵs (e.g. Rybicki & Lightmann 1979). The function G̃(y) can be well
approximated, with an accuracy better than 0.2% over the entire range of variable
y, by the formula (Aharonian et al. 2010)

G̃(y) = G(y)e−y =
1.808y1/3√
1 + 3.4y2/3

1 + 2.21y2/3 + 0.347y4/3

1 + 1.353y2/3 + 0.217y4/3
e−y. (4.36)

For large y ≫ 1, the function G(y) is approximately G(y) ≈
√

π/2. The parameter
ξ2 that de�nes the synchrotron photon energy normalized to the energy ϵs (eq. 4.35)
for the electrons with energy Ec is

ξ2 = ϵγ/ϵ0 =
ϵγ
bE2

c

. (4.37)

In order to calculate the emitted synchrotron spectrum, we need to integrate eq.
(4.34) over the electron distribution given by eq. (4.1). By changing variables from
Ee to y = ϵγ/ϵs, we �nd

dṄγ

dϵγ

∣∣∣∣∣
SY N

=

∫ ∞

0

dṄγ

dϵγ
Fe(Ee)dEe =

√
3q3BA

2mc2hϵγ
(
ϵγ
b
)
α+1
2

∫ ∞

0

y−
α
2
−1G(y)e−y−(

ξ2
y
)β/2dy.

(4.38)
For ξ2 > 1 the integration over y reveals a saddle point at

y0 =
β

2

(
2ξ2
β

) β
β+2

, (4.39)
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so that �nally the emitted synchrotron spectrum can be expressed as

ϵγdṄγ

dϵγ

∣∣∣∣∣
SY N

=

√
3q3B

mc2h

√
π

β + 2
A
(ϵγ
b

)α+1
2

y
−α

2
−1

0 G(y0)e
− 2+β

β
y0 . (4.40)

This formula indicates the shape of the exponential cuto� for synchrotron radiation

ϵγdṄγ

dϵγ

∣∣∣∣∣
SY N

∝ exp

[
−β + 2

2

(
2ϵγ
βϵ0

)β/(β+2)
]
. (4.41)

We note that the β/(β+2) index for the synchrotron exponential cuto� has already
been found in Fritz (1989) and Zirakashvili & Aharonian (2007). With the above
calculations we can moreover estimate critical aspects of the emitted spectrum, and
in particular the cuto� energy of the emitted synchrotron spectrum (see section
4). The above equations correspond to optically thin synchrotron sources when the
synchrotron-self absorption can be ignored. This could be the case of even very
compact and highly magnetized sources, as long as the synchrotron cuto� appears
at optical and higher frequencies. One should also mention that the synchrotron
spectrum is sensitive to inhomogeneities of the magnetic �eld (e.g. Katz-Stone &
Rudnick, 1994; Eilek et al., 1997). Obviously, the �uctuations of the magnetic �eld
should have an impact on the synchrotron spectrum, namely they will make the
cuto� smoother and shifted towards higher frequencies (see e.g. Eilek & Arendt,
1996). In this regard, the ICS γ-ray spectrum is free of uncertainties related to
the magnetic �eld distribution, except for realization of the SSC scenario in the
Thomson limit.

Last, we should mention that using a δ-function approximation for the syn-
chrotron emissivity would result to an exponential cuto� of index β/2, whereas the
correct value is β/(2 + β). The synchrotron asymptotics are presented in �g. 4.6,
for Maxwellian and power-law electron distributions. For comparison, the Thomson
spectrum for Planckian photons is also shown.

4.3.4 SSC spectrum

Now we can integrate the Compton spectrum for monochromatic photons over
the photon energies for the synchrotron distribution. The di�erential photon number
density (for a spherical source) is

nph(ϵγ) =
3

4πR3

R

c

dṄγ

dϵγ
, (4.42)

where R is the source radius. Let us �rst perform the calculations for the Thomson
regime described by eq. (4.12) with ε0 → ϵγ. In that case the exponential factor in
the integrant is exp [−S], where S = ξ+(2−β)y0/β. The function S has extremum
at the saddle point

z0 =
β

2

(
2

β

Eγ

E0

)β+2
β+4

ϵ0, (4.43)
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Figure 4.6: Synchrotron spectrum of relativistic Maxwell-like (left panel) and
power-law (right panel) electrons. With black crosses the Thomson spectrum is
shown for Planckian photons and β = 2, scaled to Eγ/5kTE

2
cut and normalized to

the synchrotron �ux. At large energies, the Thomson and synchrotron spectra show
similar shape of the cuto� and the corresponding index is β/(β + 2). The cuto�
energy for the electrons is Ec = 102 and the magnetic �eld B = 1G.

where E0 = 4bE4
c is the maximum photon energy that results from electrons with

energy Ec when they up-scatter synchrotron photons with energy ϵ0. The anal-
ogy with the case of Planckian soft photons is direct. Replacing the synchrotron
characteristic energy bE2

c with kT results in the same saddle point.
Here the second derivative of the exponent at the saddle point has a simple form

S ′′(z0) =
βE0

2Eγ

1

ϵ20
, (4.44)

so that the integration over the synchrotron number density gives

dṄγ

dEγ

∣∣∣∣∣
T

SSC

=
3

4πcR2

2π2r2cA2(mc2)α+1
√
3q3B

2α
√
β(β + 2)h

(
Eγ

b

)α
2 G(ỹ0)

z0
ỹ0

−α
2
−3 e−

β+4
β
ỹ0 ,

(4.45)
where ỹ0 is calculated at the saddle point

ỹ0 =
β

2

[
2Eγ

βE0

] β
β+4

, E0 =
4bE4

c

(mc2)2
. (4.46)

In the case of SSC radiation, the electron distribution up-scatters the synchrotron

photon distribution with an exponential cuto� exp[−(ϵγ/ϵc)
β

β+2 ]. The corresponding
Compton �ux at high energies exhibits a cuto� index β/(β + 4) which is smoother
than the seed synchrotron distribution,

EγdṄγ

dEγ

∣∣∣∣∣
T

SSC

∝ exp
[
− β + 4

2

(
2Eγ

βE0

) β
β+4 ]

. (4.47)

For β = 1, 2 and 3, the corresponding values for the Thomson exponential index
are 1/5, 1/3 and 3/7 respectively, signi�cantly less than the electron distribution
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4.3. Compton spectrum for a broad photon distribution

index and di�erent than the ones in the synchrotron case. If β → ∞, then the
SSC spectrum shows a simple cuto�, like in the case of up-scattering Planckian
photons. The asympotic formula of eq. (4.45) is shown in �g. 4.7 for Maxwellian
and power-law electrons.

In the Klein-Nishina regime, the integration over the synchrotron photon density
can not be performed analytically for arbitrary values of the indexes α and β. In this
regime however, the soft photon �eld does not play an important role in the shape
of the up-scattered spectrum close to the maximum cuto�. Thus, eq. (4.17) for
monochromatic photons o�ers a rather good description of the asymptotic behavior
of the SSC spectrum at Klein-Nishina regime. See e.g. �g. 4.8 for Maxwellian and
power-law electrons. The analytic formula describing the asymptotes in eq. (4.17)
normalized to the numerical solution, where the soft photon energy ϵγ has been
replaced by ϵs = bE2

c .
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Figure 4.7: (a) SSC radiation at the cuto� region in Thomson regime. A
Maxwellian electron distribution has been used, with parameters Ec = 102 and
B = 1G for the magnetic �eld. The exponential cuto� that arises is very smooth,
with an index of β/(β + 4). (b) Same as in the left panel but for power-law elec-
trons. The asymptotics approach the numerical solution only for Eγ ≫ 4bE4

cut.
Very close to the photon cuto� energy, the numerical spectrum is smoother than
the approximated one.
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Figure 4.8: SSC radiation at the cuto� region in the Klein-Nishina regime for
Maxwellian (left panel) and power-law (right panel) electrons. The parameters used
are Ec = 105 and B = 1G, so that the parameter ηc ≈ 4bE4

c that de�nes the domain
of the scattering is ηc ≈ 90 ≫ 1. The analytical formula plotted here is eq. (4.12)
for monoenergetic photons with ϵγ = bE2

cut, scaled to the numerical spectrum. The
cuto� shape has the same index β, as the electron distribution.
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4.4 Cooled electron distribution

In the previous sections we have assumed that the particle distribution that
radiates is either uncooled or the radiative cooling is taken into account at the for-
mation of the distribution. The latter is indeed very often the case. For example,
in stochastic acceleration scenarios the relativistic Maxwell-type distribution is the
steady state solution of the corresponding Fokker-Planck equation at which syn-
chrotron type losses are included. If Compton losses in the Klein-Nishina regime
dominate then the cuto� is smoother (Stawarz & Petrosian 2008), but can be still
represented by an exponential cuto� with smaller index β and thus it can be directly
connected to the cuto� shape of the photon spectrum through our approximations.
In Di�usive Shock Acceleration (DSA), for an energy-dependent di�usion coe�cient
(e.g. Bohm di�usion) when energy losses are taken into account the electron dis-
tribution exhibits an exponential cuto� (Zirakashvili & Aharonian 2007). There is
however one remaining possibility that is often considered when modeling the SED
of Blazars. If particles cool in a zone di�erent than the one in which they are ac-
celerated then the exponential cuto� linked to the radiated spectrum is not the one
that characterizes the injected distribution as energy losses may alter its shape.

In the aforementioned case, we can describe the problem by the electron' s kinetic
equation

dNe

dt
− ϑ

ϑEe

(
ĖeNe

)
= Q0E

α
e e

−(Ee
Ec

)β . (4.48)

In the steady state (ϑ/ϑt = 0) the solution becomes

Ne =
1

Ėe

∫ ∞

Ee

Q0E
α
e e

−(Ee
Ec

)βdEe. (4.49)

The above integral does not have a general solution, however we can study some
special cases with representative values for the exponential index. For α = −2 and
β = 1, we �nd

Ne ∝ E−2
e

(
e−

Ee
Ec

Ee

−
Γ[0, Ee

Ec
]

Ec

)
, (4.50)

where Γ[x, y] represents the incomplete Γ function. The �rst terms represents the
cooled distribution with the characteristic power-law slope of α − 1 = −3 in this
case and an exponential cuto� with the same index β as for the injected particle
distribution. This is the leading term of the solution whereas the second term only
introduces a small modi�cation. Thus, the exponential shape remains almost the
same after cooling in contrast to the power-law part which is changed signi�cantly
by a factor of 1 (see �g. 4.9, left panel). Similar conclusions can be made for the
case of β = 2 for which the solution becomes

Ne ∝ E−2
e

(
e−

Ee
Ec

Ee

−
√
πErfc[Ee

Ec

Ec

]

)
, (4.51)

where Erfc[x] gives the complementary Error function. The change in the expo-
nential index is also very small with respect to the uncooled electron distribution
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Figure 4.9: Injected and cooled (steady-state) electron distributions for energies
larger than the cuto� energy. Here Ec = 100/mc2 and the power-law index is
α = −2. In the left panel the exponential cuto� has index β = 1, whereas in the
right panel β = 2. In both cases the modi�cation of the exponential part of the
distribution due to cooling is not severe.

(see �g. 4.9, right panel). The main reason is that at the high energy cuto� the
exponential function results in a very sharp decrease of the distribution and thus
the cooling of the particles does not seriously a�ect the shape. Although it is not
possible to perform analytical approximations for the Compton spectrum that is
derived from the distribution of eq. (4.50) and (4.51), we may still approximately
infer the injected electron exponential index from the observed spectrum.

4.5 Comparison of the results

The main results of this chapter are summarized in table 4.1. In the Klein-
Nishina regime the up-scattered Compton spectrum exhibits the same exponential
cuto� index βC , as the electron distribution index β, and does not depend strongly
on the target photon �eld. This implies that from the γ-ray spectrum we practically
"observe" the electron cuto� shape. In particular, an abrupt electron distribution
cuto� (β → ∞) would result in an abrupt cuto� for the photon spectrum (β → ∞).
The case of up-scattering monochromatic photons is shown in �g. 4.2 . The case
of Planckian photons is plotted in �g. 4.5, whereas �g. 4.8 corresponds to the SSC
spectrum. In all of these cases, the asymptotics are rather good just after the peak
of the SED.

On the contrary, in the Thomson regime the up-scattered photon exponential
shape is always smoother than the electron distribution cuto� shape. For monochro-
matic target photons this is βC = β/2, as shown in �g. 4.1. In this case, the shape
of the cuto� in both Thomson and Klein-Nishina regime (eqs. 4.13 and 4.18) shows
that using a δ-function for the Compton emissivity provides the correct result. Here
the asymptotic analytic expression of eq. (4.12) approaches better the numerical
solution for a Maxwellian electron distribution.

Interestingly, for Planckian photons we �nd a di�erent relation between βC and
β, which is the same as for synchrotron radiation, βC = β/(β + 2). As can be seen
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from �g. 4.4, the approximation is very good. Finally, for synchrotron photons
it holds that βC = β/(β + 4). As in the case of monochromatic photons, the SSC
asymptotics in the Thomson regime are better for Maxwellian electrons. Our results
are supported from numerical studies regarding log-parabolic electron distributions
and the curvature of the emitted spectra (Massaro et al. 2006).

In general, although in the Klein-Nishina regime the Compton spectrum pre-
serves the electron distribution index βC = β, in the Thomson regime the up-scatter
photon cuto� index is always smaller than the electron distribution cuto�, βC < β.
The only exception occurs for monochromatic photons up-scattered by electrons
with β → ∞. In this case the Compton spectrum should exhibit as well an abrupt
cuto�. For Planckian and synchrotron photons β → ∞ for electrons means a simple
exponential cuto� for the Compton SED, βC = 1.

The reason why an abrupt cuto� for the electron distribution results in the
same index βC = 1 for both Planckian and synchrotron photons is related to the
fact that electrons with a sharp cuto� radiate photons with sharp cuto� as well
in the case of monochromatic photons (the most narrow and sharp soft photon
�eld that can be assumed). Thus, when the target photons are not monoenergetic,
the Thomson spectrum that arises from electrons with β → ∞, practically reveals
the soft photon distribution at energies close to the maximum cuto�. As both
synchrotron and Planckian photon �elds exhibit the same dependance on the soft
photon energy (exp (−ϵγ/ϵ0)), the resulting Thomson spectrum is the same at high
energies for both cases. If however the soft photon distribution exhibits a cuto�
with di�erent dependance on the photon energies, then the radiated Compton SED
would di�er. One may easily check that if e.g. soft photons exhibit an exponential
cuto� shape of the form exp [−(ϵ/ϵ0)

λ], then the upscatter Thomson distribution will
lead to a exponential cuto� of the same index λ. If we do not consider an abrupt
cuto� for the electron distribution then the Thomson spectrum for synchrotron
photons is smoother than in the case of Planckian photons, making these two cases
distinguishable for the Thomson regime.

The Thomson spectrum for Planckian photons exhibits a cuto� index βS =
β/(β+2), the same as the synchrotron spectrum. Thus, if the SED of the observed
object is considered to consist of these two components (synchrotron radiation for
the low energies and up-scattering of Planckian photons in the Thomson regime for
high energies), then the exponential part of the two "bumps" is very similar (see
�g. 4.6). This is not true if the up-scattering occurs in Klein-Nishina regime at the
cuto� region. While βS = β/(β + 2) for the synchrotron component cuto�, βC = β
for the high energy component. Even if we consider an abrupt cuto� for the electron
distribution, the two bumps would be di�erent (βS = 1 and βC → ∞, respectively).
For an SSC model, the two components do not show the same exponential cuto�
shape neither in the Thomson (where we get βS = β/(β+2) and βC = β/(β+4) for
low and high energies respectively), nor in the Klein-Nishina regime (βS = β/(β+2)
and βC = β). Only if the electron distribution has an abrupt cuto�, then in the
Thomson regime we can get βC = βS = 1, while in the Klein-Nishina regime βC →
∞. Thus, the two components of the SED do not show in general the same shape
at the cuto� region.
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Table 4.1: The index of the exponential cuto� in the energy spectrum of IC ra-
diation βC calculated for three di�erent target photon �elds, in the Thomson and
Klein-Nishina regimes. The index β characterizes the exponential cuto� in the elec-
tron energy distribution given by Equation 4.1.

scattering regime Thomson KN Thomson KN

radiation �eld
electrons β β abrupt abrupt

monochromatic photons β/2 β ∞ ∞
Planckian photons β/(β + 2) β 1 ∞
synchrotron photons β/(β + 4) β 1 ∞

4.6 The cuto� energy of the Compton spectrum

Apart from the shape of the up-scattered, photon spectrum at the cuto� region,
another interesting point is the cuto� energy itself, Eγ,cut. We have shown that
in the Klein-Nishina regime this remains always at Eγ,cut = Ec, the same as the
electron distribution cuto� energy, independently of the soft photon �eld. On the
contrary, at the Thomson regime, the cuto� photon energy depends on the target
photon �eld. For the monochromatic target photons the value of Eγ,cut is obvious;
it is simply equal to the cuto� energy of electrons. For monochromatic photons,
the resulting value of Eγ,cut is rather obvious, simply because there is a maximum
up-scattered photon energy for the �xed electron energy. Consequently, the cuto�
energy of the IC spectrum must be equal to the maximum up-scattered photon
energy by electrons of energy Ec, as it follows from (eq. 4.13),

Eγ,cut =
4E2

c ε0
(mc2)2

. (4.52)

On the other hand, in the case of a broad distribution of target photons, the relation
between Ec and Eγ,cut depends on the seed photon spectrum and the index β of the
electron distribution. For the Planckian photon distribution, we �nd (see eq. 4.30)

EBB
γ,cut =

4E2
ckT

(mc2)2

(
2

β + 2

)β+2
β β

2
. (4.53)

In analogy to the monoenergetic photons case, the maximum energy at which elec-
trons of energy Ec can radiate, when they up-scatter photons of energy kT , is
4E2

cKT/(mc2)2. In respect to this, the Thomson spectrum cuto� energy is smaller
by a factor of (β/2)[2/(β + 2)](β+2)/2. This factor is not negligible especially for
small β, e.g. it takes values of ∼ 0.15, 0.25 and 0.33 for β = 1, 2 and 3 respectively
(almost one order of magnitude for a simple exponential cuto�). As expected, it
tends to unity for β → ∞. It does not depend however on the index α of the electron
distribution.
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For synchrotron radiation, from eq. (4.41), we �nd the cuto� energy

ϵSY Nγ,cut = bE2
c

(
2

β + 2

)β+2
β β

2
, (4.54)

which reveals exactly the same factor as in the case of Thomson spectrum for Planck-
ian photons, but now in respect to the characteristic energy bE2

c .
Finally, for the case of SSC, eq. (4.47) gives

ESSC
γ,cut =

4bE4
c

(mc2)2

(
2

β + 4

)β+4
β β

2
=

4E2
c ϵ

SY N
γ,cut

(mc2)2

(
2

β + 4

)β+4
β
(
β + 2

2

)β+2
β

(4.55)

If we compare the cuto� energy with e.g. 4bE2
cut ϵ

SY N
γ,cut/(mc2)2 then the factor related

to the index β takes values of ∼ 0.035, 0.15 and 0.25 for β = 1, 2 and 3, which are
slightly less than in the case of a Planckian target photon �eld. This is due to
the fact that the cuto� shape is now smoother. These analytic results are useful
when modeling the observed spectrum, as one may infer the electron distribution
cuto� energy from the photon spectrum cuto� energy with only the uncertainty
introduced by a (possible) Doppler boosting. The position and the amplitude of
the synchrotron and IC peaks in the SED contain very important information about
physical parameters of non-thermal sources, like the strength of the average magnetic
�eld and the energy density of relativistic electrons. The shape of the SED, especially
in the region of the cuto�s of the synchrotron and IC components of radiation,
provide additional, more detailed information about the distributions of electrons
and magnetic �elds. For example, the spectral cuto� in the IC component formed in
the the Klein-Nishina regime provides direct, model-independent information about
the energy spectrum of the highest energy electrons. This is a critical issue for
understanding the particle acceleration mechanisms. Furthermore, combined with
the shape of the synchrotron cuto�, it allows us to extract information about the
distribution of the magnetic �eld. This can be demonstrated by the following simple
example. Let as assume that we have observed a smooth synchrotron cuto� which
can be interpreted as the result of an electron distribution with an exponential index
e.g. β ≈ 1. This hypothesis can be checked by the shape of the cuto� of the IC
component. If the IC spectrum is formed in the Klein-Nishina regime, and exhibits a
sharp cuto� behavior indicating an electron distribution with β > 1, then one should
attribute the smoothness of the synchrotron cuto� to magnetic �eld inhomogeneities
rather than to the actual shape of the electron distribution.

4.7 Summary

In this study we have examined the asymptotic behavior of the Compton spec-
trum close to the maximum cuto�. We assumed that the electron distribution follows
the general formula Eα

e exp[−(Ee/Ec)
β] so that our analysis may account for a rel-

ativistic Maxwellian-type distribution, as well as for a power-law distribution with
exponential cuto�. The exponential cuto� of the electron energy spectrum results
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4.7. Summary

in an exponential cuto� in the Compton spectrum, of the form exp[−(Eγ/Eγ,cut)
βc ],

with βc and Eγ,cut the corresponding cuto� index and energy respectively. We show
that in the Klein-Nishina regime, the cuto� index remains unchanged, βc = β.
The shape of the up-scattered spectrum close to the maximum cuto� basically "re-
�ects" the electron distribution and does not depend strongly on the target photon
�eld. The cuto� energy also corresponds to the electron distribution cuto� energy,
Eγ,cut = Ec.

In the Thomson regime, the resulting spectrum close to the cuto� is very di�er-
ent. First of all it strongly depends on the up-scattered photon �eld. Monoener-
getic photons lead to a cuto� of index βc = β/2, whereas Planckian photons result
in βc = β/(β + 2). When the up-scattered photon �eld is the synchrotron photon
�eld, as in SSC models, then the cuto� appears extremely smooth, with an index
βc = β/(β + 4). In contrast to the Klein-Nishina regime, the Thomson spectrum
cuto� energy Eγ,cut depends not only on the electron distribution cuto� energy, but
also on the target photon �eld and as well on the index β.

The obtained analytic expressions are useful for deriving the electron spectral
shape at the cuto� region directly from the observed high energy �ux. These two
parameters may give important insight into the acceleration and radiation mecha-
nisms acting in the source. Furthermore, one may use the higher energy part of the
observed Compton spectrum as a "diagnostic tool" to distinguish between EC and
SSC models, as di�erent photon �elds lead to di�erent cuto� shapes.
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Chapter 5

On radiation boosting due to

relativistic motion

and e�ects of anisotropy

5.1 Introduction

In the previous chapters we examined in detail several aspects of the radiation
processes that account for the Blazar spectra. Apart from the importance of a
self-consistent approach for the hard spectra interpretation, we have discussed the
functional dependance (on energy) of the emitted synchrotron and ICS spectrum at
low and high energies. Below the minimum cuto�, the emitted �ux is Fν ∝ ν1/3 for
the synchrotron and SSC mechanisms, whereas for the EC scenario, Fν ∝ ν (if the
target photon �eld is narrow, like in the case of Planckian photons). We have also
examined the shape of the synchrotron and ICS spectrum close to the maximum
cuto�, and we have provided analytical approximations that are illustrating for the
acceleration process of the electrons. For the synchrotron spectrum the exponential
cuto� index becomes β/(β+2), whereas for the ICS spectrum it strongly depends on
the regime for scattering as well as on the target photon �eld. In the intermediate
regime, i.e. the power-law part of the spectrum, the shape is well known (see however
appendix). It roughly follows Fν ∝ ν−(s−1)/2, where s is the power-law index of the
electrons, for both synchrotron and Thomson spectra. An exception holds for the
Klein-Nishina regime of the ICS where Fν ∝ ν−s.

The investigation of the emitted spectrum has proven very illustrating for the
properties of the parent particles. An important "ingredient" needed for the calcu-
lation of the observed spectrum is the modi�cation of the intrinsic spectrum due to
Doppler boosting. In general, when it comes to AGNs (but also to GRBs, micro-
quasars etc.), the radiation processes occur within a jet that moves at relativistic
velocities. Relativistic Doppler boosting e�ects are then expected to lead to a sig-
ni�cant enhancement of the radiated �ux measured by a distant observer.

In this chapter, we discuss the anticipated beaming pattern for synchrotron,
synchrotron-self Compton (SSC) and external Compton (EC) emission. In the EC
case, where the soft seed photon �eld for inverse Compton upscattering is assumed
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5.2. Photon transfer

to be dominated by an ambient photon source external to the jet, the beaming
pattern has been previously discussed by Dermer (1995) and Georganopoulos et al.
(2001) using two di�erent approaches: By �rst transforming the soft photon �eld
to the jet frame (where the electron distribution is considered to be isotropy) and
then the radiative outcome back to the observer frame; and by �rst transforming
the electron distribution from the jet to the ambient photon frame.

Here, we solve the photon transfer equation which allows one to derive the di�er-
ent beaming patterns in a concise way that is also applicable to more general (e.g.,
non-stationary, non-homogeneous and/or anisotropic) electron distributions. This
allows us to investigate an interesting deviation from "standard" models, the case
of anisotropic particles and how this anisotropy may a�ect the results.

5.2 Photon transfer

Let g(k, r, t) be the (invariant) distribution function of photons in phase space,
so that their di�erential number (an invariant) is

dNγ = g(k, r, t)d3k d3r , (5.1)

where k denotes the photon momentum vector. The photon transfer equation for
optically-thin media is (

∂

∂t
+ cn

∂

∂r

)
g(k, r, t) = Q(k, r, t) , (5.2)

where Q represents a source of photons, n = k/|k| is the unit vector in the direction
of photon propagation, and c is the speed of light. In the following, we set c = 1
and ~ = 1.
If the source emits a photon at (r0, t0), this is detected at (r, t), where

r− r0 = n(t− t0) . (5.3)

Then, the solution to eq. (5.2) can be found from the corresponding Green function,
and reads

g(k, r, t) =

∫ t

−∞
dt0

∫
d3r0δ(r− r0 − n(t− t0))×Q(k, r0, t0) . (5.4)

We need to integrate over the direction of photons as we are interested in the total
number of photons that reach point r. Thus, we de�ne the function

g̃(k, r, t) =

∫
g(k, r, t)dΩn . (5.5)

By substituting the photon momentum vector k in the source term Q(k, r, t) by
kn = (r−r0)

|r−r0| , the only dependency on n remains through the δ-function which we
can transform in spherical coordinates using

δ(x− x′) =
1

r2 sin θ
δ(r − r′)δ(θ − θ′)δ(ϕ− ϕ′) , (5.6)
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so the integral over the solid angle reads∫
δ(r− r0 − n(t− t0)) dΩn

=
δ(|r− r0| − (t− t0))

|r− r0|2
, (5.7)

Using the above equation, the function g̃ becomes

g̃(k, r, t) =

∫ t

−∞
dt0

∫
d3r0

Q(nk, r0, t0)

|r− r0|2
δ(|r− r0| − (t− t0)) , (5.8)

and the integration over time results in

g̃(k, r, t) =

∫
d3r0

Q(nk, r0, t− |r− r0|)
|r− r0|2

. (5.9)

At large distances r ≫ R0, with R0 the typical dimension of the source, we can
expand |r−r0| ≈ r− (nrr0), where nr = r/r denotes the unit vector in the direction
of r and where n ≈ nr, i.e., all photons detected by a distant observer essentially
travel in the direction of r. In this case the solution becomes

g̃(k, r, t) =

∫
d3r0

Q(nrk, r0, t− r + (nrr0))

r2
. (5.10)

Using the above equation, we can now �nd the beaming pattern for various processes.
Let K' be the source frame and K the observer' s frame. Noting that g is invariant,
we can see from eq. (5.2) that

ϵQ(k, r, t) = ϵ′Q′(k′, r′, t′) ⇒ Q(k, r, t) =
Q′(k′, r′, t′)

D
, (5.11)

where ϵ denotes the photon energy and D the Doppler factor. If we assume (without
loss of generality) that the source is moving with velocity V along the z-axis, then
(in Cartesian coordinates) d3r0 = dx0dy0dz0, where

x0 = x′
0, y0 = y′0,

z′0 = Γ(z0 − V [t− r + nxx0 + nyy0 + nzz0]) , (5.12)

with Γ = (1− V 2)−1/2, so that dz′0 = Γ(1− V nz)dz0 = dz0/D, and obviously

d3r0 = Dd3r′0 . (5.13)

Note that in the last relation the Lorentz factor Γ comes from length contraction,
whereas the factor (1−V nz) corresponds to the e�ect that the relativistic motion of
the source has on the received radiation related to the emitted one. In Georganopou-
los et al. (2001), this additional Doppler factor was treated as an e�ective volume
that appears in the calculation of the observed �ux and corresponds to the emitting
volume at the retarded time. Substituting eq. (5.11) and eq. (5.13) into eq. (5.10)
for the function g̃, it follows directly

g̃(k, r, t) =

∫
d3r′0

Q′(k′, r′0, t
′ − r′ + (n'rr'0))

r2
. (5.14)
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Non stationarity

From the above relation we can see that considering a non-stationary source
would di�er from the stationary case only if variations in the source occur on
timescales smaller than the light crossing time of the source (t′ < R0). Such varia-
tions are however smoothed out and are not expected to be observed due to casuality
arguments. Thus, we assume that the source does not depend on time

g̃(k, r, t) =

∫
d3r′0

Q′(k′, r′0)

r2
. (5.15)

Let us assume that the source is spherical, isotropic and homogeneous. Then we
can write in the frame K' of the source

Q′(k′, r′0) = Q′(k′) Θ(R′2
0 − r′20 ) , (5.16)

so that function g̃ takes on a simple form,

g̃(k, r, t) =

∫
V ′

dV ′ Q
′(k′)

r2
, (5.17)

with V ′ the volume of the source. Note that in spherical coordinates dNγ =
g d3kd3r = g ϵ2γdϵγd

3r, so that the number of photons per energy, per unit volume
(integrated over photon directions), is g̃ϵ2γ. Thus, the energy �ux Fϵ ∝ ϵγdNγ/dϵγd

3r0
(multiplied by the speed of light) that the observer receives is related to g̃ according
to

Fϵγ = ϵ3γ g̃(k, r, t) . (5.18)

With the same argument we can write j′ϵ′γ = Q′(k′)ϵ′3γ for the emission factor of the
source. Thus, we conclude that the beaming pattern follows the known relation
(Lind & Blandford 1985)

Fϵγ =
D3

r2

∫
V ′

dV ′j′ϵγ
D
(
ϵγ
D
) =

D3+α

r2

∫
V ′

dV ′j′ϵγ
D
(ϵγ) , (5.19)

where the last equality holds if the source has a spectral index α (i.e., j′ϵ′ ∝ ν ′−α). For
synchrotron or SSC emission (in Thomson limit) of a power-law electron distribution
of index p, the resultant spectral index is α = (p− 1)/2 (e.g., Blumenthal & Gould
1970). Hence, for the canonical index p = 2, α = 0.5 and the dependance on the
doppler factor becomes D3.5.

For the external Compton case the corresponding formula for g̃ is given by

g̃(k, r, t) =
1

r2

∫ ∫
d3r0 fe(p, r0, t− r + nrr0) nph(ϵph)

×W (p, ϵph, ϵγ,nrk) d
3p dϵph , (5.20)

where fe(p, r, t) is the distribution function of the electrons with momentum p
that up-scatter a soft photon �eld of number density nph(ϵph). The function W
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is the scattering probability. As before, we consider a spherical blob containing
a stationary electron distribution that moves with relativistic velocity in the z-
direction. The distribution function is Lorentz-invariant, so that we can write

g̃(k, r, t) =
D

r2

∫ ∫
d3r′0 f ′

e(p
′, r′0) nph(ϵph)

×W (p, ϵph, ϵγ,nrk) d
3p dϵph . (5.21)

We make the approximation that the up-scattered photons move in the electrons'
direction, so that the observed �ux becomes

Fϵγ =
D3

r2

∫
N ′
e(
Ee

D
) W (Ee, ϵph, ϵγ)dEe nph(ϵph) dϵph (5.22)

where Ne(Ee) denotes the di�erential number of electrons per energy per solid
angle, and W = ϵγdNγ/dtdϵγ is the scattered photon energy spectrum per elec-
tron (Blumenthal & Gould 1970). If the electron distribution obeys a power-law,
N ′
e(E

′
e) ∝ E ′−p

e , the beaming pattern becomes

Fϵγ ∝ D3+p . (5.23)

In the Thomson limit, the integral in eq. (5.22) results in a power-law inverse Comp-
ton spectrum of index α = (p − 1)/2. Substituting this, gives a beaming pattern
dependence of the form Fϵγ ∝ D4+2α in the case of external Compton. Hence, the
beaming pattern is obviously di�erent for the synchrotron or SSC mechanism when
compared with the external Compton (Thomson) case (Dermer 1995).

5.3 Non-isotropy

In this paragraph we examine how anisotropy in the source may alter the above
conclusions. Anisotropic emission can be caused due to two di�erent reasons. The
particle distribution might be anisotropic, as being formed e.g. in relativistic jets
when radiation losses are taken under account (see e.g. Dempsey & Du�y 2007),
in the converter mechanism (Derishev et al. 2003) or due to relativistic pair plasma
reconnection (see e.g. Cerutti et al. 2012). Additionally the magnetic �eld in the
source might not be randomly oriented and thus introduce anisotropy of the emitted
radiation in the case of synchrotron and SSC radiation.

First we will assume that the anisotropy is described in the source term Q′

(neglecting the physical cause) by a factor of the form (1 + λ′(n′v′)2). Here n′

is the outgoing photons' unit vector and v′ denotes a constant axis, which we will
consider for simplicity to coincide with the axis of motion of the source. Then n′v′ =
cos (θ′ − θ′∗), where θ

′
∗ is the symmetry axis of the anisotropy. If this coincides with

the axis of motion then θ′∗ = 0. The parameter λ′ shows the degree of anisotropy.
All quantities are measured in the source frame.1

1As we wish to describe anisotropy on a phenomenological level we assume that it can be
expressed as an expansion in cos θ, i.e. 1 + λ′

1 cos θ + λ′
2 cos θ

2 + ... We chose to neglect the �rst
order term, or equivalently λ′

1 ≪ λ′
2 for simpli�cation reasons and to avoid non-physical negative

values for the source.
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For a spherical, stationary source, in analogy to eq. 5.17, we �nd

g̃(k, r, t) =

∫
V ′

dV ′ (1 + λ′ cos2 (θ′ − θ′∗))
Q′(k′)

r2
, (5.24)

In order to normalize with respect to the isotropic case, we demand the total emit-
ted power (integrated over volume and energy) to be the same independent of the
angular distribution of the emitted photons. This yields a normalization factor of
the form

B(λ, θ∗) =

(
1 +

λ′

2
− λ′

3
cos 2θ′∗

)
. (5.25)

If we denote with θ0 the viewing angle then we �nd that the observed �ux should
be

Fϵγ =
D3

B(λ, θ∗)r2

1 + λ′

(
(cos θ0 − V ) cos θ′∗ +

sin θ0
Γc

sin θ′∗

1− V cos θ0

)2
∫

V ′
dV ′j′ϵγ

D
(
ϵγ
D
) ,

(5.26)
due to light abberation. The total emitted luminosity (

∫
Fϵγdϵγ) for di�erent ob-

servation angles is shown in �g. 5.1 for di�erent values of the degree of anisotropy
λ parameter. In �g. 5.2 the same case is shown but for slower out�ows where the
e�ects of anisotropy are more evident. One can see that the maximum of the ob-
served radiation does not occur at θ0 = 0 as it happens in the isotropic case (except
for θ′∗ = 0). Instead it is shifted to higher angles as the axis of anisotropy increases.
An additional e�ect regards the estimation of the doppler factor.

-0.2 -0.1 0.0 0.1 0.2

0

50 000

100 000

150 000

200 000

250 000

300 000

350 000

observation angle Θo @radD

T
ot

al
lu

m
in

oc
ity
@a

rb
.u

ni
ts
D

Θ*=Π�2

Θ*=Π�4

Θ*=Π�6

Θ*=Π�8

Θ*=Π�10

Θ*=Π�12

Θ*=0

iso

(a)

-0.2 -0.1 0.0 0.1 0.2

0

50 000

100 000

150 000

200 000

observation angle Θo @radD

T
ot

al
lu

m
in

oc
ity
@a

rb
.u

ni
ts
D

Θ*=Π�2

Θ*=Π�4

Θ*=Π�6

Θ*=Π�8

Θ*=Π�10

Θ*=Π�12

Θ*=0

iso

(b)

Figure 5.1: (a) Angular distribution (in respect to the observation angle θ0). Here
the jet bulk Lorentz factor is Γc = 10 and θ∗ denotes the "axis of anisotropy". The
parameter λ′ is 5. (b) Same as in the left panel but for the case λ′ = 1
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Figure 5.2: Same as 5.2 but for Γc = 5 and λ′ = 5. The e�ects of anisotropy is
more evident for slower moving source as the doppler boosting is not so strong.

The same intrinsic emitted power results in di�erent values of the observed lu-
minosity, which can di�er signi�cantly from the luminosity in the isotropic case (e.g.
by a factor of 3 as can been seen in �g. 5.1). This leads to a possible mis-estimation
of the doppler factor of the source if the observed luminosity is compared with the
intrinsic (extracted by the model) luminosity. The slower is the out�ow (�g. 5.2),
the more evident are the e�ects of anisotropy, as the Doppler boosting is less strong.

In a more general picture we can allow the parameter λ′ to depend on energy. We
will assume that the emitting particles are anisotropic. This could be the case e.g. in
di�usive shock acceleration (DSA), where the lower energy particles get isotropized
at the downstream region due to pitch-angle scattering, whereas the higher energy
particles radiate their energy before they have enough time to isotropize (see e.g.
Derishev et al. 2007). It is di�cult however to decouple the electron space distribu-
tion from the magnetic �eld structure but as a �rst approximation we will consider a
randomly oriented magnetic �eld. For simplicity we will assume that the λ′ param-
eter depends on some power of the energy, λ′ → λ′γ′p1 , so that the electron energy
distribution follows the form

N ′
e(γ

′) = ke(1 + λ′γ′p1 cos2 (θ − θ∗))γ
′−pe−(

γ
γc
)
β

(5.27)

We normalize in respect to the isotropic case as before, assuming that the total
energy integrated over volume∫

V ′

∫
γ′
N ′
e(γ

′)γ′mc2dγ′dV ′ (5.28)

is the same for both cases. For illustration we will examine the synchrotron and EC
radiation (for a detailed discussion on synchrotron and IC spectra from anisotropic
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Figure 5.3: (a) Observed synchrotron �ux from anisotropic electrons. With the
red line the isotropic case is shown (λ = 0). The anisotropy axis here is θ∗ = 0,
whereas the viewing angle is θ0 = 4o. As the parameter λ increases, the spectrum
becomes harder. Parameters of the source are Γc = 10, R = 1014cm, B = 0.3G,
γc = 104, p = 2 whereas the dependance of the anisotropy factor is assumed to be
∝ γ0.5. (b) EC emission for Planckian photon �eld (with the same parameters for
the electron distribution). The e�ect of anisotropy are more evident than in the
synchrotron spectrum because the EC emission extends over a larger energy band.

particle distributions see Derishev et al. 2007). The observed spectrum for both
cases is shown in �g. 5.3, for the values p′ = 2 and p′1 = 1/2.

The synchrotron spectrum (left panel) appears harder for more anisotropic parti-
cle distributions and the low energy break appears slightly shifted to lower energies.
In the isotropic case the photon SED index is Fν ∝ ν−0.5 as expected and for λ = 1
(the contribution of the anisotropic part of the particle distribution dominates the
emission) the spectrum roughly becomes Fν ∝ ν−0.26 because in this case

Ne ∝ γ−p+p1 . (5.29)

In the ICS spectrum (right panel) the e�ect of anisotropy is more evident. This
happens because in comparison to the synchrotron spectrum, the ICS extends over
a larger energy band. When λ′ is close to one, we can clearly see that at high energies
the spectrum is harder than at low energies, as expected for an anisotropic factor
that increases towards larger electron energies. Thus, a spectral hardening occurs
and the slope change value from the one that corresponds to Ne ∝ γ−p up to the
value that corresponds to Ne ∝ γ−p+p1 .

Obviously, this spectral feature is related to the dependance of λ′ on the electron
energy. We note that the SSC spectrum is expected to di�er substantially from the
EC spectrum due to the fact that the target photon �eld in this case (the synchrotron
photons) will be as well anisotropic. Thus, one can no longer use eq. 5.22, but
instead needs to calculate the emitted �ux for anisotropic electrons and photons.
This is however, beyond the scope of this chapter.
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5.4 Conclusions

In various astrophysical objects, like AGNs, microquasars and GRBs, the ob-
served �ux emerges from a relativistically moving source. The Doppler boosting
due to this motion enhances substantially the emitted �ux and thus the observed
spectrum appears di�erent than the intrinsic one. A deep understanding of the
Lorentz transformations that are required is important. In this chapter we have
obtained in a compact mathematically way, i.e. by solving the photon transfer
equation, the beaming pattern for the synchrotron, IC and SSC radiation (note that
the formula for the synchrotron beaming pattern can be applied for any radiation
mechanism for which the intrinsic photon distribution is known). Our calculations
allow for a generalization of the previously obtained results, i.e. they can account for
general electron distributions, non-stationary, non-homogeneous and non-isotropic.

Non-stationarity is an important characteristic especially of Blazars (but as well
as for GRBs and microquasars) because these objects are very often observed to
exhibit violent changes in their �ux. We have discussed that time variability a�ects
the beaming pattern only if the timescale of variability is less than the dynamical
timescale of the source. In this case however, the variations would be smoothed
out and not observed in such small timescales due to casuality arguments. On the
other hand, the assumption of non-isotropic particles is very well justi�ed in various
acceleration theories, as DSA and magnetic reconnection.

We have shown that strong anisotropy modi�es the total luminosity, an e�ect
that becomes more prominent in slower (but still relativistic) out�ows, because the
modi�cation due to anisotropic e�ects competes with the e�ects of Doppler boosting.
In respect to the isotropic case the total luminosity peaks at di�erent viewing angles
and it also appears enhanced, leading to a possible mis-estimation of the source
Doppler factor (we have normalized in respect to the total intrinsic power emitted).
Under the assumption that the emitting particles are more anisotropic at higher
energies, the spectrum may appear harder. How hard the spectrum can become
is relevant to the energy dependance that the particle distribution' s anisotropy
exhibits. This e�ect is more evident in the EC component than in the synchrotron
component as it extends over a larger energy band. In any case, once anisotropic
e�ects become evident, the slope of the emitted spectrum di�ers from the one that
results from the acceleration of the particles.

87



5.4. Conclusions

88



Chapter 6

Leptonic radiation from strati�ed

jets

6.1 Evidence for non-homogeneous out�ows

As shown in the previous chapter, deviation from isotropy may lead to interesting
features of the observed spectrum and the total luminosity may di�er signi�cantly
from the one that corresponds to the isotropic case. Another assumption that is
usually made, when modeling the high energy emission of Blazars, regards the ho-
mogeneity of the source. In general, the leptonic radiation is regarded to originate
from a homogeneous (and isotropic) part of the jet, where the parameters of the
bulk �ow do not depend on the space coordinates. This is the case in the one-zone,
homogeneous SSC model, where the parent electrons are considered to be contained
in a homogeneous, spherical blob. In the EC models the same assumptions for the
emitting particles are made in the majority of the cases.

However, such an approach appears adequate only to a �rst approximation, since
real jets are naturally expected to exhibit a signi�cant strati�cation. There is plenty
of observational evidence that the jets' physical parameters, like the bulk velocity or
the magnetic �eld, vary in space. For example, VLBI observations of the intensively
studied Mkn 501 and Mkn 421 show a limb-brightening morphology (Giovannini
et al., 1998, 1999). A similar behavior has been observed in 3C274 and 1144+35
(Giovannini et al., 2001). In the nearby radio galaxy M87 complicated structures
(side-to-side oscillations, transverse expansion) are revealed by VLBI maps (Reid at
al. 1989). Owen et al. (1989) have explained these structures in terms of a boundary
shear layer that dominates the dynamics of the jet. Later, radio polarization mea-
surements of M87 have con�rmed this complex structure. The optical jet appears
considerably more compact than the radio jet, and the observed knots are more
centrally concentrated (Perlman et al. 1999).

Similar morphologies have been seen in other FR I sources, such as 3C 31 (Laing,
1996; Laing & Bridle, 2002) and 3C296 (Hardcastle et al. 1997), where spine-layer
structures are con�rmed on kpc scales giving evidence for strong velocity shear.
Even at parsec scales the radio jet of the Blazar 1055+018 exhibits a transverse
structure consistent with the existence of an inner spine and a distinct boundary
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layer (Attridge et al. 1999). The polarization studies support the outcome of the
radio observations as they have shown that the magnetic �eld topology changes
within the jet. The longitudinal and toroidal components become dominant in
di�erent parts of the jet and at the boundary it does not have a transverse component
(e.g. Laing et al. 2006). In the presence of a strong velocity shear, the magnetic �eld
tends to become parallel to the �ow velocity (see e.g. Kahn, 1983; Begelman et al.,
1984). This is due to the sheared �ow stretching the lines of force of any magnetic
�eld frozen into the plasma. The dominant �eld direction is therefore parallel to the
jet axis.

In principle the presence of brightness variations inside the jet has been con-
�rmed in several sources (e.g. Laing et al., 2006a,b). Apart from transverse velocity
structures, strati�cation along the jet has been claimed in several cases. For ex-
ample, the side-to side asymmetries observed in a sample of low-luminosity FR I
radio galaxies are consistent with the hypothesis that the jet is decelerating from
relativistic velocities close to the core to lower velocities farther away, indicating
longitudinal velocity structures (Laing et al. 1999).

Apart from the aforementioned observational evidence for strati�cation, hydro-
dynamical studies support as well the existence of jet strati�cation. Hydrodynamical
simulations give rise to a fast spine that is surrounded by a slower layer (Aloy et
al. 2000). Coupled with the magnetohydrodynamical properties of the bulk �ow,
synthetic synchrotron emission maps have, been investigated for a 2-component jet
(an inner relativistic out�ow and an outer cold disk wind) in order to reproduce the
limb-brightening morphology of M87 (Gracia et al. 2009). Various MHD simulation
models for jet formation suggest that a spine-layer structure naturally arises as the
inner jet is launched by the central Black Hole via the Blandford-Znajek process,
whereas the outer layer is formed from the cold disk wind (see the introduction for
more details).

One should also mention that the presence of a velocity structure in the jet can
resolve di�culties in the uni�cation of FR I sources and BL Lacs, if the jets of
these sources are indeed intrinsically identical (Chiaberge et al. 2000). The di�erent
beaming due to velocity di�erences would then alter the observed properties of these
sources. It seems thus interesting to study in more detail the emission properties of
a jet that exhibits strati�cation in its bulk velocity and the magnetic �eld. Addi-
tionally, because the acceleration of the particles to relativistic energies depends on
these parameters, it appears promising to extend the consideration for strati�cation
to parameters that characterize the emitting particles, such as the number density
and the maximum energy of the distribution.

The modi�cations of the observed spectrum due to possible boundary layers
has been early realized from Komissarov (1990), mainly with respect to the e�ects
that the di�erent relativistic beaming of the di�erent parts of the jet has on the
overall spectrum. Several authors have attempted to approach open problems in the
AGNs' physics and phenomenology within leptonic models assuming the radiation
to originate in inhomogeneous jets. Velocity variations have been examined in both
the longitudinal and transverse direction and interesting e�ects of the strati�cation
on the emitted �ux have been discussed.
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Motivated by observational implications for jet deceleration Georganopoulos &
Kazanas (2003) have shown that, if the jet deceleration occurs within the γ-ray
emitting zone, then the particles at the base of the jet will see the photons from
the deceleration zone boosted. This leads to an enhancement of the Compton com-
ponent and allows for less extreme values of the physical parameters of the jet in
comparison to the homogeneous SSC models. On the other hand, Ghisellini et al.
(2005) have examined the synchrotron and Compton emission from a spine+layer
system. The interplay between the two zones through inverse Compton scattering
can cause signi�cant deceleration of the jet due to Compton drag (Phinney, 1982;
Sikora et al., 1996). The layer, having a smaller bulk Lorentz factor emits in a cone
much wider than the spine. Observers at large viewing angles should then see the
layer, not the spine and vice versa. Depending on whether the emission from the
core or the layer dominates the high energy component of the observed spectrum,
the overall radiation from these jets may exhibit characteristics similar to the ones
of BL Lac objects or FRI radio galaxies, "pairing" in this way these di�erent sources
(see e.g. the case of M87 in Tavecchio & Ghisellini 2008).

The transverse velocity pro�le that Ghisellini et al. (2005) examined is practically
a step-function. Regarding smooth transverse velocities pro�les, Li et al. (2004) and
Yang et al. (2009) have investigated the synchrotron and Compton emission from a
jet with a continuous decrease of the bulk Lorentz factor from the core of the jet to
the edge. As it seems, the uni�cation of BL Lacs and FRI may be less constrained
by the viewing angles, but rather be imprinted by velocity structures intrinsic to
the jets themselves. Furthermore, in the comoving frame, the SSC process, in the
case of a strati�ed jet, has properties similar to the EC model (Li & Wang 2004).

Once a velocity structure exists in the jet, additional particle acceleration is ex-
pected to occur in the shear �ow (see e.g. Rieger & Du�y 2004). As the particles
scatter of the magnetic �eld inhomogeneities, they gain energy traveling through the
shear. This stochastic process can be e�cient enough to lead to the formation of
relativistic particle distributions. The di�usive shock acceleration process seems to
be a plausible mechanism for the origin of the non-thermal power-law distributions
in the case of relativistic parsec scale AGN jets. In large-scale jets however, shear ac-
celeration might represent an attractive mechanism for boosting of particles at high
energies (Rieger et al. 2007). In any case, even in small scale jets, it is possible that
stochastic processes operate at least complementary to the DSA (re-acceleration).

Stawarz & Ostrowski (2002) examined the expected radiated spectra of such
distributions that can be generated at the boundary shear layers of large scales jets,
showing that the emission of these electrons can substantially contribute to the jet
radiative output and create observational signatures characteristic of the shear ac-
celeration. Aloy & Mimica (2008) further investigate more complex velocity pro�les
in order to show observable di�erences with respect to conventional monotonic and
smooth boundary layers.

Obviously, studying the emission properties of a jet that exhibits strati�cation
seems not only highly motivated by observations, but it also appears promising for
approaching unresolved puzzles in AGNs' physics and phenomenology. Deviation
from the standard, homogeneous models requires careful investigation of the e�ects
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that processes like Compton scattering, relativistic beaming or possible shear accel-
eration may have on the observed spectrum.

In this chapter we examine the synchrotron radiation from a jet that exhibits
strati�cation in the bulk Lorentz factor, the magnetic �eld, but also in the number
density and the maximum energy of the electron distribution. The reasoning for
the latter two varying parameters regards the fact that the characteristics of the
electron population are bounded to the bulk �ow physical parameters through the
acceleration process. We consider transverse velocity and magnetic �eld pro�les and
we assume that the dominating cooling process is synchrotron radiation.

6.2 Relativistic jet with strati�cation at the trans-

verse direction

Let us consider an axisymmetric, irrotational, relativistic jet emerging from the
central engine of the AGN. In cylindrical coordinates, each point of the jet is char-
acterized by the position vector r⃗ = (ϖ,ϕ, z), where z is the (longitudinal) distance
from the core, ϖ is the cylindrical (transverse) radius and ϕ the azimuthal angle
(see the sketch in �g. 6.1). The out�ow is moving in the ẑ-direction. We assume
that the jet is su�ciently collimated at distance z0 ∼ 1016cm (sub-parsec scale jet),
which will be referred to as the base of the jet. This value for z0 is consistent with
MHD studies and moreover it is far away enough from the disk where intense photon
�eld may exist and cool down the particle distribution very rapidly. At z0 the outer
radius is of the order of ϖ(z = z0) ≡ R0 ∼ z0/10. Up to a distance z1 we approxi-
mate the shape of the jet with a cylinder, i.e. the outer radius varies very slowly in
respect to z, R(z) ∼ R0 ≈ constant. For z > z1 the jet may start to expand in the
ϖ direction, introducing adiabatic losses that make the particles ine�cient emitters.

We consider a scheme where relativistic electrons are injected at the base of the
jet, e.g. by 1st order Fermi acceleration at a standing shock. The presence/creation
of standing shocks inside the jet has been suggested before (for instance, recollima-
tion shocks in an initially over-pressurized out�ow (Gomez et al., 1995; Perucho &
Martí, 2007). The radiation of the particles that are accelerated in such shocks may
dominate the observed spectrum (e.g. Mandal & Chakrabarti, 2008; Becker et al.,
2008).

Let K ′ be the comoving �ow frame and K the observer' s frame. The energy
distribution of the injected electrons at the base of the jet is assumed to be a power-
law with varying (with respect to ϖ coordinate) number density and maximum
cuto�

n′
0ϖ(γ

′
0) = k′

0ϖγ
′−s
0 Θ(γ′

0 − γ′
0,min)Θ(γ′

0,max − γ′
0). (6.1)

From now on we will use the notation Xzϖ = X(z,ϖ) for the parameter that
depend on both spatial coordinates, ϖ and z. Thus X0ϖ symbolizes the value of the
parameter X at (z = 0, ϖ). An exception holds for the electrons Lorentz factors,
with gamma′0 to imply that the particles are the base of the edge at any radius and
γ′ to refer to an arbitrary point (ϖ, z) of the out�ow. The parameters that depend
only on the polar radius will be simply denoted as X(ϖ).
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The bulk velocity and Lorentz factor of the �ow exhibit dependance on the
cylindrical radius

β = β(ϖ), Γ = Γ(ϖ) =
1√

1− β(ϖ)2
, (6.2)

and thus the Doppler factor at each point (z,ϖ) is

D(ϖ) =
1

Γ(ϖ)(1− β(ϖ)cosθ0)
, (6.3)

implying di�erent beaming for each point of the jet. As we will consider decreasing
velocity pro�les from the center to the edge, the inner layers of the jet will radiate in
a smaller cone than the outer layers. We furthermore assume that the magnetic �eld
depends as well on the ϖ coordinate, B = B(ϖ). For simplicity, we consider that
the dominant cooling process is synchrotron radiation. The particles loose energy
as they travel along the jet according to

dγ′

dz′
=

dγ′

dt′
dt′

dz′
= −4

3

σT c

mc2
U ′
B(ϖ)γ′2 dt

′

dz′
. (6.4)

It holds that dz′ = cβ(ϖ)dt′ and due to Lorentz transformations, dz = Γ(ϖ)dz′, we
�nd

dγ′

dz
=

dγ′

Γ(ϖ)dz′
=

1

cβ(ϖ)Γ(ϖ)

dγ′

dt′
. (6.5)

In principle, all the parameters are expressed for convenience in the comoving frame,
apart from the spatial coordinates. Practically, z corresponds to the time needed
for an electron to travel from the base of the jet up to the point z. Note that this
is not the time coordinate. The out�ow is stationary and thus the radiation that
an observer receives is independent on whether the timescales of observation are
smaller or larger than the light crossing time of the jet.

By expressing all spatial coordinates at the observer' s frame K we reach to the
formula

dγ′

dz
= −C ′(r)γ′ 2, C ′(ϖ) =

4

3

σTU
′
B(ϖ)

mc2
1

Γ(ϖ)β(ϖ)
. (6.6)

The solution of equation 6.6 results in the energy evolution of monoenergetic elec-
trons with initial Lorentz factor γ′

0

γ′ =
γ′
0

C ′(ϖ)(z − z0)γ′
0 + 1

. (6.7)

Determining the electron distribution at any point (z,ϖ) of the jet can be performed
in two equivalent ways. Either through the electron number conservation or by solv-
ing the kinetic equation after replacing (t → z). For a stationary, incompressible and
irrotational �ow (without shear or vorticity) the volume element is constant along
the �ow. Thus, from the conservation of the total number of particles (integrated
over energies) it follows that

n′
0ϖ(γ

′
0)dγ

′
0 = n′

zϖ(γ
′)dγ′. (6.8)
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We can easily calculate dγ′
0/dγ

′ = (1 − γ′C ′(ϖ)(z − z0))
−2, which, in combination

with equations (6.1) and (6.6), leads to the electron's energy distribution at an
arbitrary point (z,ϖ) of the jet

n′
zϖ(γ

′) = k′
0ϖ

γ′−s

[1− γ′C ′(ϖ)(z − z0)]2−s
Θ(γ′ − γ′

max)Θ(γ′
min − γ′), (6.9)

where the minimum and maximum cuto� energies are given by

γ′
min =

γ′
0,min

C(ϖ)(z − z0)γ′
0,min + 1

, γ′
z,min =

γ′
0,max

C(ϖ)(z − z0)γ′
0,max + 1

. (6.10)

The local electron energy distribution preserves almost the same shape of the in-
jected one, while the minimum and maximum cuto� decrease as shown in �gure
(6.2). The same result can alternatively be reached using the electrons' kinetic
equation for synchrotron losses

ϑn′
zϖ(γ

′)

ϑt′
=

ϑ

ϑγ′ (γ̇
′n′
zϖ(γ

′)) , (6.11)

with the initial conditions imposed by equation (6.1). Changing the integration
variable to z = Γ(ϖ)β(ϖ)ct′, we can write

ϑn′
zϖ(γ

′)

ϑz
= C ′(ϖ)

ϑ

ϑγ′

(
γ′2n′

zϖ(γ
′)
)
. (6.12)

The above equation has the solution of equation (6.9) (see Kardashev 1962) and
allows to add more terms for possible energy losses or acceleration of the electrons.

So there is a characteristic length scale at which the electrons have radiated away
all o� their energy and completely cooled down. We may de�ne this distance as

zcool = z0 +
1

γ′
0C

′(ϖ)
+

1

C ′(ϖ)
(6.13)

in which the third term dominates (for γ′
0 ≫ 1), implying practically that this

cooling length scale does not strongly depend on the initial energy of the particles,
mainly because of the way electrons cool down as shown in �g. (6.2). Two distinct
cases can be examined. Either the electrons lose all their energy before reaching the
"top" of the jet, at a �xed distance z1 imposed e.g. by the domination of adiabatic
losses after a certain distance from the jet base, or they escape from the radiating
zone before they completely cool down due to synchrotron losses.
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Figure 6.1: Schematic representation of the considered jet geometry. The radia-
tion zone extends from z0 to z1. The particles are injected in the jet after being
accelerated at its base. They cool down as the travel along the z-direction due to
synchrotron energy losses.
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Figure 6.2: Evolution of the minimum and maximum cuto� energies of the electron
distribution in respect to z. The maximum energy decreases rapidly while the
minimum energy is approximately constant. After γ′

zϖ,min ∼ γ′
zϖ,max the two cuto�

energies evolve together.
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6.3 Properties of the layers

The reason that we have not yet speci�ed the ϖ-dependance for the parameters
of the jet and the particle distribution concerns the fact that integration over the
z-coordinate is not a�ected by the variations along the cylindrical coordinate. The
hidden assumption is that the particles' mean free path is smaller than the scale
at which the velocity changes signi�cantly. Thus, one may determine the particle
distribution, as well as the synchrotron emission, in each layer. This can be illus-
trating for the multiple luminosity pro�les from di�erent velocity and magnetic �eld
structures.

6.3.1 Electron distribution integrated over the longitudinal

direction

With the local electron energy distribution of equation (6.9) at hand, the z-
integrated energy distribution reads

n′
ϖ(γ

′) =

∫ z1

z0

n′
zϖ(γ

′)dz. (6.14)

From the properties of the heaviside step-function yields that

Θ(γ′ − γ′
min) = Θ (z − zmin(γ

′)) , Θ(γ′
max − γ′) = Θ (zmax(γ

′)− z) , (6.15)

where

zmin(γ
′) = zo +

1

C ′(ϖ)

(
1

γ′ −
1

γ′
0,min

)
, zmax(γ

′) = zo +
1

C ′(ϖ)

(
1

γ′ −
1

γ′
0,max

)
.

(6.16)
Due to the above limitations, the integration limits become

n′
ϖ(γ

′) =

∫ min[z1,zmax(γ′)]

max[z0,zmin(γ′)]

k′
0ϖγ

′−s

[1− γ′C ′(ϖ)(z − z0)]2−s
dz. (6.17)

The comparison of the various length scale elements entering the limits of integration
will reveal the di�erent branches of the solution. One can see e.g. that z1 < zmax(γ

′),
when γ′ < γ′

1,max. The Lorentz factor γ′
1,max corresponds to the energy that an

electron should have when it reaches the top of the jet, if it's initial energy is at the
high energy cuto� γ′

0,max

γ′
1,max ≡

γ′
0,max

1 + C ′(ϖ)(z1 − z0)γ′
0max

. (6.18)

The value of γ′
1,min for the injected low cuto� energy is correspondingly

γ′
1,min ≡

γ′
0,min

1 + C ′(ϖ)(z1 − z0)γ′
0min

. (6.19)

Investigating all the limits of the integral and assuring that none of them overlap
reveals two cases for the electron distribution depending on the maximum length
scale and the injected low energy cuto� value.
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6.3. Properties of the layers

• γ′
1,max > γ′

0,min: The electrons with injected energy at the maximum cuto�
have not cooled below γ′

0,min at the top of the jet.
• γ′

1,max < γ′
0,min: The electrons with injected energy at the maximum cuto�

have traveled a long enough distance to reduce their energy below γ′
0,min at

the top of the jet.
In the former case, the solution becomes

n′
ϖ(γ

′) = Λ(ϖ)



γ′−s−1

[
(1− γ′C ′(ϖ)(z1 − z0))

s−1 −
(

γ′

γ′0,min

)s−1
]
, γ′

1,min < γ′ < γ′
0,min

γ′−s−1
[
(1− γ′C(ϖ)(z1 − z0))

s−1 − 1
]
, γ′

0,min < γ′ < γ′
1,max

γ′−s−1

[(
γ′

γ0,max

)s−1

− 1

]
, γ′

1,max < γ′ < γ′
0,max

(6.20)
where

Λ(ϖ) =
k0ϖ

C ′(ϖ)(1− s)
. (6.21)

The last branch of the expression represent the cooled distribution, for which the
power-law index becomes steeper by 1. The particles with energy below γ′

1,max have
not cooled, thus the distribution is proportional to γ′−s. The �rst branch corresponds
to a cuto� practically at γ′

0,min. The injected electrons with energy γ′
0,min have not

reduced signi�cantly their energy, even when reaching the top of the jet, and thus
γ′
1,min ∼ γ′

0,min. For illustration see �g. 6.3.
When the opposite situation occurs, γ′

1,max < γ′
0,min, the solution takes the form

n′
ϖ(γ

′) = λ(ϖ)



γ′−s−1

[
(1− γ′C ′(ϖ)(z1 − z0))

s−1 −
(

γ′

γ′0,min

)s−1
]
, γ′

1,min < γ′ < γ′
1,max

γ′−2
[
γ′1−s
0,max − γ′1−s

0,max

]
, γ′

1,max < γ′ < γ′
0,min

γ′−s−1

[(
γ′

γ0,max

)s−1

− 1

]
, γ′

0,min < γ′ < γ′
0,max

(6.22)
Here all the particles completely cool down and thus the distribution exhibits two
power-law indexes, n′

ϖ(γ
′) ∝ γ′−2 at high energies and n′

ϖ(γ
′) ∝ γ′−s−1 at energies

below γ′
0,min. The �rst branch shows, as before, a cuto�. For constant physical

parameters (no strati�cation) the jet geometry gives rise to particle distributions
equivalent with the ones emerging from a spherical blob. The value of the time
needed for the particles to escape the blob would then allow to distinguish between
the two cases discussed above. Actually the condition γ′

0min ∼ γ′
1,max demonstrates

what the horizontal size of the jet should be, in order to result in the �rst or second
solution. If z < z∗1 , the size of the jet is not large enough to allow the injected
electrons at the maximum cuto� to cool down to γ′

0,min so that we take the �rst
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6.3. Properties of the layers

solution and vice versa. The limiting value for z∗1 is

z∗1 =
1

C(ϖ)

[
1

γ′
0,min

− 1

γ′
0,max

]
. (6.23)
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Figure 6.3: Electron energy distribution emerging from each layer. (a) A break,
the value of which depends on z1, occurs at γ′

1,max below which the particles have not
cooled down. Here the values for the injected distribution are s = 2.2, γ′

0,min = 102

and γ′
0,max = 105. The low energy cuto� is at γ′ ≈ γ′

0,min = 102. Di�erent colures
denote di�erent maximum length scales for the emitting region. (b) The break
occurs at γ′

0,min (here γ
′
0,min = 103) and thus remains constant in respect to z1. For

energies smaller than γ′
0,min the power-law index is 2.

6.3.2 Intrinsic synchrotron emission from each layer

The energy losses for synchrotron radiation do not depend on z. This derives
from the fact that synchrotron losses are constant in respect to time, something
that does not hold e.g. for adiabatic losses. Thus, we may de�ne the synchrotron
emission from each layer by convolving the electron distribution of equations (6.20)
and (6.22) with the synchrotron kernel. In the case of chaotic magnetic �elds, the
emitted synchrotron power of an electron with energy E ′

e = γ′mc2 is described by
the equation

ϵ′γdṄ
′
γ

dϵ′γ
=

√
3q3B′(ϖ)

mc2h
G̃

(
ϵ′γ
ϵ′s

)
, (6.24)

where

ϵ′s = b′γ′2 =
3qB′(ϖ)hγ′2

4πmc
(6.25)

is the "critical" energy for synchrotron emission, as the synchrotron power peaks at
0.29ϵ′s (e.g. Rybicki & Lightmann 1979). As in the previous chapters we will use
the approximation provided in Aharonian et al. (2010)

G̃(y′) =
1.808y′1/3√
1 + 3.4y′2/3

1 + 2.21y′2/3 + 0.347y′4/3

1 + 1.353y′2/3 + 0.217y′4/3
e−ψ. (6.26)
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The synchrotron power emitted from each layer is then

J ′
ϖ =

∫ ∞

1

ϵ′γdṄ
′
γ

dϵ′γ
n′
ϖ(γ

′)dγ′ (6.27)

The corresponding intrinsic emissivity (integrated over z) is shown in �g. 6.4. The
breaks in the electron distribution result in the following synchrotron breaks

ϵ′0,min = b′γ′2
0,min, ϵ′0,max = b′γ′2

0,max, ϵ′1,min = b′γ′2
1,min, ϵ′1,max = b′γ′2

1,max (6.28)

Then, the energy dependance of the emissivity for the electron distribution of equa-
tion (6.20) exhibits roughly the following behavior

J ′
ϖ(ϵ

′) ∝


ϵ′1/3, ϵ′ < ϵ′0,min

ϵ′−
s−1
2 , ϵ′0,min < ϵ′ < ϵ′1,max

ϵ′−
s
2 , ϵ′1,max < ϵ′ < ϵ′0,max

(6.29)

For the solution of equation (6.22) the corresponding emission factor reads

J ′
ϖ(ϵ

′) ∝


ϵ′1/3, ϵ′ < ϵ′1,max

ϵ′−1/2, ϵ′1,max < ϵ′ < ϵ′0,min

ϵ′−
s
2 , ϵ′0,min < ϵ′ < ϵ′0,max

(6.30)

The J ′
ϖ(ϵ

′) ∝ ϵ′1/3 dependance below the low energy cuto� is the characteristic
behavior of the synchrotron function. Note that the results are applicable in the
optical thin limit of synchrotron radiation.
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Figure 6.4: The emission factor that arises for the electron distributions plotted in
�g. 6.3. The spectral index follows J ′

ϖ(ν
′) ∝ ν ′−(s−1)/2 as expected, whereas below

the low energy cuto� J ′
ϖ(ν

′)ν ′1/3. This dependance is mentioned in the plot, but
note that the y-axis corresponds to ν ′J ′

ϖ(ν
′) for better illustration.
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6.4. Parametrization of the physical parameters

6.4 Parametrization of the physical parameters

The local (and the integrated over z) particle distribution depends on the ϖ-
coordinate through k′

0ϖ and the energy losses related term C ′(ϖ). Thus the total,
volume integrated, electron distribution may possess interesting features around the
energy breaks, depending on the ϖ-dependance of these parameters. Furthermore,
the radiation is boosted by the Doppler factor which, in a strati�ed �ow, varies as
well along the jet and consequently may enhance these modi�cations. Our scope
is to investigate the observed synchrotron spectrum that arises from a strati�ed
out�ow and the possible di�erences compared to the homogeneous case.

We will assume that the inner core of the jet possess constant physical param-
eters. This corresponds to a fast spine, where the radius Rc is a free parameter of
the model. Outside the core the bulk Lorentz factor changes with respect to ϖ and,
at �rst place, we will consider the simplest case of a linear dependance within the
boundary layer. Thus, the bulk Lorentz factor scales as

Γ(ϖ) = ΓcΘ(Rc −ϖ) +

[
Γc + (Γl − Γc)

ϖ −Rc

Rc −Rl

Θ(ϖ −Rc)Θ(Rl −ϖ)

]
, (6.31)

where Rl is the outer radius of the jet and Γc, Γl the values of the Lorentz factor at
Rc and Rl respectively. The Doppler factor which exhibits as well a dependance on
the ϖ coordinate,

D(ϖ) =
1

Γ(ϖ)(1− β(ϖ)cosθ)
, (6.32)

is a sensitive function of the angle of observation θ. We know that for small angles,
θ < 1/Γ(ϖ) it holds that D(ϖ) ∝ Γ(ϖ), whereas for large angles, θ ≫ 1/Γ(ϖ) an
almost inverse dependance takes place, D(ϖ) ∝ Γ(ϖ)−1 (see �g. 6.5). This means
that in a strati�ed �ow di�erent characteristics may arise as the inner or outer, or
even some intermediate layers may be stronger boosted.

The magnetic �eld
−→
B′ = B′

z ẑ+B′
ϖϖ̂+B′

ϕϕ̂ is considered to be mainly randomly
oriented so that

⟨B′
z⟩ = ⟨B′

ϖ⟩ = ⟨B′
ϕ⟩ = ⟨B′

zB
′
ϖ⟩ = ⟨B′

ϖB
′
ϕ⟩ = ⟨B′

zB
′
ϕ⟩ = 0. (6.33)

where the brackets refer to mean in respect to spatial coordinates. Nevertheless,
the "strength" parametrization of the magnetic �eld will be assumed to follow the
scaling of one of the components. This can be justi�ed if we consider that at the jet
formation zone, close to the central engine, the magnetic �eld components (ordered
or disordered) follow a speci�c scaling which is conserved at the emission zone.
This implies that even if the magnetic �elds gets randomized, there is still a slight
domination of one of the components which is small enough to allow as to work out
the radiation pro�le in the tangled magnetic �elds regime.

Many authors discuss the magnetic �eld structure in the context of MHD studies.
For a stationary, axisymmetric jet, in the magnetically dominated �ow limit, the
toroidal magnetic �eld at the black whole frame scales as Bϕ ∝ 1/ϖ (see eq. 13c in
Vlahakis & Königl, 2003) and the poloidal magnetic �eld as Bp ∝ 1/ϖ2. In the �uid

101



6.4. Parametrization of the physical parameters

 5

 10

 15

 20

 0  0.2  0.4  0.6  0.8  1

δ(
ϖ

)

ϖ/Rj

θ=2
o

θ=4
o

 θ=6
o

θ=8
o

θ=10
o

θ=12
o

Figure 6.5: Scaling of the Doppler factor with respect to ϖ. The bulk Lorentz
factor here drops from Γ = 12 to Γ = 2. The size of the inner core of the jet is
Rc = 0.1Rj. For small angles the Doppler factor decreases following the Lorentz
factor whereas for large angles is increases towards the edge of the jet. For example,
for θ = 7o the dependance on ϖ is complex and there is a slight enhancement of the
intermediate layers.

reference frame, for a �ow with velocity along the z-axis, the functional dependance
on ϖ becomes B′

ϕ ∝ 1/Γϖ and B′
p ∝ 1/ϖ2 respectively. The same conclusions

were drawn earlier in Appl & Camenzind (1993) for force-free relativistic magnetic
jets, su�ciently far away from the light cylinder. This picture is consistent with a
current along the axis of symmetry of the jet, which creates a toroidal �eld which in
turn sustains the current. These analytical results are supported by simulations for
magnetic acceleration of AGN jets (Komissarov et al. 2007) where an initially radial
magnetic �eld is assumed (e.g. the black hole magnetic �eld which in combination
with rotation accelerates and collimates the jet within the Blandford-Znajek process.
They are also consistent with magnetic �ux conservation according to which∮ −→

B′d
−→
S ′ = 0. (6.34)

For example, the element surface which is orthogonal to the toroidal component is
dS ′ = dϖ′dz′ ∝ dϖΓdz ∝ ϖΓ and thus B′

ϕ ∝ 1/Γϖ1. When the total out�ow is

1Note however that for an adiabatically expanding jet the toroidal magnetic �eld should rather
scale as B′

ϕ ∝ 1/ϖΓ(ϖ)β(ϖ), because the line element along the z direction for frozen in magnetic
�eld depends on the velocity of the jet, dz′ ∝ Γ(ϖ)β(ϖ)dt
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6.4. Parametrization of the physical parameters

examined, from the black horizon to larger scales, the magnetic �ux conservation
results in a suppression of the longitudinal component until the jet gets collimated
and can be approximated by a cylindrical �ow, as the transverse surface of the jet
grows with the distance from the central black hole. This implies that the magnetic
�eld energy density is dominated by the toroidal component. On the other hand, as
discussed in the introduction, the shear "drags" the magnetic �eld lines and thus the
longitudinal component' s energy density becomes larger. Here we will examine the
case at which the Bϕ component dominates the total energy density and thus de�ne
the "strength" parametrization of the magnetic �eld. So in total the magnetic �eld
scales as

B′(ϖ) ∝ 1

ϖΓ(ϖ)
. (6.35)

The above holds at the boundary layer, in the core the magnetic �eld is considered,
as the Lorentz factor, to be constant.

For the injected electron distribution we consider that the total number density
scales according to the plasma density ρ′(ϖ), as particles get accelerated at the
shock from the bulk �ow and assume that the ratio between the proton and electron
number density remains constant (see e.g. Gracia et al. 2009). The kinetic energy
density of the jet assuming cold protons, ρ′(ϖ)β(ϖ)2c2/2 is in equipartition with the
magnetic �eld energy density and thus ρ′(ϖ) ∝ B′(ϖ)2/β(ϖ)2. The total injected
electron number density N ′

ϖ(ϖ) =
∫
n′
ϖ(γ

′)dγ′ appears to be

N ′
ϖ(ϖ) =

k′
0ϖ

s− 1

(
γ′1−s
0,min − γ′1−s

0,max

)
≈ k′

0ϖ

s− 1
γ′1−s
0,min, (6.36)

for steep enough power-law (s > 1) and γ′
0,max ≫ γ′

0,min. Then, the scaling of the
k′
0ϖ follows the plasma density scaling and thus

k′
0ϖ ∝ ρ′(ϖ) ∝ B′(ϖ)2

β(ϖ)2
∝ ϖ−2Γ(ϖ)−2β(ϖ)−2, (6.37)

Of course if the electron distribution is hard, then any possible dependance of γ′
0,max

must be taken under account. The maximum cuto� of the injected distribution is
actually expected to vary with ϖ when one considers acceleration at a standing
shock. The energy up to which the particles can accelerated is limited by the energy
losses due to radiation. In the simplest case of non-relativistic DSA and dominant
synchrotron losses, equalizing the acceleration and cooling timescales results in the
following estimation for the maximum cuto� (Rieger et al. 2007)

γ′
0,max(ϖ) ≃ 9 109

(
1G

B(ϖ)′

)(
me

mp

)(
Vs
0.1c

)
, (6.38)

where Vs the shock velocity. Thus, γ′
0,max(ϖ) ∝ B(ϖ)′−1/2.
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6.5 Total observed synchrotron spectrum

With the electron distribution integrated over z at hand, we can now calculate the
distribution from the whole volume of the jet by integrating over ϖ. This "total"
distribution N ′

e(γ
′) does not have a direct observational consequence because we

"see" the particles through their (synchrotron) radiation and for the calculation of
the emitted spectra one has to take into account that the synchrotron power depends
on the magnetic �eld and thus on ϖ, as well as on the Doppler factor which is also
di�erent for each layer. In other words, one can not change the order of integration
between γ′ and ϖ. However, the total electron distribution may prove illustrating
for several implication, e.g. which layers dominate the intrinsic emission or whether
special features may appear at the energy band around the breaks.

6.5.1 Total, volume integrated, electron distribution

Let as denote with Rj the outer radius of the jet so that

N ′
e(γ

′) =

∫ Rj

0

n′
ϖ(γ

′)2πϖdϖ. (6.39)

For the bulk Lorentz factor we will use the relation (6.31) considering a highly
relativistic value for the inner jet, Γc ≈ 12, which decreases linearly to substantially
lower values, Γc ≈ 2− 3.

For the magnetic �eld we �x only the value at the core Bc ≈ 1G, so that across
the boundary layer the dependance on ϖ follows

B′(ϖ) =
BcΓcRc

Γ(ϖ)ϖ
. (6.40)

For Rc ∼ 0.1 Rj the above relation results in a decrease to B′ ∼ 0, 6G at the edge,
whereas for Rc ∼ 0.2Rj the magnetic �eld at the edge is larger B′ ∼ 1.2G. Note
that the above function is not always monotonically decreasing along the jet (see
�g. 6.6). The same holds for the parameter k′

0,ϖ which is as well �xed only at the
center, so that

k′
0,ϖ =

k′
0,cΓ

2
cR

2
cβ

2
c

Γ(ϖ)2ϖ2β(ϖ)2
. (6.41)

For small core radius, the value of k′
0,ϖ at the edge of the jet is lower than at the

core, whereas for Rc & Rj the opposite holds. In both cases, the aforementioned
function do not result in large deviations of the values along the jet, neither for the
magnetic �eld nor for the parameter k′

0,ϖ of the injected electron distribution. For
now, we will keep the maximum cuto� injected electron energy constant. Although
a possible scaling of γ′

0,max may create a modi�cation at the higher energy part of
the electron distribution, the radiated spectrum should not be much in�uenced. The
maximum synchrotron energy is

ϵ′0,max ∝ B′(ϖ)γ′2
0,max, γ′

0,max ∝ 1/
√
B′(ϖ), (6.42)
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Figure 6.6: (a) Scaling of the magnetic �eld (left panel) and the number density
of the injected electrons (right panel). None of these functions are not monotonic
in respect to ϖ. For small core radius the corresponding values in the edge are less
than in the center, whereas for Rc & Rj the opposite holds. For Rc = 0.1Rj the
highest di�erence for the values of the magnetic �eld is much less than a order of
magnitude and for k′

0,ϖ this is almost an order of magnitude.

independent of the magnetic �eld strati�cation. The synchrotron maximum cuto�
energy "hides" any information for the source magnetic �eld (in the case of �rst order
Fermi acceleration) and thus it is not expected to have a crucial contribution in any
possible deviation from the standard homogeneous, 1-zone models. Only due to the
di�erent Doppler boosting of each layer one may expect to see some e�ect close to
the maximum cuto�. However, the synchrotron cuto� exhibits an exponential index
which is small (always less than unity, see chapter 4) and normally smooths out any
modi�cation at the high energies.

Let us distinguish two cases according to whether the particles follow the solution
(6.20) or (6.22). These are shown in �g. 6.7 and 6.8 respectively. In the former case
it is di�cult to say which layers dominate as the cooling break γ′

1,max

γ′
1,max ∼

1

C ′(ϖ)(z1 − z0)
∝ ϖ2Γ(ϖ)3β(ϖ), (6.43)

is not a monotonous function of ϖ (see �g. 6.7, right panel). It seems though that
the outer layers form the total electron distribution, for the value of the central
core that we have chosen Rc = 0.1 Rj. For the solution of eq. 6.22, the break
at the electron energy distribution is constant, as it corresponds to γ′

0,min. What
varies in this case, is the minimum cuto� of the total distribution, which results in a
distribution below γ′

0,min slightly harder than the γ′−2 slope that characterizes each
layer. As for γ′

1,max, the minimum cuto� does not varies monotonically along the
jet. However, it is again the outer layers that de�ne the total energy distribution.

An "intermediate" case at which the electron distribution follows di�erent solu-
tion in the inner and outer layers can of course occur, as shown in �g. 6.9. This
depends purely on the critical parameter z∗ in combination with the size z1 of the
jet. z∗ varies however slowly with the ϖ coordinate and thus the range of the pa-
rameters that such a total distribution may arise is limited. Moreover, this case does
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not show much di�erence from the electron distribution that arises from eq. 6.22
and thus will not be discussed further.
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Figure 6.7: (a) Electron energy distribution emerging from the jet. The values
of the main parameters are B = 2 G, Rc = 0.1 Rj, s = 2.2. The value of the
minimum injected cuto� is γ′

0,min = 10 and z1 = 1017cm. The outer layers dominate
the resulting total distribution. The electron distribution from each layer follows
the solution (6.20). (b) Variation of the cooling break energy γ′

1,max along the jet.
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Figure 6.8: (a) Same as in �g. 6.7 but here the electron distribution from each
layer follows the solution (6.22). The cooling break is at γ′

0,min and thus constant in
respect to ϖ. The minimum cuto� however is di�erent for each layer and thus the
total distribution below γ′

0,min is slightly harder than the expected γ′−2 slope that
characterizes each layer. Here we have used a larger value for the injected minimum
cuto�, γ′

0,min = 103, to demonstrate better the behavior of the total distribution.
The total size of the jet is z1 = 1018cm. (b) The minimum cuto� energy dependance
on ϖ. As for γ′

1,max, this is not a monotonic function of ϖ along the jet.

Though the total electron distribution is dominated by the outer layers, the
synchrotron emission may di�er due to the stronger boosting of the core radiation.
Apart from this enhancement due to the beaming, one may as well explore di�erent
reason for enhancing some of the jet components, e.g. by varying the free parameters
of the model like the core size Rc or the boundary values of the Lorentz factor. The
main purpose is to examine whether a "mixing" of the radiated components can
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Figure 6.9: Same as �gure 6.8 but for γ′
0,min = 104 and z1 = 4 1016cm so that the

electron distribution follows di�erent solution at the outer and inner layers. At the
right panel it is shown how the critical length scale z∗ varies in respect to ϖ.

occur and thus lead to spectral signatures of the jet strati�cation. These special
features should be prominent to appear close to the breaks of the distribution, i.e.
around γ′

1,max in the �rst case and around γ′
0,min in the second case. Apart from the

aforementioned modi�cations, it is also interesting to examine whether the spectra
appear di�erent in shape under di�erent angles of observation or for di�erent values
of the free parameters.

The observed synchrotron spectrum that arises from the sum of the distributions
plotted in �g. 6.7 (left panel) is shown in �g. 6.10 for Rc = 0.1 Rj and Rc = 0.5 Rj

respectively. The spectral break should occur at the synchrotron frequency that
corresponds to γ′

1,max, namely at

ν1,max ∝ D(ϖ)B(ϖ)γ′2
1,max ∝ D(ϖ)Γ(ϖ)5ϖ3β(ϖ)2. (6.44)

This is as well a non-monotonic function of ϖ for Rc = 0.1 Rj, but for a much larger
core size it decreases towards the edge of the jet (see �g. 6.11). When considering
a thin inner spine the total spectrum is dominated by the inner layers radiation
and the typical break of α ∼ 0.5 appears. For a larger core, the outer layers start
to "appear" at the observed spectrum and the break occurs at smaller energies.
Although one may expect the core jet radiation to become stronger as we increase
the size of the core, the opposite situation occurs. The reason concerns the magnetic
�eld' s functional dependance on ϖ that we have assumed. As Rc increases, the
magnetic �eld takes larger values close to the edge of the jet, enhancing this way
the synchrotron radiation of these components.

This is a special case related to the strati�cation of the number density of the
injected electrons. In principle, we can roughly estimate the synchrotron power by

Psyn ∝ dE

dt syn
Ntotal, (6.45)

where Ntotal the number of electrons (integrated over energy). In a self-consistent
treatment, the steady-state electron distribution is inverse proportional to the energy
losses (look e.g. the solutions 6.20 and 6.22) and thus the synchrotron power should
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6.5. Total observed synchrotron spectrum

not depend strongly on the magnetic �eld. However, in our case it turns out that
k′
0,ϖ ∝ B′(ϖ)2 and due to this modi�cation the components of the jet with larger
magnetic �eld radiate higher synchrotron �ux.

Coming back to the spectrum for a core with RC = 0.5Rj, we can see that
there is an energy band for which the contribution of the various components mix
and thus the slope is somewhat smaller that ν ′−s/2. Actually the spectral slope in
this energy band, which ranges from the "minimum" (with respect to ϖ) to the
"maximum" γ′

1,max, is gradually decreasing from ν ′−(s−1)/2 to ν ′−s/2 as we consider
larger sizes for the central spine of the jet (see �g. 6.13). This is a direct e�ect of the
strati�cation of the jet. It does not only show that di�erent jet parameters can lead
to di�erent spectra, but it also results in a modi�cation of the spectrum with respect
to the homogeneous, 1-zone models. Interestingly, the aforementioned energy band,
when this becomes evident, is not small (slightly more than two orders of magnitude
for the speci�c parametrization). It is strongly correlated with the parametrization
that we have chosen, but it can appear in other con�gurations as well, because
the only presupposition regards the mixing of the layers radiation. The demand
to have di�erent ν1,max for di�erent layers is satis�ed by default in a strati�ed �ow
due to the cooling process of the particles. Obviously, the more the values of these
frequencies deviate from each other, the more evident is the e�ect. Note that in
the synchrotron self-Compton part of the spectrum (in the Thomson regime), this
energy band becomes substantially larger due to the emission mechanism itself, as
νc ∝ DB′γ′4.

Even more interestingly, a similar modi�cation can be attributed to di�erent
angles of observation and be linked to purely phenomenological reasons. Larger
angles of observation enhance the outer components of the jet and, as shown in
�g. 6.13, the spectrum becomes softer with increasing angle θ. This means that if
we observe at this energy band a source with strati�cation, the slope will change
with the angle of observation and can take any value between s/2 and (s − 1)/2.
Additionally, one can see, as before, that for some values of the angle θ, a second
break appears in the spectrum (e.g. for θ = 4o − 5o).

When the electron distribution from each layer is given by eq. 6.22, the spectral
break does not vary so signi�cantly with the polar radius as it occurs at the frequency
that corresponds to the electron energy γ0,min, which is constant and thus

ν0,min ∝ D(ϖ)B(ϖ)′γ′
0,min ∝ D(ϖ)

ϖΓ(ϖ)
. (6.46)

For this reason any possible modi�cation is expected close to the low energy cuto�
γ′
1,min. This concerns however very low frequencies and is not so interesting as in
the previous case. Nevertheless, a similar behavior is observed (see �g. 6.13). As
we increase the core size or the angle θ, the outer layers start to contribute at the
emitted spectrum. The slope at low energies then varies from 1/3 to −1/2 and as
before it can take any value in between. The energy band at which modi�cation due
to the �ow strati�cation occurs concerns all the frequencies below γ′

0,min. Thus, it
is distinguishable only for injected electron distribution with relatively high values
for the lower cuto�, like γ′

0,min ∼ 103, as we have used in the �g. 6.12. It can
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thus be relevant for applications where a high γ′
0,min is assumed, like in the leptonic

modeling of hard spectrum sources that we discussed in chapter 2.
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Figure 6.10: Observed synchrotron �ux for two di�erent core sizes, Rc = 0.1 Rj

(left panel) and Rc = 0.5 Rj (right panel) for the electron distribution of eq. 6.20.
When the core size is small the inner layers dominate the emission whereas for larger
Rc, the outer layers play signi�cant role at the total observed spectrum.
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Figure 6.12: Synchrotron spectra for (a) di�erent core sizes but the same angle of
observation (θ = 2o) and (b) di�erent angles but the same core size (Rc = 0.2 Rj).
The parent electrons follow the solution of eq. 6.22. For low Rc or θ the inner layers
dominate the emission. Increasing these parameters results in a gradual appearance
of the outer layers, leading to special features in the spectrum, in the energy band
around ν1,max. The spectrum becomes gradually softer with increasing Rc or θ and
for some speci�c values we can see a second break appearing at the "minimum"
in respect to ϖ characteristic frequency ν1,min(ϖ), e.g. for Rc = 0.3 − 0.5 Rj or
θ = 4o − 8o
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Figure 6.13: Same as in �g. 6.12 but for parent electron distributions of eq. 6.22.
The modi�cation in respect to the homogeneous case occurs below the frequency
that corresponds to γ′

0,min and it is relevant only at low energies.
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6.6 E�ects of the maximum energy of the injected

electron distribution

One point that has not been discussed yet, is whether a transverse scaling of
the maximum injected electron energy γ′

0,max may result in further modi�cation of
the observed spectrum. As discussed earlier, even if the total electron distribution
exhibits some features at high energies, the synchrotron spectrum does not strongly
re�ect these di�erences. This is true only if the variation of the γ′

0,max along the
jet comes from the magnetic �eld strati�cation. Of course the observed maximum
cuto� will be di�erent for each layer due to the Doppler boosting, but the smooth
synchrotron cuto� does not allow for any important modi�cation appear. Never-
theless, if we consider that an additional scaling comes into play e.g. through the
shock velocity, the possibility for some alteration of the emitted �ux is higher. In
any case, varying more of the physical parameters and/or in more ways of the bulk
�ow or the relativistic particles is the next step.

Let as examine e.g. the aforementioned case at which the shock velocity scales
as the bulk �ow, a parametrization justi�ed by the fact that the velocity of the
standing shock that is created is not arbitrary but it is formulated by the velocities
in the upstream and downstream region. Thus if Vs = Vs(ϖ) ∝ β(ϖ), the maximum
cuto� given in eq. 6.38 reads

γ′
0,max ∝

Γ(ϖ)√
B′(ϖ)

∝ ϖΓ(ϖ)2. (6.47)
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Figure 6.14: Parent electron distributions for di�erent dependance of γ′
0,max on

ϖ. When the maximum cuto� energy depends on the magnetic �eld little di�erence
manifests at the total energy distribution, whereas an additional dependance on ϖ
is assumed (due to e.g. a non-constant along the jet shock velocity) the total energy
distribution at high energies exhibits a steepening. This results in a -smother than
exponential- tail at the high energy part of the spectrum. This is why the spectrum
at these energies does not exhibit a clear power-law behavior but is rather curved.
Note that this holds for Rc = 0.5Rj, a case where the total emission comes from a
mixing of the layers.
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Again, the values for the free parameters are to de�ne whether some features
will appear at the spectrum due to the mixing of the inner and outer layers of the
jet. At �g. 6.14 the total electron energy distribution and the observed synchrotron
spectrum is shown for Rc = 0.5Rj. Three cases are plotted. A constant γ′

0,max,
a dependance only on the magnetic �eld according to eq. (6.38) and additional
dependance on ϖ due to the strati�cation of the shock velocity (eq. 6.47). When
the maximum injected energy depends only on the magnetic �eld little modi�cation
is observed in respect to the γ′

0,max = constant case. On the other hand, for eq.
6.47 both electrons and synchrotron radiation are altered at high energies. The
resulting particle distribution becomes steeper, around the minimum -in respect to
ϖ- injected energy γ′

0,ϖ∗ . The observed spectrum is steeper as well, but smoother
than the exponential cuto�. In total it looks rather curved and does not have a clear
power-law behavior.

6.7 Summary and future work on strati�ed out�ows

In this last chapter we have developed a non-homogeneous model for radiation
from relativistic out�ows. We discussed only the synchrotron radiation component
of the spectrum, neglecting the ICS component and the corresponding energy losses.
Such a scheme allows as to examine in detail the e�ects of strati�cation, as we can
develop an analytic solution for the electron distribution in each layer. We have
shown that even in this simpli�ed picture, important deviation from the one zone
models may appear. Two e�ects exhibit the underlying strati�cation. First, the
observed synchrotron spectrum appears di�erent for di�erent values (of some) of
the free parameters of the model, e.g. the size of the central core or the angle of
observation. The main reason concerns the dominance of di�erent layers each time.
As far as the viewing angles is concerned, this means that intrinsically identical jets
appear di�erent for di�erent angles, an e�ect that has been previously discussed in
more simpli�ed cases like the spine-layer model of Ghisellini et al. (2005).

Secondly, we have shown that a mixing of the emission of the layers may occur,
leading to interesting features of the spectrum. Within an energy band which (for
the parameters chosen here) extends for ∼ 2 orders of magnitude, the slope of the
spectrum can take any value between −s/2 and −(s+1)/2 and it depends purely on
the strati�cation of the physical parameters. Furthermore, the observed spectrum
may show a second break which is an observational evidence for a strati�ed �ow, as
it is not expected for homogeneous models. This happens when the injected electron
distribution has a relatively low minimum cuto� (γ′

0,min ∼ 10) and the particles do
not completely cool before they escape at the edge of the jet. When the injected
cuto� is higher so that the local electron distribution from each layer exhibit the
characteristic∝ γ′−2 behavior, modi�cation analog to the aforementioned is observed
at the low energy part of the spectrum. The slope takes arbitrary values among 1/3
and −0.5, but no break shows up.

One may then conclude that even within this simpli�ed scheme, a modi�cation of
the spectrum is expected and may potentially explain spectral features that the ho-
mogeneous models fail to interpret. Thus, further development by including the ICS
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component is desired, as these modi�cation may either be enhanced or smoothed
out. In both cases evidence for strati�cation is strong as normally the two com-
ponents of the spectrum are assumed to be similar, i.e. exhibit roughly the same
power-law slope. Deviation from the standard assumptions usually made, homo-
geneity and/or isotropy can be proved signi�cant for explaining peculiar features
of the radiated spectra within leptonic models and without extreme phenomenolog-
ical assumptions. Additionally, the possible strati�cation of a relativistic out�ow
is closely related to the MHD processes that take place and thus its manifestation
through the emission mechanisms provides an interesting tool for testing or com-
paring current theoretical models.
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Chapter 7

Conclusions

In this thesis we have investigated the leptonic radiation processes that take place
in the relativistic out�ows of AGN. We have developed a self-consistent approach
shedding light on a number of unsolved problems regarding the interpretation of the
observed spectra, and we have expanded current models in order to examine more
complex, non-homogeneous con�gurations. Furthermore, we have analyzed in detail
issues related to the spectral shape of the emitted radiation.

One major topic in AGN physics that has attracted attention over the last years
is the interpretation of the hard VHE Blazar spectra. After correction for EBL
interaction of the emitted TeV photons, the intrinsic spectra of some sources appear
particularly hard, possessing challenges to standard leptonic models. In chapter 2

we have discussed the capability of narrow electron distributions to explain such
hard spectra. We have shown that these distributions within a self-consistent, time
dependent treatment, can lead to the formation of hard spectra. A power-law with
a large value of the low-energy cuto� can be maintained in the presence of energy
losses if adiabatic losses due to the expansion of the source control the evolution
of electrons at low energies. Furthermore, stochastic acceleration of particles in
combination with radiation losses, naturally leads to the formation of relativistic
Maxwell-type distributions which can successfully explain even extremely hard VHE
Blazar spectra.

Interestingly, narrow particle distributions such as Maxwellian type distribu-
tions can account for broader spectra as well, once they are embedded in a non-
homogeneous, multi-zone scenario. In chapter 3 we have developed a phenomeno-
logical model in which the emitted Blazar spectra originates from several regions
(blobs), where electrons are stochastically accelerated to relativistic energies. The
resultant emission can lead to power-law like spectra, with index simply controlled
by the energetics of the blobs. In this scheme, if one (or few) of the blobs become
more energetic (due to either an increase of the injected energy or an enhancement
of the Doppler boosting), hard �aring events can be satisfactorily interpreted. In
particular, such "leading blob" scenario can account for the characteristic Mkn 501
�are in 2009 during which a strong spectral hardening was observed.

The radiated spectra in the aforementioned cases (and in general in the lit-
erature) are calculated numerically. The kernel functions of the synchrotron and
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Compton processes are complex and the full convolution with the particle distribu-
tion can not be handled analytically. However, analytical approximations are very
important, as they give a helpful insight into the underlying physics, especially the
acceleration of the particles. In chapter 4 we develop analytical approximations
that describe the shape of the Compton spectrum close to the high-energy cuto�.
The high-energy cuto� of the electron distribution carries crucial information of
the acceleration process and can be used to distinguish among current theories. Our
calculations provide a direct link between the parent electrons and the emitted spec-
trum. Additionally, we can draw some general conclusions. For example, we show
that the shape of the two components of the observed spectrum (the low energy,
synchrotron bump and the high energy Compton bump) are not always identical. In
particular, in the Thomson regime the cuto� shape depends strongly on the target
photon �eld, and is rather broad, which is not the case in the Klein-Nishina regime
where the spectral cuto� resembles the shape of the electron distribution and is
more sharp.

The calculation of the observed Blazar spectra are essentially related to the
Doppler boosting of the emitted radiation. Blazars are known to exhibit relativis-
tic jets and the relativistic motion can lead to an important enhancement of the
intrinsic luminosity. Interestingly, the beaming pattern depends on the emission
process, e.g. it is di�erent for the synchrotron/SSC and EC model. In chapter 5 we
solve the photon transfer equation in order to obtain the formulas that describe the
Doppler boosting for general electron distributions, non-homogeneous, anisotropic
and stationary. These calculations generalize the results previously obtained in the
literature. Furthermore, they allow us to examine the interesting case of anisotropic
particle distributions that are often predicted in acceleration theories. We show that
the anisotropy of the radiating particles may lead to a possible mis-estimation of the
Doppler factor, as the luminosity peaks at viewing angles di�erent than in the case
of isotropic models. Under the natural assumption that the degree of anisotropy
depends on the energy of the particles, we show that the emitted synchrotron spec-
trum may appear harder. This e�ect is even more evident in the EC component
and in total anisotropy can introduce modi�cation of these two components.

In principle, relaxing standard assumptions, i.e. anisotropy or homogeneity of
the emitting source, has important consequences for understanding peculiar features
of the observed spectra. We have seen in chapter 3 that within a phenomenolog-
ical non-homogeneous model, hard �aring events can be interpreted under certain
assumption. We have also shown in chapter 5 that the emitted spectral shape can
di�er substantially from the case of isotropic particles and thus it can account for
spectra that the same power-law distributions can not explain in the isotropic case.
In chapter 6 we examine a non-homogeneous model in which the parameters of the
source vary continuously, as inferred from MHD simulations. In particular, we de-
velop a self-consistent approach for the synchrotron radiation that emerges from a
strati�ed jet. The strati�cation arises in the transverse (to the �uid velocity) direc-
tion and it concerns several physical parameters, such as the bulk Lorentz factor, the
magnetic �eld, the energy density of the parent electrons as well as the value of the
maximum cuto� of the particle distribution. In our scheme, the relativistic electrons
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are assumed to be injected in the radiation zone at the base of the jet. We show
that such a strati�cation may lead to interesting di�erences with respect to homo-
geneous models. First of all, as discussed before in more simpli�ed inhomogeneous
models, the spectrum may appear di�erent for di�erent viewing angles. Secondly,
the observed spectrum can exhibit special features related to the strati�cation. For
example, an additional break in the SED, which is related to the cooling break that
the particle distribution exhibits in each layer. The strati�cation may be as well
revealed through the spectral slope of a part of the spectrum, which is not related
to the acceleration process, but depends on the assumed relations that describe the
parameters' strati�cation.

The noted time-dependent approaches, as well as the deviation from standard
assumptions, such as isotropy and homogeneity, o�er important insight for the non-
thermal emission from AGN jets and allow to successfully address a number of
unsolved problems. Leptonic models have more to reveal for the AGN physics than
often assumed.
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